The structure of bull-free graphs II — elementary
trigraphs

Maria Chudnovsky *

Columbia University,
New York, NY 10027
USA

May 6, 2006; revised April 25, 2011

Abstract

The bull is a graph consisting of a triangle and two pendant edges.
A graph is called bull-free if no induced subgraph of it is a bull. This
is the second paper in a series of three. The goal of the series is to
give a complete description of all bull-free graphs. We call a bull-free
graph elementary if it does not contain an induced three-edge-path P
such that some vertex ¢ ¢ V(P) is complete to V(P), and some vertex
a ¢ V(P) is anticomplete to V(P). In this paper we prove that every
elementary graph either belongs to one a few basic classes, or admits
a certain decomposition.

1 Introduction

All graphs in this paper are finite and simple, unless stated otherwise. The
bull is a graph with vertex set {x1,z2,3,y, 2} and edge set

{901362, X2X3,X1X3,21Y, 9622}-

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph G, on the same
vertex set as GG, and such that two vertices are adjacent in G if and only if
they are non-adjacent in G. A clique in G is a set of vertices, all pairwise
adjacent. A stable set in G is a clique in the complement of G. A clique of
size three is called a triangle and a stable set of size three is a triad. For a
subset A of V(G) and a vertex b € V(G) \ A, we say that b is complete to
A if b is adjacent to every vertex of A, and that b is anticomplete to A if
b is not adjacent to any vertex of A. For two disjoint subsets A and B of
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V(Q), A is complete to B if every vertex of A is complete to B, and A is
anticomplete to B every vertex of A is anticomplete to B. For a subset X of
V(G), we denote by G|X the subgraph induced by G on X, and by G \ X
the subgraph induced by G on V(G) \ X.

Let us call a bull-free graph G elementary if it does not contain an
induced three-edge-path P such that some vertex ¢ ¢ V(P) is complete to
V(P) and some vertex a ¢ V(P) is anticomplete to V(P). In this paper
we prove that every elementary graph either belongs to a one of a few basic
classes, or admits a decomposition.

This paper is organized as follows. In the next section we define an
object called a “trigraph”, which is a generalization of a graph, but is more
convenient for stating the main result of this series of papers. Most of
the definitions of Section 2 appeared in [1], but we include them here for
the reader’s convenience. In Section 3 we state the main theorem of this
paper, 3.4, giving all the necessary definitions. We also define the class
of “unfriendly trigraphs”, which is the subject of most of the theorems in
this paper. In Section 4, we study unfriendly trigraphs, that contain a
“prism” (an induced subtrigraph consisting of two disjoint cliques and a
matching between them, for a precise definition see Section 4). We prove
that every such trigraph satisfies one of the outcomes of 3.4. Section 5
contains a few useful lemmas about unfriendly trigraphs. In Section 6, we
study the behavior of an unfriendly trigraph relative to an induced triangle-
free subtrigraph (again, see Section 6 for the definitions). We prove that
one of the outcomes of 3.4 holds for every unfriendly trigraph that contains
an induced three-edge path. We finish Section 6 with a proof of 3.4, using
a result from [1].

2 Trigraphs

In order to prove our main result, we consider objects, slightly more gen-
eral than bull-free graphs, that we call “bull-free trigraphs”. A trigraph
G consists of a finite set V(G), called the wvertez set of G, and a map
0:V(G)? — {—1,0,1}, called the adjacency function, satisfying:

o for all v € V(G), Og(v,v) =0
e for all distinct u,v € V(G), 0g(u,v) = 0g(v,u)
e for all distinct u,v,w € V(G), at most one of 0;(u,v),0g(u, w) = 0.

Two distinct vertices of G are said to be strongly adjacent if 0(u,v) = 1,
strongly antiadjacent if 6(u,v) = —1, and semi-adjacent if 6(u,v) = 0. We
say that u and v are adjacent if they are either strongly adjacent, or semi-
adjacent; and antiadjacent of they are either strongly antiadjacent, or semi-
adjacent. If w and v are adjacent (antiadjacent), we also say that u is
adjacent (antiadjacent) to v, or that w is a neighbor (antineighbor) of v.



Similarly, if u and v are strongly adjacent (strongly antiadjacent), then u
is a strong neighbor (strong antineighbor) of v. Let n(G) be the set of all
strongly adjacent pairs of G, v(G) the set of all strongly antiadjacent pairs
of G, and o(G) the set of all pairs {u,v} of vertices of G, such that u and v
are distinct and semi-adjacent. Thus, a trigraph G is a graph if o(G) empty.

Let G be a trigraph. The complement G of G is a trigraph with the
same vertex set as G, and adjacency function § = —0. Let A C V(G)
and b € V(G) \ A. For v € V(G) let N(v) denote the set of all vertices in
V(G)\{v} that are adjacent to v, and let S(v) denote the set of all vertices in
V(G)\{v} that are strongly adjacent to v. We say that b is strongly complete
to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete
to A if b is strongly antiadjacent to every vertex of A, bis complete to A if b is
adjacent to every vertex of A, and b is anticomplete to A if b is antiadjacent
to every vertex of A. For two disjoint subsets A, B of V(G), B is strongly
complete (strongly anticomplete, complete, anticomplete) to A if every vertex
of B is strongly complete (strongly anticomplete, complete, anticomplete,
respectively) to A. We say that b is mized on A, if b is not strongly complete
and not strongly anticomplete to A. A clique in G is a set of vertices all
pairwise adjacent, and a strong clique is a set of vertices all pairwise strongly
adjacent. A stable set is a set of vertices all pairwise antiadjacent, and a
strongly stable set is a set of vertices all pairwise strongly antiadjacent. A
(strong) clique of size three is a (strong) triangle and a (strong) stable set
of size three is a (strong) triad. For X C V(G), the trigraph induced by
G on X (denoted by G|X) has vertex set X, and adjacency function that
is the restriction of 6 to X2. Isomorphism between trigraphs is defined
in the natural way, and for two trigraphs G and H we say that H is an
induced subtrigraph of G (or G contains H as an induced subtrigraph) if H
is isomorphic to G|X for some X C V(G). We denote by G\ X the trigraph
Gl(V(G)\ X).

A bullis a trigraph with vertex set {1, x2, 3, v1, v2} such that {x1, z2, x3}
is a triangle, v; is adjacent to x; and antiadjacent to xo,x3,ve, and vy is
adjacent to xo and antiadjacent to z1,x3. For a trigraph G, a subset X of
V(G) is said to be a bull if G| X is a bull. We say that a trigraph is bull-free
if no induced subtrigraph of it is a bull, or, equivalently, no subset of its
vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices
{p1,...,pk} is a path in G if either k = 1, or for 4,5 € {1,...,k}, p; is
adjacent to p; if | — j| = 1 and p; is antiadjacent to p; if [i — j| > 1. Under
these circumstances we say that P is a path from p1 to pg, its interior is
the set P* = V(P) \ {p1,pr}, and the length of P is k — 1. We also say
that P is a (k — 1)-edge-path. Sometimes we denote P by pi-...-px. An
induced subtrigraph H of G with vertices hq, ..., hg is a hole if £ > 4, and
for 4,5 € {1,...,k}, h; is adjacent to h; if [i —j| =1 or |i —j| = k — 1;
and h; is antiadjacent to h; if 1 < |i — j| < k — 1. The length of a hole is



the number of vertices in it. Sometimes we denote H by hi-...-hp-hi. An
antipath (antihole) is an induced subtrigraph of G whose complement is a
path (hole) in G.

Let G be a trigraph, and let X C V(G). Let G. be the graph with
vertex set X, and such that two vertices of X are adjacent in G, if and only
if they are adjacent in G, and let G, be be the graph with vertex set X,
and such that two vertices of X are adjacent in G, if and only if they are
strongly adjacent in G. We say that X (and G|X) is connected if the graph
G. is connected, and that X (and G|X) is anticonnected if G, is connected.
A connected component of X is a maximal connected subset of X, and an
anticonnected component of X is a maximal anticonnected subset of X. For
a trigraph G, if X is a component of V(G), then G|X is a component of G.

We finish this section by two easy observations from [1].

2.1 If G be a bull-free trigraph, then so is G.

2.2 Let G be a trigraph, let X C V(G) and v € V(G) \ X. Assume that
| X| > 1 and v is mized on X. Then there exist vertices x1,r9 € X such
that v is adjacent to x1 and antiadjacent to xo. Moreover, if X is connected,
then x1 and xo can be chosen adjacent.

3 The main theorem

In this section we state our main theorem. We start by describing a few
special types of trigraphs.

Clique connectors. Let G be a trigraph. Let K = {k1,...,k:} be a
strong clique in G, and let A, B,C, D be strongly stable sets, such that
the sets K, A, B,C,D are pairwise disjoint and AUBUCUDUK =
V(G). Let Ay,...,A; be disjoint subsets of A with |Ji_, 4; = A, and let
Bi,...,B,C4,...,Cy, Dy,...,D; be defined similarly. Let us now describe
the adjacencies in G:

e Forie {1,...,t}
Aj; is strongly complete to {ki1,...,ki—1},
A; is complete to {k;},
Aj; is strongly anticomplete to {k;i1,...,k},
B; is strongly complete to {ki_it+2,...,k},
B, is complete to {ki—i+1}, and
B; is strongly anticomplete to {ki, ..., k—;}.

Let A! be the set of vertices of A; that are semi-adjacent to k;, and let
B;_i 41 be the set of vertices of B;_;;1 that are semi-adjacent to k;. (Thus
[Ai| < 1and [B;_; 4] <1.)

e Fori,je{l,...,t},ifi+j # t and A; is not strongly complete to Bj,
then |A| = |B| = |K| =1 and A is complete to B.



e Al is strongly complete to B;_;, B;_; is strongly complete to A;, and
the adjacency between A; \ A, and B;_; \ Bj_, is arbitrary.

e AUK is strongly anticomplete to D, and BUK is strongly anticomplete
to C.

e For i € {1,...,t}, C; is strongly complete to |J
strongly anticomplete to J i>i Aj.

i< Aj, and Cj is

e Fori e {1,...,t}, C; is strongly complete to A}, every vertex of C; has
a neighbor in A4;, and otherwise the adjacency between C; and 4; \ A}
is arbitrary.

e For i € {1,...,t}, D; is strongly complete to |J
strongly anticomplete to J i~ Bj-

i< Bj, and Dj; is

e For i € {1,...,t}, D; is strongly complete to Bj, every vertex of D;

has a neighbor in B;, and otherwise the adjacency between D; and
B; \ B| is arbitrary.

e Fori,j € {1,...,t},if i +j > t, then C; is strongly complete to Dj,
and otherwise the adjacency between C; and D, is arbitrary.

If Ay # 0 and By # (), then G is a (K, A, B,C, D)-clique connector.
3.1 Every clique connector is bull-free.

Proof. Let G be a (K, A, B,C, D)-clique connector. Let |K| = t.

(1) Let a € A and b € B, and suppose that k; is adjacent to both a and
b for some i € {1,...,t}. Then every vertex of K is strongly adjacent to at
least one of a, b.

Since k; is adjacent to a, if follows that a € i>i A;, and since b is adjacent
to k;, it follows that b € szltﬂ-le Bj. Therefore, a is strongly complete to
{k1,...,ki—1}, and b is strongly complete to {k; i1, ..., k:}. Since both a and
b are adjacent to k;, and at most one of a, b is semi-adjacent to k;, (1) follows.

(2) There do not exist k, k' € K and a,a’ € A, such that the pairs ak,a’'k’
are adjacent, and the pairs ak’,a’k are antiadjacent.

Suppose such a,d’, k, k" exist, say k = k, and k' = k, for p,q € {1,...,t}.
We may assume that p > ¢. Then, since a is adjacent to k,, it follows that
a € szp Aj, and therefore a is strongly adjacent to k,, a contradiction.
This proves (2).

(8) Let a € A and b € B, and suppose that k; is adjacent to both a



and b for some i € {1,...,t}. The either a is strongly adjacent to b, or
4] = |B| = |K| = 1.

We may assume at least one of A, B, K has size at least two. Since a is
adjacent to k;, it follows that a € Uj>i Aj, and since b is adjacent to k;, it
follows that b € |J i>t—it1 Bj, and therefore a is strongly adjacent to b. This
proves (3).

(4) Let a € A and b € B, and suppose that k; is antiadjacent to both a
and b for some i € {1,...,t}. Then a is strongly adjacent to b.

Suppose a is antiadjacent to b. Then a ¢ Aj and b & B;_,; ;. Let p,q €
{1,...,t} such that a € A, and b € B,. Since a is antiadjacent to k;, it fol-
lows that p < 4, and since b is antiadjacent to k;, it follows that ¢ < t—i+1.
But then p + ¢ < ¢, a contradiction. This proves (4).

(5) There do not exist a,a’ € A, k € K and ¢ € C, such that the pairs
ak,ac are adjacent, and the pairs a'c,d’k are antiadjacent.

Let i,p,q,r € {1,...,t} such that k = k;, a € Ay, ' € A; and ¢ € C,.
Since a is adjacent to k; and ' is antiadjacent to k;, it follows that p > 4
and ¢ < 4. Since c is adjacent to a and antiadjacent to ', it follows that
r > pand r < ¢q. Consequently, p =g =r =1, and o’ € A,. But C; is
strongly complete to AJ, a contradiction. This proves (5).

Suppose that there is a bull T in G. Let T" = {by, b, b3, by, b5}, where
the pairs bybs, bobs, baby, b3by, bybs are adjacent, and all the remaining pairs
are antiadjacent.

Since AU D and B U C are strongly stable sets, it follows that at least
one of by, b3, by belongs to K.

Suppose first that |K N {ba,bs,bs}| = 1. Assume first that b3 € K, say
bs = k; for some i € {1,...,t}. Then, since each of A, B is strongly stable,
and K is strongly anticomplete to CUD, we may assume from the symmetry
that by € A and by € B. Let s € {1,...,t} such that by € As. Then s > .
Since b; is antiadjacent to bs and adjacent to bo, it follows that by € BUC.
Similarly, b5 € AU D. Suppose b5 € A. If by € B, then, since both b; and
bs are antiadjacent to bs, (4) implies that by is strongly adjacent to bs, a
contradiction. So by € C. But then by is adjacent to both b3, b1, and b5 is
antiadjacent to both bs, bs, contrary to (5). This proves that b5 € D, and,
from the symmetry, by € C. Then b; € szs C; C szl» Cj, and, similarly,
bs € szlt_i+1 Dj, and so by is strongly adjacent to b5, a contradiction. This
proves that b3 ¢ K. From the symmetry we may assume that by € K, say
by = k; for some i € {1,...,t}. Let {x,y} = {b3,bs}. Then, since each of
A, B is strongly stable, and K is strongly anticomplete to C' U D, we may



assume from the symmetry that + € A and y € B. Since b is adjacent
to ba, we may assume from the symmetry, that by € K U A. Since by is
antiadjacent to both b3, bs, (1) implies that by ¢ K. Therefore b; € A, and
so, by (3), by is strongly adjacent to y, a contradiction. This proves that
‘K N {bg,b37b4}| > 1.

Next suppose that |K N {ba, b3, bs}| = 2. Assume first that b3 ¢ K. Then
bo, by € K. Then we may assume from the symmetry that by € A. Since by
is antiadjacent to by, and b5 to bg, it follows that by,b5 € AU B. By (2), it
follows that not both of by, b5 are in A, and not both are in B. Thus we may
assume that by € A, and bs € B, but now both b3, b5 are adjacent to by, and
yet bs is antiadjacent to bs, contrary to (3). This proves that b3 € K. From
the symmetry we may assume that by € K and by € A. Then by € AU B.
Since by is adjacent to both b; and b4, and since b; is antiadjacent to by,
(3) implies that by € A. Since by is adjacent to by, and antiadjacent to
ba, it follows that b5 € BU C. If by € B, then, since b3 is antiadjacent to
both b1, b5, (4) implies that b; is strongly adjacent to bs, a contradiction. So
bs € C. But then by is adjacent to both b3, b5, and b is antiadjacent to both
bs, bs, contrary to (5). This proves that |K N {b2, b3, bs}| > 2, and therefore
ba,b3,b4 € K.

Then b1,b5 € AU B. By (2), not both by, b5 are in A, and, from the
symmetry not both are in B. So we may assume that by € A, and b5 € B.
But now, since b3 is antiadjacent to both by, b5, (4) implies that by is strongly
adjacent to b5, a contradiction. This proves 3.1. |

Melts. Let G be a trigraph, such that V(G) is the disjoint union of four
sets K, M, A, B, where A and B are strongly stable sets, and K and M are
strong cliques. Assume that |A] > 1 and |B| > 1. Let K = {k1,...,kn}
and M = {mq,...,my}. Let A be the union of pairwise disjoint subsets A4;
where i € {0,...,m} and j € {0,...,n}, and let B be the disjoint union of
subsets B; j where i € {0,...,m} and j € {0,...,n}. Let Agg = By = 0.
Assume also that

e K is strongly anticomplete to M

o forie {l,...,m}and je{l,...,n} A;;is
strongly complete to {k1,...,ki—1} U {mp—jt2,...,mn},
complete to {k;} U{mpn_j41},
strongly anticomplete to {kit1,...,kn}U{mi,...,mp_j},
and the set B; ; is
strongly complete to {kpm—it2,...,km}U{mi,....,mj_1},
complete to {kpm—it1}U{m;},
strongly anticomplete to {ki,..., km—i} U{mjt1,...,myp}.

o foriec{l,...,m}, Ajpis
strongly complete to {k1,...,ki—1},
complete to {k;},
strongly anticomplete to {kit1,...,km} UM



for j € {1,...,n}, Ag; is

strongly complete to {my,—j12,...,mp},
complete to {mp—jt1},
strongly anticomplete to K U {mq,...,my—;}

fori e {1,...,m}, Biois

strongly complete to {kp—it2,. .., km},
complete to {ky—it1},

strongly anticomplete to {k1,...,kn—i} UM

for j € {1,...,n}, By is

strongly complete to {m1,...,m;_1},
complete to {m;},
strongly anticomplete to K U {mjy1,...,mp}

the sets UOSan Am g, UOSan B j, Uogigm A; , and Uogigm B, are
all non-empty

Let 4,7 € {0,...,m} and j,j5' € {0,...,n}, and suppose that i’ > i
and j > j. Then at least one of the sets A; ; and Ay ;s is empty, and
at least one of the sets B; ; and By j is empty

Forie {1,...,m} and j € {1,...,n}, A;; is strongly complete to B,
and B; ; is strongly complete to A

For i,4" € {1,...,m} and j,j’ € {1,...,n}, A;( is strongly complete
to By o, and Ag; is strongly complete to By ;/

fori e {1,...,m} and j € {1,...n}, A;¢ is the disjoint union of sets
Af,o with k£ € {0,...,n}, and Ag; is the disjoint union of sets A’&j
with k£ € {0,...,m},

fori e {1,...,m} and j € {1,...n}, B, is the disjoint union of sets
sz,o with £ € {0,...,n}, and By, is the disjoint union of sets B(If,j
with k € {0,...,m}.

for i € {1,...,m}, every vertex of A?,o is strongly anticomplete to
Ulgjgn By ;, and has a neighbor in Ulgjgm Ulgkgn Bj

for j € {1,...,n}, every vertex of A8,j is strongly anticomplete to
Ulgigm B o, and has a neighbor in Ulgigm Ulgkgn B

for i € {1,...,m}, every vertex of BEO is strongly anticomplete to
Ulgjgn Ay, and has a neighbor in Ulgjgm Ulgkgn Ak

for j € {1,...,n}, every vertex of ng is strongly anticomplete to
Ulgigm A; 0, and has a neighbor in Ulgigm Ulgkgn A g



e forie{l,...,m}and j€{l,... ,n},

every vertex of A%)’ j has a neighbor in B; g,

every vertex of B has a neighbor in Ay j,

every vertex of Aio has a neighbor in By ;,

every vertex of By ; has a neighbor in 4; o,
0,; is strongly complete to U1§s<i Bso

A%),j is strongly anticomplete to Ui<s§m Bs

A} is strongly complete to |J;,; Bo,s

A'g o is strongly anticomplete to | By s

/ j<s<n
Bg,o is strongly complete to (J; <, < Ao
qu,o is strongly anticomplete to U]. <s<n Aos
B ; is strongly complete to (J;<; Aso

B& j is strongly anticomplete to | J Ao

i<s<m “7S,

o forie{l,...,m}and je€{1,...,n} let
;70 be the set of vertices of A; o that are semi-adjacent to k;

Ag,j be the set of vertices of Ag; that are semi-adjacent to m,_;1,
BLO be the set of vertices of B; g that are semi-adjacent to ky,—it1,
B[’)J be the set of vertices of By ; that are semi-adjacent to m;.
Then
Aj ¢ is strongly complete to U<, Bé’s,
Ap ; 1s strongly complete to U< <y, Bio:

B is strongly complete to (J; < ., 4f s
By ; is strongly complete to ;< ,<,, Aio.

e there exist i € {1,...,m} and j € {1,...,n} such that either A; ; # 0,
or Bi,j 75 @

o Let i,s,8 € {1,...,m} and j,¢t,t' € {1,...,n} such that ¢ > j >
n+1l—tands>i>m+1—s" Then at least one of A, and By y
is empty.

Under these circumstances we say that G is a melt. We say that a melt is an
A-melt if B; j = () for every ¢ € {1,...,m} and j € {1,...,n}. We say that
a melt is a B-melt if A;j = 0 for every i € {1,...,m} and j € {1,...,n}.
We say that a melt is a double melt if there exist i,i' € {1,...,m} and
4,5 €{1,...,n} such that A;; # 0, and By j # 0.

3.2 Every melt is bull-free.

Proof. Let G be a melt. We use the notation from the definition of a
melt. Suppose there is a bull C' = {c1,¢2,¢3,c4,¢5} in G, where the pairs
c1C2, CoC3, C3C4, CaCy4, C4Cs are adjacent, and the pairs cics, c1¢q, c105, Cacs, c3C5



are antiadjacent. Let X = UlSan = Ay, Y = U1§j§n Boj, Z = A\ X,
W = B\ Y. We observe that the graph G\ M is a (K, Z,W,Y, X)-clique
connector. Therefore, 3.1 implies that CNM # 0, and, similarly, CNK # (.
Since {co, c3,c4} is a clique and since K is strongly anticomplete to M, we
may assume that MN{ca, c3,c4} = 0. Since MNC # (), and ¢; is antiadjacent
to ¢5, and M is a strong clique, we may assume that ¢; € M and ¢5 € M.
Then co € AU B, and from the symmetry we may assume that co € A. Let
i€ {l,...,m} and j,k € {1,...,n} be such that ¢; = m; and ¢z € A;.
Since co is adjacent to c1, it follows that j > n — k + 1. Since A, B are
both strongly stable sets, it follows that at least one of c3,c4 belongs to
K, and therefore, since co is adjacent to both cs, cq, we deduce that ¢ > 0.
Consequently, cs is strongly complete to B. Let

B = U U Bis.

0<i<m j<s<n

Then G|(KU{m;}UAU(B\B'))isa (K,Z,W\B',(YU{m;})\ B, X)-
clique connector, and so 3.1 implies that CNB’ # (. Since ¢y is anticomplete
to {c3,ca,c5}, it follows that C' N Bsy = (0 for every s € {0,...,m} and
te{j+1,...,n}, and there exists s € {0,...,m} and b € B, ;N C such that
b is semi-adjacent to cj. Since cg is strongly complete to B, it follows that
b € {c3,ca}, and the vertex of {c3,cq} \ {b} belongs to K, say it is k,. Then
both ¢y and b is adjacent to both k, and m;, contrary to the last condition
in the definition of a melt. This proves 3.2. |

Let H be a graph. For a vertex v € V(H), the degree of v in H, de-
noted by deg(v), is the number of edges of H incident with v. If H is the
empty graph let mazdeg(H) = 0, and otherwise we define maxdeg(H) =
max,ev () deg(v).

The class 7;. Before giving a precise definition of the class 77, let us
describe roughly what a trigraph in this class looks like. The idea is the
following. Every trigraph in 77 consists of a triangle-free part X (in what
follows V(X)) is the union of L, the sets h(e), and the sets h(e,v) N B), and
a collection of pairwise disjoint and pairwise anticomplete strong cliques Y,
(in what follows Y, is the union of h(v) and the sets h(e,v)\ B for all edges e
incident with v). Every vertex of X attaches in at most two cliques Y,,. Each
Y,, together with vertices of X at distance at most two from Y, induces a
clique connector. If every vertex of X has neighbors in at most one Y, this
describes the graph completely. Describing the adjacency rules for vertices
of X that attach in two different cliques, Y, and Y, is more complicated (we
need to explain how the clique connectors for Y, and Y, overlap). Without
going into details, the structure there is locally a melt.

Let us now turn to the precise definition of 7;. Let H be a loopless
triangle-free graph with mazdeg(H) < 2 (H may be empty, and may have
parallel edges). We say that a trigraph G admits an H-structure if there

10



exist a subset L of V(G) and a map

h:V(H)UE(H)U(E(H) x V(H)) — 2"\

such that

every vertex of V/(G)\ L is in h(x) for exactly one element x of V/(H)U
E(H)U(E(H) x V(H)), and

h(v) # 0 for every v € V(H) of degree zero, and

h(e) # 0 for every e € E(H), and

h(e,v) # 0 if e is incident with v, and

h(e,v) =0 if e is not incident with v, and

for u,v € V(H), h(u) is strongly anticomplete to h(v), and
h(v) is a strong clique for every v € V(H), and

every vertex of L has a neighbor in at most one of the sets h(v) where
veV(H), and

GI(L U (Ueepm) h(e))) has no triangle, and

for every e € E(H), every vertex of L is either strongly complete or
strongly anticomplete to h(e), and

h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f € E(H); if e and f share an endpoint, then h(e) is strongly
complete to h(f), and

for every e € E(H) and v € V(H), h(e) is strongly anticomplete to
h(v), and

for v € V(H), let S, be the vertices of L with a neighbor in h(v),
and let T;, be the vertices of (LU (U.cg(m) h(€))) \ Sy with a neighbor
in S,. Then there is a partition of S, into two sets A,, B,, and a
partition of T, into two sets C,, D,, such that G|(h(v)U S, UT),) is an
(h(v), Ay, By, Cy, Dy)-clique connector, and

for v € V(H), if there exist a € A, and b € B, antiadjacent with a
common neighbor in A(v), then v has degree zero in H.

Moreover, let e be an edge of H with ends u,v. Then

if f e E(H)\ {e} is incident with v, then h(e,v) is strongly complete
to h(f,v), and
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e G|(h(e)Uh(e,v)Uh(e,u)) is an h(e)-melt, such that if (K, M, A, B) are
as in the definition of a melt, then K C h(e,v), M C h(e,u), A = h(e),
B C h(e,v) U h(e,u), every vertex of h(e,v) N B has a neighbor in K,
and every vertex of h(e,u)N B has a neighbor in M (and, in particular,
h(e,v) is strongly anticomplete to h(e,u)); and

e h(e,v)is strongly complete to h(v), and h(e, v) is strongly anticomplete
to h(w) for every w € V(H) \ {v}, and

o h(e,v) is strongly anticomplete to h(f,w) for every f € E(H) \ {e},
and w € V(H) \ {v}, and

e h(e,v) is strongly anticomplete to h(f) for every f € E(H) \ {e}.

Furthermore, either the following statements all hold, or they all hold with
the roles of A, U A, and B, U B, switched:

e h(e) is strongly complete to B, U B,, and

e h(e,v) is strongly complete to A, and strongly anticomplete to L\ A,
and, and

o every vertex of (LU (Uysepe h(f))) \ (Au U Ay) with a neighbor in
A, U A, is strongly complete to h(e).

Let us say that G belongs to 7 if either GG is a double melt, or G admits an
H structure for some loopless triangle-free graph H with maximum degree
at most two.

In the definition of an H-structure, we did not specify the adjacencies
between the sets h(e) for disjoint edges e of H, except that

e h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f € E(H).

In fact, the only constraints on these adjacencies come from the condition
that

® G|(L YU (Ueepm h(€))) has no triangle.

To tighten the structure, one might want to add another ingredient, which is
a triangle-free supergraph F' of the line graph of H, that would “record” for
which pairs of disjoint edges e, f of H, the sets h(e) and h(f) are strongly
complete to each other. We did not do that here, since such a graph F' can
be easily reconstructed from the H-structure. The situation concerning the
adjacencies between the vertices of L and the sets h(e) is similar.

We observe the following:

3.3 Ewery trigraph in Ty is bull-free.
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Proof. Let G € 7;. If G is a double melt, then 3.3 follows from 3.2, so we
may assume not. Let H, h and L be as in the definition of 7;. We use the
notation of the definition of 7;. Suppose there is a bull B in G. Let B =
{v1, v2,v3,v4,v5}, where the pairs vjva, vovs, Vovg, V3V4, v4U5 are adjacent,
and all the remaining pairs are antiadjacent. Since G|(LU(U.cpm h(€))) is
triangle-free, it follows that at least one of vg, v3, v4 belongs to h(v)U h(e,v)
for some v € V(H) and e € E(H). If {ve,v3,v4} N h(e,v) = 0 for every
e € E(H) and v € V(H), then B C h(v) U S, UT, for some v € V(H),
contrary to the 3.1, since G|(h(v)US,UT}) is a clique connector. So we may
assume that at least one of vy, v3,v4 belongs to h(e,v) for some v € V(H)
and e € E(H). Let u be the other end of e, and if v has degree two in
H, let f be the other edge incident with v. If v has degree one in H, let
X =Y =0, and if v has degree two in H, let X = h(f) and Y = h(f,v).
Let Z be the set of vertices of LU (Uyepmy e,y 7(9)) \ (Sv UTy)) that are
strongly complete to h(e). Then

B C h(v)Uh(e,v) Uh(e) Uh(e,u) US, UT,UX UY UZ.

We observe that h(v)Uh(e,v)Uh(e)US,UT,UXUY UZ is a clique connector,
and so BNh(e,u) # 0. Since each of vy, v, v4 has distance at most two from
every vertex of B, it follows that {ve,v3,v4} N (R(v) UY) = (). Since h(e,u)
is strongly anticomplete to h(e,v), it follows that BNh(e,u) C {v1, v5}, and
we may assume from the symmetry that v; € BNh(e,u). Then va & h(e,v),
and {vs,v4} Nh(e,v) # 0. Since vy is complete to {v1,vs,v4}, it follows that
vy € h(e). Now, since {vy,v3,v4} is a triangle, vo € h(e), h(e) is strongly
anticomplete to h(v), there is no triangle in h(e) U S,, and no vertex of
S, has both a neighbor in h(e) and a neighbor in h(e,v), it follows that
{vs,v4} C h(e,v). Since vy is adjacent to vy and antiadjacent to vs, it
follows that vs € h(e,v) U h(e). But now B C h(e) U h(e,u) U h(e,v),
contrary to 3.2. This proves 3.3. |

Next let us describe some decompositions (these definitions appear in
[1], but we repeat them for completeness). Let G be a trigraph. A proper
subset Xof V(G) is a homogeneous set in G if every vertex of V(G) \ X
is either strongly complete or strongly anticomplete to X. We say that G
admits a homogeneous set decomposition, if there is a homogeneous set in G
of size at least two.

For two disjoint subsets A and B of V(G), the pair (A4, B) is a homoge-
neous pairin G, if A is a homogeneous set in G\ B and B is a homogeneous
set in G\ A. We say that the pair (A4, B) is tame if

e |V(G)|—2>|A|+|B| > 2, and
e A is not strongly complete and not strongly anticomplete to B.
G admits a homogeneous pair decomposition if there is a tame homogeneous

pair in G.
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Let S C V(G). A center for S is a vertex of V(G) \ S that is complete
to S, and an anticenter for S is a vertex of V(G)\ S that is anticomplete to
S. A vertex of G is a center (anticenter) for an induced subgraph H of G if
it is a center (anticenter) for V(H).

We say that a trigraph G is elementary if there does not exist a path
P of length three in G, such that some vertex c of V(G) \ V(P) is a center
for P, and some vertex a of V(G) \ V(P) is an anticenter for P. The main
result of this paper is the following:

3.4 Let G be an elementary bull-free trigraph. Then either
e one of G,G belongs to Ty, or
o (G admits a homogeneous set decomposition, or

o G admits a homogeneous pair decomposition.

Let us call a bull-free trigraph that does not admit a homogeneous set
decomposition, or a homogeneous pair decomposition, and does not contain
a path of length three with a center unfriendly. In view of the main result
of [1], in this paper we deal mainly with unfriendly graphs (for a precise
explanation, see the end of Section 6).

4 Prisms

Let k£ > 3 be an integer. A k-prism is a trigraph whose vertex set is the
disjoint union of two cliques A = {ay,...,a;} and B = {b1,...,bx}; and
such that for every i,j € {1,...,k}, a; is adjacent to b; if i = j and q; is
antiadjacent to b; if ¢ # j. A prism is a 3-prism. For a trigraph G, an
n-prism in G is an induced subtrigraph of G that is an n-prism.

We start by listing some properties of a prism in an unfriendly trigraph.

4.1 Let G be an unfriendly trigraph, and let P be a k-prism in G. Let A
and B be as in the definition of a k-prism. Then

e A and B are strong cliques,
o a; is strongly antiadjacent to b; for every 1 <1 # j <k,

e no vertex x € V(G) \ V(P) is complete to {a;,b;,a;,b;} for any 1 <
1< j<k.

Proof. Let i, j, m be three distinct integers in {1, ..., k}. Since {a;, b;, by, b;,a;}
is not a bull, it follows that a; is strongly adjacent to a;. Therefore, A, and
from the symmetry B, is a strong clique. This proves the first assertion of
4.1
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If a; is adjacent to b;, then a; is a center for the path a;,-a;-b;-b;, contrary
to the fact that G is unfriendly. This proves the second assertion of 4.1.

Finally, if some vertex € V(G) \ V(P) is complete to {as, b;,a;,b;},
then since a;-2-bj-by, is not path with center b;, it follows that x is adjacent
to by,. But now a;-a;-b;j-by, is a path of length three with center x, contrary
to the fact that G is unfriendly. This completes the proof of 4.1. |

The main result of this section is the following:

4.2 Let G be an unfriendly trigraph. Assume that for some integer n > 3,
G contains an induced subtrigraph that is an n-prism. Then G is a prism.

Proof. Let Ay,...Ag, B1,..., B be pairwise disjoint non-empty subsets of
V(G) such that for i,5 € {1,...,k}

e A; is complete to A; and B; is complete to B;
e if ¢ # j, then A; is anticomplete to B;

e cvery vertex of A; has a neighbor in B;

e cvery vertex in B; has a neighbor in A;

o k> 3.

Let W = Ule(Ai U B;). In these circumstances we call G|W a hyperprism
in G. Since G contains an n-prism, there is a hyperprism in G. We may
assume that W is maximal subject to G|W being a hyperprism in G. Let
A= U?:l Al and B = Ule Bl

(1) Let i,j € {1,...,k} such that i # j. Then A; is strongly complete
to Aj;, and strongly anticomplete to B;.

Let m € {1,...,k} \ {i,j}. Let a; € A; and a; € A;. Choose b; € B;
adjacent to a; and b; € B; adjacent to a;. Choose a,, € Ay, and by, € By,
adjacent. Then G|{a;,b;,a;,b;,am, by} is a 3-prism, and so by 4.1 a; is
strongly adjacent to a;, and q; is strongly antiadjacent to b;. Now if follows
from the symmetry that A; is strongly complete to A;. Similarly, since every
vertex of B; has a neighbor in A;, it follows that A; is strongly anticomplete
to Bj. This proves (1).

(2) Let v € V(G)\ W and let i € {1,...,k}. Suppose v has a neighbor
a; € A; and a neighbor b; € B;. Then a; is strongly antiadjacent to b;.

Assume q; is adjacent to b;. From the symmetry we may assume that i = 1.
Suppose v has a neighbor as € As and a neighbor by € Bs. Since G is
unfriendly ao-a1-b1-bo is not a three edge path with center v, and therefore
as is strongly adjacent to by. Let ag € A3 and by € Bs be adjacent. Then
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G|{a1, az,as, by, by, b3} is a 3-prism and v is complete to {a1, as, b1, ba}, con-
trary to 4.1. This proves, using symmetry, that for every j € {2,...,k}, v
is strongly anticomplete to at least one of A;, B;. Suppose that for some
g.m € {2,...,k}, v has a neighbor a; € A; and by, € By,. Then j # m,
and aj-ai-bi-by, is a path with center v, a contradiction. This proves that
v is strongly anticomplete to at least one of A\ A; and B\ B;j. From the
symmetry we may assume that v is strongly anticomplete to B \ B;. If for
some j € {2,...,k}, v has an antineighbor a; € A;, then {aj,a1,v,b1,by}
is a bull for every by, € By, with m € {2,...,k}\ {j}. This proves that v is
strongly complete to A\ A;. But now the sets Ay U{v},..., Ak, B1,..., Bg
form a hyperprism in G, contrary to the maximality of W. This proves (2).

(3) Let v € V(G)\ W and let i,j,m € {1,...,k} be all distinct. Sup-
pose b; € B; is adjacent to v, and b; € Bj,a, € Ay and by, € B, are
antiadjacent to v. Then a., is antiadjacent to by,.

If a,, is adjacent to by,, then {v,b;,b;,bm,an} is a bull, a contradiction.
This proves (3).

(4) Let v € V(G)\ W and let i € {1,...,k}. Then v is strongly anti-
complete to at least one of A;, B;.

Suppose not. We may assume that v has a neighbor in A; and a neigh-
bor in B;. For j € {1,...,k}, let A;- be the set of neighbors of v in A;, and
A7 = A;\ A, Let Bj and B} be defined similarly. By (2), A} is strongly
anticomplete to B;-. Since every vertex in A; has a neighbor in Bj, it follows
that if A’ is non-empty, then so is BY; and if B} is non-empty, then so is
AY. In particular, A}, By, A{ and Bf are all non-empty.

Suppose that some az € A} is adjacent to some by € BY. By (3), and
the symmetry, it follows that v is strongly complete to As U Bs, and so

5 = BY =0, a contradiction. This proves, using symmetry, that for every
j €1{2,...,k}, A} is strongly anticomplete to B7. Since every vertex of 4;
has a neighbor in Bj, it follows that A7 # () if and only if B} # (), and,
symmetrically, B} # 0 if and only if A’ # 0.

If v is anticomplete to B\ By, then v is complete to A\ A1, and the sets
AyU{v}, ..., Ag, B, ..., By form a hyperprism, contrary to the maximality
of W. This proves that for some 2 < s < k, B. # (), and, from the symmetry,
for some 2 <t < k, A} # 0. It follows that A” # () and B} # (). Now, by (3)
(and from the symmetry if s = t), A is strongly anticomplete to BY.

Next we claim that for j € {1,...,k}, A’ is strongly complete to A7, and
B’ to Bj. Suppose there exist a’ € A} and a} € A7 antiadjacent. Choose
b € B\ B; adjacent to v (such a vertex b exists for j is different from at least
one of 1,t). Let b; € B; be adjacent to a}. Then b; € B}, and so, by (2), b;

is strongly antiadjacent to a’. Now {a},v,b,bj,a}} is a bull, a contradiction.
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This proves that A’ is strongly complete to A7, and from the symmetry B}
is strongly complete to B

Let 7 = {j € {1,...,k} : A} # 0}. Then B} # () for j € J. Moreover,
for j € {1,...,k}\ J, B} = 0. Then |J| > 2. Let

k

Ay = AT u{v},

j=1

k
By = | ] B;
j=1
and for j € J, let

A~j = A; and Bj = B;l

Now, since | 7| > 2, the sets Ao, {A;};c7, Bo, {Bj}jes form a hyper-
prism, contrary to the maximality of W. This proves (4).

(5) Let v € V(G) \ W. Then v is strongly anticomplete to at least one
of A, B.

Suppose v has neighbors a; € A and bs € B. From the symmetry we
may assume that a; € A;. By (4), ba € By, and therefore we may assume
that by € Bs. Now by (4), v is strongly anticomplete to By U As.

Suppose v is strongly complete to B \ By. By (4), this implies that
v is strongly anticomplete to A\ A;. But now the sets Aj,..., Ag, B; U
{v},..., By form a hyperprism, contrary to the maximality of W. This
proves that v has an antineighbor in b € B\ B;. From the symmetry,
renumbering Bo, ..., By if necessary, we may assume that b ¢ By. Now
since v has a neighbor in Bs, and since every vertex in A; has a neighbor
in By, (3) implies that v is strongly complete to A;. From the symmetry,
it follows that for every i € {1,...,k}, v is either strongly complete or
strongly anticomplete to A;, and the same for B;. Consequently, v is strongly
complete to A; U By, and strongly anticomplete to By U Ay. Now by (3)
and (4), for every i € {3,...,k}, v is strongly complete to one of A;, B;, and
strongly anticomplete to the other. From the symmetry between A and B,
we may assume that v is strongly complete to A; for at least two values of
i.

Let T = {i € {1,...,k} : v is strongly complete to A;}. Then v is
strongly complete to (J;z7 Bi, and strongly anticomplete to (U;ez Bi) U

Usgz 4. Let
fi() = U A; U {U},

g

By =|JB;

igT
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and for i € 7, let

Now, since |Z| > 2, it follows that the sets Ag, {A;}ier, Bo, {B; Yier form
a hyperprism, contrary to the maximality of W. This proves (5).

(6) Let v e V(G) \ (AU B). Then one of the following holds for v:

1. possibly with A and B switched, for some i € {1,...,k}, v strongly
complete to A\ A; and strongly anticomplete to B

2. v is strongly anticomplete to AU B.

We may assume that v has a neighbor a; € A;, for otherwise (5.2) holds.
Now (5) implies that v is strongly anticomplete to B. If there exist distinct
i,j € {2,...,k} such that v has an antineighbor a; € 4; and a; € A;, then,
choosing b; € B; to be a neighbor of a;, we get a contradiction to (3). So
we may assume that v is strongly complete to A\ (A; U A2). By the same
argument with the roles of A1, and, say, As, exchanged, we deduce that v
is strongly complete to A;, and (5.2) holds with ¢ = 2. This proves (6).

Let A be the set of vertices of V(G) \ W that are strongly complete to
A, and for 1 < ¢ < k, let A} be the set of vertices of V(G) \ (W U Ap)
that are strongly complete to A\ A;. Define By, By, ..., B}, similarly. Let
N be the set of vertices of V(G) \ W that are strongly anticomplete to W.
By (6), the sets Ao, A},..., A}, Bo, Bi,..., By, N are pairwise disjoint and
have union V(G) \ W.

(1) N =0.

Suppose not, and choose n € N. Since G is unfriendly, it follows that G is
connected, and, from the symmetry, we may assume that n has a neighbor
a in AgU A}. Let ag € As, ag € As, and choose by € By adjacent to as.
Then {n,a,as,ag,bsa} is a bull, a contradiction. This proves (7).

(8) Leti,j € {1,...,k}. Then AgU Aj is strongly anticomplete to By U B;.

From the maximality of W, Ay U A} is strongly anticomplete to By U B}
for every i € {1,...,k}. Suppose a € A; has a neighbor b € B;- where
1 <i¢<j <k Letbj € Bj be antiadjacent to b, and let a; € A; be a
neighbor of b;. Choose a,, € A\ (4; U Aj). Now {bj,a;,am,a,b} is a bull,
a contradiction. This proves (8).

9) Let v,5 € {1,...,k} such that 7 j. Then A’ is strongly complete
1
to A;. U Ap.
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Suppose a € A} has an antineighbor ag € A; U Ap. Let a; € A; be antiadja-
cent to a; and let b; € B; be a neighbor of a;. Choose m € {1,...,k}\{4,j}
and ap € Ap. Now {af,am,a, a;, b} is a bull, a contradiction. This
proves (9).

By (1), (8) and (9), (A1 U A} U Ay, By U B U Ap) is a homogeneous pair
in GG. Since G is unfriendly, it follows that this is not a tame homogeneous
pair, and G does not admit a homogeneous set decomposition, and therefore

! = B} = Ay = By = 0, and |Ay| = |B1| = 1. Form the symmetry, we
deduce that A, = B = 0, and |A4;| = |B;| = 1 for every i € {1,...,k}. If
k> 3, then (A\ (A1 U Ag), B\ (B1 U By) is a tame homogeneous pair in G,
a contradiction. Thus £k = 3 and G is a prism. This proves 4.2. |

5 Lemmas about unfriendly trigraphs

In this section we prove a few lemmas about unfriendly trigraphs.

5.1 Let G be unfriendly graph, let m > 2 be an integer, and let Y1,...,Yn
be pairwise disjoint anticonnected sets, such that fori,j € {1,...,m}, Y; is
complete to Y;. Let v e V(G)\ (U~ Yi), assume that |Y1| > 1 and v has a
neighbor and an antineighbor in \J;~, Y;. Then v is either strongly complete,
or strongly anticomplete to Yi.

Proof. Suppose not. Then v has a neighbor a and an antineighbor a’ in
Y1, and by 2.2 we may assume that a and o’ are distinct and antiadjacent.
From the symmetry, we may assume that v has a neighbor z € Y2 and an
antineighbor h € Y3. But now v-a-h-a’ is a path, and x is a center for it,
contrary to the fact that G is unfriendly. This proves 5.1. |

5.2 Let G be an unfriendly trigraph such that there is no prism in G, and

let a1-as-ag-aq-a1 be a hole of length four. Let K be the set of vertices that
are complete to {a1,a2} and anticomplete to {as,as}. Then K is a strong
clique.

Proof. Suppose some two vertices of K are not strongly adjacent, and
let C' be an anti-component of K with |C| > 1. Since G is unfriendly, it
follows that C is not a homogeneous set in G, and so, by 2.2 applied in G,
there exist vertices ¢, ¢/, v such that ¢,d € C, v € C, v is adjacent to ¢’ and
antiadjacent to ¢, and ¢’ is antiadjacent to c. Since {a4, a1, ¢, ag,c} is not a
bull, it follows that v # a1, and from the symmetry v # ag. Since ay-c’-as-c
is not a path with center a1, it follows that v # a4, and from the symmetry
v # as.

Suppose first that v is anticomplete to {a1,as}. Since {v,d,as,a1,a4}
is not a bull, it follows that v is strongly adjacent to a4, and, similarly,
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v is strongly adjacent to az. But now G|{a1, a2, as,as,v} is a prism, a
contradiction. So we may assume that v is strongly adjacent to a1, and by
5.1, v is strongly adjacent to ay. Since {c, az, ¢, v, a4} is not a bull, it follows
that v is strongly antiadjacent to a4, and similarly to az. But now v € C, a
contradiction. This proves 5.2. |

5.3 Let G be an unfriendly trigraph such that there is no prism in G, let
a1-az-az-a4-a1 be a hole in G, and let ¢ be a center and a an anticenter for
{a1,a2,a3,a4}. Then c is strongly antiadjacent to a.

Proof. Suppose c is adjacent to a.

(1) Let i € {1,...,4}. Then a; is strongly adjacent to a; 1 (here the ad-
dition is performed mod 4), c is strongly adjacent to a;, and a is strongly
antiadjacent to a;.

Since a;-a;13-a;42-a;4+1 is not a path with a center ¢, it follows that a; is
strongly adjacent to a;yi. Since {aj,ait1,ai+2,¢,a} is not a bull, it fol-
lows that a; is strongly adjacent to c. Finally, since a-a;-a;y1-a;42 is not a
path with center ¢, we deduce that a is strongly antiadjacent to a;. This
proves (1).

Let Ay, Ay, A3, Ay be connected subsets of V(G), where a; € A; for i €
{1,...,4}, such that

e forie {1,...,4}, A; is strongly complete to A;+1 (with addition mod
4),

e for i = 1,2, A; is anticomplete to A; 42,
e c is strongly complete to A; U Ay U A3 U Ay
e ¢ is strongly anticomplete to A1 U As U A3 U Ay.

Let W = A1 U Ay U A3 U Ay, and assume that Aq, As, A3, A4 are chosen
with W maximal. Since G is unfriendly, it follows that A; U A3 is not a
homogeneous set in G, and so some vertex v of V(G)\ (41 U A3) is mixed on
A1 U As. Then v ¢ Ay U As U {a,c}. We may assume that v has a neighbor
vy € Aj, and antineighbor vs € As. Since A; U Ag, A U Ay and {c} are
three anticonnected sets complete to each other, 5.1 implies that v is either
strongly complete or strongly anticomplete to A2 U A4 U {c}.

Suppose first that v is strongly anticomplete to A U A4 U {c}. Since
{v,v1,a2,c,a} is not a bull, it follows that v is adjacent to a. But now
v-a-c-v1-v is a hole of length four, and a9, a4 are two antiadjacent vertices,
each complete to {v1,c} and anticomplete to {v,a}, contrary to 5.2. This
proves that v is strongly complete to Ay U A4 U {c}. Since a-v-ag-v3 is
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not a path with center ¢, it follows that v is strongly antiadjacent to a.
If v is anticomplete to As, then replacing A; by A; U {v} contradicts the
maximality of W, so v has a strong neighbor in A3, and therefore Ag # {v3}.
Since As is connected, 2.2 implies that there exist vertices x,y € As, such
that v is adjacent to z and antiadjacent to y, and z is adjacent to y. But
now y-z-v-v1 is a path, and c is a center for it, contrary to the fact that G
is unfriendly. This proves 5.3. |

5.4 Let H be a trigraph such that no induced subtrigraph of H is a path of
length three. Then either

1. H is not connected, or
2. H 1is not anticonnected, or

3. there exist two vertices vi,vy € V(H) such that vy is semi-adjacent to
va, and V(H) \ {v1,v2} is strongly complete to vi and strongly anti-
complete to vs.

Proof. Let X,Y C V(H) such that X # (), Y # ), X is either complete, or
anticomplete to Y, and there is at most one semi-adjacent pair zy with = €
X and y € Y. Assume that XY are chosen with X UY maximal. Passing
to the complement if necessary, we may assume that X is anticomplete to Y.
First we show that XUY = V(H). Suppose not. Let v € V(H)\(XUY'). Let
X', Y’ be the set of neighbors of v in X,Y, respectively. By the maximality
of X UY, it follows that X’ # () and Y’ # (). Since z-x’-v-y/ is not a path,
where z € X \ X', 2/ € X’ and ¢/ € Y/, it follows that X’ is strongly
anticomplete to X \ X'. Similarly, Y’ is strongly anticomplete to Y\ Y.
Now X' UY' U {v} is anticomplete to (X \ X') U (Y \ ' Y’), and the only
semi-adjacent pairs zy with x € X’ UY' U{v} and y € (X \ X' )U (Y \Y)
are those with x € X and y € Y. It follows from the maximality of X UY
that (X \ X)) U (Y \Y') = 0. Now {v} is complete to X UY, and since v
is semi-adjacent to at most one vertex of H, it follows that there is at most
one semi-adjacent pair with a vertex in X UY and a vertex in {v}, contrary
to the maximality of X UY. This proves that X UY =V (H).

If X is strongly anticomplete to Y, then the theorem holds. So we may
assume that some z € X and y € Y are semi-adjacent. Since z'-z-y-y is not
a path for 2/ € X\{z} and ¢ € Y'\{y}, we may assume, from the symmetry,
that x is strongly anticomplete to X \ {z}. If X # {z}, then Y U {2z} is
strongly anticomplete to X \ {z}, and the theorem holds, so we may assume
that X = {x}. Let Y7 be the set of neighbors of y in Y, and Y5 the set of
strong antineighbors of y in Y. Since y is semi-adjacent to z, it follows that
y is strongly complete to Y. If some y; € Y] is adjacent to some y2 € Yo,
then z-y-y1-1yo is a path, a contradiction. So Y7 is strongly anticomplete to
Y5. But now, if Y3 = (), then the last outcome of the theorem holds, and if
Y5 # () then the first outcome of the theorem holds. This proves 5.4. |
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5.5 Let G be an unfriendly trigraph with no prism, and let u,v € V(G) be
adjacent. Let A, B be subsets of V(G) such that

e u is strongly complete to A and strongly anticomplete to B,
e v is strongly complete to B and strongly anticomplete to A,

e No vertex of V(G) \ (AU B) is mized on A, and

e if x,y € B are adjacent, then no vertex of V(G)\ (AU B) is mized on
{z,y}.

Then A= K US, where K is a strong clique and S is a strongly stable set.

Proof. Let K, S be subsets of A, such that K is a strong clique and K is
strongly complete to A\ (K U S), and S is a strongly stable set and S is
strongly anticomplete to A\ (K'US). Assume that K and S are chosen with
K US maximal. Let Z = A\ (KUS). We may assume that Z is non-empty,
for otherwise the theorem holds.

(1) There do not exist k,s € Z, such that k is semi-adjacent to s, k is
strongly complete to Z \ {k, s} and s is strongly anticomplete to Z \ {k, s}.

If such k,s exist, then K U {k} and S U {s} contradict the maximality
of K US. This proves (1).

(2) Z is anticonnected.

Suppose not. If some anticomponent Zy of Z has size one, then K U Zy, S
contradict the maximality of K U S, so we may assume that there exist
two anticomponents, Z1,Zs of Z, each with at least two vertices. Since
Z1 is not a homogeneous set in G, it follows that there exists a vertex
vy € V(G) \ Z; such that v; is mixed on Z;. Then v; ¢ A. By 2.2,
there exist vertices zl,zi € Z; such that z; is antiadjacent to z’l, and v
is adjacent to z; and antiadjacent to zj. Let vg, 22, 25 be defined similarly.
Then v1,ve € B. Since {v,v1, 21, 22,21} is not a bull, it follows that v; is
strongly antiadjacent to ze. Similarly, vs is strongly antiadjacent to z;. Since
{v1, z1,u, 22,v2} is not a bull, it follows that vy is strongly adjacent to vs.
But now G|{u, 21, 22, v,v1,v2} is a prism, a contradiction. This proves (2).

Since u is complete to Z and G is unfriendly, it follows that there is no
path of length three in G|Z. Now it follows from 5.4, (1), and (2) that Z
is not connected. If some component Zy of Z has size one, then K, S U Zj
contradict the maximality of K U .S, so every component of Z has at least
two vertices and, in particular, that there exist two components, Z1, Zo of
Z, each with at least two vertices. Let 7 € {1,2}. Since Z; is not a homoge-
neous set in G, it follows that there exists a vertex v; € V(G) \ Z; such that
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v; is mixed on Z;. Then v; € A, and therefore v; € B. By 2.2, there exist
vertices z;, z; € Z; such that z; is adjacent to z; , and v; is adjacent to z; and
antiadjacent to z]. Since for z € (ZUS)\ Z;, {v;, 2, 2, u, z} is not a bull, it
follows that v; is strongly complete to (Z U S) \ Z;. Let B; be the set of all
vertices of V(G) \ {u} that are mixed on Z;. Then B; C B, B; is strongly
complete to (AU S) \ Z;, and By N By = ().

Let {i,5} = {1,2}.

(3) If b € V(G) \ (AU B;) has a neighbor in B;, then v is strongly anti-
complete to Z;.

Suppose not. Since b ¢ B, it follows that b is strongly complete to Z;.
Let b; € B; be adjacent to b. By 2.2, there exist vertices 2,2z’ € Z; such
that z is adjacent to 2/, and b; is adjacent to z and antiadjacent to z’. Since
G is unfriendly, it follows that b is not a center for the path v-b;-z-2’, and
therefore b is strongly antiadjacent to v. Consequently, b € B, and so b is
strongly complete to A. Choose z; € Z;. Now z;-bj-z-z' is a path, and b is
a center for it, contrary to the fact that G is unfriendly. This proves (3).

(4) Let b € V(G) \ (AU By U By), b; € B; and b; € Bj, and assume that
b is adjacent to b; and antiadjacent to bj. Then b € B, and b is strongly
anticomplete to B; and strongly complete to Z;.

By (3), b; is strongly antiadjacent to b;. By 2.2, there exist z,2’ € Z;
such that z is adjacent to 2/, and b; is adjacent to z and antiadjacent to z’.
Since b; is strongly complete to Z;, and since {b,b;,2’,2z,b;} is not a bull,
it follows that b has a neighbor in Z;. Since b is adjacent to b;, (3) implies
that b is strongly anticomplete to Z;, and therefore b has a neighbor and an
antineighbor in A. Since b is not in A, it follows that b € B. Now by (3), b
is strongly anticomplete to B;, and since b € Bj, b is strongly complete to
Z;. This proves (4).

Let C; be the set of all vertices of V(G) \ (AU B; U Bg) that have a neighbor
in B; and an antineighbor in B;. By (4), C; C B and Cj is strongly anti-
complete to B;. Let X be the vertices of B\ (B U By) that are strongly
anticomplete to By U By, and let Y be the vertices of B\ (B U Ba) that are
strongly complete to B; U By. By (4), B= B UB,UC1UCyUX UY. Let
X be the vertices of X with a neighbor in Cj, and let Xo = X \ (X1 U X3).
By (3), B; is strongly anticomplete to Bj. Since v is complete to B, and
G is unfriendly, it follows that there is no path of length three in G|B, and
therefore Cj is strongly anticomplete to C; U X, X; is disjoint from X, and
the sets X;, X;, Xo are pairwise strongly anticomplete to each other.

23



(5) K is strongly anticomplete to By U Bs.

Suppose some k in K has a neighbor b; € B;. By 2.2, there exist z1,2] € Z1
such that b; is adjacent to z and antiadjacent to 2, and z is adjacent to z’.
Let 2 € Zy. Then z is adjacent to by, and 2-b1-z-2" is a path with center k.
This proves (5).

(6) Both C1 and Cy are non-empty.

Suppose C1 is empty. We claim that (Z7, By) is a homogeneous pair. Since
Zy is a component of Z, no vertex of V(G) \ B; is mixed on Z;. Suppose
some w € V(G) \ (Z1 U By) is mixed on By. Then w ¢ Bs. Since Cy = 0, it
follows that w has a neighbor in By. Since w has an antineighbor in By, we
deduce that w € Cy U A, and since w has a neighbor in By, it follows that
w € A. Since Bj is strongly complete to (ZUS)\ Z1, it follows that w € K,
contrary to (5). This proves (6).

Let S; be the vertices of S that are strongly complete to K and are not
strongly complete to C; U X;. To complete the proof, we show that (Z; U
Si, Bi U C; U X;) is a homogeneous pair in G, contradicting the fact that G
is unfriendly.

(7) Let a,b,c € B and w € V(G) \ B, such that a is adjacent to b, c is
anticomplete to {a,b}, and w is adjacent to a and anticomplete to {b,v}.
Then w € A and w is strongly adjacent to c.

Since w is mixed on {a,b}, it follows that w € A. Since {w,a,b,v,c} is
not a bull, it follows that w is strongly adjacent to c¢. This proves (7).

(8) No vertex of V(G)\ (Z; U S; U B; UC; U X;) is mized on B; UC; U Xj.

First we claim that K is strongly anticomplete to B; U C; U X;. Choose
w € K. By (5), w is strongly anticomplete to B; U B;. Since w is strongly
anticomplete to Bj, and B; is strongly anticomplete to B; U C; U X, it fol-
lows from (7) there there do not exit vertices a,b € B; U C; U X;, such that
a is adjacent to b, and w is mixed on {a,b}. Now, since every vertex of C;
has a neighbor in B;, it follows that w is strongly anticomplete to C;; and
since very vertex of X; has a neighbor in Cj, it follows that w is strongly
anticomplete to X;. This proves the claim.

Next suppose that 7 € (ZUSUY)\ (Z;US;) is not strongly complete to
B; UC; U X;. Then r is strongly complete to B;, and, since every vertex of
C; has a neighbor in B;, and every vertex of X; has a neighbor in C;, there
exist p,q € B; UC; U X;, such that p is adjacent to ¢, r is adjacent to p and
antiadjacent to ¢, and ¢ € C; U X;. Assume first that » € Z \ Z;. By the
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maximality of S'U K, it follows that every component of Z has size at least
two, and so, from the symmetry we may assume that r € Z;. By (3), r is
strongly anticomplete to Cj; and since Cj is strongly anticomplete to {p, ¢}
we get a contradiction to (7). This proves that Z\ Z; is strongly complete to
B; UC; U X;, and therefore r € (SUY')\ S;. Choose z; € Z;. If r € Y, then
zj-r-p-q is a path with center v, contrary to the fact that G is unfriendly,
sor € S\ S;. Since r is antiadjacent to ¢ and r ¢ S;, we deduce that there
exists k € K antiadjacent to r. Now {r,p,q, zj, k} is a bull, a contradiction.
This proves that (ZUSUY)\ (Z; US;) is strongly complete to B; UC; U X;.
Since B; U C; U X; U Xy is strongly anticomplete to B; U C; U X, it follows
that no vertex of (AUB)\ (Z; US; U B; UC; U Xj;) is mixed on B; UC; U X;.

Let w € V(G) \ (Z; US; U B; UC; U Xj;), and assume that w is mixed
on B;UC; UX;. Then w ¢ (AU BU{u,v}). Applying (4) twice, we de-
duce that w is not mixed on B;. Since every vertex of C; has a neighbor
in B;, and every vertex of X; has a neighbor in Cj, it follows that there
exist two adjacent vertices a,b € B; U C; U X; such that w is adjacent to a
and antiadjacent to b. But then w € AUB, a contradiction. This proves (8).

(9) No vertex of V(G) \ (Z; U S; U B; UC; U X;) is mized on Z; U S;.

Since no vertex of V(G) \ (A U B) is mixed on A, it is enough to show
that no vertex of (AU B) \ (Z; U S; U B; UC; U X;) is mixed on Z; U S;.
Since K is strongly complete to Z; U S;, and (Z U S) \ (Z; U S;) is strongly
anticomplete to (Z; U S;), it follows that no vertex of A\ (Z; U S;) is mixed
on Z; U S;. By (8) and symmetry, and since Z; U S; is strongly complete
to Bj, we deduce that Z; U S; is strongly complete to B; U C; U X;. We
claim that no vertex of Xy is mixed on Z; U S;. If S; = (), then no vertex of
B\ B; is mixed on Z; U S;, and the claim follows. So we may assume that
S; # 0. Suppose b € X has an antineighbor s € Z; U S;. Since b is strongly
anticomplete to B; U C; U X;, (7) implies that there do not exist adjacent
vertices p, ¢ € B;UC;UX;, such that s is mixed on {p, ¢}. Since every vertex
of C; has a neighbor in B;, and every vertex of X; has a neighbor in Cj, it
follows that either s is mixed on B;, or s is strongly complete to B; UC; U X,
or s is strongly anticomplete to B; U C; U X;. Since every vertex of 5; is
strongly complete to B; and has an antineighbor in B; U C; U X;, it follows
that s € S;. Therefore s € Z;, and hence b is strongly anticomplete to Z;.
Consequently, there do not exist adjacent vertices p,q € B; U C; U X;, and
z € Z; such that z is mixed on {p, ¢}. By (3), C; is strongly anticomplete to
Zi. Let ¢; € C; and let b; € B; be a neighbor of ¢;. Then b; has a neighbor
z € Z;. But now z is adjacent to b; and antiadjacent to ¢;, a contradiction.
This proves that Z; U S; is strongly complete to Xy, and the claim follows.

By (3), Y is strongly anticomplete to Z;. Suppose some vertex y € Y
has a neighbor s € S;. Let b; € B;, and let b € C; U X; be an antineighbor
of s. Since s € Zj, it follows that b; is strongly adjacent to s. Since Y is
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strongly complete to B;, (8) implies that y is strongly adjacent to b. Now
{u,s,bj,y,b} is a bull, a contradiction. So Y is strongly anticomplete to S;,
and therefore to Z; U .S;. Therefore, no vertex of B\ (B; UC; U X;) is mixed
on Z; U X;. This proves (9).

Now, it follows from (8) and (9) that (Z; U S;, B; U C; U X;) is a homo-
geneous pair in G, contrary to the fact that G is unfriendly. This proves 5.5.
|

5.6 Let G be an unfriendly bull-free trigraph with no prism. Then there do
not ezist six vertices a,b,c,d,z,y € V(G) such that

e the pairs ab, cd, xy are adjacent,
e {a,b} is anticomplete to {c,d}, and
o {x,y} is complete to {a,b,c,d}.

Proof. Since b-a-y-c is not a path with center x, it follows that y is
strongly adjacent to b, and from the symmetry, {z,y} is strongly adjacent
to {a,b,c,d}.

Let k > 2 be an integer, and let Yy, ..., Y: be pairwise disjoint anticon-
nected sets, such that

e Y] is strongly complete to Ule Yi,
e fori,j € {1,...,k}, Y; is complete to Y;, and
e {a,b,c,d} CYp.

We may assume that Yj,..., Y} are chosen with W = U?:o Y; maximal.

(1) Let v € V(G) \ W and assume that v has a neighbor in Yy. Then v
is strongly anticomplete to W\ 'Yj.

We may assume that v has a neighbor in W \ Yy. Suppose first that v
is mixed on Yy. By 5.1, it follows that v strongly complete to W \ Yy, and
therefore Yy U {v}, Y1,..., Y} contradict the maximality of W. This proves
that v is strongly complete to Yjp.

Next suppose that v has a neighbor in Y7, and v is not complete to Y.
Then |Y7]| > 1, and 5.1 implies that v is strongly complete to W \ Y;. But
then replacing Y7 with Y3 U{v} contradicts the maximality of W. Using the
symmetry, this proves that if v has a neighbor in Y; with 1 <1 <k, then v
is complete to Y.

Let I be the set of all i € {1,...,k}, such that v is complete to Y;, and
let J ={1,...,k}\I. Then v is strongly anticomplete to (J,c ; Y;. From the
symmetry we may assume that [ = {1,...,¢} for some ¢t € {1,...,k}. Let
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Ziy1 = {v} U UjeJ Y;. Then Yy, Y1,...,Y;, Ziy1 contradict the maximality
of W. This proves (1).

Since W \ 'Y} is strongly complete to Yp, and since Yp is not a homoge-
neous set in G, it follows that some vertex of V(G) \ Yp has a neighbor in
Yo. Let Zy be the set of all vertices of V(G) \ W with a neighbor in Yj.
Then Zy # (), and by (1), Z is strongly anticomplete to W\ Y. Moreover,
no vertex of V(G) \ (Yo U Zj) is mixed on Yj.

Since Yj is strongly complete to W \ Yj, and Zj is strongly anticomplete
to W\ Yp, and since W\ Yy is not a homogeneous set in G, it follows that
some vertex z1 € V(G) \ (W U Zp) is mixed on W \ Y. Then z; is strongly
anticomplete to Yy. We may assume that z; has a neighbor y; € Y7 and
antineighbor yo € Y5.

(2) z1 is strongly complete to Zy.

Suppose 2y € Zjp is antiadjacent to z1. Let yg € Yy be a neighbor of zj.
Then {z0,v0,y2, Y1, 21} is a bull, a contradiction. This proves (2).

(3) Let s,t € Zy be adjacent, and let v € V(G) \ (Yo U Zp). Then v is
not mized on {s,t}.

Suppose that v is adjacent to s and antiadjacent to ¢t. Let ys € Yy be
adjacent to s, and y; to t, choosing ys = y; if possible. Since v is mixed on
Zy, it follows that v & (W \ Yp). Since v € Zy, it follows that v is strongly
antiadjacent to ys, y;.

Assume first that ys = y;. Since {v,s,t,y;, w} is not a bull for any
w € W\'Yy, it follows that v is strongly complete to W \ Yy. But now
YoU{v}, Y1,..., Y} contradict the maximality of W. This proves that ys # v,
and therefore s is antiadjacent to y, and t to ys. Since {ys, s, z1,t, 4} is not a
bull, it follows that ys is strongly adjacent to y;. But now G|{s,t, 21, ys, ¢, y1 }
is a prism, a contradiction. This proves (3).

Now yi1, 21 are adjacent, and Yp, Zp are subsets of V(G) such that
e 1 is strongly complete to Yy and strongly anticomplete to Zj,
e 2z is strongly complete to Zy and strongly anticomplete to Yp,
e No vertex of V(G) \ (Yo U Zp) is mixed on Yp, and

e if 5.t € Zj are adjacent, then no vertex of V(G) \ (Yp U Zp) is mixed
on {s,t}.

By 5.5, we deduce that Yy = K U S, where K is a strong clique and S is a
strongly stable set. But then at least one of a,b is in K, and at least one
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of ¢,d is in K, contrary to the fact that {a,b} is strongly anticomplete to
{¢,d}. This proves 5.6. |

Let G be a trigraph, let N C V(G) with |[N| = k. We say that N, or
G|N, is a matching of size k in G if N = {ai,...,ax,b1,...,b;} and for
distinct 7,5 € {1,...,k} the pairs a;b; are adjacent, and the pairs a;b; are
antiadjacent.

5.7 Let G be a bull-free trigraph, let v be a vertex of G and let N be
the set of neighbors of v. Let H = G|N. Let aj,az,b1,by € N such that
H\|{a1,a2,b1,b2} is a matching of size two in G, where the pairs aiby and
asby are adjacent. For i = 1,2 let C; be the component of H containing
{a;,b;}, and let D; be the set of vertices of V(G)\ (N U{v}) that are mized
on C;. Then

1. C1nCy =0,
2. D 1is strongly complete to N \ C;, and consequently D1 N Dy = (),

3. Leti € {1,2} and let x € V(G) \ (N U D;) have a neighbor d; € D;.
Then x is strongly anticomplete to Cj,

4. Dy is strongly anticomplete to Ds.

Proof. First we prove the first assertion of 5.7. It is enough to show that
there is no path from {ai,b1} to {ag2,b2} in H. First we claim that {a;,b;}
is strongly anticomplete to {ag,be}. For suppose not, from the symmetry
we may assume that aq is adjacent to as. Then bi-ai-as-bs is a path, an v
is a center for it, contrary to the fact that G is unfriendly. This proves that
{a1,b1} is strongly anticomplete to {az, ba}.

Next suppose that there is a path P from {a1,b1} to {ag,be} in H. Since
v is a weak center for P, it follows that P has length less than three, and
so some vertex p € N has a neighbor in {a;,b;} and a neighbor in {ag,bs}.
From the symmetry we may assume that p is adjacent to a; and to as. Since
bi-a1-p-ag is not a path with center v, it follows that p is adjacent to by, and
similarly to by. But now the vertices aq, b1, as, ba, v, p contradict 5.6. This
proves the first assertion of 5.7.

To prove the second assertion of 5.7, let d € D; and suppose that d has
an antineighbor n € N \ C;. By 2.2, there exist ¢;, ¢, € C; such that ¢
is adjacent to ¢}, and d is adjacent to ¢; and antiadjacent to ¢;. But now
{d,¢c;,c},v,n} is a bull, a contradiction. This proves the second assertion of
5.7.

To prove the third assertion, suppose that = has a neighbor in Cj;. Since
x ¢ D; UC;, it follows that z is strongly complete to C;. Since x &€ N, it
follows that x is strongly antiadjacent to v. By 2.2, there exist ¢;,c; € C;
such that ¢; is adjacent to ¢}, and d; is adjacent to ¢; and antiadjacent to
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;. Now v-cj-z-d; is a path, and ¢; is a center for it, a contradiction. This
proves the third assertion of 5.7.

Finally, the last assertion of 5.7 follows from the second and the third
assertion. |

5.8 Let G be an unfriendly bull-free trigraph with no prism, let v € V(QG)
and let N be the set of neighbors of v in G. Then no induced subtrigraph of
G|N is a matching of size three.

Proof. Suppose not, and let {a1, as, as, b1, b2,b3} C N be as in the definition
of a matching, and let H = G|N. For i € {1,2,3} let C; be the component
of H containing {a;,b;}. By 5.7 Cy, Co, C3 are all distinct components of H.
For i € {1,2,3} let D; be the set of vertices of V(G) \ C; that are mixed
on Cj;. Since G is unfriendly, it follows that C; is not a homogeneous set,
and (Cy,{v}) is not a homogeneous pair, and therefore D; # (). Since C; is
a component of N, it follows that v is strongly anticomplete to D;. By 5.7,
D, is strongly complete to N \ C;, the sets D1, Do, D3 are pairwise disjoint,
and D; is strongly anticomplete to D;.

(1) Let i € {1,2,3}. No vertex of V(G) \ (N U D;) is mized on D;.

From the symmetry, may assume i = 1. Suppose z € V(G) \ (N U Dy)
is mixed on D;i. Then z # v, and by 5.7, * € Do U D3. Let di € D1 be
adjacent to x. By 5.7, d; is strongly complete to Co U Cs. By 5.6, {x,d;} is
not complete to as, ba, as, bs, and, since x € Dy U D3, we may assume, from
the symmetry, that x is strongly anticomplete to Cs. Let do € Ds. By 2.2,
there exist cg, ¢}, € Cy such that cg is adjacent to ¢, and da is adjacent to co
and antiadjacent to . Since {x,dy,ch, co,da} is not a bull, it follows that
x is adjacent to dg, and therefore x is strongly complete to Dy. By 5.7, x is
strongly anticomplete to C;. But now, applying the previous argument with
the roles of D1 and Dy exchanged, we deduce that z is strongly complete to
D7, a contradiction. This proves (1).

Now, since v is semi-adjacent to at most one vertex of G, we may assume
that v is strongly complete to C. But then, by (1), (C1, D;) is a homoge-
neous pair in G, contrary to the fact that G is unfriendly. This proves 5.8.

5.9 Let G be an unfriendly bull-free trigraph, let {a1, a2,b1, b2} be a match-
ing of size two in G (with the usual notation), and let c € V(G)\{a1,a2,b1,b2}
be complete to {ay,az,b1,b2}. Then the following statements hold:

1. Fori=1,2letd; € V(G) \ (N(c) U{c}) be mized on {a;,b;}, and let
y € V(G)\ {a1,az,b1,b2,dy,ds, c} be adjacent to both dy and da, Then
y 1s strongly adjacent to c.
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2. Let x € V(G) be a neighbor of ¢, such that there is no path in G|N(c)
from z to {a1,a2,b1,bo}. Then x is strongly adjacent to c. Let ¢ €
V(G) be an antineighbor of ¢, such that ¢ has a neighbor in {ay, b1}
and in {az2,bo}. Then x is strongly adjacent to ¢ .

Proof. Let X be the set of neighbors of ¢. Let {i,5} = {1,2}. For i =1,2
let X; be the component of X containing a;,b;. By 5.7, X1 N Xy = (. Let
X=X\ (X1 UXs). By 5.8, X’ is strongly stable. If ¢ is not strongly
complete to X, let C; = {c}, and otherwise let C; = (. Let Y; be the set
of vertices of V(G) \ (X U {c}) that are mixed on X;. Let C be the set
of vertices of V(G) \ {c} that are strongly complete to X; U Xs. By 5.6
C U{c} is a strongly stable set. By 5.7 Y; is strongly complete to X \ X,
and Y] is strongly anticomplete to Y. Let Z; be the set of vertices of
V(G)\ (CU{c}UX UY; UY>) with a neighbor in Y; and an antineighbor in
Y;.

We claim that Z; # (). Suppose not. Since (X;,C; UY;) is not a homo-
geneous pair in G, it follows that some vertex v € V(G) \ (X; UC; UY;) is
mixed on C;UY;. By 5.7, v ¢ X. So v has a neighbor in Y; and v is strongly
antiadjacent to c. Since Z; = (), it follows that v is strongly complete to Y;.
By 5.7, it follows that v is strongly anticomplete to X7 U Xs. Let y € Y; UC;
be antiadjacent to v. By 2.2, there exist x,2’ € X; such that y is adjacent
to x and antiadjacent to z’, and x is adjacent to z’. Let yo € Y5. Now
{v,y2,2',x,y} is a bull, a contradiction. This proves that Z; # (.

By 5.7, Z; is strongly anticomplete to X;. Let W; be the set of vertices
of V(G)\ (CU{c}UX UY,UY2U Z; U Zy) with a neighbor in Z; and an
antineighbor in Y;.

(1) Z; is strongly complete to X; and strongly anticomplete to Y;.

Suppose some z; € Z; has an antineighbor in X;. Since Z;N(CUXUYj) = 0,
it follows that z; is strongly anticomplete to X;. Let y; € Y; be antiadjacent
to 2. By 2.2, there exist x;, 2% € X such that x; is adjacent to 7, and
y; is adjacent to x; and antiadjacent to :c; Let y; € Y; be adjacent to z;.
Then, by 5.7, {zi,yi,x;-,xj,yj} is a bull, a contradiction. This proves that
Z; is strongly complete to X;. Now it follows from 5.7 that Z; is strongly

anticomplete to Y;. This proves (1).
(2) Wi is strongly complete to X; and anticomplete to Y.

Suppose not, and let w; € W; and z; € X; be antiadjacent. Let z; € Z;
be adjacent to w;, and let y; € Y; be adjacent to z;. Then y; is strongly
antiadjacent to w;. But now, by (1), {ws, 2, yi, x4, c} is a bull, a contradic-
tion. Now it follows from 5.7 that W; is strongly anticomplete to Y. This
proves (2).
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Since W;N(CU{c}UY;) = 0, it follows that W} is strongly anticomplete to X;.
(3) Z; UW; is strongly anticomplete to Zj.

Suppose z; € Z; has a neighbor w € Z; UW;. Let y; € Y; be adjacent
to z;. Let x; € X;. Then z; is antiadjacent to w, by (1) z; is adjacent to
zj, and by (2) w is antiadjacent to y;. But now {c, z;,y;,zj, w} is a bull, a
contradiction. This proves (3).

(4) W7y is strongly anticomplete to Wo.

Suppose w1 € Wy is adjacent to we € Wy, Let 20 € Zy be adjacent to
wy. Let 1 € X;. Then x; is antiadjacent to w;. By (2), z1 is adjacent
to wy and to zz. But now {wi, ws, 22, x1, ¢} is a bull, a contradiction. This
proves (4).

(5) C is strongly anticomplete to Y;. FEvery vertex of V(G) \ X that has
both a neighbor in X1 and a neighbor in X belongs to Y1 UYo U C U {c}.

Let v € C. By 5.7, C is strongly anticomplete to Y;. Now let v be a
vertex with both a neighbor in X; and a neighbor in Xs. If v is mixed
on one of Xy, Xy, then v € Y1 UY; U {c}; and if v is strongly complete to
X1 U Xo, then v € C U{c}. This proves (5).

Let M = X1UXoUYTUYS U Z7 U Zy U W7 U W,

(6) Suppose a € V(G) \ M is strongly complete to Y1 U Ya, and is anti-
adjacent to {c}. Then c is strongly complete to X1 U Xo, and a is strongly
complete to Y1 U Z1 UWiUYo U Zy UWs .

By 5.7, a is strongly anticomplete to X; U X5. Suppose that c is not strongly
complete to X;. By 2.2, there exist x;, z, € X;, such that x; is adjacent to
z;, and c is adjacent to x; and antiadjacent to z. Let y; € Y;. Now
{a,y;,x}, i, c;} is a bull, a contradiction. This proves that c is strongly
complete to X1 U Xo.

Suppose a has an antineighbor z; € Z;. Let y; € Y; be adjacent to z;,
and let z; € X;. Then {a,y;, 2, zj, c} is a bull, a contradiction. This proves
that a is strongly complete to Z; U Zs. Next suppose that a has an an-
tineighbor w; € W;. Let z; € Z; be adjacent to w;, and let x; € X;. Then
{a, zi,w;,zj,c} is a bull, a contradiction. This proves that a is strongly
complete to W7 U W5, and completes the proof of (6).

(7) Suppose a € V(G) \ (M UC) has a neighbor in Y; U Z; UW; and is an-
tiadjacent to {c}. Then a is strongly complete to Y1UZ UW1UYoU ZoUWs.
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Suppose first that a is strongly anticomplete to Y; U Z;. Then it follows from
5.7 that a € X', and therefore a is antiadjacent to c¢. Let w; € Y; U Z; UW;
be a neighbor of a. Then w; € W;. Let z; € Z; be adjacent to w; and let
zj € Xj. Since {c,z;j, 2, w;,a} is not a bull, it follows that z; is adjacent
to a. Let y; € Y; be adjacent to z;. Now y;-z;-w;-a is a path, and z; is a
center for it, a contradiction. This proves that a has a neighbor in Y; U Z;.
We claim that a is strongly complete to Y. If a € X', the claim follows
from 5.7, and if a € X', the claim follows from the fact that a ¢ Z; U W;.
Similarly, a is strongly complete to Y;. Now (7) follows from (6).

(8) Suppose that there exists a € V(G) \ (M U C) with a neighbor in Y7 U
Yo U Zy U Zy UW, U Ws and antiadjacent to c. Then every vertex of X' is
strongly complete to one of Y1 U Z1 U W7 and Yo U Zy U Y5,

By (7), a is strongly complete to Y1 UYoUZ1UZoUWUWs. Suppose 2’ € X'
has an antineighbor by € Y1 U Z; UW] an an antineighbor bs € Yo U Zo U Ws.
Then b; € Z1 UW7, and by € Z5 U Ws.

First we claim that x’ is strongly antiadjacent to a. Suppose not. Let P
be a path from by to 2’ with interior in Z;UY7. Let y3 € Y5. Then by-P-z'-1
is a path of length at least three, and «a is a center for it, a contradiction.
This proves that 2’ is strongly antiadjacent to a.

Since x’ is strongly complete to Y7, it follows that there exist b0/ €
Y] U Z; U W such that b is adjacent to b/, and 2’ is adjacent to b and an-
tiadjacent to b'. But now {z’,b,V/,a,bs} is a bull, a contradiction. This
proves (8).

(9) Suppose that there exist

e a € V(G)\ (MUC) with a neighbor in Y1 U Yo U Z1 U Zo U W7 U W,
and antiadjacent to c, and

e beV(G)\ (X, UY;UZ,UW,;UC U{c}) with a neighbor in X;.

Then b s strongly complete to X.

Since b ¢ Y;, it follows that b is strongly complete to X;. We may as-
sume that b has an antineighbor z’ € X \ X;. Since b & C, it follows that
b is not strongly complete to X;. Since b ¢ Y7, it follows that b is strongly
anticomplete to X;. Since b € X, it follows that b is strongly antiadjacent
to c. By 5.7, b is strongly anticomplete to Y;, and so by (7) b is strongly
anticomplete to Y; U Z;. Let z; € Z; and y; € Y; be adjacent. Let x; € X;
be adjacent to y;. Let z; € X;. Then {b, x;, zj,y;,2;} is a bull, a contradic-
tion. This proves (9).
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(10) Suppose that there ezists a € V(G) \ (M U C) with a neighbor in
YUY U Zy U Zo UWy UWy and antiadjacent to c. Then

e if v € C is antiadjacent to a, then v is strongly anticomplete to Y1 U
Z1UWiLUYoU Zo U Ws, and

o cvery vertex of C' is strongly anticomplete to either Y1 U Z1 U W1 or
Yo U Zo UWs. Moreover, if v € C has a neighbor in Y; U Z; UW,, then
v has a neighbor in Z;.

By (5), C is strongly anticomplete to Y; U Ya. By (7), a is strongly
complete to Y1 U Z1 U W1 U Yo U Zy U Ws.

Suppose first that v is antiadjacent to a. If v has a neighbor z; € Z;, then,
choosing y; € Y; adjacent to z;, and y; € Yj, we observe that {v, z;, v, a, y;}
is a bull, a contradiction. This proves that v is strongly anticomplete to Z;.
Next assume that v has a neighbor w; € W;. Let z; € Z; be adjacent to
w;, and let y; € Y; be adjacent to z;. Then v-w;-z;-y; is a path, and every
x; € Xj is a center for it, contrary to the fact that G is unfriendly. This
proves the first assertion of (10).

Now suppose that v € C has a neighbor u; € Z; UW;. Then v is strongly
adjacent to a. Let P; be a path from u; € Z; UW; adjacent to v to some
vertex y; € Y;, with interior in Y; U Z; U W;, and such that u; is the only
neighbor of v in F;.

If v is strongly anticomplete to Z;, then u; € W;, y;-FP;-u;-v is a path,
and every vertex of Xy is a center for it, a contradiction. This proves that
if v has a neighbor in Z; U W;, then v has a neighbor in Z;.

Finally, if v has both a neighbor in Z; U Wj and a neighbor in Zs U W5,
then yi-P1-ui-v-ug-Pa-ys is a path of length at least three (in fact, at least
four), and a is a center for it, contrary to the fact that G is unfriendly. This
proves (10).

(11) Every vertex of V(G) \ (M U C) with a neighbor in Y1 U Yy U Z; U
Zo UW1 U Wy is strongly adjacent to c.

Suppose there exists a € V(G) \ M with a neighbor in Y3 UYs U Z; U
Zy U W; U Wy and antiadjacent to c¢. By (7), a is strongly complete to
YiuYoUu Z3 U Zy; UW U Ws. By (6), CiUCy = 0. Let Xl’ be the the set
of vertices of X’ that are not strongly complete to Y; U Z; UW;. By (8),
X{NX,=0. Let C! be the vertices of C' with a neighbor in Y; U Z; UW;.
Then (X; UX/,Y; UZ; UY; UCY)) is not a homogeneous pair in G. Since
XoU(X'\ X7) is strongly complete to Y1UZ3 UW7, and by (7), it follows that
no vertex of V(G) \ (X; UX]UY1UZ UW UCY) is mixed on Yy U Z; UW;.
Suppose that some vertex v of V(G) \ (X1 UX{ UYL UZ UW; UCY)
is mixed on Y7 U Z; U W U C]. Assume first that v has a neighbor in
Y1UZy UWi. Then v € C. Then v is strongly complete to Y1 U Z; U Wy,
and has an antineighbor ¢’ € C7. By (10), ¢ has a neighbor z; € Z;, and
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c is strongly anticomplete to Yo U Zo U Ws. Let y1 € Y7 be adjacent to
21. Since {¢, z1,y1,v,u} is not a bull for any u € Yo U Zy U W U {c}, it
follows that v is strongly anticomplete to Yo U Zo U Wo U {c} (we remind
the reader that C'N {c} is a strongly stable set). Then v ¢ X, and, since
v € Y1UZ1UWTq, it follows that v ¢ M, contrary to (7). This proves that v is
strongly anticomplete to Y1 U Z; U W7, and has a neighbor ¢ € Cf. By (10),
¢ has a neighbor z; € Zj, and, again by (10), ¢’ is strongly anticomplete
to Yo U Zo U Ws. Let y; € Y7 be adjacent to z;. Then v-c’-21-y; is a path,
and since vertices of X9 are not centers for it, it follows that v is strongly
anticomplete to Xs. Since {v,c, 21, z2, ¢} is not a bull for any xzo € X, it
follows that v is strongly adjacent to ¢, and therefore v € X. Since v is
strongly anticomplete to Y7, it follows that v € X7, a contradiction. This
proves that no vertex of V(G) \ (X; UX{UY;1UZ; UW; UCY) is mixed on
YiUZ UWuCy.

Therefore, some vertex v € V(G)\ (X1 UX]UY;UZ,UWUCY) is mixed
on X;UX]. By (6) and (7), ¢ is strongly complete to X1 U X7, and so v # c.
Suppose first that v has a neighbor in X;. Since v ¢ Y7, it follows that v is
strongly complete to X, and has an antineighbor 2} € X{. By (9), v € C.
Since v ¢ Cf, it follows that v is strongly anticomplete to Y3 U Z; U Wy.
Since x} € X7, it follows that there exist p,q € Y1 U Z; U W) such that p
is adjacent to ¢, and ] is adjacent to p and antiadjacent to ¢. But now
{v, x2,q,p,x}} is a bull for every x9 € X, a contradiction. This proves that
v is strongly anticomplete to X1. Then v € C; and since v € Y1 U Z; U Wh,
it follows that v ¢ M. We deduce from (9) that v is strongly anticomplete
to X1 U Xo. Since v is mixed on X7 U X7, it follows that v has a neighbor
a:'l € X{. Let z90 € Z5, y2 € Y5 adjacent to 22, and xo € X9 adjacent to yo.
Since {v, ], z2,y2,x2} is not a bull, it follows that v is strongly adjacent
to one of ys, 2z9. By 5.8 applies to {v, 2z}, {a1,b1},{az,b2} and ¢, it follows
that v is strongly anticomplete to ¢, and so, by (7), v is strongly complete
to YIiUZL UWLUYaU Zy UWa. Let ya € Ya. Since 2 € X7, it follows
that there exist p,q € Y1 U Z; U W, such that p is adjacent to ¢, and ] is
adjacent to p and antiadjacent to g. Now ¢-p-2)-y2 is a path of length three,
and v is a center for it, a contradiction. This proves (11).

We can now prove the first assertion of the theorem. For i = 1,2 let d; €
V(G)\(N(c)U{c}) be mixed on {a;, b; }, and let y € V(G)\{a1, az, b1, ba, d1,ds, c}
be adjacent to both d; and do. We may assume that d; is adjacent to a; and
antiadjacent to b;. Suppose y is antiadjacent to c. Since d; € Y;, it follows
that y has a neighbor in Y7, and a neighbor in Y5. By (5), y € C, and so,
by (11), y € M. Since y has a neighbor in Y7, it follows that y & YoUZyUWy,
and since y has a neighbor in Y, it follows that y & Y7 U Z; UWj. Therefore
y € X1 U X, and, in particular, y is adjacent, and therefore semi-adjacent
to ¢. From the symmetry, we may assume that y € X;. Since dq-y-b1-c is
not a path with center ap, it follows that y is not complete to {a1,b;}. Let
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p,q € X1\ {y} be adjacent. Since {aq,c,p,q,y} is not a bull, it follows that
v is either strongly complete or strongly anticomplete to {p,q}. But this
implies that y is strongly anticomplete to {ai, b1}, and there is no path in
G|X; from y to {a1,b1}, contrary to the fact that X; is connected. This
proves the first assertion of the theorem.

To prove the second assertion, let x € V(G) be a neighbor of ¢, such that
there is no path in G|N(c) from z to {ai,az2,b1,b2}. Then z € X'. By 5.7,
x is strongly complete to Y1 U Ys, and therefore, by the first assertion of the
theorem, z is strongly adjacent to c¢. Let ¢ € V(G) be an antineighbor of
¢, such that ¢’ has a neighbor in {a1,b;} and in {ag,bs}. Suppose that ¢ is
antiadjacent to . Then 5.7 implies that ¢’ is not mixed on {a1, b1}, and so ¢
is strongly complete to {a1,b1}. Similarly, ¢’ is strongly complete to {ag, b2 }.
By 5.6, ¢ is strongly anticomplete to ¢, and therefore, ¢ ¢ X; U X5. Now,
since ¢ is strongly anticomplete to 2/, 5.7 implies that ¢’ is strongly complete
to X1 U X, and therefore ¢ € C. Choose d; € Y;, and let a,b; € X; be
such that af is adjacent to b}, and y; is adjacent to a, and antiadjacent to
b.. By (5), ¢ is strongly antiadjacent to d;. By 5.7, 2’ is adjacent to dy, da.
But now, applying the first assertion of the theorem to {a},b},a), b, ,x}
we deduce that ¢’ is strongly adjacent to x, a contradiction. This proves 5.9.

6 Frames

In this section we study unfriendly trigraphs that contain a three edge path
and do not contain a prism. Let G be such a trigraph. We choose a maximal
subtrigraph H of G such that there is no triangle in H, and analyze how
the vertices of V(G) \ V(H) attach to H. It turns out that each component
of V(G) \ V(H) is a strong clique, no vertex of H has neighbors in more
than two components of V(G)\ V(H), and we can describe how each of the
cliques “connects” to H, thus proving that G € 73.
We start with a lemma.

6.1 Let G be an unfriendly trigraph with no prism, and let h1-ho-hs-hy-hs-h1
be a hole of length five in G, say H. Then no vertex of V(G)\ V(H) is ad-
jacent to hy, ho, hs.

Proof. Suppose some v € V(G) \ V(H) is adjacent to hy, ha, hs. Since
{ha,v, hi,hs,hs} and {ha, hi,v,hs, hs} are not bulls, it follows that hg is
strongly complete to {v, h;}, and from the symmetry, hs is strongly complete
to {v,h1}. Since hz-v-ho-h3 is not a path with center hi, it follows that hs
is strongly antiadjacent to hi, and therefore hs is strongly anticomplete to
{v,h1}. From the symmetry hy is strongly anticomplete to {v, h1}.

Let X the set of vertices of V(G) \ {ha,hs, ha, hs} that are strongly
complete to {hg, hs} and strongly anticomplete to {hs, hs} and let C' be a
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component of X such that v,hy € C. Since G is unfriendly, it follows that
C' is not a homogeneous set in G, and therefore some vertex w € V(G) \ C
is mixed on C. Then w ¢ V(H). By 2.2, there exists ¢,¢’ € C such that ¢
is adjacent to ¢/, and w is adjacent to ¢ and antiadjacent to ¢'.

Assume first that w is antiadjacent to hs. Since {w,c,c, hs, hs} is not a
bull, it follows that w is strongly adjacent to hy. If w is antiadjacent to ho,
then, form the symmetry, w is strongly adjacent to hg, and {hg, hs, w, hg, hs}
is a bull, a contradiction; thus w is strongly adjacent to hs. Since c-ho-hs-hy
is not a path with center w, it follows that w is strongly antiadjacent to hs.
But now, {hs,c,w, he, hs} is a bull, a contradiction. This proves that w is
strongly adjacent to hs, and so, from the symmetry, w is strongly adjacent to
ho. Since hgs-c-ho-h3 is not a path with center w, it follows that w is strongly
antiadjacent to hs, and from the symmetry, w is strongly antiadjacent to
h4. But then w € C, a contradiction. This proves 6.1. |

A frame is a trigraph T such that

e T is connected, and

e there is no triangle in 7', and

e T has an induced subtrigraph which is a path of length three.

A trigraph is called framed if some induced subtrigraph of it is a frame. We
prove the following:

6.2 Fvery unfriendly framed trigraph with no prism is in 7.

Proof. Let G be an unfriendly framed trigraph, and let F' be an induced
subtrigraph of G that is a frame. We may assume that there is a triangle
in G, for otherwise G admits an H-structure where H is the empty graph.
Since G is unfriendly, it follows that G is connected. Assume that F' is cho-
sen with |V (F')| maximum, subject to that with |n(F)| + |o(F')| maximum
(we remind the reader that n(F) is the number of strongly adjacent pairs of
vertices in F', and o(F’) is the number of semi-adjacent pairs).

(1) Every vertex of V(G) \ V(F') has a neighbor in V(F).

Suppose some vertex of V(G) \ V(F) is strongly anticomplete to V(F).
Since G is connected, there exist vertices u,v € V(G) \ V(F) such that u
has a neighbor in V(F'), and v is strongly anticomplete to V(F'). Let N be
the set of neighbors of v in V(F), and let M = V(F)\ N. By the maximality
of |V(F)|, there are two adjacent vertices in N. Let C' be a component of
N with |C| > 1. Since G is unfriendly, F' contains a path of length three
and u is complete to C, it follows that C' # V(F'). Since F' is connected,
some vertex f € V(F') has a neighbor in C, and since C is a component of
N, it follows that f belongs to M. Let ¢ € C be adjacent to f. Since C is
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connected, it follows that ¢ has a neighbor, say ¢/, in C. Since F is triangle-
free, we deduce that f is strongly antiadjacent to ¢. But now {v,u,c, ¢, f}
is a bull, a contradiction. This proves (1).

For a vertex v € V(G) \ V(F), let Np(v) be the set of neighbors of v in
V(F), and let M (v) = V(F)\ Np(v).

(2) Let H be a triangle free trigraph, no induced subtrigraph of which is a
path of length three, and assume that H is connected. Then V(H) = S1USy,
where S1 and Sy are disjoint strongly stable sets, complete to each other.
Moreover, if both |S2| > 1 and |S2| > 1, then Sy is strongly complete to Ss.

By 5.4, and since H is connected, one of the following holds:
e H is not anticonnected, or

e there exist two vertices vi,ve € V(H) such that v; is semi-adjacent
to ve, and V(H) \ {v1,v2} is strongly complete to v; and strongly
anticomplete to vs.

Assume first that H is not anticonnected. Since H is triangle free, H
has exactly two anti-components, and each of them is a strongly stable set,
and (2) holds.

Next assume that there exist two vertices vi,va € V(H) such that
vy is semi-adjacent to va, and V(H) \ {v1,v2} is strongly complete to v;
and strongly anticomplete to vy. Since H is triangle free, it follows that
V(H) \ {v1} is strongly stable, and again (2) holds. This proves (2).

(8) Let v € V(G) \ V(F). Then there exist non-empty strongly stable sets
S1(v) and So(v) in F, such that Np(v) = S1(v) U Sa(v), S1(v) is complete
to Sa(v), and if both |S1(v)| > 1 and |Sa(v)| > 1, then Si(v) is strongly
complete to Sa(v).

Let H = F|Np(v). Since G is unfriendly, it follows that no induced subtri-
graph of H is a path of length tree. If H is connected, (3) follows from (2),
so we may assume not. It follows from the maximality of |V (F)| that some
two vertices of Np(v) are adjacent. Let C' be component of Np(v) with
|C| > 1. Since H is not connected, it follows that Np(v) # C. Since F is
connected, some vertex m € V(F)\ C has a neighbor in C, and since C'is a
component of Np(v), we deduce that m € M (v). Let ¢ € C be a neighbor of
m. Since C' is connected and F is triangle free, there exists ¢ € C such that
¢ is adjacent to ¢ and antiadjacent to m. Since {m,c,¢,v,n} is not a bull
for any n € Np(v) \ C, it follows that m is strongly complete to Nr(v) \ C.
Since F' is triangle-free, it follows that the set Np(v) \ C is strongly stable.

By (2), C = Cy U Cy, such that C; and Cs are disjoint non-empty
strongly stable sets, and Cj is complete to Ca. Let n € Np(v) \ C. If both
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|C1| > 1 and |C3| > 1, then G|C contains a hole of length four, with cen-
ter v and anticenter n, contrary to 5.3. So we may assume that |Cy]| = 1,
say C1 = {ca1}. Let F/ = G|((V(F) \ {e1}) U {v}). By the choice of F,
In(F)| + |o(F)| < |n(F)| + |o(F)|, and therefore some vertex my € M (v)
is adjacent to c;. By the argument in the previous paragraph with m re-
placed by mi, we deduce that m; is strongly complete to Nr(v) \ C. Now
c1-m1-n-v-c1 is a hole of length four, and, since F' is triangle-free, it follows
that every vertex of Cy is complete to {c1,v} and anticomplete to {m1,n}.
By 5.2, it follows that Cs is a strong clique, and therefore |Co| = 1, say
Cy = {c2}. Exchanging the roles of ¢; and ¢y, we deduce that some vertex
mg € M(v) is adjacent to c2 and to n. Since F' is triangle-free, it follows
that mj; # mg, and since {mq,c1,v,co,ma} is not a bull, it follows that
ma is strongly adjacent to m;. But now {mj,mg,n} is a triangle in F, a
contradiction. This proves (3).

(4) Let u,v € V(G) \ V(F) be adjacent. Then there exist si1,s2 € Np(u)N
Np(v) such that sy is adjacent to s.

Let S1(u),S1(v),S2(u),S2(v) be as in (3). Since Si(u), S1(v), Sa(u), S2(v)
are non-empty strongly stable sets, and since Sj(u) is complete to Sa(u),
and S1(v) to S2(v), we may assume that S7(u) N Se(v) = So(u) N Sy(v) = 0.

If both Si(u) N Si(v) and Sz(u) N S2(v) are non-empty then (3) holds,
so we may assume that Sa(u) N Sz2(v) = 0. From the maximality of |V (F)],
there exist ¢, € Se(u) and ¢, € Sa(v).

Suppose Si(u) N Si(v) # 0, and choose s € Si(u) N Sy(v). Since F
is triangle free and s is adjacent to both ¢, and t,, it follows that ¢, is
antiadjacent to t,. But now t,-u-v-t, is a path, and s is a center for it,
contrary to the fact that G is unfriendly. This proves that S1(u)NSi(v) = 0.

If |Si(u)] > 1 and |Sa(u)| > 1, then G|(S1(u) U S2(u)) contains a hole
of length four, say H; and u is a center for H and v is an anticenter for H,
contrary to 5.3, since u is adjacent to v. So we may assume that Sq(u) =
{su}, say. Similarly, we may assume that S1(v) = {s,}.

Suppose s, is strongly antiadjacent to s,. Let F' = (F\{sy, sy })+{u,v}.
Then F’ is triangle-free, and therefore |n(F’)| + |o(F")| < [n(F)| + |o(F)].
Consequently, we may assume from the symmetry, that s, has a neighbor
m € M (u). Then m is strongly anticomplete to Sa(u). Since {m, Sy, ty,u, v}
is not a bull, it follows that m € N (v); and since s, is strongly antiadjacent
to sy, we deduce that m € Sa(v). Now u-s,-m-v-u is a hole of length four,
and, since F is triangle free, Sa(u) is complete to {u, s, } and anticomplete
to {m,v}. Therefore, 5.2 implies that Sa(u) is a strong clique, and therefore
|Sa(u)| = 1, namely Sa(u) = {t,,}. Since F' is triangle free, it follows that ¢,
is strongly antiadjacent to m. Since G|{u, Sy, ty, v, m, s, } is not a prism, it
follows that s, is strongly antiadjacent to t,,. Let F”' = (F\{ty, sv})+{u,v}.
Then F” is triangle-free, and therefore [n(F")| + |o(F")| < [n(F)| + |o(F)].
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Consequently, either t,, has a neighbor in M (u), or s, has a neighbor in M (v).
If s, has a neighbor x € M (v), then = # sy, t,, and so {z, s, m,v,u} is a
bull, a contradiction. Thus t,, has a neighbor y € M (u). Since {y, ty,, Sy, u, v}
is not a bull, it follows that y € Sa(v). Then y # m, and since F is
triangle free, we deduce that y is strongly antiadjacent to s,. But then
{m, sy, u,ty,y} is a bull, a contradiction. This proves that s, is adjacent to
Sy.

Now u-$y-S,-v-u is a hole of length four, Sa(u) is complete to {u,s,}
and anticomplete to {v,s,}, and S2(v) complete to {v,s,} and anticom-
plete to {u, s, }. Thus, 5.2 implies that |S2(u)| = [S2(v)| = 1, and therefore
So(u) = {tu}, and Sa(v) = {t,}. Now, reversing the roles of S;(u) and
Sa(u), and of Si(v) and S2(v), we deduce that ¢, is adjacent to t,. But
then, since F' is triangle free, it follows that G|{u, sy, ty, v, Sy, t,} is a prism,
a contradiction. This proves (4).

(5) Let u,v € V(G) \ V(F) be antiadjacent. Then Np(u) N Np(v) is a
strongly stable set.

Let Si(u), Sa(u), S1(v), S2(v) be as in (3). Suppose s1,$2 € Np(u) N Np(v)
are adjacent. We may assume that s; € S1(u)NSi(v), and sy € Sa(u)NS2(v).
Then SQ(U) N Sl(v) =5 (u) N SQ(U) = (.

First we claim that Np(u) = Np(v). Suppose Sz(u) \ Sa(v) # 0, and let
t € So(u)\ S2(v). Then t-u-so-v is a path, and s; is a center for it, contrary
to the fact that G is unfriendly. Therefore, Sa(u) \ S2(v) = 0, and, form
the symmetry, this implies that Np(u) = Np(v), and the claim follows. Let
Sl(u) = Sl(’l)) = Sl, and SQ(’U,) = SQ(U) = SQ.

Let Cp be the set of all vertices of V/(G)\V (F') that are complete to S1US2
and strongly anticomplete to V(F) \ (S1 U S2). Let C' be an anticomponent
of Cy with u,v € C. Since C is not a homogeneous set in G, it follows from
2.2 that there exist ¢1,c2 € C and x € V(G)\ C, such that ¢ is antiadjacent
to c9, and x is adjacent to c¢; and antiadjacent to cs.

Suppose first that x ¢ S1US>. By 5.1, it follows that «x is either strongly
complete or strongly anticomplete to S1 U Se. If x is strongly complete to
S1U S, then, x € V(G) \ V(F), and since z is antiadjacent to cg, the claim
above implies that Np(z) = Np(c2) = S1 U Se, contrary to the fact that
x & C. Therefore x is strongly anticomplete to S1 U Sy. Since x & S1 U Ss,
and since z is adjacent to ¢, it follows that z € V(G) \ V(F'). But now
(4) implies that Np(x) N Np(c1) # 0, contrary to the fact that z is strongly
anticomplete to S1 U S3. This proves that x € 51 U Sy, say x € S1. Since
for any s € S1 \ {z}, z-¢1-s-c2 is not a path with center so, it follows that
S1 = {x}. Since (C,{z}) is not a homogeneous pair in G, it follows that
some vertex y € Sy is mixed on C, and therefore So = {y} and y is semi-
adjacent to some vertex cg € C. Since z is semi-adjacent to cg, it follows
that ca # c3. Suppose that there exist 2/, € V(F) \ {z,y} such that 2’/
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is adjacent to z, and 3’ to y. Since F us triangle free, it follows that z’ is
strongly antiadjacent to y, and ¢’ to x. Since {2/, z,u,y,y'} is not a bull, we
deduce that 2’ is adjacent to y/. But now z-y-y'-z’-z is a hole of length four,
and {u,v} is complete to {z,y} and anticomplete to {z’,y'}, contrary to
5.2. So we may assume from the symmetry that y is strongly anticomplete
to V(F)\ {x,y}. Since F is connected and since there is a three-edge path
in F, it follows that there exists a vertex ' € V(F) \ {z,y} adjacent to
x. Since {a',x,c3,y,co} is not a bull, it follows that co is strongly adjacent
to c3. Since C is anticonnected, there is an antipath @ from cy to c3 with
V(Q) C C. Since z is complete to C' and G is unfriendly, it follows that @
has a unique internal vertex, say ¢. Then ¢ is complete to {z, y} and strongly
antiadjacent to z/. But now {2/, x,q,y,c2} is a bull, a contradiction. This
proves (5).

(6) Let C be a component of V(G)\ V(F). Then C is a strong clique.

Suppose C' is not a strong clique. Then, since C' is connected, there ex-
ist vertices x,y,z € C, such that y is adjacent to both x and z; and z is
antiadjacent to z. By (4), there exist a, b, ¢, d € V(F) such that a is adjacent
to b, ¢ is adjacent to d, {x,y} is complete to {a,b} and {y, z} is complete to
{¢,d}. By (5), z is not complete to {a,b}, and x is not complete to {c,d};
and therefore {a,b} # {c,d}. Suppose b is complete to {z,d}. Since F is
triangle-free, it follows that a is strongly antiadjacent to d. By (5), x is
strongly antiadjacent to d, and z to a. But now {x,a} is anticomplete to
{z,d}, and {y, b} is complete to {z, a, z, d}, contrary to 5.6. This proves that
b is not complete to {z,d}, and, in particular, b # ¢. From the symmetry,
this implies that a is not complete to {z,c}, and that {a,b} N {c,d} = 0.
Since a, b, ¢, d, € Np(y), by (3) and the symmetry we may assume that a is
adjacent to c and b to d. Since F' is triangle-free, it follows that b is strongly
antiadjacent to c. Since b is adjacent to d, it follows that b is antiadjacent
to z, and, since a is adjacent to c, it follows that a is antiadjacent to z. But
now z-c-a-b is a path, and y is a center for it, contrary to the fact that G is
unfriendly. This proves (6).

Let C be a component of V(G) \ V(F), and let f € V(F). We denote
by C(f) the set of vertices of C' that are adjacent to f, and by Np(C') the
set of vertices of F' with a neighbor in C.

(7) Let C be a component of V(G)\ V(F), and let ¢ € C. For i = 1,2
let Si(c) be defined as in (3). Then, fori=1,2 there exists s; € S;(c) such
that s; is complete to C.

Choose s1 € S1(c) with C'(s1) maximal. We may assume that C(s1) # C, for
otherwise (7) holds. Let ¢ € C\ C(s1). By (4), ¢ has a neighbor s} € S;(c).
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It follows from the maximality of C(s1), there exists ¢; € C(s1) such that
s} is strongly antiadjacent to ¢;. But now sj-ci-c-s} is a path with center
¢, a contradiction. This proves (7).

(8) Let C be a component of V(G)\ V(F). Then Nrp(C) = 51(C) U S2(C)
where each of S1(C), S2(C) is a non-empty strongly stable set.

Let ¢ € C, and let Si(c),S2(c) be as in (3). By (7), for i = 1,2 there
exists s; € S;(c) such that C is complete to s;. Now, by (3), we may assume
that for every ¢’ € C, S1(c) is complete to sg, and So(c’) is complete to s7.
For i = 1,2, let S;(C) = Uyece Si(¢). Then Np(C) = S1(C) U So(C). But
S1(C) is complete to sg, and S3(C') is complete to s1, and therefore, since
F is triangle free, it follows that each of S1(C) and S3(C) is strongly stable.
This proves (8).

For a component C' of V(G) \ V(F) we call the sets 51(C), S2(C) defined
in (8) the anchors of C.

(9) Let C be a component of V(G)\ V(F). Let S1(C), S3(C) be the anchors
of C, fori=1,2 let T;(C) be the set of vertices of V(F') \ (S1(C) U S2(C))
with a neighbor in S;(C); and for s; € S;(C), let Ti(s;) be the set of neighbors
of s; in V(F)\ (S1(C)U S2(C)). Then

e for every s,s’ € S1(C) either s is strongly complete to C(s'), or s is
strongly complete to C(s),

o Let s; € S1(C) be antiadjacent to sy € S2(C). Then every vertex of C
is strongly adjacent to one of s1,s2. If some ¢ € C is adjacent to both
s1 and sz, then C = {c}, Np(C) = {s1, s2} and s1 is semi-adjacent to
S9.

o for every s,s' € S1(C), if some vertex of C(s') is antiadjacent to s,
then s is strongly complete to T(s').

o Ti(s1) is disjoint from and strongly complete to Ta(s2) for every s1 €
Si(c), s2 € Sa(c) and c € C.

o let c € C, s1 € S1(C) and sy € So(C) such that c is adjacent to both
s1 and sy. Then every vertex of C' is strongly adjacent to at least one

of s1, s3.

Let s,s € S1(C), and suppose there exist ¢ € C adjacent to s and
antiadjacent to s’, and ¢ € C adjacent to s’ and antiadjacent to s. By (4),
there is so € So(C') adjacent to both ¢, ¢’. By (3), so is adjacent to both s
and s'. But now s-c-¢’-s’ is a path, and s, is a center for it, contrary to the
fact that G is unfriendly. This proves the first assertion of (9).
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Next assume that s; € S1(C) is antiadjacent to so € So(C'). Suppose
first that some ¢ € C is adjacent to both s; and so. By (3), it follows
that Si(c) = {s1}, Sa(c) = {s2}, and s; is semi-adjacent to sp. Suppose
there exists ¢ € C'\ {c}. By (4), ¢ is complete to {s1, s2}. Suppose ¢ has a
neighbor f € V(F)\{s1, s2}. By (3), we may assume that f is adjacent to s;
and antiadjacent to s3. But now f-si-c-ss is a path, and ¢’ is a center for it,
a contradiction. Therefore, Np(C) = {s1, s2}. Since s; is semi-adjacent to
s9, it follows that C' is strongly complete to Np(C'), and C is a homogeneous
set in G, contrary to the fact that G is unfriendly. Thus C = {c}, and the
second assertion of (9) holds. So we may assume that C(s1) N C(s2) = 0.
Suppose there exists a vertex ¢ € C' anticomplete to {s1,s2}. For i = 1,2, let
¢; € C be adjacent to s;. If ¢, ¢q, ¢o are all distinct, then {s1,¢1,c¢,c2, 592} is a
bull, a contradiction. Thus we may assume that ¢ = ¢;. By (7), there exists
a vertex s € S9(C) adjacent to both ¢; and co. Since ¢; is semi-adjacent to
s1, it follows that ¢; is strongly antiadjacent to s9, and so s # sa2. By (3), s
is adjacent to s;. But now {si,s,ci,c2, 82} is a bull, a contradiction. This
proves the second assertion of (9).

Next let s, 5" € S1(C), and assume that some vertex ¢ € C(s') is antiad-
jacent to s, and some vertex t' € Ty (s') is antiadjacent to s. Let so € So(C)
be complete to C' (such a vertex sy exists by (7)). By the second assertion
of (9), and since both s, s’ have neighbors in C, it follows that s is adjacent
to both s,s’. But now, since F is triangle-free, {t',s', ¢, s2,s} is a bull, a
contradiction. This proves the third assertion of (9).

Next, let ¢ € C, and for i = 1,2, let s; € S;(c), and let t; € T;(s;). By (3),
s1 is adjacent to sg. Since F' is triangle free, s; is strongly antiadjacent to
to, and s2 to t1, and therefore ¢; # to. Now since {t1, s1,¢, s2,t2} is not a
bull, it follows that ¢ is strongly adjacent to t3, and the fourth assertions
of (9) follows.

Finally, suppose that there exist ¢, € C, 51 € S1(C) and s2 € So(C)
such that ¢ is adjacent to both s; and so, and ¢’ is antiadjacent to both s1, ss.
Since c is semi-adjacent to at most one of s, s9, it follows that c is strongly
adjacent to at least one of si,s9, and so ¢ # ¢. By the second assertion
of (9), s1 is adjacent to s2. Since ¢’ is semi-adjacent to at most one of s1, s,
we may assume that s; is strongly antiadjacent to ¢’. By (7), there exists
s € S1(C) complete to C. Then s # s;. By the second assertion of (9),
since so has a neighbor in C| it follows that s is adjacent to s3. But now
s1-89-5-c is a path, and c is a center for it, contrary to the fact that G is un-
friendly. This proves the fifth assertion of (9), and completes the proof of (9).

(10) Let C be a component of V(G)\ (F), with anchors S1,S2. Fori=1,2,
let T; be the set of vertices of V(F) \ (S1 U S3) with a neighbor in S;. Then
G|(CUS1USyUTy UTy) is a (C,51,52,T1,Ts)-clique connector.

Let |C| = t. By (9), we can number the vertices of C' as {ci,..., ¢} such
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that for every s € S1, N(s) N C = {ec1,...,¢} for some i € {1,...,t},

and s is strongly complete to {ci,...,c;—1}, and for every s € Sg, N(s) N
C = {ct—it1,...,¢} for some i € {1,...,t}, and s is strongly complete
to {ci—it2,...,ct}. Let i € {1,...,t}. Let A; be the set of vertices of S}
that are strongly complete to {c1,...,c;—1}, adjacent to ¢; and strongly an-

ticomplete to {¢j+1,...,¢:}. Let A} be the set of vertices of A; that are
semi-adjacent to ¢;. Let B; be the set of vertices of Sy that are strongly
complete to {ci—it2,...,c}, adjacent to ¢;—;y1 and strongly anticomplete
to {c1,...,c—i}. Let Bl be the set of vertices of B; that are semi-adjacent to
ci—it1- Then Sy = J'_, A;, and Sy = Ji_, B Let i € {1,...,t}. Let C; be
the set of vertices of T} with a neighbor in A;, and that are strongly anticom-
plete to Uj>i Aj, and let D; be the set of vertices of T5 with a neighbor in B;,
and that are strongly anticomplete to i Bj. ThenTy = Ule C;,and Ty =
Ule D;. We show that thesets C, Ay,..., A, B1,...,B,C1,...,C, Dy ..., Dy
satisfy the axioms of a clique connector.

If i +j # t, then either some vertex of C' is complete to A; U Bj, or some
vertex of C'is anticomplete to A;UB;. Therefore, (9) implies, that if i+j # ¢,
and A; is not strongly complete to A;, then |C| = [S1]| = |S2| =1, and S is
complete to Sz. Since for every i, ¢; is anticomplete to A U By_;, it follows
from (9) that A} is strongly complete to B;_;, and from the symmetry B;_;
is strongly complete to A;.

Next we show that S; is strongly anticomplete to T5. Suppose s1 € Sp
has a neighbor ¢t € T,. Let sa € Sy be a neighbor of t. Then, since F' is
triangle-free, it follows that s is strongly antiadjacent to ¢, and so s; € A;\ A}
and sy € By_; \ B;_; for some i € {1,...,t}. Now ¢;-c;11-s2-t-51-¢; is a hole
of length five. By (7), there exists sj € S; complete to C. Then s} # s, and
sy is adjacent to ¢;, ¢i+1, and, by (9), so, contrary to 6.1. This proves that
S1 is strongly anticomplete to Th. Similarly, Sy is strongly anticomplete to
T:.

By (9), for i € {1,...,t}, C; is strongly complete to Uj<i Aj, and Dj is
strongly complete to J;_; B;.

We claim that for i € {1,...,t}, C; is strongly complete to A,. Suppose
c € C; is antiadjacent to o’ € A}. Since a’ is semi-adjacent to ¢;, it follows
that @' is strongly antiadjacent to c. Since ¢ € Cj, there is a vertex a €
A; \ {d'} that is adjacent to ¢. But then a is adjacent to both ¢; and c,
and ' is antiadjacent to both ¢; and ¢, contrary to (9). This proves that
C; is strongly complete to Al. Similarly, for ¢ € {1,...,¢}, D; is strongly
complete to Bj.

Finally, let 4,5 € {1,...,t}, such that i + 5 > ¢t. We claim that C; is
strongly complete to D;. Suppose ¢ € C; is antiadjacent to d € D;. Let
a; € A; be adjacent to ¢, and let b; € B; be adjacent to d. Since j >t — 1,
it follows that b; is adjacent to ¢;. But now {c,a;, c;,b;j,d} is a bull, a
contradiction.

Finally, by (7), Ay # 0 and B; # (. Thus, all the axioms of a clique
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connector are satisfied. This proves (10).

Now, if Np(C1) N Np(Cs) = 0 for every two components C1,Cs of V(G) \
V(F), then taking H to be the graph whose vertices are the components of
V(G) \ V(F), and with E(H) = 0, we observe, using (10), that G admits
an H-structure and thus G € 7;. Consequently, we may assume that there
exist components Cy,Cs of V(G) \ V(F) with Np(C1) N Np(Cs) # 0 For
i,j € {1,2} let S;(C;) be the anchors of C1, Co.

(11) Renumbering the anchors if necessary, we may assume that S1(Cy) N

SQ(CQ) = SQ(Cl) N 51(02) = 0.

From the symmetry, it is enough to show that at most one of the sets
S1(C1) N S1(Cq) and S1(Ch) N S2(Ca) is non-empty. Suppose there exist
S1 € 51(01) N 51(02) and sy € Sl(Cl) N SQ(CQ) Since, by (8), Sl(Cl) is a
strongly stable set, it follows that s; is strongly antiadjacent to s3. By (9),
Ca(s1) N Ca(s2) = 0. Let ¢1 € Ca(s1), ca € Ca(s2). Also by (9), there exists
c € C1(s1) N Ci(s2). Now s1-c-sa-co-c1-s1 is a hole of length five. By (7),
there exists s, € S2(Cy) complete to Cy. But now by (9), s1 is adjacent to
sh, contrary to 6.1. This proves (11).

In view of (11), we may henceforth assume that S1(C7) N S1(Cy) # 0, and
Sl(Cl) N SQ(CQ) = 52(01) n 51(02) =0

(12) Let s € S1(C1) N S1(Co), and s' € S1(Cy) \ S1(C2). Then s’ is strongly
complete to C(s).

Suppose not, and let ¢ € Cy(s) be antiadjacent to s’. Let ca € Cay(s).
By (7), there exists sy € S2(C1) complete to C1. By (9), sa is strongly
adjacent to both s, s’. Since {ca, s, ¢, s2, 8’} is not a bull, it follows that sg is
strongly adjacent to ca. But now s1,s2 € Np(c) N Np(c2), contrary to (5).
This proves (12).

(13) No vertex of F has a neighbor in three different components of V(G) \
V(F).

Let f € V(F), and let Cy,Cy,C5 be three distinct components of V(G) \
V(F), such that f has a neighbor in each of C;,C5,C3. For i € {1,2,3},
let ¢; € C; be adjacent to f. We may assume that f € S;(C;). By (7),
there exists a vertex z; € S2(C;), that is strongly complete to C;. By (9),
f is adjacent to each of x1,x9,x3, and therefore, by (5), x; is strongly an-
tiadjacent to ¢; for 1 <4 # 57 < 3. Since F is triangle-free, it follows that
{c1, 9, 3,21, 2, 23} is a matching of size three in G|(Ng(c), contrary to 5.8.
This proves (13).
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(14) Every vertex of V(G) \ (C1 U Co U Np(Cy) U Np(C2)) with a neigh-
bor in S1(C1) N S1(Cy) is strongly complete to S1(C1) N S1(C2).

Suppose z € V(G) \ (C1 UCy U Np(Ci) U Np(C2)) has a neighbor s; €
51(01) N 51(02) For i = 1,2 let a; € C; be complete to 51(01) N Sl(Cg)
(such a vertex exists by (9)), and let b; € S2(C;) be complete to C; (such a
vertex exists by (7)). By (9), for i = 1,2, b; is complete to S1(Cy) N S1(Ca).

We claim that there is no path in G|(N(s1) from z to {ai,b1,az,b2}.
Suppose there is, and let p be a neighbor of x in the path. Since {s1, z,p} is
a triangle, and s; € V/(F), it follows that at least one of p,z € V(G) \ V(F).
Since x ¢ C1 U Cy U Np(C1) U Np(Cs), it follows that p ¢ Cy U Co, and so
there exist a component C5 of V(G)\ V (F), different from Cy, Cy, such that
one of p,xz € C3. But now s; has a neighbor in three different components
of V(G) \ V(F), contrary to (13). This proves the claim.

Now, since every vertex of S1(Ci) N S1(C2), has a neighbor in {a;,b;}
(namely a;1) and a neighbor in {ag,b2} (namely az), the second assertion
of 5.9 implies that z is strongly complete to S1(C1)NS1(C2). This proves (14).

(15) There exists s € S2(C1), complete to C1 and with a neighbor in
S1(Ce) \ S1(Ch).

The first assertion of (9) implies that there exists ¢; € C; complete to
S1(C1). Let S be the set of neighbors of ¢; in So(C). We may assume that
c1 is chosen with S minimal, and subject to that with the minimum number
of strong neighbors in S3(Ch).

First we claim that every vertex of S is strongly complete to C; \ {c1}.
Suppose some s € S has an antineighbor ¢ € C1\{c1}. Since ¢; is adjacent to
s and complete to S;(C1), the last assertion of (9) implies that ¢ is strongly
complete to S1(C1).

We claim that ¢ has a neighbor in S3(C7) \ S. Suppose not. It follows
from the choice of ¢; that ¢ is complete to S and semi-adjacent to s, and so
the first assertion of (9) implies that ¢; is strongly complete to S, contrary
to the choice of ¢;. This proves the claim. Let so € S2(Cy)\ S be a neighbor
of ¢. But now s is adjacent to ¢; and antiadjacent to ¢, and s is adjacent
to ¢ and strongly antiadjacent to c1, contrary to (9). This proves that S is
strongly complete to Cy \ {c1}.

Let X be the set of vertices of S;(C1) that are semi-adjacent to a vertex
of SU{c1}. Since ¢; is complete to S1(C1), (9) implies that either X =
0, or X consists of the unique vertex semi-adjacent to ¢, or [S1(C1)| =
|S2(C1)| = |C1] = 1, and X consists of the unique vertex of S;(Cy) that is
semi-adjacent to the unique vertex of S3(Cp) = S. In all cases, | X| < 1.
Since G is unfriendly, it follows that S U {c;} is not a homogeneous set in
G, and (SU{c1}, X) is not homogeneous pair in G. Therefore, some vertex
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veV(G)\ (SUX U{c1}) is mixed on S U {c1}.

Suppose first that v is strongly antiadjacent to ¢;. Then v has a neighbor
s € S. Let s € S1(C1) N S1(Cy). Since both s, s; are adjacent to ¢1, (9)
implies that s is adjacent to s;. Let co € Co be adjacent to s;. By (5), ca is
antiadjacent to s. By (5), and since v is strongly antiadjacent to ¢y, it follows
that v is strongly antiadjacent to s;. Since {c2,s1,¢1,s,v} is not a bull, it
follows that v is strongly adjacent to ca. Consequently, v € Cy U Np(Cy).
If v € S5(Cy), then, by (9), v is strongly adjacent to s1, a contradiction.
If v € S1(Cy), then , since v is strongly antiadjacent to c;, it follows that
v € S1(C2) \ S1(C1), and s is a vertex complete to C7 and adjacent to v;
and thus (15) holds. So we may assume that v € Ca. Then s € S3(C2). By
the maximality of F', v has a neighbor s € S1(C2). By (9), s2 is adjacent
to s. If so € S1(C1), then ¢1,v are both adjacent to s, se, contrary to (5).
Consequently, sy € S1(C2) \ S1(C1), s is adjacent to s and s is complete to
C1; and therefore again (15) holds.

This proves that we may assume that v is adjacent to c¢1. Since v € X,
v is strongly adjacent to c¢;, and has a strong antineighbor in S. Since v is
adjacent to cq, it follows that v € C1UNg(C1). Since S is strongly complete
to C1 \ {c1}, it follows that v € Np(Cy). Since v is adjacent to ¢; and
v & S, it follows that v & S3(C1). Consequently, v € S;(C1). But by (9),
since ¢; is complete to S U S1(C1), it follows that S is complete to S1(Cy),
a contradiction. This proves (15).

(16) Let Ty be the set of vertices of V(G)\ (C1UC3UNER(C1)UNEp(Cs)) that
are strongly complete to S1(C1) N S1(C2). Then S1(C1) U S1(Cs) is strongly
anticomplete to V(F) \ (Np(C1) UNp(C2) UTh).

Suppose some vertex s; € S1(C) has a neighbor f; € V(F) \ (Np(Cp) U
Np(C2) UTy). By (14), s; ¢ Si1(C2) and f; is strongly anticomplete to
51(01) N 51(02)

By (15), there exist vertices p1 € S2(C1), ¢1 € Si1(C2) \ Si1(Cy), p2 €
S2(C2), q2 € S1(C1) \ S1(C2), such that for i = 1,2 p; is complete to C; and
adjacent to ¢;. Let ¢ € Cy be adjacent to ¢;1. By (9), p2 is adjacent to ¢;.

Let ¢ € Cy be adjacent to s1. By (9), s1 is adjacent to p;. Since
{f1,51,¢,p1,q1} is not a bull and F is triangle-free, it follows that f; is
adjacent to ¢q;. Now, since {f1,q1,¢,p2,q2} is not a bull and F is triangle-
free, it follows that fi is adjacent to go.

Let s € S1(C1) N S1(Cy). For i = 1,2, let ¢; € C; be adjacent to s. Then
{c1,ca,p1,p2} is a matching of size two in G, s is complete to {c1, c2, p1,p2},
q1 is adjacent to p; and antiadjacent to ¢y, g9 is adjacent to po and antiad-
jacent to co, and fi is adjacent to q1,¢o and antiadjacent to s, contrary to
the first assertion of 5.9. This proves (16).

(17) Sa(Ch) U So(Cy) is strongly complete to S1(C1) N S1(Ca); and con-
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sequently if S1(C1) N S1(Ca) # 0, then So(Ch) U Sa(Ca) is a strongly stable
set.

Suppose not. We may assume that there exist vertices a € S1(C1) N S1(Ca)
and v € S3(Cq) that are antiadjacent. For i = 1,2, let V; be the set of
neighbors of a in C;. Since S1(C1) N S1(C2) # O and, by (15), we deduce
that S1(Cy) \ S1(C2) # 0 and S1(Ca) \ S1(C1) # 0. Now it follows from (9)
that v is strongly anticomplete to V3 U V5.

Let p1 € S2(C4) be a vertex complete to C1, and let ¢; € S1(C2)\S1(Ch)
be adjacent to p;. Let pa € S2(Cs) be a vertex complete to Cs, and let
g2 € S1(C1) \ S1(C2) be adjacent to py (such pi,qi,p2,qe exist by (15)).
Then v # p1,p2. By (9), p1 is strongly adjacent to both g2 and a, and po is
strongly adjacent to both ¢; and a. For ¢ = 1,2, let v; € V;. Since v is anti-
adjacent to a, 5.9, applied to the matching {pi, p2,v1,v2} implies that v is
antiadjacent to at least one of q1,¢2. Suppose first that v is antiadjacent to
q1. Let ¢; € C1 be adjacent to v. Then {v,¢1,v1,p1,¢q1} is a bull, a contra-
diction. So v is strongly adjacent to ¢1, and therefore v is antiadjacent to ¢s.
From the symmetry, it follows that v & S3(C3). Since py is adjacent to qi,
and since {p2,q1,v} and {q1,p2, g2} are not triangles in G|F, it follows that
q1 is strongly antiadjacent to ¢o, and po is strongly antiadjacent to v. Let
co € Oy be adjacent to q1. Now {g2,p2,c2,q1,v} is a bull, a contradiction.
This proves the first assertion of (17). The second assertion now follows,
since F' is triangle-free. This proves (17).

Let Qo = Ry = 1Ty = Uy = @, and let Py = Sy = Sl(Cl) N 31(02) For
i > 1, let us define the sets P;, Q;, R;, S;, T;, U; recursively as follows:
e Let Q; be the set of vertices of C1 \ (U, ; Q;) with a neighbor in P;_;.

e Let R; be the set of vertices of S3(C1) \ (U;-; R;) with a neighbor in
Qi.

e Let S; be the set of vertices of S1(C2) \ (U;,; 5j) with a neighbor in
R;.

Let T; be the set of vertices of Cy \ (.., T;) with a neighbor in S;_;.

j<t

Let U; be the set of vertices of S2(C2) \ (U,; U;) with a neighbor in
T;.

Let P; be the set of vertices of S1(C1) \ (U;<; ;) with a neighbor in
Ui.

We observe that the definition above is symmetric under exchanging C
and Cy. Let P = J;5( P, and let @, R, S,T,U be defined similarly. Let
W =PUQURUSUTUU. The maximality of |V (F')| implies that
Q1, R1,T1,U; are all non-empty, and, by (15), S; and P; are non-empty.
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(18) Let i > 1. If ¢ € Cy has a neighbor in U;, then ¢ € U;<;11 Qj- If
¢ € Cy has a neighbor in R;, then c € J;<;,1 T}

From the symmetry, it is enough to prove the first assertion of (18). Let
u € U; be adjacent to ¢ € Cy. Let s € S1(C1) be adjacent to ¢. By (9), u is
adjacent to s, and therefore s € Uj<i P;. But then, since c is adjacent to s,
it follows that ¢ € (J;<; 1 @;- This proves (18).

(19) No vertex of V(G)\ W is mized on PUS.

Suppose some v € V(G) \ W is mixed on P U S. Let ¢ be minimum such
that v is mixed on (J;,(P; U S;). By (14), i > 0.

We claim that v is strongly complete to |J;;(P; U S;) and has an an-
tineighbor in P; U S;. If v is strongly anticomplete to P;U.S;, then, since v is
mixed on | J;.,(P; U S;), the claim follows from the minimality of ¢, and so
we may assume that v has a neighbor in P, U S;. Now it follows from (16)
that v is strongly complete to Py = Sg, and again, by the minimality of ¢, it
follows that v is strongly complete to [J,_;(F; U S;). This proves the claim.

From the symmetry, we may assume that v has an antineighbor p € P;.
By the claim in the first paragraph, it follows that v is strongly complete
to U,<1(PJ U S;). Since p € P;, there exist u € U;, t € T;, and s € S;_;
such that {u,t, s} is a triangle, and p is adjacent to u. Then v is strongly
adjacent to s. Since p € Py, it follows that p is strongly antiadjacent to t.
Since F' is triangle-free, p is strongly antiadjacent to s. If v is adjacent to t,
then v € Np(C2), which, since v is adjacent to s, implies that v € Sa(Cs),
and so v € U C W, a contradiction. So v is strongly antiadjacent to ¢t. If v
is adjacent to u, then {s,u,v} is a triangle, and so v & V(F'), but {t,v} is
complete to {s,u}, contrary to (5). So v is strongly antiadjacent to u. But
now {v,s,t,u,p} is a bull, a contradiction. This proves (19).

(20) No vertex of V(G) \ W is mized on Q1 U Ry.

Suppose v € V(G) \ W is mixed on @1 U R;. The last assertion of (9)
implies that C1 \ Q1 is strongly complete to Q1 U Ry; by the definition of Ry,
S2(C1) \ Ry is strongly anticomplete to Q1 U Ry; and by (12), S1(Cy) \ Py is
strongly complete to Q1. Now, by (15), |S1(C1)| # 1, and so, by (9), since
every vertex of Ry has a neighbor in @1, it follows that S1(C1)\ Py is strongly
complete to R;. This proves that no vertex in (C; U S1(C1) U S2(C2)) \ W is
mixed on S1U Ry, and so v ¢ C; US1(C1) U S2(Ch). Therefore, v is strongly
anticomplete to Q1. Since v is mixed on Q1 U Ry, it follows that v has a
neighbor € R;. Then there exist ¢ € Q1 and p € Py such that {r,q,p} is a
triangle. Let ¢y € Co be adjacent to p. By (5), ¢o is strongly antiadjacent to
r. Since F is triangle-free and by (5), v is strongly antiadjacent to p. Since
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{v,r,q,p,ca} is not a bull, it follows that v is strongly adjacent to ¢y, and
therefore v € Co U S1(C2) U S2(Cy). Since v € So, it follows that v & S1(Cy).
Since v is antiadjacent to p, (17) implies that v ¢ S2(C2). Therefore v € Cs.
But now, by (18), v € T', contrary to the fact that v ¢ W. This proves (20).

(21) No vertex of V(G)\ W is mized on QU R and no vertex of V(G)\ W
is mized on T"UU.

Suppose some v € V(G) \ W is mixed on Q U R or on T UU. Let i be
minimum such that v is mixed on |J;;,(Q; U R;) or on J;,(T; UUj). From
the symmetry, we may assume that v is mixed on |J;,(Q; U R;). By (20),
t>1

From the minimality of 4, it follows that either v is strongly anticomplete
to Uj<z‘(Qj U R;) and has a neighbor in Q; U R;, or v is strongly complete
to U;<;(Q; U R;) and has an antineighbor in Q; U R;.

Suppose v is strongly anticomplete to Uj <i(@j U R;) and has a neigh-
bor in Q; U R;. Assume first that v has a neighbor in @Q);. Then, since v is
strongly anticomplete to @1, it follows that v & C1, and by (12), v € S1(C1).
So v € S3(Cq), but then v € R;, a contradiction. So v is strongly anticom-
plete to @;, and therefore v has a neighbor r; € R;. Then that there exist
gi € Q; and p;—1 € P;_1 such that {r;,¢;,p;—1} is a triangle. Since i > 1,
there exists u;—1 € U;—1, adjacent to p,—1. We claim that v is adjacent to
u;—1. Suppose not. Since F' it triangle-free and by (5), it follows that w;_;
is strongly antiadjacent to r;, and v is strongly antiadjacent to p;_1. Since
{wi—1,pi—1,qi,7i,v} is not a bull, it follows that u;_; is adjacent to ¢;, and
therefore u;—1 € S2(C1) N S2(Ca). But v is adjacent to r; and antiadja-
cent to u;_1, contrary to (16). This proves the claim that v is adjacent to
u;—1. It follows from the definition of U;_1 that there exist ¢,_1 € T;_1 and
Si—o € Sij_o such that {u;_1,t;_1,s;—2} is a triangle. From the minimality
of ¢ and since v is adjacent to u;—1, we deduce that v is adjacent to ¢;_1.
Consequently, v € Cy U S1(Cs) U S2(C3y). Since v is adjacent to u;—q, it
follows that v ¢ S3(C3). Since v is adjacent to r;, and v ¢ T, (18) implies
that v € Cy. Therefore, v € S1(C4), and so, since v is adjacent to r;, it
follows that v € S;, contrary to the fact that v € W. This proves that v is
strongly complete to J;;(Q; U R;) and has an antineighbor in @Q; U R;.

In particular, v has a neighbor in C1, and so v € C; U S1(C1) U S3(CY).
Since v is strongly complete to Ry, it follows that v ¢ S3(C1). Suppose
v € (7. Then v is strongly complete to @, and so v has an antineighbor
r € R;. Since v € @;, it follows that v is strongly anticomplete to P;_1. But
some vertex of ); is adjacent adjacent to r and has a neighbor in P;,_1, con-
trary to the last assertion of (9). This proves that v € C4, and so v € S1(C1).
Since v ¢ Py, it follows that v is strongly anticomplete to Cy. By (9), and
since |S1(C1)| > 1, we deduce that if v is strongly complete to @;, then v
is strongly complete to R;, and hence v has an antineighbor ¢; € @Q;. Since
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q; € Q;, there exist p € P;_1 adjacent to ¢;. Since ¢ > 1, there exists u € U;_1
adjacent to p. Since v is strongly anticomplete to Cs, it follows from the
minimality of ¢ that v is strongly antiadjacent to u. Let q1 € (1. Since
i > 1, both p and v are adjacent to ¢;. Since u is antiadjacent to v, (17)
implies that u & So(C1). But now {u,p, gi,q1,v} is a bull, a contradiction.
This proves (21).

(22) For every i >0, P is strongly complete to |J;,(Q; U R;).

Suppose p; € P; is antiadjacent to ¢ € Q; with j < 4. By (12), j > 1.
Let pj_1 € Pj_1 be adjacent to ¢q. Since j > 1, there exists u € Uj_1
adjacent to p;j_1. But now, since p; € P, it follows that p; is strongly an-
tiadjacent to u, and therefore u ¢ Np(C4), contrary to the third assertion
of (9). Now, since, by (15), [S1(C1)| > 1, P; is strongly complete to (J;; @,
and every vertex of (J;; R; has a neighbor in {J;; @;, (9) implies that P;

is strongly complete to Ujgi R;. This proves (22).
(23) For every i > 0, R; is strongly complete to C1 \ (U;<; @;)-

Suppose 7 € R; has an antineighbor ¢ € C1 \ (U;<; @;). Choose ¢ € Q; and
p € P,y such that {p,q,r} is a triangle (this is possible by the definition
of Q; and R;, and by the maximality of [V (F)[). Since ¢ ¢ ,<; @, it fol-
lows that ¢ is antiadjacent to both p and r, contrary to (9). This proves (23).

(24) Fori> 0, R; is strongly complete to | J;; Sj.

Suppose r; € R; has an antineighbor s € S; with j < i. By (17), j > 0, and
so there exists r; € R; adjacent to s;. Let ¢ € @); be adjacent to ;. Then,
since r; ¢ R;, it follows that ¢ is strongly antiadjacent to r;, contrary to the
third assertion of (9). This proves (24).

(25) P US is strongly complete to (S2(C1) U S2(C2)) \ W, and strongly
anticomplete to (C1 U Cy U S1(Ch) U S1(Ca)) \ W.

By (17), S2(C1) U S2(Cs) is strongly complete to Py, and so by (19) P U S
is strongly complete to (S2(C1) U S2(Cs2)) \ W. Since each of S1(C1), S1(Ca)
is a strongly stable set, it follows that (S1(C1) U S2(C2)) \ Py is strongly
anticomplete to Py. Now (19) implies that (S1(C1)US2(C2)) \ W is strongly
anticomplete to P U S. Finally, it follows from the definition of @ and T,
that (C7 U Cy) \ W is strongly anticomplete to P U S. This proves (25).

(26) Q U R is strongly complete to (C; U S1(C1)) \ W and strongly anti-
complete to (SQ(Cl) U 51(02) U 52(02) U 02) \ w.
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Since @ C C; and C] is a strong clique, it follows from (21) that Q U R
is strongly complete to C; \ W. By (12), S1(C1) \ Py is strongly complete
to @1, and so by (21), Q U R is strongly complete to S1(C7) \ W.

In order to show that QUR is strongly anticomplete to (S2(C1)US1(C2)U
2(C2)UC2)\ W, it is enough, by (21), to prove that every vertex of (S2(C1)U
1(C2) U S2(Co) U Cy) \ W has an antineighbor in Q U R.

Since Co U (S2(C2) \ S2(Ch)) is strongly anticomplete to C1 and @ C (1,
it follows that every vertex of CoU(S2(C2)\ S2(C1)) is strongly anticomplete
to Q. Since S2(Ch) is a strongly stable set and R C S3(C}) it follows that
every vertex of So(C1) \ W is a strongly anticomplete to R. Finally, by the
definition of S, S1(C2) \ W is strongly anticomplete to R. This proves (26).

S
S

(27) P is strongly complete to R.

Suppose p € P is antiadjacent to r € R. Let ,j be integers such that
p € Pyand r € R;. By (22) i < j. By (17), ¢ > 0, and so there exists u € Uj;
adjacent to p. By (3), there exist ¢ € T; and s € S;_1 such that {s,t,u} is a
triangle. By (24), since i < j, it follows that r is strongly adjacent to s. But
now, since F is triangle-free, and since, by (17), both p and r are strongly
antiadjacent to t, it follows that {r, s, ¢, u,p} is a bull, a contradiction. This
proves (27).

It follows from (27) and the symmetry that S is strongly complete to U.

(28) If Wn 52(01) N 52(02) % 0, then P = 51(01), Q=C, R= 52(01),
S = 51(02), T = CQ and U = SQ(CQ)

From the symmetry, we may assume that there exist w € RNSy(C1)NS2(C
By (17), w is strongly complete to S1(C2), therefore S;(Cs) \ S1(C1) C
and so S = S51(C9). It follows that T' = Cy, and, consequently U = S5(Cy
in particular, w € U. But now, for, the symmetry, P = S1(C1), Q = Cj an
R = S3(C1). This proves (28).

2).
S,
);

(29) IfWwn 52(01) N 52(02) # @, then V(G) =ChLuCyu 51(01) U 52(01) U
51(02) U SQ(CQ).

Suppose not. Then there exists v € V(G) \ (C1 U Cy U S1(Cy) U So(Cy) U
51(02) U 52(02)) with a neighbor in C7 U Cy U 81(01) U SQ(Cl) U 51(02) U
SQ(CQ). By (28), P = 51<Cl),Q = Cl,R = 52(01),5 = 51(02),T = Cg and
U = 55(C9). Since v € V(G)\ (C1UC2US1(C1)US2(Cr)US(Ca)US2(C)),
it follows that v is strongly anticomplete to C7UC4, and so (21) implies that
v is strongly anticomplete to C; U Cy U S2(C1) U S2(C2). So v has a neigh-
bor in S1(C7) U S1(C3), and therefore, by (20), v is strongly complete to
Sl(C1) U Sl(Cg). Let s9 € 52(01) N SQ(CQ). For i = 1,2 let ¢; € C; be
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adjacent to s, and let s; € S1(C1) be adjacent to ¢;. Then, by (9), s; is
adjacent to s9, and so by (5), s1 is strongly antiadjacent to ca. But now
{v, s1,¢1, $2,c2} is a bull, a contradiction. This proves (29).

(80) PUS and RUU are strongly stable sets.

Since Fy is strongly complete to R U U and F is triangle-free, it follows
that RU U is a strongly stable set. Since P C S1(Cy) and S C S1(Cy), it
follows that each of P, S is a strongly stable set. So it is enough to prove
that P\ S is strongly anticomplete to S\ P. Suppose p € P is adjacent to
s € S. Let i, be integers such that p € P; and s € S;. Then 7,5 > 0, and
so there exists 7 € R; adjacent to s. By (27), p is adjacent to . But now
{p,r,s} is a triangle in F, a contradiction. This proves (30).

Let Z=PUS and L=RUU.

(31) If So(C1) N S2(Co) NW = 0, then GI(QUT U ZUL) is a Z-melt,
and if Sa(C1) N S2(C2) NW # 0, than G|(QUT U Z U L) is a double melt.

First we observe that @, T are strong cliques, and, by (30), Z, L are strongly
stable sets. By (15), |Z] > 1 and |L| > 1. Let |Q| = m and |T'| = n. By (9),
we can number the vertices of @ as {q1,...,q¢n} such that for every p € P,
Np)nQ={q,...,q} for some i € {1,...,m}, and p is strongly complete
to {q1,...,qi—1}; and for every r € R, N(r) N Q = {¢m—it1,---,qm} for
some i € {1,...,m}, and r is strongly complete to {Gmn—it+2,.-.,@n}. Sim-
ilarly, we can number the vertices of T" as {t1,...,t,} such that for every
se€ S, N(s)NT = {ty41—j,...,ty} for some j € {1,...,n}, and s is strongly
complete to {t,42—j,...,tn}, and for every u € U, N(u) NT = {t1,...,t;}
for some j € {1,...,n}, and u is strongly complete to {¢1,...,t;-1}.

Let Apg = Boo = 0. Fori € {1,...,m} and j € {1,...,n} let A;;
be the set of vertices of Z that are strongly complete to {q1,...,¢—1} U
{tn—j+2,...,tn}, complete to {g;} U {tn,—j41}, and strongly anticomplete
to {gi+1,---,qm} U {t1,...,tn—;}; and let B;; be the set of vertices of L
that are strongly complete to {¢m—it+2,...,qm}U{t1,...,tj_1}, complete to
{@m—i+1}U{t;}, and strongly anticomplete to {q1, ..., gm—i}U{tjs1,...,tn}.
For i € {1,...,m}, let A;o be the set of vertices of Z that are strongly
complete to {q1,...,q—1}, complete to {g;}, and strongly anticomplete to
{¢it1,...,qm} UT. For j € {1,...,n}, Ao  be the set of vertices of Z
that are strongly complete to {t,_j12,...,t,}, complete to {t,—;41}, and
strongly anticomplete to Q U {t1,...,t,—;}. Fori e {1,...,m}, let B;o be
the set of vertices of L that are strongly complete to {gm—it2,...,qm},
complete to {gm—it+1}, and strongly anticomplete to {qi,...,qm—i} UT.
Finally, for j € {1,...,n}, let By; be the set of vertices of L that are
strongly complete to {t1,...,t;—1}, complete to {t;}, and strongly anti-
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complete to Q U {tj41,...,t,}. Then Z = Uogz‘gm U0§j§n A;jand L =
Uogigm Uogjgn B

Since every vertex of @ UT has a neighbor in both Z and L, (9) implies
that the sets Up<;<, Am.js Uo<j<n Bm.j» Up<icm Ain and Ug<;<,, Bin are
all non-empty.

Let 4,7 € {0,...,m} and j,j" € {0,...,n}, such that ¢/ > i and j' > j,
and let a € A; j and o’ € Ay j. Since Ago = (), we may assume that ¢ > 0.
Then o is complete {q;, gir,tn—jr11}, and a is anticomplete to {gy, tp—j41}
and adjacent to ¢;, and so {a, ¢, qy,a’,t,—j41} is a bull, a contradiction.
This proves that one of A;; and Ay j is empty. Similarly, one of the sets
B; ; and By j is empty.

By (17), fori € {1,...,m} and j € {1,...,n}, A;; is strongly complete
to L, and B ; is strongly complete to Z. By (27), for every 4,7 € {1,...,m}
and j,j' € {1,...,n}, Ao is strongly complete to By o, and A ; is strongly
complete to By ;.

Letie {1,...,m}andj € {1,...n}. Let Ago be the set of vertices of 4; o
with that have a neighbor in By ; are strongly finticomplete to U i<k<n Bok-
Let A?,o be the set of vertices of A;( that are strongly anticomplete to
Ulgkgn By . Let Aé,j be the set of vertices of Ap; that have a neighbor
i<k<m Bro- Let A87j be the set

of vertices of Ag ; that are strongly anticomplete to J;<p<,, Bko. Let sz,o
be the set of vertices of B; o that have a neighbor in A ; and are strongly
anticomplete to Uj<k<n Ao Let BBO be the set of vertices of B;o that

in B;o and are strongly anticomplete to |J

are strongly anticomplete to (J; <<, Aok Let B&j be the set of vertices of
By,; with a neighbor in A; that are strongly anticomplete to (J; <, Ak,0-
Finally, let B8’ ; be the set of vertices of By ; that are strongly anticomplete
to Ulgkgm Apo. Then

k

Ai,OZ U Ai,Ov
0<k<n

_ k

A= U 465
0<k<m

k

Bi,OZ U Bi707
0<k<n

and
Boj= |J B,
0<k<m

We observe that for i € {1,...,m} and j € {1,...,n}, A;9 C P\
Py, Ag; € S\ So, Bip € R and By; C U. Therefore every vertex
of A?,o has a neighbor in UJ; <<, Ui< <, Bp,g: every vertex of B?,o has a
neighbor in Ulgpgm Ulgqgn Ap 4, every vertex of ABJ has a neighbor in
Ui<p<m U1<g<n Bpg: and every vertex of Bg,j has a neighbor in

Ulgpgm Ulgqgn AP,‘Z'
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By (9), Aé,j is strongly complete to |J; <,; Bs,0, Ag,o is strongly complete
to Uy<s<j Boss sz,o is strongly complete to (J; <,; Ao,s and Bé’j is strongly
complete to |J;<,; Aso. For i € {1,...,m} and j € {1,...,n} let A},
be the set of vertices of A;o that are semi-adjacent to g;, let A’ be the
set of vertices of Ag; that are semi-adjacent to ¢,_j41, let BZ 0 be the set
of vertices of B;( that are semi-adjacent to g¢y,—;y1, and let B’ be the
set of vertices of By ; that are semi-adjacent to ¢;. Then, by (9) Ay is
strongly complete to ;<< Bas, Af]’j is strongly complete to ;< ,<,, BS’O,
Bz{,o is strqngly complete to Ulgsgn Aas, and Bé’j is strongly complete to
Uj<sem AL . Since Py # 0, it follows that there exist i € {1,...,m} and
jed{l,... ,7n} such that either A; ; # (). Finally, let i,s,s' € {1,...,m} and
gyttt € {l,...,n} such that ¢ > j>n+1—tands>i>m+1-—¢,
and let a € Agy and b € By p. Then {a,b} is complete to {g;,t;}, and a is
adjacent to b, contrary to (5). This proves that at least one of A, By ¢ is
empty.

Thus all the conditions of the definition of a melt are satisfied, and so
G|(QUTUZUL) is a melt. Moreover, if So(C1) N S2(Ce) NW = (), then R
is strongly anticomplete to 7" and U is strongly anticomplete to ), and so
G(QUTUZUL) is a Z-melt. If S5(Cy) N S2(Cy) N W # (), then, by (28),
RNU #0, and so G|(QUT U Z U L) is a double melt. This proves (31).

Now, if S5(C1) N S2(Co) N W # (), (29) and (31) imply that G is a dou-
ble melt, and so G € 77. So we may assume that Sy(C1) N Sa(Co) NW = 0.

If 52(01) N SQ(CQ) = (Z), let Q, =T =7 =L"= 0. Assume 52(01) N
SQ(CQ) %+ 0. Let Pé = S(/) = 52(01) N SQ(CQ), let Q6 = R/O = Té = Ué = @,
and for 7 > 1, deﬁne P/, Q. RS, T, U/ similarly to P;, Q;, R;, S;, T, U;.
Let P/ = UZ>1 , and let Q’ R’ S, T",U" be defined similarly. Let W' =
P’UQ’UR’US’UT’UU’. Let Z’ =P uUS and L'’ = R UU’'. By the
remark following (31), we may assume that W' NS1(Cy)NS1(C2) = 0. Now,
by (31), G(Q'UT'UZ' UL') is a Z'-melt.

(32) WNW' =40.

Suppose W N W’ # (), let ¢« > 0 be minimum such that (P, U Q; U R; U
S;UT,UU)NW' # 0, and let v € (P, UQ; UR; US; UT; UU;) NW’. Since
PyNnW’' =0, it follows that ¢ > 0.

Assume first that v € Q;. Then there there exists p;_1 € P;,_1 adjacent
to v. Since @ C C; and W/ N C; C Q', we deduce that v € @', and so
pi—1 € R/, contrary to the minimality of 4. This proves that Q; N W' = 0,
and, from the symmetry, that T; N W' = ().

Next assume that v € R;. Then there there exists ¢ € Q; adjacent
to v. Since v € R;, and since W N S3(C1) N S2(Cs) = 0, it follows that
v € S9(Ch) \ S2(C3), and so v € P'. But now ¢ € @', contrary to the fact
that Q; N W’ = (). This proves that R; N W’ = (), and, from the symmetry,
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U,nNnWw' =10.

Consequently, v € P; U S;, and form the symmetry we may assume that
v € P;. Since i > 0, it follows that there exists u € U;, adjacent to v. Also
since ¢ > 0, we deduce that v € S1(C1) \ S1(C3), and so v € R'. But then
u € S, contrary to the fact that U; N W’ = ). This proves (32).

Let Z(Cl,CQ) = Z, Q(Cl,CQ) = Q, T(C],Cz) =T, R(Cl,CQ) = R and
U(Cl,CQ) =U. Let Z,(Cl,CQ) = Z/, QI(Cl,CQ) = Q/, T/(Cl,CQ) = T/,
R'(C1,C5) = R and U'(C4,Cy) = U'. For every pair of distinct components
C1,C% of V(G) \ V(F) with Np(C7) N Np(Ch) # 0, we define Z(C7,CY%),
Q(CY,Cy), T(C}, CY), R(CY, CY) U(CY, C), Z(ClCh), Q/(C, Ch), TI(CY, G,
R'(C1,C%) and U'(CY, CY) similarly.

Let C1, C% be two distinct components of V(G) \ V(F). For i,j € {1,2}
let S;(C7}) be their anchors. We may assume that S1(C])NS2(Cy) = S2(C1)N
S1(C%) = 0. Let i(C1, C%) be the number of non-empty sets among S1(C%) N
Sl(Cé) and SQ(C{) N 52(05)

Let H be the graph whose vertices are the components of V(G) \ V(F),
and such that if C{,C) € V(H), then there are i(C]C%) edges with ends
C1,C%. Then H is a loopless graph.

(83) H is triangle-free and mazxdeg(H) < 2.

Let C1, Cq, C5 be components of V(G)\V (F). Suppose S1(Cy)NS1(Co) # 0.
We claim that for ¢ € {1,2} Sl(Cl> N SZ(Cg) = Sl(CQ) N SZ(C;)) = (0. For
suppose there is a vertex = € S1(C1) N S1(Cs). Let ¢ be a vertex of C3
adjacent to x. Then, by (16), ¢ is strongly complete to S1(C1) N S1(C2),
contrary to (13). This proves the claim. It follows from the claim that
maxdeg(H) < 2.

Suppose there is a triangle in H. That means that there exist component
C1,C%,Cs, and, in view of the claim in the previous paragraph, renumber-
ing the anchors, we may assume that there exist u € S1(C7) N S1(C2),
v € S2(Ca) N S2(C3), and w € S1(C3) N S2(Ch). But now, by (17), {u,v,w}
is a triangle in F, a contradiction. This proves (33).

We show that G admits an H-structure. Let us define a map
h:V(H)UE(H)U (E(H) x V(H)) — 2V,

Let C1,Cy be distinct components of V(G) \ V(F'). If there is a unique
edge e with ends C1,Cy let h(e) = Z(C1,C3), h(e,Cy) = Q(Cy,Co) U
R(C4,Cq) and h(e,Cq) = T(C1,C2) UU(Cy,C5). Let C3 be a component
of V(G) \ V(F), distinct from C7,C5, and assume that f is an edge of
H with ends C;,C3. We observe that by (13) and (16), if S;(C1) and
S5(Ch) are the anchors of Cy, then, up to symmetry, Z(C1,Co) N Np(Ch) C
S1(Cy), and Z(Cy,C3) N Np(Cq) C So(Ch). If there are two edges e, e’

95



with ends 01,02 let h(e) = Z(Cl,CQ), h(e,Cl) = Q(Cl,CQ) U R(Cl,CQ)
and h(e,CQ> = T(Cl,CQ) U U(Cl,CQ); and h(e/) = Z/(Cl,CQ), h(e’,C’l) =
Q/(Cl, 02) @] R/(Cl, 02) and h(e’, 02) = T/(Cl, 02) U U/(Cl, 02) For every
component C' of V(G) \ V(F), let h(C) = C\ (Ueep) Uone hi(e, C)). Let
L= V(G)\ h(V(H) U E(H) U (E(H) x V(H))).

It follows from the definition of h that

e every vertex of V/(G)\ L is in h(x) for exactly one element x of V(H)U
E(H)U(E(H) x V(H)), and

v) # 0 for every v € V(H) of degree zero, and

e) # () for every e € E(H), and

h(
h(
h(e,v) # 0 if e is incident with v, and
h

e,v) = () if e is not incident with v, and

for u,v € V(H), h(u) is strongly anticomplete to h(v).

Since LU (Ueepm) h(e)) € V(F), it follows that G|(LU(U.cp(m) h(€))) has
no triangle. Since h(C) C C for every component C of V(G)\V (F), it follows
that h(v) is a strong clique for every v € V(H). Since h(e) = Z(Cy,Cs) for
every edge C1Cs of H, it follows that every vertex of L has a neighbor in
at most one of the sets h(v) where v € V(H). By (19), for every e € E(H),
every vertex of L is either strongly complete or strongly anticomplete to
h(e), and for every e, f € E(H), h(e) is either strongly complete or strongly
anticomplete to h(f). By (25) and (32), if e, f € E(H), and e and f share
an end, then h(e) is strongly complete to A(f). By (25), for every e € E(H)
and v € V(H), h(e) is strongly anticomplete to h(v).

Let v € V(H), let S, be the vertices of L with a neighbor in h(v), and
let T, be the vertices of (L U (Ueepm)h(€))) \ Sy with a neighbor in Sy
Then S, contains every every vertex of F' with a neighbor in h(v), and T,
contains every vertex of V(F) \ S, with a neighbor in S,. Now, by (10)
applied to the graph G|(V(F') U h(v)), it follows that there is a partition
of S, into two sets A,, B,, and a partition of T} into two sets C,, D, such
that G|(h(v)US, UT,) is an (h(v), Ay, By, Cy, Dy)-clique connector. By (9)
and (15), for v € V(H), if there exist a € A, and b € B,, antiadjacent with
a common neighbor in h(v), then v has degree zero in H.

Let e be an edge of H with ends w,v. Then (26) and (32) imply that if
f € E(H)\{e} is incident with v then h(e,v) is strongly complete to h(f,v).
By (31), G|(h(e)Uh(e,v)Uh(e, f)) is an h(e)-melt, such that if (K, M, A, B)
are as in the definition of a melt, then K C h(e,v), M C h(e,u), A = h(e),
B C h(e,v) U h(e,u), every vertex of h(e,v) N B has a neighbor in K, and
every vertex of h(e,u) N B has a neighbor in M (and, in particular, h(e,v) is
strongly anticomplete to h(e,u)). It follows from (21) and (26) that h(e,v)
is strongly complete to h(v), and h(e,v) is strongly anticomplete to h(w)
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for every w € V(H) \ {v}; and h(e,v) is strongly anticomplete to A(f,w)
for every f € E(H) \ {e} and w € V(H) \ {v}; and h(e,v) is strongly
anticomplete to h(f) for every f € E(H) \ {e}.

We may assume that A, = S1(v) N L, A, = Si(u) N L,B, = Sa(v) N
L, B, = S2(u)NL, and S1(u)NS2(v) = S2(v)NS1(u) = 0. Switching the roles
of A,UA, an B, UB, if necessary, we may assume that h(e) C S1(v)US1(u).

e (25) implies that h(e) is strongly complete to By, U By,

e (26) implies that h(e,v) is strongly complete to A,, and strongly an-
ticomplete to L\ A,

e By (16), (19) and (25), every vertex of (LU(Uep(m) h(€)))\ (AuUAy)
with a neighbor in A, U A, is strongly complete to h(e).

Thus, in view of (33), all the conditions of the definition of an H-structure
are satisfied, and so G admits an H-structure, and therefore G € 77. This
completes the proof of 6.2. |

We can now prove 3.4, which we restate.

6.3 Let G be an elementary bull-free trigraph. Then either
e one of G,G belongs to Ty, or
o (G admits a homogeneous set decomposition, or

o (G admits a homogeneous pair decomposition.

Let us first remind the reader the main result of [1].

6.4 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

o (G admits a homogeneous set decomposition, or
e GG admits a homogeneous pair decomposition, or
e G or G belongs to Ty.

Proof of 6.3. We may assume that G does not admit a homogeneous
set decomposition or a homogeneous pair decomposition. Assume first that
there are paths P and @, each of length three, in G, and that there is a
center for P and an anticenter for Q) in G. By 6.4, either

e (G admits a homogeneous set decomposition, or
e (G admits a homogeneous pair decomposition, or

e G or G belongs to 7.
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So one of G, G belongs to 7. But then G is not elementary, a contradiction.
Consequently, no such paths P, Q exist in G, and therefore we may assume
that either G or G is unfriendly. Since one of the outcomes of 6.3 holds for
G if and only if one of the outcomes of 6.3 holds for G, we may assume that
G is unfriendly. Since if G is a prism, then G has no triangle, and therefore
admits and H-structure with H being the empty graph, 4.2 implies that no
induced subtrigraph of G is a prism.

If G is framed, then by 6.2, G € 71, so we may assume that G is not
framed. It follows that no induced subtrigraph of GG is a path of length three.
So by 5.4, one of the following holds:

e (G is not connected, or
e (G is not anticonnected, or

e there exist two vertices v, vy € V(G) such that vy is semi-adjacent
to vy, and V(G) \ {v1,v2} is strongly complete to v; and strongly
anticomplete to wvs.

Since G does not admit a homogeneous set decomposition, if G is not
connected or G is not anticonnected, then |V (G)| = 2 and G € 7;. Thus
we may assume that there exist two vertices v1,vy € V(G) such that vy
is semi-adjacent to ve, and V(G) \ {v1,v2} is strongly complete to v; and
strongly anticomplete to vs. Since G does not admit a homogeneous set
decomposition, it follows that |V (G) \ {vi,v2}| = 1. But then G € 7;. This
proves 6.3. |
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