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Abstract. Matching Pursuit algorithms learn a function that is a weighted sum of basis functions, by sequentially
appending functions to an initially empty basis, to approximate a target function in the least-squares sense. We
show how matching pursuit can be extended to use non-squared error loss functions, and how it can be used to
build kernel-based solutions to machine learning problems, while keeping control of the sparsity of the solution.
We present a version of the algorithm that makes an optimal choice of both the next basis and the weights of
all the previously chosen bases. Finally, links to boosting algorithms and RBF training procedures, as well as
an extensive experimental comparison with SVMs for classification are given, showing comparable results with
typically much sparser models.
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1. Introduction

Recently, there has been a renewed interest for kernel-based methods, due in great part to the
success of the Support Vector Machine approach (Boser, Guyon, & Vapnik, 1992; Vapnik,
1995). Kernel-based learning algorithms represent the function value f (x) to be learned
with a linear combination of terms of the form K (x, xi ), where xi is generally the input
vector associated to one of the training examples, and K is a symmetric positive definite
kernel function.

Support Vector Machines (SVMs) are kernel-based learning algorithms in which only
a fraction of the training examples are used in the solution (these are called the Support
Vectors), and where the objective of learning is to maximize a margin around the decision
surface (in the case of classification).

Matching Pursuit was originally introduced in the signal-processing community as an
algorithm “that decomposes any signal into a linear expansion of waveforms that are se-
lected from a redundant dictionary of functions.” (Mallat & Zhang, 1993). It is a general,
greedy, sparse function approximation scheme with the squared error loss, which itera-
tively adds new functions (i.e. basis functions) to the linear expansion. If we take as “dic-
tionary of functions” the functions di (·) of the form K (·, xi ) where xi is the input part
of a training example, then the linear expansion has essentially the same form as a Sup-
port Vector Machine. Matching Pursuit and its variants were developed primarily in the
signal-processing and wavelets community, but there are many interesting links with the
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research on kernel-based learning algorithms developed in the machine learning commu-
nity. Connections between a related algorithm (basis pursuit (Chen, 1995)) and SVMs had
already been reported in Poggio and Girosi (1998). More recently, Smola and Schölkopf
2000 show connections between Matching Pursuit, Kernel-PCA, Sparse Kernel Feature
analysis, and how this kind of greedy algorithm can be used to compress the design-
matrix in SVMs to allow handling of huge data sets. Another recent work, very much
related to ours, that also uses a Matching-Pursuit like algorithm is Smola and Bartlett
(2001).

Sparsity of representation is an important issue, both for the computational efficiency
of the resulting representation, and for its influence on generalization performance (see
(Graepel, Herbrich, & Shawe-Taylor, 2000) and (Floyd & Warmuth, 1995)). However the
sparsity of the solutions found by the SVM algorithm is hardly controllable, and often these
solutions are not very sparse.

Our research started as a search for a flexible alternative framework that would al-
low us to directly control the sparsity (in terms of number of support vectors) of the
solution and remove the requirements of positive definiteness of K (and the represen-
tation of K as a dot product in a high-dimensional “feature space”). It lead us to un-
cover connections between greedy Matching Pursuit algorithms, Radial Basis Function
training procedures, and boosting algorithms (Section 4). We will discuss these together
with a description of the proposed algorithm and extensions thereof to use margin loss
functions.

We first (Section 2) give an overview of the Matching Pursuit family of algorithms (the
basic version and two refinements thereof), as a general framework, taking a machine
learning viewpoint. We also give a detailed description of our particular implementation
that yields a choice of the next basis function to add to the expansion by minimizing
simultaneously across the expansion weights and the choice of the basis function, in a
computationally efficient manner.

We then show (Section 3) how this framework can be extended, to allow the use of
other differentiable loss functions than the squared error to which the original algorithms
are limited. This might be more appropriate for some classification problems (although, in
our experiments, we have used the squared loss for many classification problems, always
with successful results). This is followed by a discussion about margin loss functions,
underlining their similarity with more traditional loss functions that are commonly used for
neural networks.

In Section 4 we explain how the matching pursuit family of algorithms can be used to build
kernel-based solutions to machine learning problems, and how this relates to other machine
learning algorithms, namely SVMs, boosting algorithms, and Radial Basis Function training
procedures.

Finally, in Section 5, we provide an experimental comparison between SVMs and
different variants of Matching Pursuit, performed on artificial data, USPS digits classi-
fication, and UCI machine learning databases benchmarks. The main experimental result
is that Kernel Matching Pursuit algorithms can yield generalization performance
as good as Support Vector Machines, but often using significantly fewer support
vectors.
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2. Three flavors of matching pursuit

In this section we first describe the basic Matching Pursuit algorithm, as it was introduced
by Mallat and Zhang 1993, but from a machine learning perspective rather than a signal
processing one. We then present two successive refinements of the basic algorithm.

2.1. Basic matching pursuit

We are given l noisy observations {y1, . . . , yl} of a target function f ∈H at points
{x1, . . . , xl}. We are also given a finite dictionary D = {d1, . . . , dM} of M functions in
a Hilbert space H, and we are interested in sparse approximations of f that are expansions
of the form

fN =
N∑

n=1

αngn (1)

where

– N is the number of basis functions in the expansion,
– {g1, . . . , gN } ⊂ D shall be called the basis of the expansion,
– {α1, . . . , αN } ∈ R

N is the set of corresponding coefficients of the expansion,
– fN designs an approximation of f that uses exactly N distinct basis functions taken from

the dictionary.

Notice the distinction in notation, between the dictionary functions {d1, . . . , dM} ordered
as they appear in the dictionary, and the particular dictionary functions {g1, . . . , gN } ordered
as they appear in the expansion fN . There is a correspondence between the two, which can
be represented by a set of indices � = {γ1, . . . , γN } such that gi = dγi ∀i ∈ {1..N } with
γi ∈ {1..M}. Choosing a basis is equivalent to choosing a set � of indices.

We will also make extensive use of the following vector notations:

– For any function f ∈ H we will use 
f to represent the l-dimensional vector that corre-
sponds to the evaluation of f on the l training points:


f = ( f (x1), . . . , f (xl)).

– 
y = (y1, . . . , yl) is the target vector.
– 
RN = 
y − 
fN is the residue.
– 〈
h1, 
h2〉 will be used to represent the usual dot product between two vectors 
h1 and 
h2.
– ‖
h‖ will be used to represent the usual L2 (Euclidean) norm of a vector 
h.

The algorithms described below use the dictionary functions as actual functions only
when applying the learned approximation on new test data. During training, only their
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values at the training points is relevant, so that they can be understood as working entirely
in an l-dimensional vector space.

The basis {g1, . . . , gN } ⊂ D and the corresponding coefficients {α1, . . . , αN } ∈ R
N are

to be chosen such that they minimize the squared norm of the residue:

‖ 
RN ‖2 = ‖
y − 
fN ‖2 =
l∑

i=1

(yi − fN (xi ))
2 .

This corresponds to reducing the usual squared “reconstruction” error. Later we will see
how to extend these algorithms to other kinds of loss functions (Section 3), but for now, we
shall consider only least-squares approximations.

In the general case, when it is not possible to use particular properties of the family of
functions that constitute the dictionary, finding the optimal basis {g1, . . . , gN } for a given
number N of allowed basis functions implies an exhaustive search over all possible choices
of N basis functions among M( M!

N !(M−N )! possibilities). As it would be computationally
prohibitive to try all these combinations, the matching pursuit algorithm proceeds in a
greedy, constructive, fashion:

It starts at stage 0 with 
f0 = 0, and recursively appends functions to an initially empty
basis, at each stage n, trying to reduce the norm of the residue 
Rn = 
y − 
fn .

Given 
fn we build


fn+1 = 
fn + αn+1 
gn+1 (2)

by searching for gn+1 ∈D and for αn+1 ∈ R that minimize the residual error, i.e. the squared
norm of the next residue:

‖ 
Rn+1‖2 = ‖
y − 
fn+1‖2

= ‖
y − ( 
fn + αn+1 
gn+1)‖2

= ‖ 
Rn − αn+1 
gn+1‖2.

Formally:

(gn+1, αn+1) = arg min
(g∈D,α∈R)

‖ 
Rn − α
g‖2 (3)

For any g ∈ D, the α that minimizes ‖ 
Rn − α
g‖2 is given by

∂‖ 
Rn − α
g‖2

∂α
= 0

−2〈
g, 
Rn〉 + 2α‖
g‖2 = 0 (4)

α = 〈
g, 
Rn〉
‖
g‖2
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For this optimal value of α, we have

‖ 
Rn − α
g‖2 =
∥∥∥∥ 
Rn − 〈
g, 
Rn〉

‖
g‖2

g
∥∥∥∥

2

= ‖ 
Rn‖2 − 2
〈
g, 
Rn〉
‖
g‖2

〈
g, 
Rn〉 +
(

〈
g, 
Rn〉
‖
g‖2

)2

‖
g‖2

= ‖ 
Rn‖2 −
(

〈
g, 
Rn〉
‖
g‖

)2

(5)

So the g ∈D that minimizes expression (3) is the one that minimizes (5), which corre-
sponds to maximizing ‖ 〈
g, 
Rn〉

‖
g‖ |. In other words, it is the function in the dictionary whose
corresponding vector is “most collinear” with the current residue.

In summary, the gn+1 that minimizes expression (3) is the one that maximizes | 〈
gn+1, 
Rn〉
‖
gn+1‖ |

and the corresponding α is:

αn+1 = 〈
gn+1, 
Rn〉
‖
gn+1‖2

.

We have not yet specified how to choose N . Notice that, the algorithm being incremental,
we don’t necessarily have to fix N ahead of time and try different values to find the best
one, we merely have to choose an appropriate criterion to decide when to stop adding new
functions to the expansion. In the signal processing literature the algorithm is usually stopped
when the reconstruction error ‖ 
RN ‖2 goes below a predefined given threshold. For machine
learning problems, we shall rather use the error estimated on an independent validation set1

to decide when to stop. In any case, N (even though its choice is usually indirect, determined
by the early-stopping criterion) can be seen as the primary capacity-control parameter of
the algorithm.

The pseudo-code for the corresponding algorithm is given in figure 1 (there are slight
differences in the notation, in particular vector 
gn in the above explanations corresponds to
vector D(., γn) in the more detailed pseudo-code, and R is used to represent a temporary vec-
tor always containing the current residue, as we don’t need to store all intermediate residues

R0.. 
RN . We also dropped the arrows, as we only work with vectors and matrices, seen as

one and two dimensional arrays, and there is no possible ambiguity with corresponding
functions).

2.2. Matching pursuit with back-fitting

In the basic version of the algorithm, not only is the set of basis functions g1..n obtained
at every step n suboptimal, but so are also their α1..n coefficients. This can be corrected
in a step often called back-fitting or back-projection and the resulting algorithm is known
as Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar, & Krishnaprasad, 1993; Davis,
Mallat, & Zhang, 1994):
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Figure 1. Basic matching pursuit algorithm.

While still choosing gn+1 as previously (Eq. (3)), we recompute the optimal set of
coefficients α1..n+1 at each step instead of only the last αn+1:

α
(n+1)
1..n+1 = arg min

(α1..n+1∈R
n+1)

∥∥∥∥∥
(

n+1∑
k=1

αk 
gk

)
− 
y

∥∥∥∥∥
2

(6)

Note that this is just like a linear regression with parameters α1..n+1. This back-projection
step also has a geometrical interpretation:

Let Bn the sub-space of R
l spanned by the basis (
g1, . . . , 
gn) and let B⊥

n = R
l − Bn

be its orthogonal complement. Let PBn and PB⊥
n

denote the projection operators on these
subspaces.

Then, any 
g ∈ R
l can be decomposed as 
g = PBn 
g + PB⊥

n

g (see figure 2).

Ideally, we want the residue 
Rn to be as small as possible, so given the basis at step n,
we want 
fn = PBn 
y and 
Rn = PB⊥

n

y. This is what (6) insures.

But whenever we append the next αn+1 
gn+1 found by (3) to the expansion, we actually
add its two orthogonal components:

– PB⊥
n
αn+1 
gn+1 contributes to reducing the norm of the residue.

– PBn αn+1 
gn+1 which increases the norm of the residue.

However, as the latter part belongs to PBn it can be compensated for by adjusting the
previous coefficients of the expansion: this is what the back-projection does.
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Figure 2. Geometrical interpretation of matching pursuit and back-projection.

Davis, Mallat, and Zhang (1994) suggest maintaining an additional orthogonal basis of
the Bn space to facilitate this back-projection, which results in a computationally efficient
algorithm.2

2.3. Matching pursuit with pre-fitting

With back-fitting, the choice of the function to append at each step is made regardless of the
later possibility to update all weights: as we find gn+1 using (3) and only then optimize (6),
we might be picking a dictionary function other than the one that would give the best fit.

Instead, it is possible to directly optimize

(
gn+1, α

(n+1)
1..n+1

)
= arg min

(g∈D,α1..n+1∈Rn+1)

∥∥∥∥∥
(

n∑
k=1

αk 
gk

)
+ αn+1 
g − 
y

∥∥∥∥∥
2

(7)

We shall call this procedure pre-fitting to distinguish it from the former back-fitting (as
back-fitting is done only after the choice of gn+1).

This can be achieved almost as efficiently as back-fitting. Our implementation maintains
a representation of both the target and all dictionary vectors as a decomposition into their
projections on Bn and B⊥

n :
As before, let Bn = span(
g1, . . . , 
gn). We maintain at each step a representation of each

dictionary vector 
d as the sum of two orthogonal components:

– component 
dBn = PBn

d lies in the space Bn spanned by the current basis and is expressed

as a linear combination of current basis vectors (it is an n-dimensional vector).
– component 
dB⊥

n
= PB⊥

n

d lies in Bn’s orthogonal complement and is expressed in the

original l-dimensional vector space coordinates.

We also maintain the same representation for the target 
y, namely its decomposition into
the current expansion 
fn ∈ Bn plus the orthogonal residue 
Rn ∈ B⊥

n .
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Pre-fitting is then achieved easily by considering only the components in B⊥
n : we choose

gn+1 as the g ∈D whose 
gB⊥
n

is most collinear with 
Rn ∈B⊥
n . This procedure requires,

at every step, only two passes through the dictionary (searching 
gn+1, then updating the
representation) where basic matching pursuit requires one.

The detailed pseudo-code for this algorithm is given in figure 3.

Figure 3. Matching pursuit with pre-fitting.
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2.4. Summary of the three variations of MP

Regardless of the computational tricks that use orthogonality properties for efficient com-
putation, the three versions of matching pursuit differ only in the way the next function to
append to the basis is chosen and the α coefficients are updated at each step n:

– Basic version: We find the optimal gn to append to the basis and its optimal αn , while
keeping all other coefficients fixed (Eq. (3)).

– back-fitting version: We find the optimal gn while keeping all coefficients fixed (Eq. (3)).
Then we find the optimal set of coefficients α

(n)
1..n for the new basis (Eq. (6)).

– pre-fitting version: We find at the same time the optimal gn and the optimal set of
coefficients α

(n)
1..n (Eq. (7)).

When making use of orthogonality properties for efficient implementations of the back-
fitting and pre-fitting version (as in our previously described implementation of the pre-
fitting algorithm), all three algorithms have a computational complexity of the same order
O(N · M · l).

3. Extension to non-squared error loss

3.1. Gradient descent in function space

It has already been noticed that boosting algorithms are performing a form of gradient
descent in function space with respect to particular loss functions (Schapire et al., 1998;
Mason et al., 2000). Following Fiedman (1999), the technique can be adapted to extend the
Matching Pursuit family of algorithms to optimize arbitrary differentiable loss functions,
instead of doing least-squares fitting.

Given a loss function L(yi , fn(xi )) that computes the cost of predicting a value of fn(xi )

when the true target was yi , we use an alternative residue R̃n rather than the usual 
Rn = 
y− 
fn

when searching for the next dictionary element to append to the basis at each step.
R̃n is the direction of steepest descent (the gradient) in function space (evaluated at the

data points) with respect to L:

R̃n =
(

−∂L(y1, 
fn(x1))

∂ 
fn(x1)
, . . . ,−∂L(yl , 
fn(xl))

∂ 
fn(xl)

)
(8)

i.e. 
gn+1 is chosen such that it is most collinear with this gradient:

gn+1 = arg max
g∈D

∣∣∣∣∣ 〈
gn+1, R̃n〉
‖
gn+1‖

∣∣∣∣∣ (9)
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A line-minimization procedure can then be used to find the corresponding coefficient

αn+1 = arg min
α∈R

l∑
i=1

L (yi , fn(xi ) + α
gn+1(xi )) (10)

This would correspond to basic matching pursuit (notice how the original squared-error
algorithm is recovered when L is the squared error: L(a, b) = 1

2 (a − b)2).
It is also possible to do back-fitting, by re-optimizing all α1..n+1 (instead of only αn+1) to

minimize the target cost (with a conjugate gradient optimizer for instance):

α
(n+1)
1..n+1 = arg min

(α1..n+1∈Rn+1)

l∑
i=1

L

(
yi ,

n+1∑
k=1

αk gk(xi )

)
(11)

As this can be quite time-consuming (we cannot use any orthogonality property in this
general case), it may be desirable to do it every few steps instead of every single step.
The corresponding algorithm is described in more details in the pseudo-code of figure 4
(as previously there are slight differences in the notation, in particular gk in the above
explanation corresponds to vector D(., γk) in the more detailed pseudo-code).

Finally, let’s mention that it should in theory also be possible to do pre-fitting with an
arbitrary loss functions, but finding the optimal {gk+1 ∈ D, α1..k+1 ∈ R

k+1} in the general
case (when we cannot use any orthogonal decomposition) would involve solving equation 11
in turn for each dictionary function in order to choose the next one to append to the basis,
which is computationally prohibitive.

3.2. Margin loss functions versus traditional loss functions for classification

Now that we have seen how the matching pursuit family of algorithms can be extended to
use arbitrary loss functions, let us discuss the merits of various loss functions.

In particular the relationship between loss functions and the notion of margin is of primary
interest here, as we wanted to build an alternative to SVMs.3

While the original notion of margin in classification problems comes from the geomet-
rically inspired hard-margin of linear SVMs (the smallest Euclidean distance between the
decision surface and the training points), a slightly different perspective has emerged in the
boosting community along with the notion of margin loss function. The margin quantity
m = y f̂ (x) of an individual data point (x, y), with y ∈ {−1, +1} can be understood as a
confidence measure of its classification by function f̂ , while the class decided for is given
by sign( f̂ (x)). A margin loss function is simply a function of this margin quantity m that
is being optimized.

It is possible to formulate SVM training such as to show the SVM margin loss function:
Let ϕ be the mapping into the “feature-space” of SVMs, such that 〈ϕ(xi ), ϕ(x j )〉 =

K (xi , x j ).

The SVM solution can be expressed in this feature space as

f̂ (x) = 〈w, ϕ(x)〉 + b

where w = ∑
xi ∈SV αi yiϕ(xi ) , SV being the set of support vectors.
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Figure 4. Back-fitting matching pursuit algorithm with non-squared loss.

The SVM problem is usually formulated as minimizing

‖w‖2 + C
l∑

i=1

ξi (12)

subject to constraints yi (〈w, xi 〉 + b) ≥ 1 − ξi and ξi ≥ 0, ∀i . C is the “box-constraint”
parameter of SVMs, trading off margin with training errors.
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The two constraints for each ξi can be rewritten as a single one:

ξi ≥ max (0, 1 − yi (〈w, xi 〉 + b))

or equivalently: ξi ≥ [1 − yi f̂ (xi )]+.

The notation [x]+ is to be understood as the function that gives [x]+ = x when x > 0
and 0 otherwise.

As we are minimizing an expression containing a term
∑l

i=1 ξi , the inequality constraints
over the ξi can be changed into equality constraints: ξi = [1 − yi f̂ (xi )]+. Replacing ξi in
Eq. (12), and multiplying by C we get the following alternative formulation of the SVM
problem, where there are no more explicit constraints (they are implicit in the criterion
optimized):

Minimize
l∑

i=1

[1 − yi f̂ (xi )]+ + 1

C
‖w‖2. (13)

Let m = y f̂ (x) the individual margin at point x . (13) is clearly the sum of a margin loss
function and a regularization term.

It is interesting to compare this margin loss function to those used in boosting algorithms
and to the more traditional cost functions. The loss functions that boosting algorithms
optimize are typically expressed as functions of m. Thus AdaBoost (Schapire et al., 1998)
uses an exponential (e−m) margin loss function, LogitBoost (Friedman, Hastie, & Tibshirani,
1998) uses the negative binomial log-likelihood, log2(1 + e−2m), whose shape is similar to
a smoothed version of the soft-margin SVM loss function [1 − m]+, and Doom II (Mason
et al., 1999) approximates a theoretically motivated margin loss with 1 − tanh(m). As can
be seen in figure 5 (left), all these functions encourage large positive margins, and differ
mainly in how they penalize large negative ones. In particular 1 − tanh(x) is expected to be
more robust, as it won’t penalize outliers to excess.

It is enlightening to compare these with the more traditional loss functions that have been
used for neural networks in classification tasks (i.e. y ∈ {−1, +1}), when we express them
as functions of m.

– Squared loss: ( f̂ (x) − y)2 = (1 − m)2

– Squared loss after tanh with modified target4:
(tanh( f̂ (x)) − 0.65y)2 = (0.65 − tanh(m))2

Both are illustrated on figure 5 (bottom). Notice how the squared loss after tanh appears
similar to the margin loss function used in Doom II, except that it slightly increases for
large positive margins, which is why it behaves well and does not saturate even with un-
constrained weights (boosting algorithms impose further constraints on the weights, here
denoted α’s).
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Figure 5. Boosting and SVM margin loss functions (top) vs. traditional loss fuctions (bottom) viewed as functions
of the margin. Interestingly the last-born of the margin motivated loss functions (used in Doom II) is similar to
the traditional squared error after tanh.

4. Kernel matching pursuit and links with other paradigms

4.1. Matching pursuit with a kernel-based dictionary

Kernel Matching Pursuit (KMP) is simply the idea of applying the Matching Pursuit family
of algorithms to problems in machine learning, using a kernel-based dictionary:

Given a kernel function K : R
d × R

d → R, we use as our dictionary the kernel centered
on the training points: D = {di = K (·, xi ) | i = 1..l}. Optionally, the constant function can
also be included in the dictionary, which accounts for a bias term b: the functional form of
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approximation 
fN then becomes


fN (x) = b +
N∑

n=1

αn K
(
x, xγn

)
(14)

where the γ1..N are the indices of the “support points”. During training we only consider
the values of the dictionary functions at the training points, so that it amounts to doing
Matching in a vector-space of dimension l.

When using a squared error loss,5 the complexity of all three variations of KMP (basic,
back-fitting and pre-fitting) is O(N .M.l) = O(N .l2) if we use all the training data as
candidate support points. But it is also possible to use a random subset of the training points
as support candidates (which yields a M < l).

We would also like to emphasize the fact that the use of a dictionary gives a lot of
additional flexibility to this framework, as it is possible to include any kind of function into
it, in particular:

– There is no restriction on the shape of the kernel (no positive-definiteness constraint,
could be asymmetrical, etc.).

– The dictionary could include more than a single fixed kernel shape: it could mix different
kernel types to choose from at each point, allowing for instance the algorithm to choose
among several widths of a Gaussian for each support point (a similar extension has been
proposed for SVMs by Weston et al., 1999).

– Similarly, the dictionary could easily be used to constrain the algorithm to use a kernel
shape specific to each class, based on prior-knowledge.

– The dictionary can incorporate non-kernel based functions (we already mentioned the
constant function to recover the bias term b, but this could also be used to incorporate
prior knowledge). In this later aspect, the work of Smola, Friess, and Schölkopf, 1999 on
semi-parametric SVMs offers an interesting advance in that direction, within the SVM
framework. This remains a very interesting avenue for further research.

– For huge data sets, a reduced subset can be used as the dictionary to speed up the training.

However in this study, we restrict ourselves to using a single fixed kernel, so that the
resulting functional form is the same as the one obtained with standard SVMs.

4.2. Similarities and differences with SVMs

The functional form (14) is very similar to the one obtained with the Support Vector Machine
(SVM) algorithm (Boser, Guyon, & Vapnik, 1992), the main difference being that SVMs
impose further constraints on α1..N .

However the quantity optimized by the SVM algorithm is quite different from the KMP
greedy optimization, especially when using a squared error loss. Consequently the support
vectors and coefficients found by the two types of algorithms are usually different (see our
experimental results in Section 5).
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Another important difference, and one that was a motivation for this research, is that
in KMP, capacity control is achieved by directly controlling the sparsity of the solution,
i.e. the number N of support vectors, whereas the capacity of SVMs is controlled through
the box-constraint parameter C , which has an indirect and hardly controllable influence on
sparsity. See Graepel, Herbrich, and Shawe-Taylor (2000) for a discussion on the merits of
sparsity and margin, and ways to combine them.

4.3. Link with radial basis functions

Squared-error KMP with a Gaussian kernel and pre-fitting appears to be identical to a partic-
ular Radial Basis Functions training algorithm called Orthogonal Least Squares RBF (Chen,
Cowan, & Grant, 1991) (OLS-RBF).

In Schölkopf et al. (1997) SVMs were compared to “classical RBFs”, where the RBF
centers were chosen by unsupervised k-means clustering, and SVMs gave better results. To
our knowledge, however, there has been no experimental comparison between OLS-RBF
and SVMs, although their resulting functional forms are very much alike. Such an empirical
comparison is one of the contributions of this paper. Basically our results (Section 5) show
OLS-RBF (i.e. squared-error KMP) to perform as well as Gaussian SVMs, while allowing
a tighter control of the number of support vectors used in the solution.

4.4. Boosting with kernels

KMP in its basic form generalized to using non-squared error is also very similar to boosting
algorithms (Freund & Schapire, 1996; Friedman, Hastie, & Tibshirani, 1998), in which the
chosen class of weak learners would be the set of kernels centered on the training points.
These algorithms differ mainly in the loss function they optimize, which we have already
discussed in Section 3.2.

In this respect, a very much related research is the work of Singer (2000) on Leveraged
Vector Machines. The proposed boosting algorithm also builds support vector solutions to
classification problems using kernel-based weak learners and similarly shows good perfor-
mance with typically sparser models.

4.5. Matching pursuit versus basis pursuit

Basis Pursuit (Chen, 1995) is an alternative algorithm that essentially attempts to achieve
the same goal as Matching Pursuit, namely to build a sparse approximation of a target
function using a possibly over-complete dictionary of functions. It is sometimes believed to
be a superior approach6 because contrary to Matching Pursuit, which is a greedy algorithm,
Basis Pursuit uses Linear Programming techniques to find the exact solution to the following
problem:

α1..M = arg min
α1..M ∈RM

∥∥∥∥∥
(

M∑
k=1

αk 
dk

)
− 
y

∥∥∥∥∥
2

+ λ‖α‖1 (15)

where ‖α‖1 = ∑M
k=1 |αk | is used to represent the L1 norm of α1..M .
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The added λ‖α‖1 penalty term will drive a large number of the coefficients to 0 and
thus lead to a sparse solution, whose sparsity can be controlled by appropriately tuning the
hyper-parameter λ.

However we would like to point out that, as far as the primary goal is good sparsity,
i.e. using the smallest number of basis functions in the expansion, both algorithms are
approximate: Matching Pursuit is greedy, while Basis Pursuit finds an exact solution, but
to an approximate problem (the exact problem could be formulated as solving an equation
similar to (15) but where the L0 norm would be used in the penalty term instead of the L1

norm).
In addition Matching Pursuit had a number of advantages over Basis Pursuit in our

particular setting:

– It is very simple and computationally efficient, while Basis Pursuit requires the use of
sophisticated Linear Programming techniques to tackle large problems.

– It is constructive, adding the basis functions one by one to the expansion, which allows us
to use a simple early-stopping procedure to control optimal sparsity. In contrast, a Basis
Pursuit approach implies having to tune the hyper-parameter λ, running the optimization
several times with different values to find the best possible choice.

But other than that, we might as well have used Basis Pursuit and would probably have
achieved very similar experimental results. We should also mention the works of Poggio
and Girosi (1998) which draws an interesting parallel between Basis Pursuit and SVMs, as
well as Gunn and Kandola (2001) who use Basis Pursuit with ANOVA kernels to obtain
sparse models with improved interpretability.

4.6. Kernel matching pursuit versus kernel perceptron

The perceptron algorithm (Rosenblatt, 1957) and extensions thereof (Gallant, 1986) are
among the simplest algorithms for building linear classifiers. As it is a dot-product based
algorithm, the kernel trick introduced by Aizerman, Braverman, and Rozonoer (1964) read-
ily applies, allowing a straightforward extension to build non-linear decision surfaces in
input-space, in the same way this trick is used for SVMs.

For recent research on the Kernel Perceptron, see the very interesting work of Freund and
Schapire 1998, and also Graepel, Herbrich, and Shawe-Taylor (2000) who derive theoretical
bounds on their generalization error. Kernel Perceptrons are shown to produce solutions that
are typically more sparse than SVMs while retaining comparable recognition accuracies.

Both Kernel Matching Pursuit and Kernel Perceptron appear to be simple (they do not in-
volve complex quadratic or linear programming) and efficient greedy algorithms for finding
sparse kernel-based solutions to classification problems. However there are major differ-
ences between the two approaches:

– Kernel Matching Pursuit does not use the Kernel trick to implicitly work in a higher-
dimensional mapped feature-space: it works directly in input-space. Thus it is possible to
use specific Kernels that don’t necessarily satisfy Mercer’s conditions. This is especially
interesting if you think of K as a kind of similarity measure between input patterns, that
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could be engineered to include prior knowledge, or even learned, as it is not always easy,
nor desirable, to enforce positive-definiteness in this perspective.

– The perceptron algorithm is initially a classification algorithm, while Matching Pursuit
is originally more of a regression algorithm (approximation in the least-squares sense),
although the proposed extension to non-squared loss and the discussion on margin-loss
functions (see Section 3) further blurs this distinction. The main reason why we use
this algorithm for binary classification tasks rather than regression, although the latter
would seem more natural, is that our primary purpose was to compare its performance to
classification-SVMs.7

– Similar to SVMs, the solution found by the Kernel Perceptron algorithm depends only on
the retained support vectors, while the coefficients learned by Kernel Matching Pursuit
depend on all training data, not only on the set of support vectors chosen by the algorithm.
This implies that current theoretical results on generalization bounds that are derived
for sparse SVM or Perceptron solutions (Vapnik, 1995; Vapnik, 1998; Littlestone &
Warmuth, 1986; Floyd & Warmuth, 1995; Graepel, Herbrich, & Shawe-Taylor, 2000)
cannot be readily applied to KMP. On the other hand, KMP solutions may require less
support vectors than Kernel Perceptron for precisely this same reason: the information on
all data points is used, without the need that they appear as support vectors in the solution.

5. Experimental results on binary classification

Throughout this section:

– any mention of KMP without further specification of the loss function means least-squares
KMP (also sometimes written KMP-mse).

– KMP-tanh refers to KMP using squared error after a hyperbolic tangent with modified
targets (which behaves more like a typical margin loss function as we discussed earlier
in Section 3.2).

– Unless otherwise specified, we used the pre-fitting matching pursuit algorithm of figure 3
to train least-squares KMP.

– To train KMP-tanh we always used the back-fitting matching pursuit with non-squared
loss algorithm of figure 4 with a conjugate gradient optimizer to optimize the α1..n .8

5.1. 2D experiments

Figure 6 shows a simple 2D binary classification problem with the decision surface found
by the three versions of squared-error KMP (basic, back-fitting and pre-fitting) and a hard-
margin SVM, when using the same Gaussian kernel.

We fixed the number N of support points for the pre-fitting and back-fitting versions to
be the same as the number of support points found by the SVM algorithm. The aim of this
experiment was to illustrate the following points:

– Basic KMP, after 100 iterations, during which it mostly cycled back to previously chosen
support points to improve their weights, is still unable to separate the data points. This
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Figure 6. Top left: 100 iterations of basic KMP; Top right: 7 iterations of KMP back-fitting; Bottom left:
7 iterations of KMP pre-fitting, Bottom right: SVM. Classes are + and ×. Support vectors are circled. Pre-fitting
KMP and SVM appear to find equally reasonable solutions, though using different support vectors. Only SVM
chooses its support vectors close to the decision surface. Back-fitting chooses yet another support set, and its
decision surface appears to have a slightly worse margin. As for basic KMP, after 100 iterations during which it
mostly cycled back to previously chosen support points to improve their weights, it appears to use more support
vectors than the others while still being unable to separate the data points, and is thus a bad choice if we want
sparse solutions.

shows that the back-fitting and pre-fitting versions are a useful improvement, while the
basic algorithm appears to be a bad choice if we want sparse solutions.

– The back-fitting and pre-fitting KMP algorithms are able to find a reasonable solution
(the solution found by pre-fitting looks slightly better in terms of margin), but choose
different support vectors than SVM, that are not necessarily close to the decision surface
(as they are in SVMs). It should be noted that the Relevance Vector Machine (Tipping,
2000) similarly produces9 solutions in which the relevance vectors do not lie close to the
border.

Figure 7, where we used a simple dot-product kernel (i.e. linear decision surfaces),
illustrates a problem that can arise when using least-squares fit: since the squared error
penalizes large positive margins, the decision surface is drawn towards the cluster on the
lower right, at the expense of a few misclassified points. As expected, the use of a tanh loss
function appears to correct this problem.
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Figure 7. Problem with least squares fit that leads KMP-mse (center) to misclassify points, but does not affect
SVMs (left), and is successfully treated by KMP-tanh (right).

5.2. US postal service database

The main purpose of this experiment was to complement the results of Schölkopf et al.
(1997) with those obtained using KMP-mse, which, as already mentioned, is equivalent to
orthogonal least squares RBF (Chen et al., 1991).

In Schölkopf et al. (1997) the RBF centers were chosen by unsupervised k-means clus-
tering, in what they referred to as “Classical RBF”, and a gradient descent optimization
procedure was used to train the kernel weights.

We repeated the experiment using KMP-mse (equivalent to OLS-RBF) to find the support
centers, with the same Gaussian Kernel and the same training set (7300 patterns) and
independent test set (2007 patterns) of preprocessed handwritten digits. Table 1 gives the
number of errors obtained by the various algorithms on the tasks consisting of discriminating
each digit versus all the others (see Schölkopf et al., 1997 for more details). No validation
data was used to choose the number of bases (support vectors) for the KMP. Instead, we
trained with N equal to the number of support vectors obtained with the SVM, and also
with N equal to half that number, to see whether a sparser KMP model would still yield
good results. As can be seen, results obtained with KMP are comparable to those obtained
for SVMs, contrarily to the results obtained with k-means RBFs, and there is only a slight
loss of performance when using as few as half the number of support vectors.

Table 1. USPS Results: number of errors on the test set (2007 patterns), when using the same number of support
vectors as found by SVM (except last row which uses half #sv). Squared error KMP (same as OLS-RBF) appears
to perform as well as SVM.

Digit class 0 1 2 3 4 5 6 7 8 9

#sv 274 104 377 361 334 388 236 235 342 263

SVM 16 8 25 19 29 23 14 12 25 16

k-means RBF 20 16 43 38 46 31 15 18 37 26

KMP (same #sv) 15 15 26 17 30 23 14 14 25 13

KMP (half #sv) 16 15 29 27 29 24 17 16 28 18
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5.3. Benchmark datasets

We did some further experiments, on 5 well-known datasets from the the UCI machine
learning databases, using Gaussian kernels of the form

K (x1, x2) = e− ‖x1−x2‖2

σ2 .

A first series of experiments used the machinery of the Delve (Rasmussen et al., 1996)
system to assess performance on the Mushrooms dataset. Hyper-parameters (the σ of the
kernel, the box-constraint parameter C for soft-margin SVM and the number of support
points for KMP) were chosen automatically for each run using 10-fold cross-validation.

The results for varying sizes of the training set are summarized in Table 2. The p-values
reported in the table are those computed automatically by the Delve system.10

For Wisconsin Breast Cancer, Sonar, Pima Indians Diabetes and Ionosphere, we used a
slightly different procedure.

The σ of the Kernel was first fixed to a reasonable value for the given data set.11

Then we used the following procedure: the dataset was randomly split into three equal-
sized subsets for training, validation and testing. SVM, KMP-mse and KMP-tanh were
then trained on the training set while the validation set was used to choose the optimal
box-constraint parameter C for SVMs,12 and to do early stopping (decide on the num-
ber N of s.v.) for KMP. Finally the trained models were tested on the independent test
set.

This procedure was repeated 50 times over 50 different random splits of the dataset into
train/validation/test to estimate confidence measures (p-values were computed using the
resampled t-test studied in (Nadeau & Bengio, 2000)). Table 3 reports the average error
rate measured on the test sets, and the rounded average number of support vectors found
by each algorithm.

As can be seen from these experiments, the error rates obtained are comparable, but the
KMP versions appear to require much fewer support vectors than SVMs. On these datasets,
however (contrary to what we saw previously on 2D artificial data), KMP-tanh did not seem
to give any significant improvement over KMP-mse. Even in other experiments where we
added label noise, KMP-tanh didn’t seem to improve generalization performance.13

Table 2. Results obtained on the mushrooms data set with the Delve system. KMP requires less support vectors,
while none of the differences in error rates are significant.

Size of train KMP error SVM error p-value (t-test) KMP #s.v. SVM #s.v.

64 6.28% 4.54% 0.24 17 63

128 2.51% 2.61% 0.82 28 105

256 1.09% 1.14% 0.81 41 244

512 0.20% 0.30% 0.35 70 443

1024 0.05% 0.07% 0.39 127 483
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Table 3. Results on 4 UCI datasets. Again, error rates are not significantly different (values in parentheses are
the p-values for the difference with SVMs), but KMPs require much fewer support vectors.

SVM KMP-MSE KMP-TANH SVM KMP-MSE KMP-TANH
Dataset error error error #s.v. #s.v. #s.v.

Wisc. cancer 3.41% 3.40% (0.49) 3.49% (0.45) 42 7 21

Sonar 20.6% 21.0% (0.45) 26.6% (0.16) 46 39 14

Pima Indians 24.1% 23.9% (0.44) 24.0% (0.49) 146 7 27

Ionosphere 6.51% 6.87% (0.41) 6.85% (0.40) 68 50 41

6. Conclusion

We have shown how Matching Pursuit provides an interesting and flexible framework to
build and study alternative kernel-based methods, how it can be extended to use arbitrary
differentiable loss functions, and how it relates to SVMs, RBF training procedures, and
boosting methods.

We have also provided experimental evidence that such greedy constructive algorithms
can perform as well as SVMs, while allowing a better control of the sparsity of the solution,
and thus often lead to solutions with far fewer support vectors.

It should also be mentioned that the use of a dictionary gives a lot of flexibility, as it can
be extended in a direct and straightforward manner, allowing for instance, to mix several
kernel shapes to choose from (similar to the SVM extension proposed by Weston et al.,
1999), or to include other non-kernel functions based on prior knowledge (similar to the
work of Smola Friess & Schölkopf, 1999 on semi-parametric SVMs). This is a promising
avenue for further research.

In addition to the computational advantages brought by the sparsity of the models ob-
tained with the kernel matching pursuit algorithms, one might suspect that generalization
error also depends (monotonically) on the number of support vectors (other things be-
ing equal). This was observed empirically in our experiments, but future work should
attempt to obtain generalization error bounds in terms of the number of support vectors.
Note that leave-one-out SVM bounds (Vapnik, 1995; Vapnik, 1998) cannot be used here
because the αi coefficients depend on all the examples, not only a subset (the support
vectors). Sparsity has been successfully exploited to obtain bounds for other SVM-like
models (Littlestone & Warmuth, 1986; Floyd & Warmuth, 1995; Graepel, Herbrich, &
Shaw-Taylor, 2000), in particular the kernel perceptron, again taking advantage of the
dependence on a subset of the examples. A related direction to pursue might be to take
advantage of the data-dependent structural risk minimization results of Shawe-Taylor et al.
(1998).

Notes

1. Or a more computationally intensive cross-validation technique if the data is scarce.
2. In our implementation, we used a slightly modified version of this approach, described in the pre-fitting

algorithm below.
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3. Whose good generalization abilities are believed to be due to margin-maximization.
4. 0.65 is approximately the point of maximum second derivative of the tanh, and was advocated by LeCun

et al. (1998) as a target value for neural networks, to avoid saturating the output units while taking advantage
of the non-linearity for improving discrimination of neural networks.

5. The algorithms generalized to arbitrary loss functions can be much more computationally intensive, as they
imply a non-quadratic optimization step.

6. It is possible to find artificial pathological cases where Matching Pursuit breaks down, but this doesn’t seem
to be a problem for real-world problems, especially when using the back-fitting or pre-fitting improvements
of the original algorithm.

7. A comparison with regression-SVMs should also prove very interesting, but the question of how to compare
two regression algorithms that do not optimize the same loss (squared loss for KMP, versus ε-insensitive loss
for SVMs) first needs to be addressed.

8. We tried several frequencies at which to do full back-fitting, but it did not seem to have a strong impact, as
long as it was done often enough.

9. However in a much more computationally intensive fashion.
10. For each size, the delve system did its estimations based on 8 disjoint training sets of the given size and

8 disjoint test sets of size 503, except for 1024, in which case it used 4 disjoint training sets of size 1024 and
4 test sets of size 1007.

11. These were chosen by trial and error using SVMs with a validation set and several values of C , and keeping
what seemed the best σ , thus this choice was made at the advantage of SVMs (although they did not seem too
sensitive to it) rather than KMP. The values used were: 4.0 for Wisconsin Breast Cancer, 6.0 for Pima Indians
Diabetes, 2.0 for Ionosphere and Sonar.

12. Values of 0.02, 0.05, 0.07, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 100 were tried for C .
13. We do not give a detailed account of these experiments here, as their primary intent was to show that the

tanh error function could have an advantage over squared error in presence of label noise, but the results were
inconclusive.
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