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XII. The Function of Osmotic Pressure in  the  Analogy  between 
Solutions  and  Gases. By  Professor  J.  VAN'T  HOFF*. 

DURING  an  investigation  which  required  some  knowledge  
of   the  laws   regulating   chemical   equilibrium  in  solutions, 
the conclusion has gradually been  evolved that  a  deep   analogy 
--- indeed almost an identity – exists between dilute solutions 
exerting osmotic pressure on the one hand, and gases under 
ordinary atmospheric pressure on the  other.  The  following 
pages contain an attempt to explain this analogy ; and  the 
physical  properties  of  such systems will form the first  subject 
of discussion. 

    I.  Osmotic pressure – the nature of the Analogy due to this  
          conception. 

    In  order  clearly  to realize the quantity  referred  to  as osmotic  
pressure, imagine a vessel,  A (fig. 1),  com- 
pletely full of an aqueous solution of sugar,  
placed in  water, B. If it be  conceived  that  
the  solid walls of this vessel are permeable  
to water,  but impermeable to the dissolved  
sugar, then,  owing to the  attraction of  the  
solution  for   water,  water  will  enter  the  
vessel  A  up to a certain limit,  thereby  in- 

AB

Fig. 1.  
creasing  the   pressure  on   the  walls of  the  vessel.  Equilibrium  
then  ensues,  owing  to   the  pressure  resisting  further  entry  of  
water. This pressure we have termed osmotic pressure. 

    *Communicated  to  the  Physical  Society ;   translated  by  Prof.  W.  
Ramsay, F.R.S.: read June 9, 1888. 
    Phil. Mag. S. 5. Vol. 26. No. 159. Aug. 1888.   
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    It is  evident  that this state of  
equilibrium  might have been at- 
tained  in   A  without  entry   of  
water if the vessel had been con- 
structed with a piston, compress- 
ing the solution  with a  pressure 
 equal to to the osmotic pressure  
(fig. 2).    It   follows  moreover  

B

Fig. 2.

Ap

                                                                       
 

that, by  increasing or diminishing the pressure  on  the  piston; 
the state of concentration of the  liquid  can also be  altered, 
owing to the passage of water  through the  walls  of  the  vessel 
in an outward or inward direction. 
    Such osmotic pressure has been  experimentally  investigated 
by Pfeffer ( Osmotische Untersuchungen, Liepsig, 1887). The 
walls the cell consisted of unglazed porcelain rendered 
impermeable  to  sugar  though  not to  water,  by  filling  it  with 
a solution  of  potassium ferrocyanide and  placing it in a  solu-
tion of copper sulphate. Owing to  diffusion,  the  ferrocyanide 
and the copper-salt come in contact after some time,  and pro-
duce a membrane of copper ferrocyanide having the required 
properties. Such a vessel is then filled with  a one-per-cent. 
solution of sugar;   it  is then closed  with  a  cork  provided  with 
a manometer, and sunk in  water; the  osmotic pressure  gra-
dually rises, owing to entry of water,  and  the  pressure  due to 
the  entry  of water  is  read  of  when  it  becomes constant.  As 
an example  of  the  results  obtained,   it may be  mentioned  that 
a one-per-cent. solution of sugar (which owing to its con-
siderable mass, was not appreciably diluted on entry of water) 
exerted at 6o.8 a pressure of  50.5 millim.  of  mercury—about 
one fifteenth of an atmosphere.  
    The porous membrane,  such as  that  described,  will  be 
termed in the following  pages  a "semipermeable membrane;" 
and the  conception  will  be  made  even where  the  experi-
mental  verification  is  lacking.   The  behavior  of   solutions 
may be thus studied in a manner strikingly analogous to that 
employed in the study of gases, inasmuch as what is known as 
"osmotic pressure"  corresponds to pressure,  or  as  it  com-
monly  but  incorrectly  termed,   "tension" of a gas.   It  is  right 
to mention that this is no fanciful analogy,  but a fundamental 
one; the mechanism which, according to our present views, 
controls the pressure of gases and the osmotic pressure of liquids 
is  substantially  the  same.  In the  former  case  pressure is  due 
to the impacts of gaseous molecules on the walls of the con-
taining vessel,  and in  the latter  to  the  impacts of the  mole-
cules of the dissolved substance on the semipermeable mem-
brane, since the impacts of the molecules of the solvent, being 
equal and opposed on each side of the vessel,  may  be  neglected. 
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    The great practical advantage arising from this method of 
regarding the behavior of solutions, which leads at once to 
quantitative conclusions,  consists  in  the fact that the applica-
tion of the second law of thermodynamics to liquids is rendered 
exceedingly easy; for reversible processes for which this law 
treats, can now be very simply conceived. It has been already 
mentioned  that a  piston and a cylinder with semipermeable 
walls, placed in the solvent, permits of alteration of  concen-
tration of the solution contained therein, by alteration of the 
pressure on the piston,  in  exactly  the  same way  as a  gas  can 
be  rarified  or  compressed ; except  that  in  the  former  case  it 
is the solvent which escapes  through the  semipermeable  walls 
on increase of pressure. Processes of this kind can always be 
made  reversible,  if  care  be  taken that the pressure on  the 
piston is made equal to the  opposed  pressure,  that is,  in  the 
case of solutions, the osmotic pressure. 
    We shall make use of this practical advantage in  the  fol-
lowing pages, particularly in investigating the laws of "ideal 
solutions ;" that  is to say,  solutions so dilute as to be com-
parable  with  "ideal"  or  "perfect"  gases,  in  which the  action 
on one another of the dissolved  molecules,  as well as  their 
actual  volume  compared  with  that  of  the  space they  inhabit, 
is so small as to be negligible. 

II. Boyle's Law for Dilute Solutions. 

    The analogy between dilute solutions and gases requires at 
once a quantitative form, if it be noted that in both  cases 
alteration of concentration exercises a similar influence on 
pressure, and is in both cases proportional to the pressure. 
    This proportionality, which for gases goes by the name of 
Boyle's law,  may be proved experimentally for liquids,  as well 
as deduced theoretically. 
     Experimental  Proof  (Determination  of  osmotic  pressure  
for solutions of variable concentrations).—Let us first adduce 
Pfeffer's  determinations   (Osmotische  Untersuchungen,  p. 71) 
of the osmotic pressure (P) in sugar-solutions at the same 
temperature   (13o.2  to  16o.1),  and  with  varying  concentr-
ations (C):--- 

C.  P.  
C

P
. 

1 per cent. 535 millim. 535  
2  " 1016 " 508  
2.74  " 1518 " 554 
4 " 2082 " 521 
6  " 3075 " 513 
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    The approximately constant quotients 
C

P
 point   conclusively 

to this proportionality between pressure and concentration. 
    Comparison  of  Osmotic  Pressure  by  Physiological Methods. 
---Observation of de Vries ("Eine Methode zur Analyse der 
Turgorcraft,"  Pringshheim's  Jahrb. xiv.) show that equal 
changes  of concentration of solutions of sugar,  and of potas-
sium sulphate and nitrate,  exercise equal  influence on the 
osmotic pressure. This osmotic pressure was compared, by 
physiological  methods,  with  that  of  the  contents of a  plant-
cell ; the protoplasmal  envelope  contracts when it is  immersed 
in solutions possessing great attraction for  water.  By a 
systematic  comparison  of  the  three bodies mentioned,  using 
the  same  cells,  three isotonic liquids  (i. e. liquids   exhibiting 
the  same  osmotic  pressure)  were  obtained.  Cells  of   differ-
ent plant were then made use of, and so  four  isotonic  series 
were constructed which showed a similar proportion in their 
concentrations ; this is exhibited in the following  table,  where 
the  concentrations  are  expressed  in  gram-molecules   per 
litre.:--- 

Series  KNO3  C12H22O11 K2SO4  KNO3 = 1  C12H22O11 K2SO4 
   I.       0.12        ---              0.09       1                 ---            0.75 
  II.      0.13       0.2              0.1         1                1.54          0.77 
 III.      0.195     0.3             0.15       1                1.54          0.77 
 IV.      0.26       0.4              ---          1               1.54          --- 

     Theoretical Proof.—These observations render highly 
probable the existence of proportionality between osmotic 
pressure and concentration,  and  the  theorem  may  be com-
pleted by a theoretical proof which is,  indeed almost  self-
evident.  Regarding  osmotic  pressure  as  due  to  a   kinetic 
cause (i. e. as produced by impacts of the dissolved molecules), 
there must exist a proportionality between the number  of im-
pacts in unit time and the number of molecules in unit volume. 
The proof is therefore exactly  the  same  as  that  for   Boyle's 
law.  If,  on the other hand,  osmotic  pressure  be  regarded   as 
the outcome of an attraction for water-molecules, its value is 
evidently proportional  to  the  number  of  attracting  molecules 
in unit volume, provided (and this is taken for granted in 
sufficiently dilute solutions)  the  dissolved  molecules exercise 
no attraction on each other,  and  each  one  exerts  its  own 
special attractive action, uninfluenced by its neighbors. 

 III. Gay-Lussac's Law for Dilute Solutions. 

    While the proportionality  between  concentration  and os-
motic  pressure  is  self-evident,  so  long  as  temperature remains 
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constant, the  proportionality  between osmotic   pressure   and   
absolute  temperature,  the   concentration   being   maintained  
constant, is not so manifest. Yet proof can be furnished from 
thermodynamical   considerations ;  and  experimental  data  exist  
which are highly favorable to the results  predicted  on 
thermodynamical grounds. 
    Theoretical Proof.—It  has  been  already  mentioned  that,  by  
means  of a piston a cylinder with semipermeable walls, 
reversible processes can be conceived to occur.  If  such pro-
cesses are expressed in the way common as regards gases, 
volumes and pressures  are  indicated  on  the  lines O V  and O P  
(fig. 3) ;  but  pressure  in  this case,  
as before, must be taken as osmotic  
pressure . The initial volume (V cub.  
meters)  is  represented  by OA ; the  
initial pressure on the piston of area  
1  square  metre  (P kilogr.) by Aα ;  
and the absolute temperature by T ;  
the solution is then conceived to un- 
dergo a minute increase of volume,  

P

O VA D B C

a b

c
d

Fig. 3.

f

dV cubic metres ( = AB), by moving the piston through dV 
meters, while the temperature of the solution is maintained 
constant by introduction of the requisite amount of heat. This 
amount of heat can be once determined, inasmuch as it is 
equivalent to the  external  work  performed,  PdV,  by  the 
motion  of  the  piston.  Internal work  is  absent,  for  the  dilu-
tion  is, by  hypothesis, so  that  the  dissolved   molecules 
exercise  no  attraction  on  each other.  This isothermal  change 
ab  is  succeeded by the isentropic,  or adiabatic change  bc, 
during which heat is neither absorbed nor evolved ; the tem-
perature  sinks  by  dTo ; and the original condition is then 
brought  about a second isothermal and a second adiabatic 
change, cd and da, respectively. The second law of thermo-

dynamics requires that the fraction, VP
T

T
d

d
 of the initially 

imparted  heat charge  PdV  shall  have been  converted  into 
work ;  this must be equivalent  to  the  area  abcd ;  and  hence 

the equation follows: VP
T

T
d

d
 = a b c d = af. AB = af dV ; and 

hence af
d

P = 
T

T
. But af represent the change of osmotic 

pressure, volume being kept constant, due to the change of 

temperature dT ; i. e. T)
T

P
( V d
d

d
; hence           

    
T

P
)

T

P
( V =
d

d
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On integration this equation gives,  on  the  assumption of 
constant volume, 

 
T

P
= constant ; 

that is, the osmotic pressure is proportional to the absolute 
temperature,  provided  concentration  (which  is  here  equiva-
lent to the volume of a gas)  remain  constant ;  and this  is 
entirely in accordance with Gay-Lussac law connecting the 
pressure and temperature of gases. 
    Experimental Proof (Determination of  the  osmotic  pressure 
at different temperatures).---Let us compare this theoretical 
conclusion with the  experimental  data  furnished  by  Pfeffer 
(pp. 114-115). He found that the  osmotic  pressure  increases 
with rise of temperature ;  it  will be seen that,  although his 
results  do  not  furnish a conclusive  proof of  the  correctness  of  
the theorem, yet there is a most  striking  correspondence  
between experiment and theory.  If  we  calculate  from  one of 
the two experiments at different temperatures the osmotic pres-
sure to be expected in the other, by help of  Gay-Lussac's  law, 
and compare it with the experimental result, we have the 
following series:--- 

1. Solution of cane-sugar. 
Pressure at 32o,  found . . 544 millim. 
Pressure at 14o.15,  calculated . 512  " 

" " found  . . 510  " 
2. Solution of cane-sugar. 

Pressure at 36o,  found . . 567  " 
Pressure at 15o.5,  calculated . 529  " 

" " found  . . 520.5  " 
3. Solution of Sodium tartrate. 

Pressure at 36o.6,  found . . 1564  " 
Pressure at 13o.3,  calculated . 1443  " 

" " found  . . 1431.6 " 
4. Solution of Sodium tartrate. 

Pressure at 37o.3,  found . . 983  " 
Pressure at 13o.3,  calculated . 907  " 

" " found  . . 908 " 
    Comparison of the osmotic pressure by Physiological 
Methods.---In the same manner that  support  has  been  lent  to 
the application of Boyle's law to solutions (viz. that different 
substances  in  isotonic  solutions  retain  their  equality of 
osmotic pressure so long as their respective concentrations are 
reduced to the same fraction),  so  the  application of Gay-
Lussac's   law   receives   support   by  the  fact  that this   isotonic 
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state   is  maintained  during  equal  alterations  of  temperature.  
It has been proved by physiological methods by Donders and 
Hamburger (Onderzoekingen gedaan in het physiologisch. La-
boratorium der Utrechtsche Hoogeschool [3] ix. P. 26), making 
use of blood-corpuscles, that solutions of potassium nitrate, 
sodium chloride, and sugar, which at 0o are isotonic with the 
contents of these cells, and hence are isotonic with each other, 
exhibit the same isotonic state at 34o ; this is seen  in  the  
annexed table:--- 

Temperature 0o. Temperature 34o. 
KNO3 . 1.052 to 1.03 p. c. 1.052 to 1.03 p. c. 
NaCl . . 0.62 to 0.609 p. c. 0.62 to 0.609 p. c. 
C12H22O11.  5.48 to 5.38 p. c. 5.48 to 5.38 p. c. 

    Experimental proof of Boyle's and Gay-Lussac's Laws for 
Solutions. Experiments by Soret (Archieves  des  Sciences  phys. 
et nat. [3] ii.  p. 48 ; Ann.  Chim.  Phys.  [5]   xxii.  p.  293).---  
The phenomenon observed by Soret lends a strong  support  to  
the analogy between dilute solutions and  gases  in  respect  of  
the influence of concentration  and  temperature  on  pressure.  
His work shows that just as in gases the warmest part  is  the  
most rarified, so with solutions the warmest portions are  the  
most  dilute  ;  but  that  in  the latter case a much longer time 
must be allowed for the attainment of equilibrium. The ex-
perimental apparatus consisted of a vertical tube, the upper 
portion  of  which  was  heated while the lower portion was kept 
at a low temperature. 
    Soret's  latest  experiments  lend  a  quantitative  support  to  
our analogy. As with  gases,  it  is  to  be  expected  that  when  
the isotonic state is produced, the solution will exist in 
equilibrium ; and as the osmotic pressure is proportional to 
concentration and  to  absolute  temperature,  the  isotonic  state  
of different portions of the solution  will  occur  when  the  
product  of  the  two  (absolute temperature and concentration)  
are equal. If we therefore calculate, on this basis, the con-
centration of the warmer part of the solution from data from data 
obtained with the  colder,  the  values  compare  with  those  
found  as follows:--- 

   1. Solutions of Copper Sulphate.---The portion cooled to 20o 
contained 17.332 per cent. The hot portion  at  80o  should  
contain 14.3 per cent. ; found, 14.03 per cent. 

   2. The portion cooled to 20o contained 29.867 per cent. The 
portion at 80o should contain 24.8  per  cent.  ;  found,  23.871  
per cent. 

    It must be stated that previous experiments  by  Soret  gave  
less   favorable   results  ;   yet   perhaps   too   much    importance 
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Should not be attached to them, owing to the difficulties of 
experiments. 

IV Avogadro's Law applied to Dilute Solutions. 

    We have considered the change produced in the osmotic 
pressure of solutions by alteration of temperature and con-
centration, and attempted  to  exhibit  the  analogy  between  
dilute solutions and gases,  in  relation  to  these  two  quantities.  
It now remains to compare directly the two  analogous  quan-
tities, gaseous pressure and osmotic pressure,  in one  and   the 
same body. It is obvious that this analogy should  hold  with  
gases in solutions ; and in actual fact it will be shown that, if 
Henry's law be taken into  consideration,  the  osmotic  pressure  
in solution is absolutely equal to the gaseous pressure, under 
similar conditions of temperature and concentration. 
    To prove this statement, we shall  picture  a  reversible  pro-
cess by aid of semipermeable diaphragms, temperature being 
maintained constant ; and we shall again make  use  of  the  
second law of thermodynamics, which in this case lends to the 
simple result that no work is transformed into  heat,  nor  heat  
into work ; and hence the sum of all work done at  different  
stages of the process is zero. 
    This reversible process may be considered by means of two 
similar cylinders and  pistons,  like  those  already  described.  
One contains a gas (A), say oxygen, and in contact with it a 
saturated  aqueous  solution  of  oxygen  (B) (fig. 4).  The wall b c  
allows  only  oxygen  to  pass,  but  
no  water ;   the  wall  a b,  on  the  
other hand, water, but not oxygen;  
and it is in contact with  water,  E.  
A reversible process  may  be  car- 
ried out by  such  an  arrangement  
as follows:---By  raising  the  two  
pistons   (1)   and  (2),  oxygen  is  

(3)
(4)

(6)

(5)(1)

c bb c

a ad d

B B
A A

B B

Fig. 4.

E E

(2)

E

evolved from its aqueous solution as gas,  while  the  water  
passes through a b ; this change can proceed  without  altering  
the concentration of the solution. The only difference between  
the two cylinders is in the state of concentration  of  the  solu-
tions which they contain ; we may explain the  action  thus :--- 
The unit of weight of  the  substance  in  question  occupies  in  
the left-hand cylinder a volume v and V, and in the right-hand 
cylinder,  v + dv  and V + dV ;  hence,  in  order  that  Henry's  
law may hold, 

    v : V = (v + dv) : (V + dV) ; hence v : V = dv : dV. 

If  now,  the  pressure,  or  osmotic  pressure,  as  the  case may be 
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(supposing  unit  volume  to  contain  unit  mass),   as  regards  
gas  and solution be P and p (which  will  afterwards  be  shown  
to  be  equal),  then,  from  Boyle's  law,  the  pressure  in  gas  

and solution will be  
P

v  
and  

V

p
 respectively. 

    Now let the piston (1) and (2)  be  raised  so  as  to  liberate  
unit weight of gas from the solution, and increase the gaseous 
volume v by dv, in order  to  equalize  the  concentration  with  
that  of the gas in the left-hand vessel, and by decreasing the 
pistons (4) and (5) let us redissolve the  freshly  liberated  gas,  
and then reduce the volume of the solution V + dV by  the  
amount of dV in the cylinder with semipermeable walls ;  then  
the cycle is complete. 

    Work has been done in six separate ways ; let  us  number  
them (1), (2), (3),  (4),  (5),  and  (6).  Now  (2)  and  (4)  are  
equal  in amount, but opposite in sign, since  they  refer  to  
change of volume v and v + dv in opposite directions under 
pressures which are inversely proportional to the volumes. In 
similar manner the sum of (1) and (5)  is  zero ;  so  that  the  
point requiring  proof  is  that  (3) + (6)  =  0. Here  (3)  repre-
sents work done by the gas in increasing its volume  by  dv,  

under  a pressure of  
P

v
, therefore (3) = dv

v
 

P
 ; while (6) repre-

sents the work done by the solution, while it  decreases  in  

volume by dV, under a pressure of  
V

p
, therefore (6) = - V 

V
d

p
. 

The statement is therefore 

dv
v

 
P

= V 
V

d
p

 ; 

And as v : V = dv : dV, P must be equal to p, which was to be 
proved. 

    This conclusion, which will receive in the sequel ample 
confirmation, lends, on the one hand, support to Gay-Lussac's  
law in it application to liquids:---If gaseous  pressure  and  
osmotic pressure are at the same temperature equal to one 
another, then equal changes of temperature must affect both 
equally. On the other hand, this relation allows of  a  con-
siderable extension of  Avogadro's law,  always  provided  that  
we may substitute the conception of osmotic pressure  for  
gaseous pressure:---under equal osmotic pressures and at the  
same temperature, equal volumes of all solutions contain equal 
numbers of molecules ; and, moreover, the same number of 
molecules which would be contained in an equal volume of a gas 
under the same conditions of temperature and pressure. 
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V. General Expression for Boyle's, Gay-Lussac's, and              
Avogadro's Laws for Solutions and Gases. 

    The well-known formula expressing both Boyle's and Gay-
Lussac's laws for gases, 

PV = RT, 

are, in so far as thee laws are applicable to liquids, also appli-
cable as regards osmotic pressure ; with the reservation, also 
made in the case of gases, that the space occupied by the 
molecules must be so great that the actual volume of the 
molecules become negligible. 
    To include Avogadro's law in the above expression, Horst-
mann's  suggestion (Berl.  Ber.  xiv.  p. 1243)  may  be  adopted,  
to express the molecular weight of the substance in kilograms ; 
taking 2 kilos. of hydrogen, 44  kilos.  of  carbon  dioxide,  and  
so on. Then R in the above equation has  always  the   same   
value ; for, under equal conditions  of  temperature  and  pres-
sure,  these  weights  occupy  the  same  volume.   Calculating  
this value, and expressing the volume in cubic metres, and the 
pressure in kilograms per square metre, and choosing hydrogen 
gas at 0o and 760  millim.  Pressure  as  starting  point,  then 

P = 10333 ; V =   
08956.0

2
;     T = 273 ;  R = 845.05. 

Hence  the  combined  expression  for  Boyle's,  Gay-Lussac's, 
and Avogadro's laws becomes 

PV = 845 T ; 

and this expression is applicable to solutions, substituting  
osmotic pressure for gaseous pressure. 
    We may give this expression even a simpler form,  inasmuch  
as the number of calorie  equivalent  to  a  kilogrammetre  of  

work (A = 
423

1
  

J

1 = ) stands in  a  very  simple  relation  to  R,  

viz.  AR = 2  (in  reality  about  one  thousandth  less).   Hence  
we  may choose the form 

APV = 2T ; 

And this form has the great practical  advantage  that work,  
which will often be discussed in  the  following  pages,  receives  
a very simple expression,  if  calculated back to heat,  measured  
in calories. 
    Let us next calculate  the  work, expressed  in  calories,  when  
a gas or a solution, under constant pressure and temperature, 
expands V volumes ; V volumes containing  a  kilogram-
molecule.  This  is  evidently  2T.    It   must  be  added  that  this 
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constant pressure is maintained only when the total volume of  
gas or solution is very great compared with V, or in cases of 
evaporation, where the vapor-pressure is at its maximum.  
   We shall also often have to  express  in  calories  the  work  
done during isothermal expansion of  the  kilogram-molecule  of  
a substance as gas or  in  solution.  If  pressure  falls  a  very  
small fraction ∆P, corresponding  to  a  small  increase  of  
volume ∆V,  the work done will be AP∆V,  or 2∆T. 

VI.   First  Confirmation  of  Avogadro's  Law  in  its   Application       
to Solutions.---Direct Determination of Osmotic Pressure. 

    It is to be expected Avogadro's law, deduced as a  con-
sequence of Henry's law for solutions of gases, will not be 
restricted to solutions of substances which usually exist in a 
gaseous condition. This expectation has been realized,  not  
merely from theoretical, but from an experimental standpoint. 
Pfeffer's determinations of the osmotic pressure of solutions of 
sugar furnish a remarkable confirmation  of  this  extension  of  
the law. 
    Pfeffer's solution consisted of 1 gram of sugar dissolved  in  
100 gram  of  water ;  one  gram  of  the  sugar  therefore  exists  
in about 100.6 cubic centim. of the solution. Comparing the 
osmotic pressure of this  solution  with  the  pressure  of  a  gas  
(e. g. hydrogen) containing as many molecules in the volume, 

there are  
342

2
 gram (C12H22O11 = 342) in 100.6 cubic centim. 

Now one litre of Hydrogen gas at 0o and 760 millim. pressure 
weights0.08956 gram ; and the above concentration is  equi-
valent to 0.0581 gram per litre ; the pressure at 0o is 0.649 
atmosphere, and  at t,  0.649(1 + 0.00367 t).  Placing  these  
results beside  Pfeffer's,  we  obtain  the  following  agreement :--- 

Temperature (t). Osmotic pressure. 0.649(1 + 0.00367 t). 
6.8   0.664   0.665 
13.7   0.691   0.681 
14.2   0.671    0.682 
15.5   0.684   0.680 
22.0   0.721   0.701 
32.0   0.716   0.725 
36.0   0.746   0.735 

    The directly determined osmotic pressure of a solution of  
sugar is thus seen to be equal to the pressure of a gas  at  the  
same temperature, containing  the  same  number  of  molecules  
in unit volume as the sugar-solution. 
    Starting from cane-sugar, this relation can be calculated for 
other dissolved substances, such as invert sugar, malic acid, 
tartaric  acid,  citric  acid,  magnesium  malate  and  citrate,  all  of  
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which from de Vries physiological researches  (Eine  Methode  
sur Messung der Turgorcraft, p. 512), exhibit equal osmotic 
pressure when they contain  an  equal  number  of  molecules  in  
a given volume. 

VII.  Second  Confirmation  of  Avogadro's Law in its Application  
to Solutions.---Molecular lowering of Vapour-pressure. 

    The relation between  osmotic  pressure  and  the  pressure  of  
a  vapour  in  contact  with  liquid,  which  is  easily  developed  
on thermodynamical principles, yields, from Raoult's recent 
observations, a satisfactory proof of the analogy under consi-
deration. 
    We shall begin with a general law, of which the previous 
matter of this thesis is quite independent:---Isotonism (i. e. equal 
osmotic pressure---from ισοξ and τονοξ, stretching) in solutions 
made with the same solvent, implies equality of vapour-pressure. 
This statement is easily proved by a reversible cycle, keeping 
temperature  constant.   Imagine   two   solutions  exhibiting  
equal vapour-pressure, and introduce  a  small  quantity  of  one  
in  the  state of vapour  into  the  other  in  a  reversible  manner,  
i. e.  by means of cylinder  and  piston.  The  vapour-pressures  
are equal, hence this transference takes place without  expend-
iture of work ;  and  also,  on  restoring  the  original  condition,  
no work is expended. But if the solvent be transferred back 
through a semipermeable diaphragm, separating the two  
solutions, then equal osmotic pressure must exist, else the 
transference could not take place  without  expenditure  of  
energy.  
    If this fundamental conception be applied to dilute solutions, 
accepting the laws which have been explained in the preceding 
pages, the simple conclusion follows, that if a solvent contains 
equal numbers of molecules of dissolved  substances,  the  
vapour-pressure  is  the  same.  This   is   merely   Raoult's   law   
(Comptes rndus, lxxxvii. p. 167 ; xliv. p. 1431)  of  the  con-
stancy of molecular diminution of vapour-pressure, obtained by 
multiplying the relative diminution by the  molecular  weight  of  
a one-per-cent. solution ; i. e. with the difference between the 
vapour pressure of the solvent, before and after addition of 
dissolved substances. The equality of molecular diminution of 
vapour-pressure depends on the solutions containing equal 
numbers of molecules, a close proportionality between the 
lowering of the vapour-pressure and the concentration being 
assumed. With ether, for  example,  the  value  fluctuated  
between 0.67 and 0.74 (mean 0.71) for thirteen substances 
dissolved in it. 
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    But this relation can be  further  developed.  Different  
solutions may be compared with each other, and a second law 
may be deduced, which Raoult has also discovered experiment-
tally. The following reversible process, consisting of two 
operations, is carried out with a very dilute solution of P per  
cent., at temperature T. 

    1. Remove, by use of cylinder with semipermeable wall, a 
portion of the solvent containing a kilogram-molecule  (M)  of  
the dissolved substance ; here the total quantity of solution is 
supposed so great that no alteration  of  concentration  occurs,  
and the expenditure of work is therefore 2T. 

    2. This quantity,  
P

M100
kilograms, of the solvent is returned  

as vapour ; it may be  conceived  as  produced  from  the  liquid  
by evaporation at its vapour-pressure ; then expanded till its 
pressure is equal to the vapour-pressure of the solution ; and 
finally liquefied in contact with the solution. The kilogram-
molecule of the solvent (M') will  thus  receive  an  expenditure  
of work  of  2T∆,  where  ∆  represent  the  relative  diminution  

of pressure ; and the  
P

M100
kilograms will receive  

PM'

M100
T2 ∆ . 

Here M 
P

∆
is Raoult's molecular diminution of pressure, which  

we shall term K ; employing this abbreviation, the expression 

becomes  
M'

TK200
. 

    From the second law of thermodynamics,  again,  the  alge-
braic sum of the work expended during this cycle at constant 
pressure must equal zero ; hence the  work  done  by  the  solu-
tion during the first stage must equal the  work  done  on  it  
during the second ; and thus 

 
M'

TK200
T2 =  ; or 100K = M'. 

This expression includes all Raoult's results. It expresses  the  
fact, as stated above, that the molecular diminution of vapour-
pressure is independent of the nature of  the  dissolved  body ;  
and  it also expresses, what Raoult found experimentally,  that  
this diminution is  independent  of  temperature.  It  also  con-
tains Raoult's second conclusion, that the molecular  diminution  
is proportional to the molecular weight of the solvent,  amount-
ing to about  one  hundredth  of  the  later.  This  is  seen  from  
the following table :--- 



94 J. van't Hoff on the Function of Osmotic Pressure 

Molecular 
diminution 

Molecular of vapour- 
Solvent   weight  Pressure 

(M')  (K). 
Water . . . . 18  0.185 
Phosphorous chloride . . 137.5  1.49 
Carbon disulphide . . 76  0.80 
Carbon tetrachloride . . 154  1.62 
Chloroform. . . . 119.5  1.30 
Amylene . . . 70  0.74 
Benzene. . . . 78  0.83 
Methyl iodide. . . . 142  1.49 
Methyl bromide . . 109  1.18 
Ether . . . . 74  0.71 
Acetone. . . . 58  0.59 
Methyl alcohol . . 32  0.33 

VIII. Third Confirmation  of  Avogadro's  Law in  its  Applica-
tion  to  Solutions.---Molecular  depression  of   Freezing-point   
of  Solvent. 
    Here again, a general  law  may  be  stated,  connecting  
osmotic pressure with the freezing point of a  solution:--- 
Solutions in the same solvent, and of the same  freezing-point,  
are isotonic in that temperature.  This  statement  admits,  like  
the former, of proof by means of a reversible cycle ; but the 
solvent when returned is here in the condition of ice, not of 
vapour ; the inverse change is also brought   about   by   means   
of  a semipermeable diaphragm, and, as it cannot be accom-
plished by gain or loss of energy, isotonism must exist. 
    We shall apply the above statement to dilute solutions ; and 
applying the relations previously described, the simple con-
clusion follows that solutions containing an equal number of 
molecules in equal volume, and which therefore, from Avo-
gadro's law, are isentropic, also have the same freezing-point. 
This law has been actually discovered by Raoult, and is ex-
pressed by him as "normal molecular depression of freezing-
point."  It holds for great majority of dissolved substances 
examined, and consists in the statement that the depression of 
freezing-point of a one-per-cent. solution , multiplied by the 
molecular weight of the dissolved substance, gives a constant 
product ; it is stated of solutions containing equal numbers of 
molecules in unit volume, assuming a close proportionality 
between  concentration  and  lowering  of  the  freezing-point.  
For an aqueous solution of nearly all  organic  bodies  the  
constant is about 18.5. 
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   We can follow this relation still further, and, assuming 
Avogadro's law for solutions, deduce the above normal mole-
cular depression of the freezing-point from the other data. It  
bears a close relation to the heat of fusion of the solvent, as is 
shown by applying the second law of thermodynamics to a 
reversible  cycle.   Imagine  a  very   dilute  solution   containing  
P  per cent. of a dissolved substance, which has produced a 
depression of freezing-point  ∆ ;  the  solution  itself  freezes  at  
T, and its heat of fusion is W per kilogram. 
    1. By use of piston and cylinder with semipermeable  walls,  
the  solution  is  deprived  at  temperature   T   of   that  amount  
of  the solvent in which a kilogram-molecule of the dissolved 
substance existed ; the amount of the solution is moreover so 
great that no appreciable  change  of  concentration  occurs,  
hence the work expended on it is 2T.  

    2. This quantity of solvent,  
P

M100
, is then allowed to freeze  

at T by withdrawing  
P

MW100
calories ; the solution and the 

solvent, now solid, are cooled through ∆ degrees,  and  the  
solvent is now allowed to melt in contact with the solution, 
thereby absorbing the above quantity of heat. Finally, the 
temperature is raised ∆ degrees.  

    During this reversible  process   
P

MW100
 calories  rise  from   ∆  to T, corresponding to an expenditure of energy equal to 

 
PT

MW100 ∆
 . In this expression, however,  

P

M∆
is the molecular 

depression of the freezing-point, which we  may  represent  by  

the letter t ;  the work done is therefore  
T

W100 t
, and it was 

shown above to be equal to 2T. Hence the equation 

2T 
T

W100 =t
 ; whence  

W

T
02.0

2=t  

    This theoretical deduction receives ample confirmation from 
experimental data. The following table exhibits the molecular 
depression of freezing-point experimentally determined by  
Raoult (Annales de Cimie et de Physique, [5] xxvii. ; [6] xi.), 
along with the value calculated by means  of  the  above  
formula:--- 
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          Freezing-        Heat of
     

 
W

T
02.0

2=t .      Raoult's 

Solvent.       Point        fusion      molecular  
(T).  (W).               depression. 

Water . 273  79  18.9  18.5 
Acetic acid 273 + 16.7 43.2*†  38.8  38.6 
Formic acid 273 + 8.5 55.6*†  28.4  27.7 
Benzene 273 + 4.9 29.1†  53  50 
Nitrobenzene 273 + 5.3 22.3†  69.5  70.7 

    It may be added that, from the molecular depression of  
ethylene bromide (117.9), the hitherto unknown heat  of  fusion  
is found equal to 13 ; and Mr.  Pettersson,  at  my  request,  
having experimentally determined this constant, obtained the 
number 12.94. 

IX.  Application  of   Avogadro's   Law  to  Solutions.---The  Law   
of  Guldberg  and  Waage. 

    Having discussed the physical aspect  of  this  problem  in  
order to furnish as many proofs as  possible  of  the  correctness  
of its treatment,  it now  remains  to  apply  it  to  chemical  facts. 
    The most evident application of Avogadro's law in  reference  
to  solutions  is to the  determination  of  the  molecular  weights  
of  dissolved  substances.  This  has  already  been  attempted ;  
but  here  it  is  not  the  pressure  which  require  measurement,  
as  with gases, when the molecular weight is deducible from 
volume, pressure, and temperature ; with solutions the osmotic 
pressure must be measured, and as yet the practical method is 
wanting. Yet this  difficulty  may  be  avoided  by  substituting  
for a determination of pressure  that  of  the  related  values ;  as,  
for example, the diminution of vapour-pressure, or the depress-
sion of the freezing point.  This  proposal  is  Raoult's.  He  
divides the reduction of vapour-pressure of  water  containing  
one per cent. of dissolved substances into 0.185 parts, or the 
observed depression  of  freezing-point  into  18.5  parts ;  and  
this method is comparable in respect of accuracy with deter-
mination of the density of gases, and, is in itself a strong 
presumption of the accuracy of Avogadro's law in  its  appli-
cation to gases. 
    It is still more remarkable that the law of Guldberg  and  
Waage, so generally accepted for solutions,  can  be  evolved  
from the above laws regulating the  behavior  of  dilute  solu-
tions.  Again,   a  reversible  cycle   at  constant  temperature  
must  be imagined, which can be conceived  for  solutions  
equally well with gases, by means of  semipermeable  
diaphragms. 

* Berthelot, Essai de Mecanique Chimique. 
† Petterson, Journ. F. prakt. Chem. [2] xxvi, p. 129. 
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    Let there be two systems of gaseous or dissolved  substances  
in equilibrium, which may be expressed by the following 
symbols:--- 

Ai'Mi' + ai''Mi'' + &c. ↔ aii 'M ii ' + aii ''Mii '' + &c., 

Where a denotes the number of molecules,  and  M  formula.  
This equilibrium exists in two different  vessels,  A  and  B,  at  
the same temperature  but  at  different  concentrations,  shown  
by the partial pressure, or by the osmotic  pressure  which  each   
of  the  bodies  exerts.  Let  these  pressures  be  in   vessel   A,   
Pi'  Pi''  … Pii ' Pii '' &c, ; and in B  greater  than  those  by  dPi'  
dPi''  … dPii ' dPii '' … &c. 
    The reversible cycle consists of introducing into  A  that  
amount in kilograms expressed by the first symbol of the first 
system, while the second is removed in  equivalent  amount :  
both  systems  have  here  concentrations  which  exist  in  A    
(fig.  5).  This  change   is  accom- 
plished  by  causing  the  entry   or 
exit of each  of  the  substances  in 
question  by   means   of   its  own 
cylinder and  piston,  which  is  se- 
parated  from  A  by  a  diaphragm 
permeable  to   that    body   alone. 
If  they  are  in  solution,  then  the 
Cylinders   possess   a  semiperme- 
able   wall,    and  are   surrounded  
by the solvent. 
    When this has  been  done,  each 
Constituent of the two systems has 

Fig. 5.
(1)

etc

(2)

Pi'

(5) (4)

(6)
etc
(3)

Pii''

Pii'

Pi''

A

B

 
 
 

Undergone such a change of concentration that it is  now  equal  
to that in B ; and, as before, the work done per  kilogram-
molecule equals  2∆T,  where  ∆  represents  a  minute  fraction  

of  the pressure, and is here  
P

Pd
 ; for the amount here in  

question it is  
P

P
T2

d
a . 

    By making use of the vessel B,  the  second  system,  which  
has just been evolved, is now converted into the first, but of 
concentration as in B, proceeding as just described ; and by 
suitable alteration of volume it is finally changed  into  its  
original state,  as it at first existed in A. 
    As no change of temperature has occurred, the algebraic sum  
of  all  these  operations  is  zero,   as  is  seen  from  the  num-
bers ;  it  is thought unnecessary   to  interpret  them,  as  they 
refer  to the operations in the order in which they were carried 
out:---  (1) + (2) + (3) + (4) + (5) + (6) 
    Phil. Mag. S. 5. Vol. 26. No. 159. Aug. 1888.   
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Now (1) and (5) refer to operations opposite in  sign  on  the  
same substances, with the same mass, at the same temperature ; 
hence (1) + (5) = 0. And for similar reasons, (2) + (4) = 0 ; 
whence  (3) + (6)  =  0. 
    This conclusion leads directly to  Guldberg's  and  Waage's  
law. 

    The work express by (3) is from that law  
P

P
T2

ii
ii

iid
aΣ ,  and  

(6)  is  
P

P
T2

i

id
aiΣ ; hence it follows that   

       
0)

P

P
T2- 

P

P
T2( =Σ

i

i
i

ii

ii
u

d
a

d
a , or 0)

P

P
T- 

P

P
T( =Σ

i

i
i

ii

ii
u

d
a

d
a .  

By integrating, 

 constant)P logP log( =−Σ iiiiu aa . 

 And here P is proportional to the  concentration,  or  to  the  
active mass C ; so that C may be  substituted  without  altering  
the equation :--- 

     constant)C logC log( =−Σ iiiiu aa  

    This is the logarithmic form of Guldberg's and Waage's 
formula. 

X. Deviation  from  Avogadro's   Law   in  Solutions.---Variations  
in Guldberg and Waage's Law. 

    We have attempted to show the  connexion  between  Guld-
berg and Waage's law and the laws of Boyle,  Henry,  Gay-
Lussac, and Avogadro, as applied to liquids ; as  applied  to  
gases, the truth of Guldgerg and Waage's law has been long 
proved  from  thermodynamical  considerations. 
    It remains to develop further the laws of chemical  equili-
brium, and first, to investigate more closely the limits of 
applicability of the three fundamental principles from which 
Guldberg and Waage's law has been deduced. 
    So long as "ideal solutions" are under consideration,  there  
exists  strict  analogy  between  gases  and  solutions ;  and  just  
as  there are deviations from Avogadro's law in the case  of  
gases, so  we  may  expect  to  find  them  with  solutions.  As,  
for example, the pressure of the vapour of Ammonium chloride 
was found to be too great to be accounted for by  Avogadro's  
law, so the osmotic pressure is in many cases  abnormal ; and as 
the high pressure in the first case is due to dissociation into 
ammonia and hydrogen chloride, it may be conceived  that  
similar dissociation occurs in solutions. It must, indeed, be 
acknowledged that deviations are much more frequent with 
solutions  than  with   gases,   and   occur  often  with  bodies  the 
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dissociation  of  which,  under  ordinary  circumstances,   does  
not appear probable ; in aqueous solutions, for example, the 
majority of salts as well as the stronger acids and bases undergo 
dissociation ; and hence Raoult did not  discover  the  existence  
of so-called  normal  molecular  depression  of  freezing-point  
and lowering of vapour pressure until he investigated organic 
compounds ; their behavior  is  almost  without  exception  
regular. For these reasons it may  have  appeared  daring  to  
begin by giving prominence to Avogadro's law  in  its  applica-
tion to solutions ; and I should have shrunk  from  this  course  
had not Arrhenius pointed out to me the probability that  salts,  
and analogous bodies, decompose on solution  into  their  ions ;  
in fact, substances which obey Avogadro's law are, as a rule, 
nonconductors, suggesting that in such cases  no  dissociation  
into ions occurs ; and further experimental  proof  exists  for  
other liquids, since by Arrhenius's assumption the deviations  
from Avogadro's law are calculable from the conductivity. 
    However this may stand,  an attempt is  made  in  the  follow-
ing pages to take account of such deviations from Avogadro's 
law, and, by help of the application  of  Boyle's  and  Gay-
Lussac's laws to solutions, to develop Guldberg's and Waage's 
formula so far as is possible. 
    The change in the expressions given above caused by these 
deviations is easily sketched. 
    The general expression for Boyle's, Gay-Lussac's, and 
Avogadro's laws, shown on p. 90 is 

APV = 2T ; 
And this change, if pressure is i-times  that  of  this  equation,  
into 

APV = 2iT. 
Hence, in a reversible cycle, the work will be i-times that 
previously done ; this alteration is easily applied to the former 
statement  of  Guldberg's   and   Waage's   formula.   Recurring   
to  the  final  stage  of  the  cycle  described  on  p. 97,  

(3) + (6) = 0. 
The work corresponding to (3) and (6), which were formerly 

 
P

P
T2

ii

iid
aiiΣ , and ---  

P

P
T2

i

id
aiΣ  , is now increased i-times ; hence 

the equation becomes 

0)
P
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- 
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d
ia  ; 

and on integration, 
constant)C logP log( =−Σ iiiiiiiu iaia . 
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And introducing the concentration, or the active  mass  C,  in-
stead of the pressure proportional to it, 

constant)C logC log( =−Σ iiiiiiiu iaia . 

This is Guldberg's and Waage's law in a logarithmic form, 
differing from the former statement only by  the  introduce-tion  
of the value i.  
    It remains to be shown  that  in  this  new  form  it  agrees  
better with the experimental results ; and as a knowledge of the 
correct value of i is necessary, we must deal with aqueous solu-
tions, for sufficient experimental data are to be had only with 
such. 

XI. Determination of i for Aqueous Solutions. 

    As Avogadro's law has been proved for solutions by four 
separate lines of argument, there are four ways in which the 
deviations, i. e. the values of i, may  be  determined.  But  that  
one which depends on the lowering of the melting-point  has  
been so thoroughly proved experimentally  that  we  shall  con-
fine ourselves to its use. 
    Reverting to the cycle which, on p. 95, was  employed  to  
prove the applicability of Avogadro's law to solutions, the re-
lation was found:--- 

2T 
T

W100 =t
, 

Where the second term refers to the work done in removing or 
adding that amount of the solvent  in  which  a  kilogram-
molecule  of  the  substance  was  dissolved ;  that  term   must   
be therefore multiplied by i :--- 

T 2 
T

W100
i

i = . 

In this manner a simple  means  of  determining  the  value  of  i  
is apparent. The value of i from the  above  equation  pro-
portional to t, i. e. to the molecular depression of  temperature,  
for the other data (T = absolute melting-point, W = heat  of  
fusion of solvent) are constant. Now 18.5 is the molecular 
depression for cane sugar, which from p. 91 is seen to follow 
Avogadro's law accurately ;  hence  i = 1 ;  and  for  other  bodies  
i  is their respective depressions divided by 18.5. Almost  
identical results are arrived at by using in the above equation, 
instead of T and W, the values for ice,  viz. 273 and 79 ;  they  
will therefore be employed in the following calculations. 

   XII. Proof of the Modified Law of Guldberg and Waage. 

    In employing the relation proposed for the purpose of 
comparison  with  the  results  of  Guldberg and Waage's formula, 
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it is necessary to mention the different forms which it has 
assumed  during  the  years  since  its   discovery.   We  shall   
first  give this relation a simple expression in which Guldberg  
and Waage's conception may be included, viz. :--- 

KC log =Σai .  . . .    (1) 

This differs from the one given on p. 100 merely in that  the  
terms representing the components of both systems have had  
their signs changed.  The  original  expression  of  the  Nor-
wegian investigators is closely analogous (Christiania Viden-
skabs Selskubs Forhandlingar, 1864) :--- 

KC log =Σk .  . . .    (2) 

Except that k has to be determined for each constituent in  
question by observation of the equilibrium of the system. 
    As Guldberg and Waage (Etudes sur les affinities chimiques, 
1867) repeatedly found the k coefficient equal to 1, they 
simplified their equation thus:--- 

KC log =Σ .  . . .    (3) 

In their last treatise, however, (Jour. fur prakt. Chem. Xix. P. 69), 
they introduce the change that  the  number  of  molecules  a  
must also be taken account of, and consequently they approxi-
mate their formula to that deduced for gases on  thermodyna-
mical grounds, thus :--- 

KC log =Σa ;  . . .    (4) 

We  have  taken  this  last  expression as  their  final  formula. 
    The Norwegian  investigators  maintained  this  simple  
formula, with whole numbers  as  coefficients,  even for  solu-
tions ; but  Lemoine  has  lately  revived  the  original  formula  
(2)  in order to represent the results  of  Schlosing's  investiga-
tions on the solubility of calcium  carbonate  in  water  con-
taining carbon dioxide, with constants hereafter to be deter-
mined, which are, however, not whole numbers ; for if whole 
numbers be employed, it is impossible to reconcile fact with 
theory. 
    In view of this uncertainty, the formula which we have 
suggested has  this  advantage,  that  the  coefficients  which  
occur  in it are a priori determined,  and  its  truth  can  at  once  
be decided by experiment. It will in fact appear that in the 
instances studied by Guldberg and Waage the  simple  form  
which they recommend is  completely  confirmed ;  and  that  
such simplification is in most cases admissible confirms, more-
over, the validity of Avogadro's law in its application to solu-
tions. On the other hand, the results  of  Schlosing's  in-
vestigation,    prominently    allowed    by   Lemoine,    cannot  be 



102 J. van't Hoff on the Function of Osmotic Pressure 

Simply expressed, and require the same fractional coefficients 
which Schlosing himself arrived at. 
    Before proceeding to this investigation, it is necessary to 
include cases where  partially  insoluble  bodies  are  present ;  
this  is easily done ; they may be  included  in  the  formulae  
given above, remembering that  such  bodies  exist  in  solution  
up  to its saturation-point, and are therefore  present  with  
constant concentration. All concentrations depending on this  
may, therefore, be removed from the first term of the above 
equation to the second, without affecting the constancy of the 
latter. Everything remains the same, except  that  in  the  first  
only the dissolved bodies need be considered. 
    1. We shall first examine Guldberg and  Waage's  observa-
tions. The first case they studied was that expressed by the 
equation 

423 SOKBaCo +  ↔ 32COKBaSO4+  ; 

And they found, according to their simplified formula, that 
KlogClogC

3242 COKSOK =− . 

The relation given by our equation is almost identical,   for 
K2SO4, a = 1 and i = 2.11, and for K2CO3, a = 1 and i = 2.26 ; 
hence 

KClog07.1logC
3242 COKSOK =− . 

A similar agreement exists  with  sodium  carbonate,  for  then  
the values of i for Na2SO4 and Na2CO3 are 1.91 and 2.18 
respectively ;  hence 

KlogC14.1logC
3242 CONaSONa =− . 

    2. This result, expressed in what is almost a whole number, 
cannot be expected in the above-mentioned experiment of 
Sclosing  (Comptes  rendus,   lxxiv.  1552 ;   lxxv.  70).  There  
the subject of experiment was the solubility of calcium  car-
bonate in water containing carbonic acid, and the state of 
equilibrium is expressible by the following statement:--- 

323 COHCaCo +  ↔ 23)Ca(HCO  . 

Weshould expect that, as i = 1  for  carbon  dioxide,  that  i  
should = 2 56 for calcium hydrogen carbonate:--- 

KlogClogC 0.39
2332 )Ca(HCOCOH =− ; 

and  Schlosing  found:--- 
KlogClogC 0.37866

2332 )Ca(HCOCOH =− . 

Similar   experiments  with  barium  are  equally  satisfactory ;  
the value of i for barium hydrogen carbonate is 2.66, and the 
following results are calculated:---

  
KlogClogC 0.376

2332 )Ba(HCOCOH =− . 
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The experimental result is 

KlogClogC 0.38045
2332 )Ba(HCOCOH =− . 

    3. Turning to Thomsen's investigation on the action of 
sulphuric acid on sodium nitrate in solution (Thomsen's 
Thermochemische Untersuchungen, i.), we find a similar agree-
ment. 
    The reaction may be formulated thus :--- 

Na2SO4 + HNO3 ↔ NaHSO4 + NaNO3 ; 

and Guldberg and Waage's relation requires  

KlogClogClogC logC 
34342 NaNONaHSOHNOSONa =−−+ . 

Now 
1.91

42SONa =i  ; 1.94
3HNO =i ; 1.88

4NaHSO =i  ; and  1.82
3NaNO =i  ; 

 
 

and the equation becomes 

KlogClogC 03.1logC 06.1logC 1.05
34342 NaNONaHSOHNOSONa =−−+ ,  

which is almost identical. 
    If we express the relation thus:--- 

Na2SO4 + 2HNO3 ↔ NaHSO4 + 2NaNO3 ; 

Guldberg and Waage's formula becomes 
KlogC 2logClogC 2 logC 

34342 NaNONaHSOHNOSONa =−−+ ; 

and we obtain: 

KlogC 91.1logC 1.07 logC 03.2logC
34342 NaNONaHSOHNOSONa =−−+ ; 

Again an almost absolute agreement. 
    4. Ostwald's investigation (J. prakt. Chem. [2] xix. P.  480).  
On the action of hydrochloric acid on zinc  sulphide,  according  
to the formula 

ZnS + 2HCl ↔ H2S + ZnCl2, 

leads, when the following values are ascribed: 

1.98HCl =i  ; 1.04SH2
=i  ; 53.2

4ZnCl =i  ; 

to the equation:--- 

KlogC 53.2logC 1.04 logC 3.96
22 ZnClSHHCL =−− . 

     It is evident that the concentrations of the sulphuretted 
hydrogen and the zinc chloride are  equal,  for  only  hydro-
chloric acid  and  zinc  sulphide  are  initially  present.   The  
result  is expressible by taking the volume  V,  in  which  a  
known   amount  of  hydrochloric  acid   was   dissolved,   as   the 
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Initial concentration ;  and  the  fraction  x  to  denote  that  
portion which after contact with zinc sulphide has finally  re-
acted, forming zinc chloride. Hence we have 

Const.
V

log 3.57 
V

-1
log 3.96 =− xx

; 

and also 

.ConstV
)-(1

12.0
1.12

=
x

x
 

    This function is really nearly constant: 

Volume (V). Portion reacted (x). 12.0
1.12

V
)-(1 x

x
 

  1  0.0411   0.043 
  2  0.038   0.0428 
  4  0.0345   0.0418 
  8  0.0317   0.0413 

Similar experiments with sulphuric acid,  where  i  for  H2SO4  
and ZnSO4 is respectively 2.06 and 0.98, gave 

.ConstV
)-(1

02.0
1.02

=
x

x
 ; 

and here also x is nearly a constant, as is seen  from  the  
following experimental numbers:--- 

Volume (V). Portion reacted (x).   
  2  0.0238    
  4  0.0237    
  8  0.024    

16  0.0241    

    5. The experiments of Engel on the solubility of magnesium 
carbonate in water containing carbonic  acid  (Comptes  rendus,  
c. pp.352, 444)  also  deserve  notice.    The  state  of  equili-
brium  is 

MgCO3 + H2CO3 ↔ Mg(HCO3)2 ; 

and our formula leads to the following relation, where i = 2.64  
for acid magnesium carbonate:--- 

KlogC C log 0.379
2332 )Mg(HCOCOH =− . 

The number found was 
KlogC C log 0.370

2332 )Mg(HCOCOH =− . 

    6. Other experiments by the same  author  on  the  simul-
taneous solubility of copper and ammonium sulphates (Comptes 
rendus,  cii.  p. 113),  are  shown  by  the  reversible  equation 

CuSO4 + (NH4)2SO4 ↔ Cu(NH4)2(SO4)2.  
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As the double salt was always partly undissolved, and as the 
values of i for CuSO4  and  for  (NH4)2SO4  are  0.98  and  2.0,  
we have the relation 

KlogC C log 0.49
4244 SO)(NHCuSO =− . 

The number found is 
4CuSOC log 0.438 . 

    7. In conclusion, we may notice  Le Chatalier's  experiments  
on the equilibrium between basic mercuric sulphate and sul-
phuric acid (Comptes rendus, xcvii. P. 1565); 

Hg3SO6 + 2H2SO4 ↔ 3HgSO4 + 2H2O. 

In this case the values of  i  for  H2SO4  and  HgSO4  are  2.06  
and 0.98, and we have 

KC log C log 1.4
442 HgSOSOH =− . 

The found value is 
42SOHC 1.58log . 

    Generally speaking, therefore, such results show a very 
satisfactory agreement. 


