
The Corosync High Performance Shared Memory IPC Reusable C
Library

Steven Dake
Red Hat, Inc.

sdake@redhat.com

Abstract

The Corosync coroipc reusable C libraries providing
high performance client server communication are pre-
sented. The rationale for this effort is provided. An
overview of the coroipc features are given. The pro-
gramming API is described in enough detail to provide
developers with a complete understanding of how to de-
velop a client server application. Finally performance
results are provided.

1 Introduction

The Corosync Cluster Engine project was created in
July 2008 to address the needs of the Linux clustering
community. As part of this effort, the project imple-
mented and qualified a high performance client server
interprocess communication system called coroipc.

Throughout the history of client server applications, ev-
ery project implemented a unique IPC system. These
IPC systems each contain a unique set of defects, per-
formance characteristics, security model, thread safety,
and portability support. After developing coroipc,
the Corosync community determined coroipc could be
modified to be reusable by third party client server ap-
plications.

By making coroipc reusable, coroipc enables consum-
ing projects to focus on their strengths. Further by cen-
tralizing development effort on one IPC system, a larger
community of experienced designers can provide sup-
port for that IPC system. Finally since coroipc is built
into a significant portion of the Linux community’s clus-
ter infrastructure, it provides a perfect environment for
ensuring the software has a sanitary design model and is
defect free.

2 Features

2.1 Security

The coroipcs library provides a mechanism to ensure
only users with specific user id or group id access the
IPC system, and by inference, the server. This is en-
forced on all platforms which support the ability to re-
trieve the uid or gid of a connecting socket from a
platform-specific system call.

2.2 High Performance

The coroipc client and server use almost exclusively the
mmap() system call to map shared memory. As a re-
sult, in most cases there is no copy into the kernel, or
from the kernel to userspace for communications. No-
tification of new messages occurs through a system V
semaphore.

2.3 Portability

The coroipc system is dependent upon a Posix API, a co-
herent mmap() system call, and system V semaphores.
Nearly all modern Posix platforms provide these fea-
tures. The coroipc system has been ported and tested on
Linux, BSD, Darwin, and Solaris.

2.4 Thread Safety

The coroipc client library is thread safe and requires
no special attention by the client library users to en-
sure thread safety. Thread safety is implemented us-
ing reference counting on the identifier used for a client
IPC connection. The reference counting critical sections
are protected by spinlocks on platforms which support
them, or a mutex on platforms without spinlocks.

• 61 •

62 • The Corosync High Performance Shared Memory IPC Reusable C Library

2.5 Zero Copy

Clients may allocate a zero copy buffer which removes
one copy from client requests. Allocating a zero copy
buffer is an expensive operation and is reserved for
buffers with a consistent size which are consistently
reused.

2.6 Support for External Poll Systems

The coroipc server allows the server developer to use
customized polling mechanisms. Currently there are no
examples of using third party polling systems beyond
the coropoll API provided with the software. We expect
a glib example to be available in the community.

2.7 Asynchronous Client Delivery

The coroipc client blocks when the waiting for a server
response. If the server takes long periods to process re-
quests, it may prefer to issue an asynchronous response
to unblock the client. The coroipc system supports the
delivery of these messages through a special channel
called the dispatch channel.

3 Architecture Overview

Client Library or Application

coroipcc.so

coroipcs.so

Server Application

Figure 1: Example client-server application

The coroipc system is composed of two major compo-
nents. The client component is composed of a client
header file called coroipcc.h and client shared library
called coroipcc.so. The server component is composed
of a server header file called coroipcs.h and server
shared library called coroipcs.so. Figure 1 an example

client server application with multiple clients communi-
cating to one server.

The global header file coroipc_types.h is shown
in Listing 1. Every request message sent by li-
brary coroipcc clients should begin with a coroipc_
request_header_t. The size parameter should
be set to the size of the message and the id parameter
should be set to the message identifier.

The server coroipcs handlers should format a message
with a header of coroipc_response_header_t.
The coroipcc clients should expect to receive a message
with the coroipc_response_header_t header.

t y p e d e f s t r u c t {
i n t s i z e ;
i n t i d ;

} c o r o i p c _ r e q u e s t _ h e a d e r _ t ;

t y p e d e f s t r u c t {
i n t s i z e ;
i n t i d ;
c s _ e r r o r _ t e r r o r ;

} c o r o i p c _ r e s p o n s e _ h e a d e r _ t ;

Listing 1: The coroipcc Types Definition

4 coroipcc

The coroipcc library provides lifecycle operations, dis-
patch operations, request and reply operations, and zero
copy buffer operations. The full API is shown in List-
ing 2.

4.1 Lifecycle Operations

Clients connect to servers using the coripcc_
service_connect() API. When a client connects,
the client and server both mmap() several files into
memory shared by the client and server. Finally a
semaphore set is created to provide signalling between
client and server of new messages.

Several files are mapped using the mmap() system call
into the address space of both the client and server.
The first of these files is the control buffer which is
used internally for communication between the client
and server. A unique file is also mapped for client to
server requests and server to client responses. Finally an

2009 Linux Symposium • 63

e x t er n c s _ e r r o r _ t
c o r o i p c c _ s e r v i c e _ c o n n e c t (c o n s t char ∗ socket_name , unsigned i n t s e r v i c e ,

s i z e _ t r e q u e s t _ s i z e , s i z e _ t r e s p n s e _ s i z e , s i z e _ t d i s p a t c h _ s i z e ,
h d b _ h a n d l e _ t ∗ h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ s e r v i c e _ d i s c o n n e c t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ f d _ g e t (h d b _ h a n d l e _ t hand le , i n t ∗ fd) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ g e t (h d b _ h a n d l e _ t hand le , void ∗∗ buf , i n t t i m e o u t) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ p u t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ d i s p a t c h _ f l o w _ c o n t r o l _ g e t (h d b _ h a n d l e _ t hand le ,

unsigned i n t ∗ f l o w _ c o n t r o l _ s t a t e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e (h d b _ h a n d l e _ t hand le , c o n s t s t r u c t i o v e c ∗ iov ,

unsigned i n t i o v _ l e n , void ∗ res_msg , s i z e _ t r e s _ l e n) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e _ i n _ b u f _ g e t (h d b _ h a n d l e _ t hand le ,

c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n , void ∗∗ res_msg) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ m s g _ s e n d _ r e p l y _ r e c e i v e _ i n _ b u f _ p u t (h d b _ h a n d l e _ t h a n d l e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ a l l o c (h d b _ h a n d l e _ t hand le , void ∗∗ b u f f e r , s i z e _ t s i z e ,

s i z e _ t h e a d e r _ s i z e) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ f r e e (h d b _ h a n d l e _ t hand le , void ∗ b u f f e r) ;

e x t er n c s _ e r r o r _ t
c o r o i p c c _ z c b _ m s g _ s e n d _ r e p l y _ r e c e i v e (h d b _ h a n d l e _ t hand le , void ∗msg ,

void ∗ res_msg , s i z e _ t r e s _ l e n) ;

Listing 2: The coroipcc C API

asynchronous dispatch buffer is mapped twice to avoid
copies during dispatch operations.

Clients may disconnect via the coroipcc_
service_disconnect() API. A disconnect
doesn’t actually occur until all references of the ipc
connection have been released.

4.2 Dispatch Operations

Client server applications may desire asynchronous
communication. In coroipc, these are called dispatch

operations.

To determine when a dispatch operation is available, the
poll() system call should be used on a file descriptor
obtained with coroipcc_fd_get().

To retrieve the current dispatch buffer contents, the
coroipcc_dispatch_get() API is called. The
dispatch buffer is implemented internally as a circular
buffer. To avoid copies, the operating system virtual
memory system is used to provide a circular buffer map-
ping. The coroipcc_dispatch_get() operation
pins the dispatch message. It can be then be released

64 • The Corosync High Performance Shared Memory IPC Reusable C Library

with coroipcc_dispatch_put().

The design of coroipcc requires there is only one
thread of execution which executes a coroipcc_
dispatch_get() and coroipcc_dispatch_
put() operation. This model is consistent with the user
of coroipc providing an API to handle asynchronous dis-
patching of events and using the internal coroipcc dis-
patch operation functions.

The coroipcc_fd_get() API does not have to be
used for those client applications which don’t need to
multiplex input/output operations in the client. Instead
coroipcc_dispatch_get() may be used directly
and will use semaphores to avoid busy spins.

4.3 Request and Reply Operations

The coroipcc library provides message request and
reply operations to allow requests to be sent syn-
chronously to a server and a reply to be received
from the server. The common API is coroipcc_
msg_send_reply_receive() which copies the
response into a user supplied buffer. The remain-
ing two APIs allow zero copy reading of the re-
sponse buffer by pinning the response buffer into
memory. Pinning is done via coroipcc_msg_
send_reply_receive_in_buf_get() and an
unpin operation occurs via coroipcc_msg_send_
reply_receive_in_buf_put().

4.4 Zero copy buffer operations

To provide zero copy requests, the client must allocate
memory in both the client and server and share it via
mmap(). The client requests the server allocate this
shared memory via coroipcc_zcb_alloc() and
free the memory via coroipcc_zcb_free(). Since
these operations are expensive, they should be rarely
done and zero copy buffering should only be used on
often reused buffer areas. To send a request and re-
ceive a reply, the API coroipcc_zcb_msg_send_
reply_receive() is used.

5 coroipcs

Servers link with the coroipcs library and include the
coroipcs.h file to access coroipcs services. The coroipcs
library includes lifecycle operations, response opera-
tions, and integration with third party polling systems.

5.1 Lifecycle Operations

The coroipcs system is initialized by coroipcs_
init() and exited by coroipcs_exit(). The
initialization is defined by the structure coroipcs_
init_state shown in Listing 3. This structure in-
cludes many user provided function parameters. These
routines include scheduling policy, memory mange-
ment, serialization, flow control, security, custom poll
handler control, and functions to retrieve operations of
the user service.

5.1.1 Scheduling Policy

The coroipcs threads may be scheduled at Posix
scheduling policies rather then the default scheduler.
The policy parameter to coroipcs_init controls
the policy and the sched_param parameter controls
the parameters related to the policy.

5.1.2 Memory Management

Many servers provide their own memory allocation. In
that case, the internal use of malloc() and free()
can be overridden with user defined functions.

5.1.3 Serialization

If the backend function handlers are not thread safe,
the user may provide a serialize_lock() func-
tion that is executed when the service function callbacks
are called and serialize_unlock() function that
is executed when the service function callback is done
with execution. This acts to serialize input into the ser-
vice so no extra mutual exclusion is needed. If high
concurrency is desired, these functions can be defined
to NULL and will not be used. Instead the user should
provide finer grained locking within their callbacks.

5.1.4 Flow Control

Two functions are provided to provide flow control
into the server handler callbacks determined by the
handler_fn_get() callback.

2009 Linux Symposium • 65

t y p e d e f i n t (∗ c o r o i p c s _ i n i t _ f n _ l v a l u e) (void ∗ conn) ;
t y p e d e f i n t (∗ c o r o i p c s _ e x i t _ f n _ l v a l u e) (void ∗ conn) ;
t y p e d e f void (∗ c o r o i p c s _ h a n d l e r _ f n _ l v a l u e) (void ∗conn , c o n s t vo id ∗msg) ;

s t r u c t c o r o i p c s _ i n i t _ s t a t e {
c o n s t char ∗ socke t_name ;
i n t s c h e d _ p o l i c y ;
c o n s t s t r u c t sched_param ∗ sched_param ;
void ∗ (∗ ma l l oc) (s i z e _ t s i z e) ;
void (∗ f r e e) (void ∗ p t r) ;
void (∗ l o g _ p r i n t f) (c o n s t char ∗ fo rmat , . . .) _ _ a t t r i b u t e _ _ ((f o r m a t (p r i n t f , 1 , 2))) ;
i n t (∗ s e r v i c e _ a v a i l a b l e) (unsigned i n t s e r v i c e) ;
i n t (∗ p r i v a t e _ d a t a _ s i z e _ g e t) (unsigned i n t s e r v i c e) ;
i n t (∗ s e c u r i t y _ v a l i d) (i n t uid , i n t g i d) ;
void (∗ s e r i a l i z e _ l o c k) (void) ;
void (∗ s e r i a l i z e _ u n l o c k) (void) ;
i n t (∗ s e n d i n g _ a l l o w e d) (unsigned i n t s e r v i c e , unsigned i n t id , c o n s t vo id ∗msg ,

void ∗ s e n d i n g _ a l l o w e d _ p r i v a t e _ d a t a) ;
void (∗ s e n d i n g _ a l l o w e d _ r e l e a s e) (void ∗ s e n d i n g _ a l l o w e d _ p r i v a t e _ d a t a) ;
void (∗ p o l l _ a c c e p t _ a d d) (i n t fd) ;
void (∗ p o l l _ d i s p a t c h _ a d d) (i n t fd , void ∗ c o n t e x t) ;
void (∗ p o l l _ d i s p a t c h _ m o d i f y) (i n t fd , i n t e v e n t s) ;
void (∗ p o l l _ d i s p a t c h _ d e s t r o y) (i n t fd , void ∗ c o n t e x t) ;
void (∗ f a t a l _ e r r o r) (c o n s t char ∗ e r r o r _ m s g) ;
c o r o i p c s _ i n i t _ f n _ l v a l u e (∗ i n i t _ f n _ g e t) (unsigned i n t s e r v i c e) ;
c o r o i p c s _ e x i t _ f n _ l v a l u e (∗ e x i t _ f n _ g e t) (unsigned i n t s e r v i c e) ;
c o r o i p c s _ h a n d l e r _ f n _ l v a l u e (∗ h a n d l e r _ f n _ g e t) (unsigned i n t s e r v i c e , unsigned i n t i d) ;

} ;

Listing 3: The init state structure

The sending_allowed() function determines if an
IPC message may be delivered to the server. If it re-
turns the value 1, the coroipcs library will deliver the
IPC message to the appropriate server handler.

After an IPC message is delivered, the sending_
allowed_release() callback is executed.

It is often helpful to store some private information for
these two functions to share their operating state. A
64 byte parameter sending_allowed_private_
data is passed to both functions to store this opera-
tional state. The use of this private data is optional and
invisible to the coroipcs library.

5.1.5 Security

The security_valid() function is called by
coroipcs when a new IPC connection is made to the sys-
tem. The uid and gid are passed as parameters to this
function. The function should return 1 if the uid or gid
are valid users of the coroipcs application, otherwise it
should return 0.

5.1.6 Poll Handling

The poll_dispatch_add() call is executed when
a dispatch routine is required to be added to the poll
loop. The poll_dispatch_modify() is used
modify the events on the existing file descriptor. The
poll_dispatch_destroy() removes the fd from
the polling system.

5.1.7 Function Retrieval

The coroipcs system works by retrieving a function from
user defined selectors and executing those functions
when the appropriate action is requested by the ipc client
library. The init_fn_get() function is called to re-
trieve the initialization function for the service. When
the ipc connection disconnects, the exit_fn_get()
function is called to retrieve the exit function for the ipc
connection. Finally handler_fn_get() is used to
retrieve the appropriate IPC handler.

66 • The Corosync High Performance Shared Memory IPC Reusable C Library

e x t er n void c o r o i p c s _ i p c _ i n i t (s t r u c t c o r o i p c s _ i n i t _ s t a t e ∗ i n i t _ s t a t e) ;

e x t er n void
∗ c o r o i p c s _ p r i v a t e _ d a t a _ g e t (void ∗ conn) ;

e x t er n i n t
c o r o i p c s _ r e s p o n s e _ s e n d (void ∗conn , c o n s t vo id ∗msg , s i z e _ t mlen) ;

e x t er n i n t
c o r o i p c s _ r e s p o n s e _ i o v _ s e n d (void ∗conn , c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n) ;

e x t er n i n t
c o r o i p c s _ d i s p a t c h _ s e n d (void ∗conn , c o n s t vo id ∗msg , s i z e _ t mlen) ;

e x t er n i n t
c o r o i p c s _ d i s p a t c h _ i o v _ s e n d (void ∗conn , c o n s t s t r u c t i o v e c ∗ iov , unsigned i n t i o v _ l e n) ;

e x t er n void
c o r o i p c s _ r e f c o u n t _ i n c (void ∗ conn) ;

e x t er n void
c o r o i p c s _ r e f c o u n t _ d e c (void ∗ conn) ;

e x t er n void
c o r o i p c s _ i p c _ e x i t (void) ;

e x t er n i n t
c o r o i p c s _ h a n d l e r _ a c c e p t (i n t fd , i n t r e v e n t , void ∗ c o n t e x t) ;

e x t er n i n t c o r o i p c s _ h a n d l e r _ d i s p a t c h (i n t fd , i n t r e v e n t , void ∗ c o n t e x t) ;

Listing 4: The coroipcs API

5.2 Response Handling

The IPC services on delivery of a message can re-
spond via the APIs shown in Listing 4. More
specifically a regular response can be sent via
coroipcs_response_send() or via iovectors
with coroipcs_response_iov_send(). To
send to the dispatch output channel, coroipcs_
dispatch_send() can be used and and iovector ver-
sion is also available with coroipcs_dispatch_
iov_send().

5.3 Custom Poll Handling

The init functions specified in the structure
coroipcs_init_state for poll_accept_
add() and poll_dispatch_add() should register
callbacks with the poll system which then call the exter-
nal coroipcs APIs coroipcs_handler_accept()
and coroipcs_handler_dispatch() respec-
tively. The purpose of the external APIs is to translate

whatever API the application uses for poll into function
calls the coroipcs system can understand.

6 Performance

The coroipcs system is designed for high concurrency
operation on multiple processors. Each IPC connec-
tion is represented in the OS by a separate scheduling
entity to allow multi-threaded server designs. As a re-
sult, coroipcs should better be able to utilize the oper-
ating system scheduling features to achieve higher con-
currency then single threaded server applications.

The throughput in megabytes per second for message
sizes ranging from 1000 to 500,000 in 1000 byte in-
crements is shown in Figure 2. As can be seen from
the Figure 2, newer processor designs have higher total
throughput of up to 30 GB/sec for larger message sizes.
Older processor designs reach maximum throughput of
6 GB/sec for larger message sizes. The dropoff for very
large message sizes on 4 client Nehalem processors is

2009 Linux Symposium • 67

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

M
B

/S
ec

on
d

Message Size

MB/second for Various Configurations

1 client Nehalem Intel 5530 (2.4ghz)
1 client Core2 Intel T7200 (2.0ghz)

4 clients Nehalem Intel 5530 (2.4ghz)
4 clients Core2 Intel T7200 (2.0ghz)

Figure 2: MB/Sec Throughput

unexplained but may be a result of cache behavior of
the processor.

Transactions per second is shown in Figure 3. Nahalem
with 4 clients in this graph shows very good results of
one million transactions per second while a single client
shows results of 100,000 transactions per second. As
the size of the message increases, more time is spent
within the memcpy() C library function resulting in
lower overall transaction rates.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

T
ra

ns
ac

tio
ns

/S
ec

on
d

Message Size

Transactions/Second for Various Configurations

1 client Nehalem Intel 5530 (2.4ghz)
1 client Core2 Intel T7200 (2.0ghz)

4 clients Nehalem Intel 5530 (2.4ghz)
4 clients Core2 Intel T7200 (2.0ghz)

Figure 3: Transactions/Sec Throughput

7 Future Work

One area for future development is the tracking and no-
tification of buffer lengths to prevent a blocked client
from triggering server memory pressure. There are
many choices for how this could be done and remains
a further area of investigation.

Currently when a coroipcc request is made, a mutex
is taken on the shared memory area responsible for re-

quests and responses. This blocks other requests on the
same handle instance from proceeding until a response
is made. To improve concurrency, we plan to inves-
tigate removal of the mutex requirement by allowing
multiple requests and responses to be mapped into the
shared memory segment for multithreaded high concur-
rency applications.

Since our implementation just concluded, we have not
had a thourough chance to optimize small message sizes
for maximum MB/sec and transactions/sec throughput.
We intend to further analyze and characterize the per-
formance of coroipc to find hot spots within the imple-
mentation and make improvements where possible.

8 Conclusion

The coroipc system is a reusable C library that meets
the general needs of many client server applications. It
is portable to most Posix platforms, provides a sanitary
security model, and is thread safe for both clients and
servers. While improvements can be made with perfor-
mance, the performance of the initial implementation is
very good for many workload combinations. Our initial
requirements of an IPC system are met satisfactorily and
we expect future work to provide improved performance
and usability.

68 • The Corosync High Performance Shared Memory IPC Reusable C Library

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

