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A tiling of the plane is a family of sets — called tiles — that cover the plane without gaps or
overlaps. (“Without overlaps” means that the intersection of any two of the sets has measure (area)
zero.) Tilings are also known as tessellations, pavings, or mosaics; they have appeared in human
activities since prehistoric times. Their mathematical theory is mostly elementary, but nevertheless it
contains a rich supply of interesting and sometimes surprising facts as well as many challenging
problems at various levels. The same is true for the special class of tilings that will be discussed here —
more or less regular tilings by regular polygons. These types were chosen because they are accessible
without any need for lengthy introductions, and also because they were the first to be the subject of
mathematical research. The pioneering investigation was done by Johannes Kepler, more than three
and a half centuries ago. Additional historical data will be given later (in Section 6) but as an
introduction we reproduce in FIGURE 1 certain drawings from Kepler [1619]. We shall see that these
drawings contain (at least in embryonic form) many aspects of tilings by regular palygons which even
at present are not completely developed.

As is the case with many other notions, the concept of “more or less regular” tilings by regular
polygons developed through the centuries in response to the interests of various investigators; it is still
changing, and no single point of view can claim absolute superiority over all others. Our presentation
reflects our preferences, although many other definitions and directions are possible; some of these
will be briefly indicated in Sections 4, 5 and 7. For most of our assertions we provide only hints which
we hope will be sufficient for interested readers to construct complete proofs.

Initially we shall use only regular convex polygons as tiles: if such a polygon has n edges (or sides)
we shall call it an n-gon, and use for it the symbol {n}. Thus {3} denotes an equilateral triangle, while
{4}, {5}, {6} denote a square, a (regular) pentagon, and a (regular) hexagon, respectively. All the
polygons are understood to be closed sets, that is, to include their edges and vertices.
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Various more or less regular tilings of the plane by regular polygons, reproduced from J. Kepler’s book
“Harmonices Mundi’’, published in 1619.

FIGURE 1

Except in Section 4 we shall restrict attention to tilings that are edge-to-edge; by this we mean that

as far as the mutual relation of any two tiles is concerned there are just three possibilities:
(i) they are disjoint (have no point in common);

(ii) they have precisely one common point which is a vertex of each of the polygons; or

(iii) they share a segment that is an edge of each of the two polygons.
Hence a point of the plane that is a vertex of one of the polygons in an edge-to-edge tiling is also a
vertex of every other polygon to which it belongs; we shall say that it is a vertex of the tiling. Similarly,
each edge of one of the polygons is an edge of precisely one other polygon and we call it an edge of the
tiling.
1. Regular and uniform tilings

The question about the possibilities of tiling the plane by (congruent) copies of a single regular
polygon has the following simple and rather obvious answer, the origin of which is lost in antiquity.
The only possible edge-to-edge tilings of the plane by mutually congruent regular convex polygons are

the three regular tilings by equilateral triangles, by squares, or by regular hexagons. A portion of each of
these three tilings is illustrated in FIGURE 2.
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The three regular tilings of the plane.

FIGURE 2

If we inquire about the possibility of edge-to-edge tilings of the plane that use as tiles regular
polygons of several kinds, then the situation immediately becomes much more interesting. The angle
at each vertex of {n} is (n — 2)m/n so it is easy to check by simple arithmetic that only 17 choices of
polygons can be fitted around a single vertex so as to cover a neighborhood of the vertex without gaps
or overlaps. We call each such choice the species of the vertex, and list in TBLE 1 the 17 possible
species. In four of the species there are two distinct ways in which the polygons in question may be
arranged around a vertex; the mere reversal of cyclic order is not counted as distinct. Hence there are
21 possible types of vertices; they too are listed in TABLE 1 and also illustrated in FIGURE 3. We denote
the type of a vertex around which there are, in cyclic order, an a-gon {a}, a b-gon {b}, a c-gon {c},
etc.,bya.b.c. ..... Thus the three regular tilings have vertices of types 3.3.3.3.3.3,4.4.4.4, and
6.6.6. For brevity we shall write these symbols as 3°,4* and 6°, and we shall use similar abbreviations
in other cases. In order to obtain a unique symbol for each type of vertex we shall always choose that
which is lexicographically first among all possible expressions.

Contrary to frequently made assertions (see Section 6), if we require of an edge-to-edge tiling only
that it be composed of regular polygons and that all its vertices be of the same species, then there are
infinitely many distinct types of tilings. For example (see FIGURE 4), if at each vertex there are two
triangles and two hexagons, it is possible to place each “horizontal” strip in two non-equivalent
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By sliding horizontal strips independently of each other, an uncountable infinity of distinct tilings may be obtained,
all vertices of which are of species 5.

FIGURE 4
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The 21 possible types of vertices.

FIGURE 3
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positions. Since there are infinitely many such strips, there will be uncountably many distinct tilings.
The situation in FIGURE 5 in which 3 triangles meet 2 squares at each vertex is similar. In FIGURE 6 we
allow three kinds of polygons; this permits each “disc” of an infinite family to be put in two positions,
again leading to uncountably many tilings, with each vertex of species 6.

In view of the above remarks it is reasonable to restrict attention to tilings in which only a single
type of vertex is allowed. If that type is a. b.c. ..., we shall denote the tiling by (a.b.c. ...), using
superscripts to shorten the expression when possible. This restriction indeed changes the situation
completely and we have the following result: There exist precisely 11 distinct types of edge-to-edge
tilings by regular polygons such that all vertices of the tiling are of the same type. These 11 types of

Species n=3 6 7 8 9 10 12 15 18 20 24 42 Typeof Type of
number vertex tiling
1 6 3.3.3.3.3.3 A
2 4 1 3.3.3.3.6 A
3 3 3.3.3.4.4 A
3.3.4.3.4 A
4 2 1 3.3.4.12
3.4.3.12
5 2 2 3.3.6.6
3.6.3.6 A
6 1 1 3.4.4.6
3.4.6.4 A
7 1 1 1 3.7.42
8 1 1 1 3.8.24
9 1 1 1 3.9.18
10 1 1 1 3.10.15
11 1 2 3.12.12 A
12 4.4.4.4 A
13 1 4.5.20
14 1 1 4.6.12 A
15 2 4.8.8 A
16 1 5.5.10
17 3 6.6.6 A

POSSIBLE SPECIES AND TYPES of vertices for edge-to-edge tilings by regular polygons. Entries in the table
indicate the number of n-gons that meet at a vertex. Types that lead to Archimedean tilings are labelled with an “A”

in the final column.
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Infinitely many distinct tilings that have only vertices of species 3 may be obtained by changing the relative positions
of horizontal zigzag strips in the tiling at the left.

FIGURE 5

tilings, illustrated in FIGURE 7, are usually called Archimedean tilings (although some authors call them
homogeneous, or semiregular, or uniform). They clearly include the three types of regular tilings.

Two not entirely trivial steps are required in order to prove that there are precisely 11 types of
Archimedean tilings. In the first place, it must be shown that for ten of the 21 types of vertices listed in
TaBLE 1 it is not possible to extend a tiling from the neighborhood of a starting vertex to an
Archimedean tiling of the whole plane. In fact, in each case one has to go only around one of the
n-gons with odd n to show the impossibility. (For each of the six species numbered 7, 8, 9, 10 13 and
16 there is no edge-to-edge tiling of the plane by regular polygons that includes even a single vertex of
the species.) In the second place, it must be established that the remaining 11 types of vertices do
actually lead to Archimedean tilings. This may be deemed obvious and trivial in view of FIGURE 7, but
it is just this “‘obviousness” that is dangerous. In FIGURE 8, adapted from a children’s coloring book,
we show a tiling that appears to consist of regular n-gons with n =4,5,6,7,8. Actually, this visual
“proof” is a fraud, since it is easy to check that the polygons in such a tiling cannot be regular. Thus
there is a real need to show that the 11 Archimedean tilings do exist. It is easy to give direct proofs of
existence for (4*) and for (3°) by considering two or three suitable families of equidistant parallel lines.
The existence of the other Archimedean tilings can be deduced (with just a little thought) from
these two.

~N

By turning “discs” in the tiling at the left infinitely many different tilings with all vertices of species 6 may be
obtained.

FIGURE 6
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dean tilings of the plane. The tiling
of type (3°. 6) exists in two mirror-
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forms.

FIGURE 7

(4.6.12)
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It should be noted that a priori it is not obvious that the limitation to a single type of vertex should
lead to a single type of tiling. It happens to turn out that way, but just barely so: it is only because we
find it convenient not to distinguish between tilings that are congruent but not directly congruent.
Indeed, the tilings of type (3*.6) are of two mirror-symmetric (enantiomorphic) forms that are
counted as distinct by some authors.

Another accidental but very important feature of the Archimedean tilings is the fact that each is
vertex-transitive. By this we mean that all vertices are equivalent under the symmetries of the tiling.
Put more simply, for each pair of vertices A and B it is possible to find a motion of the plane, or a
motion combined with a reflection in a line, that carries the tiling onto itself and maps A onto B. A
verification of the vertex-transitivity of the Archimedean tilings is a very useful exercise. A
psychologically very convincing (although logically not completely conclusive) verification of the
transitivity may be obtained by tracing the tiling on a transparent sheet that may be moved over the
original, and turned over. (Note that a tiling may be vertex-transitive even if its tiles are not regular
polygons. Some examples of such tilings will be found in FiGures 14 and 16.) In view of the transitivity
of Archimedean tilings we shall from now on also call them uniform tilings. The distinction between
the two words is that “Archimedean” refers only to the fact that the immediate neighborhoods of any
two vertices “look the same”, while the term “uniform” implies the much stronger property of
equivalence of vertices under symmetries of the whole tiling.

Returning to the question of tiling with a single species of vertex we mention without proof that
non-uniform tilings are possible only in case of species 3, 5 and 6. In the last two of those cases all
tilings can be obtained from the uniform ones, (3.6.3.6) and (3.4.6.4), by the method explained
above. However, in case of species 3 there are other possibilities as well and a complete description of
all such tilings is still not known.

In the same vein, it may easily be verified that the three regular tilings have the following strong
transitivity property. If a triplet consisting of a polygon, one of its edges, and a vertex of that edge is
called a flag, then any two flags of a regular tiling are equivalent under the symmetries of the tiling.
From now on, the “regularity” of “regular tilings”” will always be understood in this sense, which is
becoming more widespread in many related areas; see, for example, Coxeter [1975], Griinbaum
[1976]. We should stress that flag-transitivity is more restrictive than requiring that a tiling be vertex-,
edge- and tile-transitive: there is exactly one tiling by polygons (FIGURE 16a) which has the latter three
kinds of transitivity, but which fails to be regular.

2. k-uniform tilings

The observation that the Archimedean tilings are uniform suggests the following possibility of
generalization. A tiling is called k-uniform if its vertices form precisely k transitivity classes with
respect to the group of all symmetries of the tiling. Clearly, uniform tilings coincide-with 1-uniform
tilings. If the types of vertices in the k classesare a; . b;.¢y....;az2.b2.¢. . .5 .. be.c. ..., we
will designate the tiling by the symbol (a;.b;.¢i....;82.b2.¢2. ... ;A bi.ck....), with the
obvious shortening through the use of superscripts, and with subscripts to distinguish tilings in which
the same types of vertices appear. There exist 20 distinct types of 2-uniform edge-to-edge tilings by
regular polygons. They are shown in FIGURE 9. The proof of this fact may be carried out along lines
analogous to those explained in connection with the 11 uniform tilings. However, the details are here
much more intricate; it appears that the only published version of the proof is found in the paper of
Krétenheerdt [1969].

It is not hard to see that there exist k-uniform tilings for each k = 1. Examples are given in
Krétenheerdt [1969] for k = 3,4,5,6 and 7, and in FiGure 10 for k = 3,4. However, even for k =3 it is
not known how many distinct 3-uniform tilings exist, nor is any kind of asymptotic estimate available
for the number of k-uniform tilings with large k.

A closely related notion was also examined by Krotenheerdt [1969], [1970a], [1970b]. He
considered those k-uniform tilings in which the k transitivity classes of vertices consist of k distinct
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A fake tiling with regular polygons,

adapted from a children’s coloring Two examples of homogeneous tilings; one is also 3-uniform, the other
book  Altair  Design (Holiday is 4-uniform. One vertex of each transitivity class is marked.
[1970)).

FIGURE 8 FIGURE 10

types of vertices. While it is easily seen that for k = 1 and for k = 2 these coincide with the k -uniform
ones, Krotenheerdt’s condition is actually restrictive for k = 3. Dencting by K(k) the number of
distinct Krotenheerdt tilings, he established that K(1) = 11, K(2) =20, K(3) =39, K(4) =33, K(5) =
15, K(6)=10, K(7)=7 and K(k)=0 for each k = 8. Krétenheerdt’s method of proof is a natural
extension of the one used in the determination of the uniform tilings.

3. Homogeneous and edge-transitive tilings

Departing from the terminology used by some authors, we shall say that an edge-to-edge tiling of
the plane by regular polygons is k-homogeneous if the tiles form precisely k transitivity classes under
the symmetries of the tiling. We shall also say that a tiling is homogeneous if all tiles that are mutually
congruent form one transitivity class. It is easily verified that all the uniform tilings are homogeneous,
except (3*.6), which is 3-homogeneous. Other homogeneous tilings are the seven 2-uniform tilings
marked by an asterisk in FIGURE 9.

It is rather surprising that there seems to be no consideration in the literature of the homogeneous
or k-homogeneous tilings. It appears reasonable to expect that for each k there exists a least number
h(k) such that every k-uniform tiling is also k-homogeneous for some h = h(k). Likewise, there
probably exists a least number k (h) such that every h-homogeneous tiling is also k -uniform for some
k = k(h). From the above remarks and from FiGURE 9 it is easy to see that A(1)=3 and h(2)=5. On
the other hand clearly k(1) =1, while the examples of FiGure 10 show that k(2)=4.

The determination of all 2-homogeneous tilings (all of which are, obviously, homogeneous) should
not be very hard, and even the determination of all homogeneous tilings is probably possible with a
little patience. We conjecture that the 19 homogeneous tilings shown in FiGures 7, 9 and 10 are the
only ones possible, and that, in consequence, there are just fourteen 2-homogeneous tilings, and
that k(2)=4.

Similar problems arise if we consider transitivity classes of edges. If there are j such classes in a
tiling we shall call it a j-edge-transitive tiling. We mention this idea because we believe that it also is
not considered in the literature. There appear to be just four 1-edge-transitive tilings by regular
polygons (namely (3°), (4*), (6°) and (3.6.3.6)) and four 2-edge-transitive tilings (namely (3°.4.3.4),
(3.4.6.4), (3.12% and (4.8Y)).

4. Tilings that are not edge-to-edge

We now consider tilings by regular polygons without the requirement that the tiles meet
edge-to-edge. Kepler briefly considered this possibility (see drawings Bb and Kk in FiGure 1), but no
further consideration seems to have been given to the mathematical possibilities for several centuries.

236 MATHEMATICS MAGAZINE



O<a=i I<a=1i O<as=i
| N /_\ [\ _/
{ -
=
M
| I
I<a<l I<a<l I<a<l

Representative examples of the seven families of uni-
form tilings that are not edge-to-edge. Explanation of
the parameters is given in Section 4.
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In a tiling that possibly is not edge-to-edge we shall call each point that is a vertex of some tile a
node of the tiling, and we shall call a tiling uniform provided the symmetries of the tiling act
transitively on its nodes. It is not hard to prove that all uniform tilings by regular polygons that are not
edge-to-edge may be arranged in seven families, each family depending on a real-valued parameter a.
These seven families are illustrated in FiGURe 11. In the first three families each tiling uses only
mutually congruent tiles, and the parameter indicates the fraction of overlap between edges of
adjacent tiles. The tilings of the next three families use two non-congruent kinds of tiles, and the
parameter indicates the ratio of their edge-lengths. In the last family three sizes of triangles appear
and the parameter a denotes the ratio of the side of the smallest triangle to that of the largest. (If
a =1/2 only two sizes of triangles occur).

It is obviously possible to apply the definitions of k -uniformity, homogeneity, etc., to tilings that
are not edge-to-edge. In FIGURE 12 we show several 2-uniform and homogeneous tilings of this kind
and it is easy to construct additional examples of a similar character. A complete enumeration of
homogeneous, 2-uniform tilings by regular ‘polygons is probably obtainable with moderate effort.
Many ornamental designs contain uniform tilings that are not edge-to-edge; see, for example, Dye
[1937, Ficures C15b, K5a, Y2b, Y3a, &a la].
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FIGURE 12

5. Tilings that use star-polygons

The drawings reproduced in FIGURE 1 show that Kepler had a rather pragmatic and experimental
approach to tilings. He was looking for various more or less regular tilings, and although his main
concern was with tilings that have vertices of a single species, several other possibilities are evident.
One such variant, considered by Kepler but apparently not discussed in this form since, deals with
edge-to-edge tilings that include star-polygons. In the first book of Kepler [1619] star-polygons are
obtained by extending the sides of regular convex polygons. In a rather modern spirit, Kepler treats as
vertices of star-polygons only the endpoints of these extended edges, not the vertices of the original
convex polygon. Thus the pentagram (FiIGURE 13a) has only 5 vertices and five edges. However, when
dealing with tilings in Book 2 (and to some extent also later, in connection with the regular
non-convex ‘Kepler-Poinsot” polyhedra), Kepler treats the star-pentagon (FIGURE 13b) as a
non-convex decagon which may be called a pentacle and uses other star-polygons in the same way. It

A A

—
~—

(a) (®)

The two interpretations of regular star-pentagons: (a) the pentagram, consisting of just 5 vertices and 5 edges; (b) the
pentacle, a five-pointed ‘““patch” of the plane.

FIGURE 13

is never made quite clear exactly what rules must be followed or what polygons may be used. In Book
1 Kepler speaks only of what today would be called regular star polygons {n/d}, with n and d
coprime. In other words, the edges of the {n/d} form a single circuit. In the tiling K of FIGURE 1,
however, Kepler not only allows six-pointed stars — which in the regular case would be just
“hexagrams”, each composed of two triangles — but even permits stars that have angles of # /6 at
their points. At any rate, Kepler missed several possibilities and it is amusing to try to complete his list
of tilings under some definite sets of rules.

One possibility is to allow as “regular” all n-pointed star-polygons that have the same symmetries
as the regular convex n-gon. Such an n-pointed star, denoted {n.} in the sequel, has n vertices of
angle o (where 0 <a <(n —2)m/n), n vertices of angle 2(n — 1)@ /n — a, and 2n mutually equivalent
edges. Extending the definitions of k-uniform tilings to the case in which regular star-polygons are
allowed, it is easy to see that there are precisely four families of 1-uniform tilings, each depending on a
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real parameter « ; these families are illustrated in FIGURE 14. By using single and double asterisks to
distinguish between the two kinds of angles in the star-polygons, we can denote these four families by
(3.6%.6%%),(4.4%.4%%),(6.3%.3%*) and (3.3%.3.3%%). (Each of the first three of these families comes
in two enantiomorphic forms.) There are many possibilities for 2-uniform tilings that include
star-polygons, such as Kepler’s K, T, Nn, and those shown in FiGure 15. Most of these are also
homogeneous, if the definition of this term is extended to cover star-polygons. With some patience it
should be possible to determine all 2-uniform (and also all homogeneous) tilings that include
star-polygons.

\%

/]
V]

>

V4

(3.6%.6%%) (4.4%.4%%)

5
SRS
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~

Representative examples for the four 1-uniform families of tilings that include star-polygons. Explanation of the
notation is given in section 5.

FIGURE 14
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Examples of 2-uniform tilings that include star-polygons. Note the occurrence of 9-gons and 18-gons. All tilings
except (3°.6%,,); 3°.6%*%,) are homogeneous.
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Tilings with star-polygons occur frequently in Islamic art. For example, slightly distorted versions
of (4.4%.4%*) may be seen on Plates 104, 117 and 118 in Ipsiroglu [1971], Plate 45 of which shows the
2-uniform tiling (3.6.6%,;.6; 6.6%%,). Similarly, the tiling (6.6%%s; 6.6%,5.6.6%,3) of FiGure 15 is
shown in Plate 1 of Bourgoin [1879]. The tiling (32. 4%%¢; 3.4%,,.3.4%,.3.4%.3/4%,) also occurs as
the design of an early American patchwork quilt known as “windmill blades™ (Safford & Bishop
(1972, Ficure 173)).

It could be argued that the star-polygons {n.} should actually be called (non-regular) (2n)-gons,
and that in any case similar treatment should be given to the analogously defined convex (but not
regular) polygons {n.} with (n—2)m/n <a <(n-1)m/n and n =2, in which larger and smaller
angles alternate. There is nothing illogical in this suggestion, and it may even not go far enough. It is
probably possible (with a reasonable amount of effort) to determine all uniform and homogeneous
tilings by arbitrary polygons, in other words, to find all tilings in which several kinds of (not necessarily

Examples of uniform and homogeneous tilings with
non-regular polygons. Observe that the first tiling is
transitive on vertices, edges, and tiles. All but the last
tiling are also transitive on the edges.

FIGURE 16

regular) polygons may be present, but in which all congruent polygons form one equivalence class with
respect to the symmetries of the tiling and all vertices are mutually equivalent. Examples of such
tilings are shown in FIGURE 16. Even more general problems of a related nature have been considered
in the literature, mostly with a crystallographic motivation. For example, attempts were made to
determine all tile-transitive tilings (see, for example, Haag [1911], Hilbert & Cohn-Vossen [1932,
p. 72], Delone [1959), Heesch [1968]) and all vertex-transitive tilings (Subnikov [1916], Sauer [1937],
Subnikov & Koptsik [1972]), but the claims of success are not justified. Detailed treatments of these
questions are given in Griinbaum & Shephard [1977a], [1977b].

6. History

The three regular tilings and several uniform tilings were used as decorations in antiquity and
during the Middle Ages; the first mathematical treatment appears to be that of Kepler [1619]. He
found all 11 uniform tilings as well as many other kinds of tilings and considered them — in a very
modern way — as analogues of the Platonic (regular) and Archimedean polyhedra. (The drawing M in
FiGure 1 does not represent (3°.4%) but Kepler’s text describes it.) It is therefore strange, almost
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unbelievable, to find that this part of Kepler’s work was completely forgotten for almost 300 years!
Although Kepler was frequently quoted by authors interested in regular polyhedra, the first reference
to the fact that Kepler determined the 11 uniform tilings appears to be in a note appended by
Sommerville to his paper of 1905. Meanwhile, other authors dealt with the topic, usually in connection
with investigations of Archimedean or related kinds of polyhedra, but the going was unaccountably
slow. Gergonne [1818] obtained several of the uniform tilings; his work was extended, and
completeness claimed for the result obtained by Badoureau [1878], [1881]. But although the latter
paper is very interesting from several points of view (see Section 7(ii) below) his list of uniform tilings
does not contain (3*. 6). Badoureau’s defective treatment was uncritically accepted by Lévy [1891] and
by Briickner [1900]. The first correct determinations of the 11 uniform tilings in modern times were
carried out — independently of each other and blissfully unaware of any of the previous work — by
Sommerville [1905] and Andreini [1907]. The proof given by Sommerville that no other uniform
tilings are possible is essentially the one we hinted at in Section 1. (The arguments are mentioned also
in Ahrens [1901, pp. 66-71], but without a final list of uniform tilings.) Andreini [1907] uses the same
method, but in a very cavalier way. He “finds” that there are just 10 (!) possible species of vertices,
and the impression is inevitable that he let his “knowledge” of the 11 uniform tilings influence his
judgment concerning the possibility of existence of various species. Similarly inadequate is the
treatment in Subnikov [1916]. The proofs or hints given in Kraitchik [1942, p. 203], Bilinski [1948],
Critchlow [1970, p. 60], and Williams [1972, p. 42] are similar to the hint given in Section 1. A very nice
treatment of this topic and many related questions is given in the refreshingly different text O’Daffer
& Clemens [1976]. Several other works present the 11 uniform tilings without proofs (Fejes T6th
[1953, Section 7], [1965, pp. 45-49], Steinhaus [1950, Chapter 4], Cundy & Rollett [1951, Section 2.9]).

While many erred — as we have seen — in missing some of the uniform tilings, a modern text on
architectural design (Borrego [1968, pp. 132, 134]) has too many. It is claimed that the tiling
(3%.4.3.4) exists — like (3*.6) — in two enantiomorphic forms, not equivalent by motions without
reflections!

Many authors have considered ways of generalizing Archimedean tilings by relaxing the
requirement that all vertices be of the same type. Actually, even Kepler was interested in such tilings.
For example, regarding vertices of species 3 Kepler remarks that they lead to two uniform tilings as
well as to the tiling he denotes by O (see FIGURE 1) that “may be continued non-uniformly”. His tilings
R, Dd, Ee are in our notation the 2-uniform (3*.6%;3.6.3.6), (3%, 3*.4.12) and (3.4.3.12; 3.12%),
while his Cc may be extended to a 4-uniform (3°.4.3.4;3.4.3.12;3.4.6.4;3.4.6.4). It is curious
that Kepler states that his figure Kk cannot be extended without “mixing in” vertices of different
species, while actually it appears to be part of the 2-uniform (3.4%.6; 3.4.6.4), all vertices of which
are of species 6.

Kepler did not make precise what kinds of tilings he was interested in, other than the uniform
ones. Several later authors were similarly vague, indicating only the desire to limit the species (or the
types) of permitted vertices, or trying to obtain more or less symmetric tilings. Such discussions may
be found in Lévy [1891], [1894] and especially in Sommerville [1905], while Kraitchik [1942,
pp. 205-207] and Steinhaus [1950, Chapter 4] present several examples. Critchlow [1970, p. 60]
presents 14 nonuniform tilings and asserts that these are the only possible ones. This assertion is
repeated by Williams [1972, p. 43].

As we mentioned in Section 1, not much can be said in way of enumerating all tilings with vertices
of just one species. Hence also the papers of Lévy and Sommerville reach no reasonable conclusions.
However, there are several lines of investigation that appear to be challenging and promising. They
deal with the extension to a tiling of the plane of a given “patch”, that is, a finite part of the plane
covered by regular polygons without overlaps and without enclosed gaps.

Given a patch such that all the vertices in it are of a species that allows a uniform tiling of the
plane, is it always possible to extend the patch to a tiling using only vertices of the same species? Lévy
[1891] mentions this question for vertices of species 6; Sommerville [1905] discusses in some detail the
possibilities for species 3 and some others.
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A “patch” (involving only vertices of species 3) that may
be extended at each vertex separately but may not be
extended at all vertices simultaneously.

FIGURE 17

The answer is negative at least in some cases. To see this, we consider the very simple patch in
Ficure 17. Each of its vertices is of species 3, or may be completed to be of species 3. However, such
completions may not be carried out simultaneously, so the patch is not part of a tiling with vertices of
species 3. Similar examples exist for species 4. The answer is not known for a patch which involves
only vertices of species 6. If the answer to this question is affirmative, is it always possible to choose
the extension so that the resulting tiling is k -uniform for some k, or to have at least the symmetries of
the original patch? Finally, for any variant of these questions, is there an algorithmic decision
procedure that would allow the separation of the patches that have extension from the others?

7. Generalizations

We have discussed a number of variants of the theme “more-or-less regular tilings by regular
polygons’’; nevertheless we have barely scratched the surface of the topic. This final section is devoted
to very brief hints at other variants, each of which would deserve a full article (or book) to describe its
ramifications.

(1) Mulriple tilings. Petersen [1888] considered the possibility of multiple coverings of the plane by
congruent regular polygons of the same kind, subject to the condition that each edge of one tile is an
edge of precisely one other. He found that the only way in which this could happen is by
superimposing several copies of the regular tilings (3°), or (4*), or (6°). However, it seems that the
analogous problem for uniform or Archimedean multiple tilings is still undecided. Moreover, even
consideration of multiple tilings with just triangles, or squares, or hexagons — which by Petersen’s
result consist of superimposed copies of (3°), (4°), or (6°) — leads to the following open question. What
multiplicities m are possible in regular tilings? Here “‘regular’” means “flag-transitive”, as explained at
the end of Section 1. In case of (4°) probably only m = k? and m = 2k? are possible, with integral k ;
the problem appears to be related to regular maps on the torus (see Coxeter-Moser [1957, Chapter 8]).
Multiple tilings by non-regular convex polygons are discussed by Marley [1974].

(i) Tiles with densities. Consider the tiling shown in Ficure 18. It may be interpreted as the
uniform tiling (3.4.6.4) in which every point of the plane which does not lie on an edge is an interior
point of exactly one tile. But the same drawing may be interpreted as another uniform tiling, by
triangles, hexagons and 12-gons. We must assign a ““density” of + 1 to each hexagon and 12-gon, and a
density of — 1 to each triangle. With this interpretation the tiling is edge-to-edge, but two tiles sharing
an edge may lie on the same side of it (if their densities have different signs). Now each point of the
plane (not on an edge) can be assigned a density equal to the sum of the densities of the tiles of which

The regular star-polygon {8/3}, with the “density” of the
The uniform tiling (=3.12.6.12) of density 2. various regions indicated.

FIGURE 18 FIGURE 19
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it is an interior point. In this case, it is easy to see that at every such point the density is 2, and so we
say that the tiling has density 2. A reasonable symbol for this uniform tiling is (- 3.12.6.12).

Analogously, let us consider the regular star-polygon {8/3} (in the modern interpretation, see
FiGure 19), whose 8 vertices are marked by small circles and whose 8 edges connect them in pairs. It is
reasonable to assign to the central region a density 3, to the regions near the vertices a density 1, and
to the intermediate triangular regions a density 2. Then FIGURE 20 may be interpreted as a uniform
tiling (—4.8.—8/3) of density 1, in which each {4} has “density” — 1, each {8} density 1, and each {8/3}
has densities — 1, —2, —3 in its various regions. An approach to tilings related to this (but distinct
from it) was followed by Badoureau [1878], [1881] and is also touched upon in Coxeter &
Longuet-Higgins & Miller [1954], but there are several complications and a full treatment of such
tilings is still not available.
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™ NA ™ A topologically regular map of type (7°). Similar to-
The uniform tiling (—4.8.—8/3) of density 1, first pologically regular maps (p?) exist for all p, g4 such that
found by Badoureau in 1881. 1/p +1/q <1)2.

FIGURE 20 FIGURE 21

(iii) Topological uniformity. In the determination of Archimedean or of uniform convex
polyhedra, Euler’s equation may be used to provide necessary conditions for the existence of various
types. Since many authors treat uniform tilings of the plane together with the Archimedean or
uniform polyhedra, the temptation to apply some “limiting form” or ‘“‘modification” of the Euler
relation to such tilings is great. If it were valid such an approach would also have the advantage that it
would apply to “topologically uniform” tilings — that is, “maps” in which “symmetries” are not
restricted to isometric transformations but may be affected by arbitrary homeomorphisms. However,
the execution of such an approach — although feasible — is rather tricky and has to be done with
great care (see, for example, Laves [1931], Delone [1959]). The “limiting form’ of Euler’s theorem
usually quoted is, not surprisingly, V— E + T =0, where V : E : T are proportional to the “numbers”
of vertices, edges and tiles in the tiling. But this equation only applies to tilings of very restricted kinds.
For example, for the “‘topologically regular map” (7°) shown in FIGURE 21, in which three heptagonal
countries meet at each vertex, it is easy to verify that V:E: T =7/3:7/2:1, which do not satisfy
Euter’s theorem. Although the heptagons in this map are not congruent, any two are equivalent under
a homeomorphism of the plane that carries the map onto itself. In fact, it deserves the designation
“topologically regular’ since its self-homeomorphisms act transitively on its flags. While it is easy to
verify that there exist “topologically regular maps™” (p?) in which q p-gons meet at each vertex
whenever 1/p +1/q =1/2, the question of what “uniform maps” exist is open, as is the question of
“Archimedean maps”. These two notions are probably distinct; at any rate, while it is easy to verify
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that no topologically uniform map (3. 5°) exists, the existence of an Archimedean map with all vertices
of type 3.5 is undecided. These possibilities have escaped many writers, such as Andreini [1907],
Subnikov [1916], Walsh [1972], Loeb [1976, p. 92], who used Euler’s relation without due care and
reached the conclusion that the only possible ““topologically Archimedean maps” of the plane are of
the same types as the Archimedean tilings by regular polygons. As the examples of the topologically
regular maps show, this is false.

(iv) Non-Euclidean tilings. Another variant deserving attention deals with regular convex
polygons tiling the sphere or the hyperbolic (non-Euclidean Lobacevski) plane. On the sphere the
situation is well known — the uniform or Archimedean tilings may be obtained as central projections
of Platonic, uniform, or Archimedean polyhedra. But in this case the distinction between *“Archime-
dean” and “‘uniform” tilings (or polyhedra) is more than semantic. Besides the uniform (3.4%) there
exists an Archimedean but non-uniform (3.4°). This appears to have been observed first by
Sommerville [1905], and has been rediscovered (often with vehement priority claims) many times
since then (Ball [1938, Chapter V], Askinuze [1957], [1963, p. 430], Lyusternik [1956]). Multiple
regular tilings correspond to the Kepler-Poinsot regular non-convex polyhedra, while multiple
uniform tilings correspond to polyhedra studied by many authors. See, in particular, Coxeter &
Longuet-Higgins & Miller [1954] and Skilling [1975], where references to the earlier literature may be
found. Some non-edge-to-edge tilings of the sphere by regular polygons have been considered by
Brun [1972]. Digons {2} (which are legitimate regular polygons on the sphere) may be used to
construct uniform (non-edge-to-edge) tilings of the sphere consisting, for any n = 3, of two n-gons and
n congruent digons; besides depending on a real-valued parameter, these tilings come in enan-
tiomorphic pairs.

In the hyperbolic plane there exist regular tilings (p?) whenever 1/p + 1/q < 1/2 (see, for example,
Fejes T6th [1965, p. 85], Coxeter & Moser [1957, Chapter 5)). There also exist many uniform and
Archimedean tilings, but no complete classification is known. This is related to the problem discussed
at the end of (iii) above, since the hyperbolic plane is homeomorphic to the Euclidean plane. Detailed
consideration of these questions, and partial results, may be found in Bilinski [1948].

(v) Unbounded polyhedral surfaces. Finally, as a natural extension of regular or uniform tilings of
the plane by regular polygons we may consider the formation of unbounded polyhedral surfaces in
3-dimensional space that are composed of regular convex polygons. Various requirements on the
polygons and on the vertices regarding transitivity under symmetries of the surface may be imposed.
While it is known (Coxeter [1937]) that only three such surfaces deserve the adjective “regular”, there
are many that are “uniform”, “homogeneous”, “ Archimedean”, etc. Using (p?) to denote a uniform
polyhedral surface in which q regular p-gons {p} meet at each vertex, the three regular (so-called
Petrie-Coxeter) polyhedra are of types (4°), (6*), and (6°). Uniform polyhedral surfaces are known for
types (3%, (37), (3%), (3°), 3"), (3"), (4%), (#), (4°), (5°), (6%), and (6°) (see Gott [1967], Wells [1969)],
Wachman, Burt & Kleinmann [1974]). Although it is probable that no other types (p?) are possible,
no proof of this conjecture is known. For a discussion of some other related questions see Griinbaum
[1977].

Research for this paper was supported by the National Science Foundation Grant MPS74-07547 A01, and by
the National Research Council of Canada Grant A 7071.
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