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Abstract

The bull is a graph consisting of a triangle and two pendant edges.
A graph is called bull-free if no induced subgraph of it is a bull. This
is the second paper in a series of three. The goal of the series is to
give a complete description of all bull-free graphs. We call a bull-free
graph elementary if it does not contain an induced three-edge-path P
such that some vertex c 6∈ V (P ) is complete to V (P ), and some vertex
a 6∈ V (P ) is anticomplete to V (P ). In this paper we prove that every
elementary graph either belongs to one a few basic classes, or admits
a certain decomposition.

1 Introduction

All graphs in this paper are finite and simple, unless stated otherwise. The
bull is a graph with vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph G, on the same
vertex set as G, and such that two vertices are adjacent in G if and only if
they are non-adjacent in G. A clique in G is a set of vertices, all pairwise
adjacent. A stable set in G is a clique in the complement of G. A clique of
size three is called a triangle and a stable set of size three is a triad. For a
subset A of V (G) and a vertex b ∈ V (G) \ A, we say that b is complete to
A if b is adjacent to every vertex of A, and that b is anticomplete to A if
b is not adjacent to any vertex of A. For two disjoint subsets A and B of
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V (G), A is complete to B if every vertex of A is complete to B, and A is
anticomplete to B every vertex of A is anticomplete to B. For a subset X of
V (G), we denote by G|X the subgraph induced by G on X, and by G \X
the subgraph induced by G on V (G) \X.

Let us call a bull-free graph G elementary if it does not contain an
induced three-edge-path P such that some vertex c 6∈ V (P ) is complete to
V (P ) and some vertex a 6∈ V (P ) is anticomplete to V (P ). In this paper
we prove that every elementary graph either belongs to a one of a few basic
classes, or admits a decomposition.

This paper is organized as follows. In the next section we define an
object called a “trigraph”, which is a generalization of a graph, but is more
convenient for stating the main result of this series of papers. Most of
the definitions of Section 2 appeared in [1], but we include them here for
the reader’s convenience. In Section 3 we state the main theorem of this
paper, 3.4, giving all the necessary definitions. We also define the class
of “unfriendly trigraphs”, which is the subject of most of the theorems in
this paper. In Section 4, we study unfriendly trigraphs, that contain a
“prism” (an induced subtrigraph consisting of two disjoint cliques and a
matching between them, for a precise definition see Section 4). We prove
that every such trigraph satisfies one of the outcomes of 3.4. Section 5
contains a few useful lemmas about unfriendly trigraphs. In Section 6, we
study the behavior of an unfriendly trigraph relative to an induced triangle-
free subtrigraph (again, see Section 6 for the definitions). We prove that
one of the outcomes of 3.4 holds for every unfriendly trigraph that contains
an induced three-edge path. We finish Section 6 with a proof of 3.4, using
a result from [1].

2 Trigraphs

In order to prove our main result, we consider objects, slightly more gen-
eral than bull-free graphs, that we call “bull-free trigraphs”. A trigraph
G consists of a finite set V (G), called the vertex set of G, and a map
θ : V (G)2 → {−1, 0, 1}, called the adjacency function, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

Two distinct vertices of G are said to be strongly adjacent if θ(u, v) = 1,
strongly antiadjacent if θ(u, v) = −1, and semi-adjacent if θ(u, v) = 0. We
say that u and v are adjacent if they are either strongly adjacent, or semi-
adjacent; and antiadjacent of they are either strongly antiadjacent, or semi-
adjacent. If u and v are adjacent (antiadjacent), we also say that u is
adjacent (antiadjacent) to v, or that u is a neighbor (antineighbor) of v.
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Similarly, if u and v are strongly adjacent (strongly antiadjacent), then u
is a strong neighbor (strong antineighbor) of v. Let η(G) be the set of all
strongly adjacent pairs of G, ν(G) the set of all strongly antiadjacent pairs
of G, and σ(G) the set of all pairs {u, v} of vertices of G, such that u and v
are distinct and semi-adjacent. Thus, a trigraph G is a graph if σ(G) empty.

Let G be a trigraph. The complement G of G is a trigraph with the
same vertex set as G, and adjacency function θ = −θ. Let A ⊂ V (G)
and b ∈ V (G) \ A. For v ∈ V (G) let N(v) denote the set of all vertices in
V (G)\{v} that are adjacent to v, and let S(v) denote the set of all vertices in
V (G)\{v} that are strongly adjacent to v. We say that b is strongly complete
to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete
to A if b is strongly antiadjacent to every vertex of A, b is complete to A if b is
adjacent to every vertex of A, and b is anticomplete to A if b is antiadjacent
to every vertex of A. For two disjoint subsets A,B of V (G), B is strongly
complete (strongly anticomplete, complete, anticomplete) to A if every vertex
of B is strongly complete (strongly anticomplete, complete, anticomplete,
respectively) to A. We say that b is mixed on A, if b is not strongly complete
and not strongly anticomplete to A. A clique in G is a set of vertices all
pairwise adjacent, and a strong clique is a set of vertices all pairwise strongly
adjacent. A stable set is a set of vertices all pairwise antiadjacent, and a
strongly stable set is a set of vertices all pairwise strongly antiadjacent. A
(strong) clique of size three is a (strong) triangle and a (strong) stable set
of size three is a (strong) triad. For X ⊂ V (G), the trigraph induced by
G on X (denoted by G|X) has vertex set X, and adjacency function that
is the restriction of θ to X2. Isomorphism between trigraphs is defined
in the natural way, and for two trigraphs G and H we say that H is an
induced subtrigraph of G (or G contains H as an induced subtrigraph) if H
is isomorphic to G|X for some X ⊆ V (G). We denote by G\X the trigraph
G|(V (G) \X).

A bull is a trigraph with vertex set {x1, x2, x3, v1, v2} such that {x1, x2, x3}
is a triangle, v1 is adjacent to x1 and antiadjacent to x2, x3, v2, and v2 is
adjacent to x2 and antiadjacent to x1, x3. For a trigraph G, a subset X of
V (G) is said to be a bull if G|X is a bull. We say that a trigraph is bull-free
if no induced subtrigraph of it is a bull, or, equivalently, no subset of its
vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices
{p1, . . . , pk} is a path in G if either k = 1, or for i, j ∈ {1, . . . , k}, pi is
adjacent to pj if |i− j| = 1 and pi is antiadjacent to pj if |i− j| > 1. Under
these circumstances we say that P is a path from p1 to pk, its interior is
the set P ∗ = V (P ) \ {p1, pk}, and the length of P is k − 1. We also say
that P is a (k − 1)-edge-path. Sometimes we denote P by p1- . . . -pk. An
induced subtrigraph H of G with vertices h1, . . . , hk is a hole if k ≥ 4, and
for i, j ∈ {1, . . . , k}, hi is adjacent to hj if |i − j| = 1 or |i − j| = k − 1;
and hi is antiadjacent to hj if 1 < |i − j| < k − 1. The length of a hole is
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the number of vertices in it. Sometimes we denote H by h1- . . . -hk-h1. An
antipath (antihole) is an induced subtrigraph of G whose complement is a
path (hole) in G.

Let G be a trigraph, and let X ⊆ V (G). Let Gc be the graph with
vertex set X, and such that two vertices of X are adjacent in Gc if and only
if they are adjacent in G, and let Ga be be the graph with vertex set X,
and such that two vertices of X are adjacent in Ga if and only if they are
strongly adjacent in G. We say that X (and G|X) is connected if the graph
Gc is connected, and that X (and G|X) is anticonnected if Ga is connected.
A connected component of X is a maximal connected subset of X, and an
anticonnected component of X is a maximal anticonnected subset of X. For
a trigraph G, if X is a component of V (G), then G|X is a component of G.

We finish this section by two easy observations from [1].

2.1 If G be a bull-free trigraph, then so is G.

2.2 Let G be a trigraph, let X ⊆ V (G) and v ∈ V (G) \ X. Assume that
|X| > 1 and v is mixed on X. Then there exist vertices x1, x2 ∈ X such
that v is adjacent to x1 and antiadjacent to x2. Moreover, if X is connected,
then x1 and x2 can be chosen adjacent.

3 The main theorem

In this section we state our main theorem. We start by describing a few
special types of trigraphs.

Clique connectors. Let G be a trigraph. Let K = {k1, . . . , kt} be a
strong clique in G, and let A,B,C,D be strongly stable sets, such that
the sets K,A,B,C,D are pairwise disjoint and A ∪ B ∪ C ∪ D ∪ K =
V (G). Let A1, . . . , At be disjoint subsets of A with

⋃t
i=1Ai = A, and let

B1, . . . , Bt, C1, . . . , Ct, D1, . . . , Dt be defined similarly. Let us now describe
the adjacencies in G:

• For i ∈ {1, . . . , t}
Ai is strongly complete to {k1, . . . , ki−1},
Ai is complete to {ki},
Ai is strongly anticomplete to {ki+1, . . . , kt},
Bi is strongly complete to {kt−i+2, . . . , kt},
Bi is complete to {kt−i+1}, and
Bi is strongly anticomplete to {k1, . . . , kt−i}.

Let A′i be the set of vertices of Ai that are semi-adjacent to ki, and let
B′t−i+1 be the set of vertices of Bt−i+1 that are semi-adjacent to ki. (Thus
|A′i| ≤ 1 and |B′t−i+1| ≤ 1.)

• For i, j ∈ {1, . . . , t}, if i+ j 6= t and Ai is not strongly complete to Bj ,
then |A| = |B| = |K| = 1 and A is complete to B.
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• A′i is strongly complete to Bt−i, B′t−i is strongly complete to Ai, and
the adjacency between Ai \A′i and Bt−i \B′t−i is arbitrary.

• A∪K is strongly anticomplete to D, and B∪K is strongly anticomplete
to C.

• For i ∈ {1, . . . , t}, Ci is strongly complete to
⋃

j<iAj , and Ci is
strongly anticomplete to

⋃
j>iAj .

• For i ∈ {1, . . . , t}, Ci is strongly complete to A′i, every vertex of Ci has
a neighbor in Ai, and otherwise the adjacency between Ci and Ai \A′i
is arbitrary.

• For i ∈ {1, . . . , t}, Di is strongly complete to
⋃

j<iBj , and Di is
strongly anticomplete to

⋃
j>iBj .

• For i ∈ {1, . . . , t}, Di is strongly complete to B′i, every vertex of Di

has a neighbor in Bi, and otherwise the adjacency between Di and
Bi \B′i is arbitrary.

• For i, j ∈ {1, . . . , t}, if i + j > t, then Ci is strongly complete to Dj ,
and otherwise the adjacency between Ci and Dj is arbitrary.

If At 6= ∅ and Bt 6= ∅, then G is a (K,A,B,C,D)-clique connector.

3.1 Every clique connector is bull-free.

Proof. Let G be a (K,A,B,C,D)-clique connector. Let |K| = t.

(1) Let a ∈ A and b ∈ B, and suppose that ki is adjacent to both a and
b for some i ∈ {1, . . . , t}. Then every vertex of K is strongly adjacent to at
least one of a, b.

Since ki is adjacent to a, if follows that a ∈
⋃

j≥iAi, and since b is adjacent
to ki, it follows that b ∈

⋃
j≥t−i+1Bj . Therefore, a is strongly complete to

{k1, . . . , ki−1}, and b is strongly complete to {ki+1, . . . , kt}. Since both a and
b are adjacent to ki, and at most one of a, b is semi-adjacent to ki, (1) follows.

(2) There do not exist k, k′ ∈ K and a, a′ ∈ A, such that the pairs ak, a′k′

are adjacent, and the pairs ak′, a′k are antiadjacent.

Suppose such a, a′, k, k′ exist, say k = kp and k′ = kq for p, q ∈ {1, . . . , t}.
We may assume that p > q. Then, since a is adjacent to kp, it follows that
a ∈

⋃
j≥pAj , and therefore a is strongly adjacent to kq, a contradiction.

This proves (2).

(3) Let a ∈ A and b ∈ B, and suppose that ki is adjacent to both a
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and b for some i ∈ {1, . . . , t}. The either a is strongly adjacent to b, or
|A| = |B| = |K| = 1.

We may assume at least one of A,B,K has size at least two. Since a is
adjacent to ki, it follows that a ∈

⋃
j≥iAj , and since b is adjacent to ki, it

follows that b ∈
⋃

j≥t−i+1Bj , and therefore a is strongly adjacent to b. This
proves (3).

(4) Let a ∈ A and b ∈ B, and suppose that ki is antiadjacent to both a
and b for some i ∈ {1, . . . , t}. Then a is strongly adjacent to b.

Suppose a is antiadjacent to b. Then a 6∈ A′i and b 6∈ B′t−i+1. Let p, q ∈
{1, . . . , t} such that a ∈ Ap and b ∈ Bq. Since a is antiadjacent to ki, it fol-
lows that p < i, and since b is antiadjacent to ki, it follows that q < t− i+1.
But then p+ q < t, a contradiction. This proves (4).

(5) There do not exist a, a′ ∈ A, k ∈ K and c ∈ C, such that the pairs
ak, ac are adjacent, and the pairs a′c, a′k are antiadjacent.

Let i, p, q, r ∈ {1, . . . , t} such that k = ki, a ∈ Ap, a′ ∈ Aq and c ∈ Cr.
Since a is adjacent to ki and a′ is antiadjacent to ki, it follows that p ≥ i
and q ≤ i. Since c is adjacent to a and antiadjacent to a′, it follows that
r ≥ p and r ≤ q. Consequently, p = q = r = i, and a′ ∈ A′i. But Ci is
strongly complete to A′i, a contradiction. This proves (5).

Suppose that there is a bull T in G. Let T = {b1, b2, b3, b4, b5}, where
the pairs b1b2, b2b3, b2b4, b3b4, b4b5 are adjacent, and all the remaining pairs
are antiadjacent.

Since A ∪D and B ∪ C are strongly stable sets, it follows that at least
one of b2, b3, b4 belongs to K.

Suppose first that |K ∩ {b2, b3, b4}| = 1. Assume first that b3 ∈ K, say
b3 = ki for some i ∈ {1, . . . , t}. Then, since each of A,B is strongly stable,
and K is strongly anticomplete to C∪D, we may assume from the symmetry
that b2 ∈ A and b4 ∈ B. Let s ∈ {1, . . . , t} such that b2 ∈ As. Then s ≥ i.
Since b1 is antiadjacent to b3 and adjacent to b2, it follows that b1 ∈ B ∪C.
Similarly, b5 ∈ A ∪D. Suppose b5 ∈ A. If b1 ∈ B, then, since both b1 and
b5 are antiadjacent to b3, (4) implies that b1 is strongly adjacent to b5, a
contradiction. So b1 ∈ C. But then b2 is adjacent to both b3, b1, and b5 is
antiadjacent to both b3, b5, contrary to (5). This proves that b5 ∈ D, and,
from the symmetry, b1 ∈ C. Then b1 ∈

⋃
j≥sCj ⊆

⋃
j≥iCj , and, similarly,

b5 ∈
⋃

j≥t−i+1Dj , and so b1 is strongly adjacent to b5, a contradiction. This
proves that b3 6∈ K. From the symmetry we may assume that b2 ∈ K, say
b2 = ki for some i ∈ {1, . . . , t}. Let {x, y} = {b3, b4}. Then, since each of
A,B is strongly stable, and K is strongly anticomplete to C ∪ D, we may
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assume from the symmetry that x ∈ A and y ∈ B. Since b1 is adjacent
to b2, we may assume from the symmetry, that b1 ∈ K ∪ A. Since b1 is
antiadjacent to both b3, b4, (1) implies that b1 6∈ K. Therefore b1 ∈ A, and
so, by (3), b1 is strongly adjacent to y, a contradiction. This proves that
|K ∩ {b2, b3, b4}| > 1.

Next suppose that |K∩{b2, b3, b4}| = 2. Assume first that b3 6∈ K. Then
b2, b4 ∈ K. Then we may assume from the symmetry that b3 ∈ A. Since b1
is antiadjacent to b4, and b5 to b2, it follows that b1, b5 ∈ A ∪ B. By (2), it
follows that not both of b1, b5 are in A, and not both are in B. Thus we may
assume that b1 ∈ A, and b5 ∈ B, but now both b3, b5 are adjacent to b4, and
yet b3 is antiadjacent to b5, contrary to (3). This proves that b3 ∈ K. From
the symmetry we may assume that b2 ∈ K and b4 ∈ A. Then b1 ∈ A ∪ B.
Since b2 is adjacent to both b1 and b4, and since b1 is antiadjacent to b4,
(3) implies that b1 ∈ A. Since b5 is adjacent to b4, and antiadjacent to
b2, it follows that b5 ∈ B ∪ C. If b5 ∈ B, then, since b3 is antiadjacent to
both b1, b5, (4) implies that b1 is strongly adjacent to b5, a contradiction. So
b5 ∈ C. But then b4 is adjacent to both b3, b5, and b1 is antiadjacent to both
b3, b5, contrary to (5). This proves that |K ∩ {b2, b3, b4}| > 2, and therefore
b2, b3, b4 ∈ K.

Then b1, b5 ∈ A ∪ B. By (2), not both b1, b5 are in A, and, from the
symmetry not both are in B. So we may assume that b1 ∈ A, and b5 ∈ B.
But now, since b3 is antiadjacent to both b1, b5, (4) implies that b1 is strongly
adjacent to b5, a contradiction. This proves 3.1.

Melts. Let G be a trigraph, such that V (G) is the disjoint union of four
sets K,M,A,B, where A and B are strongly stable sets, and K and M are
strong cliques. Assume that |A| > 1 and |B| > 1. Let K = {k1, . . . , km}
and M = {m1, . . . ,mn}. Let A be the union of pairwise disjoint subsets Ai,j

where i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}, and let B be the disjoint union of
subsets Bi,j where i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}. Let A0,0 = B0,0 = ∅.
Assume also that

• K is strongly anticomplete to M

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} Ai,j is
strongly complete to {k1, . . . , ki−1} ∪ {mn−j+2, . . . ,mn},
complete to {ki} ∪ {mn−j+1},
strongly anticomplete to {ki+1, . . . , km} ∪ {m1, . . . ,mn−j},
and the set Bi,j is
strongly complete to {km−i+2, . . . , km} ∪ {m1, . . . ,mj−1},
complete to {km−i+1} ∪ {mj},
strongly anticomplete to {k1, . . . , km−i} ∪ {mj+1, . . . ,mn}.

• for i ∈ {1, . . . ,m}, Ai,0 is
strongly complete to {k1, . . . , ki−1},
complete to {ki},
strongly anticomplete to {ki+1, . . . , km} ∪M
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• for j ∈ {1, . . . , n}, A0,j is
strongly complete to {mn−j+2, . . . ,mn},
complete to {mn−j+1},
strongly anticomplete to K ∪ {m1, . . . ,mn−j}

• for i ∈ {1, . . . ,m}, Bi,0 is
strongly complete to {km−i+2, . . . , km},
complete to {km−i+1},
strongly anticomplete to {k1, . . . , km−i} ∪M

• for j ∈ {1, . . . , n}, B0,j is
strongly complete to {m1, . . . ,mj−1},
complete to {mj},
strongly anticomplete to K ∪ {mj+1, . . . ,mn}

• the sets
⋃

0≤j≤nAm,j ,
⋃

0≤j≤nBm,j ,
⋃

0≤i≤mAi,n and
⋃

0≤i≤mBi,n are
all non-empty

• Let i, i′ ∈ {0, . . . ,m} and j, j′ ∈ {0, . . . , n}, and suppose that i′ > i
and j′ > j. Then at least one of the sets Ai,j and Ai′,j′ is empty, and
at least one of the sets Bi,j and Bi′,j′ is empty

• For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, Ai,j is strongly complete to B,
and Bi,j is strongly complete to A

• For i, i′ ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , n}, Ai,0 is strongly complete
to Bi′,0, and A0,j is strongly complete to B0,j′

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . n}, Ai,0 is the disjoint union of sets
Ak

i,0 with k ∈ {0, . . . , n}, and A0,j is the disjoint union of sets Ak
0,j

with k ∈ {0, . . . ,m},

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . n}, Bi,0 is the disjoint union of sets
Bk

i,0 with k ∈ {0, . . . , n}, and B0,j is the disjoint union of sets Bk
0,j

with k ∈ {0, . . . ,m}.

• for i ∈ {1, . . . ,m}, every vertex of A0
i,0 is strongly anticomplete to⋃

1≤j≤nB0,j , and has a neighbor in
⋃

1≤j≤m

⋃
1≤k≤nBj,k

• for j ∈ {1, . . . , n}, every vertex of A0
0,j is strongly anticomplete to⋃

1≤i≤mBi,0, and has a neighbor in
⋃

1≤i≤m

⋃
1≤k≤nBi,k

• for i ∈ {1, . . . ,m}, every vertex of B0
i,0 is strongly anticomplete to⋃

1≤j≤nA0,j , and has a neighbor in
⋃

1≤j≤m

⋃
1≤k≤nAj,k

• for j ∈ {1, . . . , n}, every vertex of B0
0,j is strongly anticomplete to⋃

1≤i≤mAi,0, and has a neighbor in
⋃

1≤i≤m

⋃
1≤k≤nAi,k
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• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
every vertex of Ai

0,j has a neighbor in Bi,0,
every vertex of Bj

i,0 has a neighbor in A0,j ,
every vertex of Aj

i,0 has a neighbor in B0,j ,
every vertex of Bi

0,j has a neighbor in Ai,0,
Ai

0,j is strongly complete to
⋃

1≤s<iBs,0

Ai
0,j is strongly anticomplete to

⋃
i<s≤mBs,0

Aj
i,0 is strongly complete to

⋃
1≤s<j B0,s

Aj
i,0 is strongly anticomplete to

⋃
j<s≤nB0,s

Bj
i,0 is strongly complete to

⋃
1≤s<j A0,s

Bj
i,0 is strongly anticomplete to

⋃
j<s≤nA0,s

Bi
0,j is strongly complete to

⋃
1≤s<iAs,0

Bi
0,j is strongly anticomplete to

⋃
i<s≤mAs,0

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} let
A′i,0 be the set of vertices of Ai,0 that are semi-adjacent to ki

A′0,j be the set of vertices of A0,j that are semi-adjacent to mn−j+1,
B′i,0 be the set of vertices of Bi,0 that are semi-adjacent to km−i+1,
B′0,j be the set of vertices of B0,j that are semi-adjacent to mj .
Then
A′i,0 is strongly complete to

⋃
1≤s≤nB

i
0,s,

A′0,j is strongly complete to
⋃

1≤s≤mBj
s,0,

B′i,0 is strongly complete to
⋃

1≤s≤nA
i
0,s,

B′0,j is strongly complete to
⋃

1≤s≤mAj
s,0.

• there exist i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} such that either Ai,j 6= ∅,
or Bi,j 6= ∅.

• Let i, s, s′ ∈ {1, . . . ,m} and j, t, t′ ∈ {1, . . . , n} such that t′ ≥ j ≥
n+ 1− t and s ≥ i ≥ m+ 1− s′. Then at least one of As,t and Bs′,t′

is empty.

Under these circumstances we say that G is a melt. We say that a melt is an
A-melt if Bi,j = ∅ for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We say that
a melt is a B-melt if Ai,j = ∅ for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
We say that a melt is a double melt if there exist i, i′ ∈ {1, . . . ,m} and
j, j′ ∈ {1, . . . , n} such that Ai,j 6= ∅, and Bi′,j′ 6= ∅.

3.2 Every melt is bull-free.

Proof. Let G be a melt. We use the notation from the definition of a
melt. Suppose there is a bull C = {c1, c2, c3, c4, c5} in G, where the pairs
c1c2, c2c3, c3c4, c2c4, c4c5 are adjacent, and the pairs c1c3, c1c4, c1c5, c2c5, c3c5
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are antiadjacent. Let X =
⋃

1≤j≤n = A0,j , Y =
⋃

1≤j≤nB0,j , Z = A \ X,
W = B \ Y . We observe that the graph G \M is a (K,Z,W, Y,X)-clique
connector. Therefore, 3.1 implies that C∩M 6= ∅, and, similarly, C∩K 6= ∅.
Since {c2, c3, c4} is a clique and since K is strongly anticomplete to M , we
may assume thatM∩{c2, c3, c4} = ∅. SinceM∩C 6= ∅, and c1 is antiadjacent
to c5, and M is a strong clique, we may assume that c1 ∈ M and c5 6∈ M .
Then c2 ∈ A ∪B, and from the symmetry we may assume that c2 ∈ A. Let
i ∈ {1, . . . ,m} and j, k ∈ {1, . . . , n} be such that c1 = mj and c2 ∈ Ai,k.
Since c2 is adjacent to c1, it follows that j ≥ n − k + 1. Since A,B are
both strongly stable sets, it follows that at least one of c3, c4 belongs to
K, and therefore, since c2 is adjacent to both c3, c4, we deduce that i > 0.
Consequently, c2 is strongly complete to B. Let

B′ =
⋃

0≤i≤m

⋃
j≤s≤n

Bi,s.

Then G|(K∪{mj}∪A∪ (B \B′)) is a (K,Z,W \B′, (Y ∪{mj})\B′, X)-
clique connector, and so 3.1 implies that C∩B′ 6= ∅. Since c1 is anticomplete
to {c3, c4, c5}, it follows that C ∩ Bs,t = ∅ for every s ∈ {0, . . . ,m} and
t ∈ {j+1, . . . , n}, and there exists s ∈ {0, . . . ,m} and b ∈ Bs,j∩C such that
b is semi-adjacent to c1. Since c2 is strongly complete to B, it follows that
b ∈ {c3, c4}, and the vertex of {c3, c4} \ {b} belongs to K, say it is kp. Then
both c2 and b is adjacent to both kp and mj , contrary to the last condition
in the definition of a melt. This proves 3.2.

Let H be a graph. For a vertex v ∈ V (H), the degree of v in H, de-
noted by deg(v), is the number of edges of H incident with v. If H is the
empty graph let maxdeg(H) = 0, and otherwise we define maxdeg(H) =
maxv∈V (H) deg(v).

The class T1. Before giving a precise definition of the class T1, let us
describe roughly what a trigraph in this class looks like. The idea is the
following. Every trigraph in T1 consists of a triangle-free part X (in what
follows V (X) is the union of L, the sets h(e), and the sets h(e, v)∩B), and
a collection of pairwise disjoint and pairwise anticomplete strong cliques Yv

(in what follows Yv is the union of h(v) and the sets h(e, v)\B for all edges e
incident with v). Every vertex of X attaches in at most two cliques Yv. Each
Yv, together with vertices of X at distance at most two from Yv, induces a
clique connector. If every vertex of X has neighbors in at most one Yv, this
describes the graph completely. Describing the adjacency rules for vertices
of X that attach in two different cliques, Yu and Yv is more complicated (we
need to explain how the clique connectors for Yu and Yv overlap). Without
going into details, the structure there is locally a melt.

Let us now turn to the precise definition of T1. Let H be a loopless
triangle-free graph with maxdeg(H) ≤ 2 (H may be empty, and may have
parallel edges). We say that a trigraph G admits an H-structure if there
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exist a subset L of V (G) and a map

h : V (H) ∪ E(H) ∪ (E(H)× V (H))→ 2V (G)\L

such that

• every vertex of V (G)\L is in h(x) for exactly one element x of V (H)∪
E(H) ∪ (E(H)× V (H)), and

• h(v) 6= ∅ for every v ∈ V (H) of degree zero, and

• h(e) 6= ∅ for every e ∈ E(H), and

• h(e, v) 6= ∅ if e is incident with v, and

• h(e, v) = ∅ if e is not incident with v, and

• for u, v ∈ V (H), h(u) is strongly anticomplete to h(v), and

• h(v) is a strong clique for every v ∈ V (H), and

• every vertex of L has a neighbor in at most one of the sets h(v) where
v ∈ V (H), and

• G|(L ∪ (
⋃

e∈E(H) h(e))) has no triangle, and

• for every e ∈ E(H), every vertex of L is either strongly complete or
strongly anticomplete to h(e), and

• h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f ∈ E(H); if e and f share an endpoint, then h(e) is strongly
complete to h(f), and

• for every e ∈ E(H) and v ∈ V (H), h(e) is strongly anticomplete to
h(v), and

• for v ∈ V (H), let Sv be the vertices of L with a neighbor in h(v),
and let Tv be the vertices of (L∪ (

⋃
e∈E(H) h(e))) \Sv with a neighbor

in Sv. Then there is a partition of Sv into two sets Av, Bv, and a
partition of Tv into two sets Cv, Dv such that G|(h(v)∪ Sv ∪ Tv) is an
(h(v), Av, Bv, Cv, Dv)-clique connector, and

• for v ∈ V (H), if there exist a ∈ Av and b ∈ Bv antiadjacent with a
common neighbor in h(v), then v has degree zero in H.

Moreover, let e be an edge of H with ends u, v. Then

• if f ∈ E(H) \ {e} is incident with v, then h(e, v) is strongly complete
to h(f, v), and
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• G|(h(e)∪h(e, v)∪h(e, u)) is an h(e)-melt, such that if (K,M,A,B) are
as in the definition of a melt, then K ⊆ h(e, v), M ⊆ h(e, u), A = h(e),
B ⊆ h(e, v) ∪ h(e, u), every vertex of h(e, v) ∩B has a neighbor in K,
and every vertex of h(e, u)∩B has a neighbor in M (and, in particular,
h(e, v) is strongly anticomplete to h(e, u)); and

• h(e, v) is strongly complete to h(v), and h(e, v) is strongly anticomplete
to h(w) for every w ∈ V (H) \ {v}, and

• h(e, v) is strongly anticomplete to h(f, w) for every f ∈ E(H) \ {e},
and w ∈ V (H) \ {v}, and

• h(e, v) is strongly anticomplete to h(f) for every f ∈ E(H) \ {e}.

Furthermore, either the following statements all hold, or they all hold with
the roles of Au ∪Av and Bu ∪Bv switched:

• h(e) is strongly complete to Bu ∪Bv, and

• h(e, v) is strongly complete to Av and strongly anticomplete to L\Av,
and, and

• every vertex of (L ∪ (
⋃

f∈E(H) h(f))) \ (Au ∪ Av) with a neighbor in
Au ∪Av is strongly complete to h(e).

Let us say that G belongs to T1 if either G is a double melt, or G admits an
H structure for some loopless triangle-free graph H with maximum degree
at most two.

In the definition of an H-structure, we did not specify the adjacencies
between the sets h(e) for disjoint edges e of H, except that

• h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f ∈ E(H).

In fact, the only constraints on these adjacencies come from the condition
that

• G|(L ∪ (
⋃

e∈E(H) h(e))) has no triangle.

To tighten the structure, one might want to add another ingredient, which is
a triangle-free supergraph F of the line graph of H, that would “record” for
which pairs of disjoint edges e, f of H, the sets h(e) and h(f) are strongly
complete to each other. We did not do that here, since such a graph F can
be easily reconstructed from the H-structure. The situation concerning the
adjacencies between the vertices of L and the sets h(e) is similar.

We observe the following:

3.3 Every trigraph in T1 is bull-free.

12



Proof. Let G ∈ T1. If G is a double melt, then 3.3 follows from 3.2, so we
may assume not. Let H, h and L be as in the definition of T1. We use the
notation of the definition of T1. Suppose there is a bull B in G. Let B =
{v1, v2, v3, v4, v5}, where the pairs v1v2, v2v3, v2v4, v3v4, v4v5 are adjacent,
and all the remaining pairs are antiadjacent. Since G|(L∪(

⋃
e∈E(H) h(e))) is

triangle-free, it follows that at least one of v2, v3, v4 belongs to h(v)∪h(e, v)
for some v ∈ V (H) and e ∈ E(H). If {v2, v3, v4} ∩ h(e, v) = ∅ for every
e ∈ E(H) and v ∈ V (H), then B ⊆ h(v) ∪ Sv ∪ Tv for some v ∈ V (H),
contrary to the 3.1, since G|(h(v)∪Sv∪Tv) is a clique connector. So we may
assume that at least one of v2, v3, v4 belongs to h(e, v) for some v ∈ V (H)
and e ∈ E(H). Let u be the other end of e, and if v has degree two in
H, let f be the other edge incident with v. If v has degree one in H, let
X = Y = ∅, and if v has degree two in H, let X = h(f) and Y = h(f, v).
Let Z be the set of vertices of L∪ ((

⋃
g∈E(H)\{e,f} h(g)) \ (Sv ∪Tv)) that are

strongly complete to h(e). Then

B ⊆ h(v) ∪ h(e, v) ∪ h(e) ∪ h(e, u) ∪ Sv ∪ Tv ∪X ∪ Y ∪ Z.

We observe that h(v)∪h(e, v)∪h(e)∪Sv∪Tv∪X∪Y ∪Z is a clique connector,
and so B∩h(e, u) 6= ∅. Since each of v2, v3, v4 has distance at most two from
every vertex of B, it follows that {v2, v3, v4} ∩ (h(v) ∪ Y ) = ∅. Since h(e, u)
is strongly anticomplete to h(e, v), it follows that B∩h(e, u) ⊆ {v1, v5}, and
we may assume from the symmetry that v1 ∈ B∩h(e, u). Then v2 6∈ h(e, v),
and {v3, v4}∩h(e, v) 6= ∅. Since v2 is complete to {v1, v3, v4}, it follows that
v2 ∈ h(e). Now, since {v2, v3, v4} is a triangle, v2 ∈ h(e), h(e) is strongly
anticomplete to h(v), there is no triangle in h(e) ∪ Sv, and no vertex of
Sv has both a neighbor in h(e) and a neighbor in h(e, v), it follows that
{v3, v4} ⊆ h(e, v). Since v5 is adjacent to v4 and antiadjacent to v3, it
follows that v5 ∈ h(e, v) ∪ h(e). But now B ⊆ h(e) ∪ h(e, u) ∪ h(e, v),
contrary to 3.2. This proves 3.3.

Next let us describe some decompositions (these definitions appear in
[1], but we repeat them for completeness). Let G be a trigraph. A proper
subset Xof V (G) is a homogeneous set in G if every vertex of V (G) \ X
is either strongly complete or strongly anticomplete to X. We say that G
admits a homogeneous set decomposition, if there is a homogeneous set in G
of size at least two.

For two disjoint subsets A and B of V (G), the pair (A,B) is a homoge-
neous pair in G, if A is a homogeneous set in G\B and B is a homogeneous
set in G \A. We say that the pair (A,B) is tame if

• |V (G)| − 2 > |A|+ |B| > 2, and

• A is not strongly complete and not strongly anticomplete to B.

G admits a homogeneous pair decomposition if there is a tame homogeneous
pair in G.
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Let S ⊆ V (G). A center for S is a vertex of V (G) \ S that is complete
to S, and an anticenter for S is a vertex of V (G) \S that is anticomplete to
S. A vertex of G is a center (anticenter) for an induced subgraph H of G if
it is a center (anticenter) for V (H).

We say that a trigraph G is elementary if there does not exist a path
P of length three in G, such that some vertex c of V (G) \ V (P ) is a center
for P , and some vertex a of V (G) \ V (P ) is an anticenter for P . The main
result of this paper is the following:

3.4 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition.

Let us call a bull-free trigraph that does not admit a homogeneous set
decomposition, or a homogeneous pair decomposition, and does not contain
a path of length three with a center unfriendly. In view of the main result
of [1], in this paper we deal mainly with unfriendly graphs (for a precise
explanation, see the end of Section 6).

4 Prisms

Let k ≥ 3 be an integer. A k-prism is a trigraph whose vertex set is the
disjoint union of two cliques A = {a1, . . . , ak} and B = {b1, . . . , bk}; and
such that for every i, j ∈ {1, . . . , k}, ai is adjacent to bj if i = j and ai is
antiadjacent to bj if i 6= j. A prism is a 3-prism. For a trigraph G, an
n-prism in G is an induced subtrigraph of G that is an n-prism.

We start by listing some properties of a prism in an unfriendly trigraph.

4.1 Let G be an unfriendly trigraph, and let P be a k-prism in G. Let A
and B be as in the definition of a k-prism. Then

• A and B are strong cliques,

• ai is strongly antiadjacent to bj for every 1 ≤ i 6= j ≤ k,

• no vertex x ∈ V (G) \ V (P ) is complete to {ai, bi, aj , bj} for any 1 ≤
i < j ≤ k.

Proof. Let i, j,m be three distinct integers in {1, . . . , k}. Since {ai, bi, bm, bj , aj}
is not a bull, it follows that ai is strongly adjacent to aj . Therefore, A, and
from the symmetry B, is a strong clique. This proves the first assertion of
4.1
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If ai is adjacent to bj , then ai is a center for the path am-aj-bj-bi, contrary
to the fact that G is unfriendly. This proves the second assertion of 4.1.

Finally, if some vertex x ∈ V (G) \ V (P ) is complete to {ai, bi, aj , bj},
then since ai-x-bj-bm is not path with center bi, it follows that x is adjacent
to bm. But now ai-aj-bj-bm is a path of length three with center x, contrary
to the fact that G is unfriendly. This completes the proof of 4.1.

The main result of this section is the following:

4.2 Let G be an unfriendly trigraph. Assume that for some integer n ≥ 3,
G contains an induced subtrigraph that is an n-prism. Then G is a prism.

Proof. Let A1, . . . Ak, B1, . . . , Bk be pairwise disjoint non-empty subsets of
V (G) such that for i, j ∈ {1, . . . , k}

• Ai is complete to Aj and Bi is complete to Bj

• if i 6= j, then Ai is anticomplete to Bj

• every vertex of Ai has a neighbor in Bi

• every vertex in Bi has a neighbor in Ai

• k ≥ 3.

Let W =
⋃k

i=1(Ai ∪ Bi). In these circumstances we call G|W a hyperprism
in G. Since G contains an n-prism, there is a hyperprism in G. We may
assume that W is maximal subject to G|W being a hyperprism in G. Let
A =

⋃k
i=1Ai and B =

⋃k
i=1Bi.

(1) Let i, j ∈ {1, . . . , k} such that i 6= j. Then Ai is strongly complete
to Aj, and strongly anticomplete to Bj.

Let m ∈ {1, . . . , k} \ {i, j}. Let ai ∈ Ai and aj ∈ Aj . Choose bi ∈ Bi

adjacent to ai and bj ∈ Bj adjacent to aj . Choose am ∈ Am and bm ∈ Bm

adjacent. Then G|{ai, bi, aj , bj , am, bm} is a 3-prism, and so by 4.1 ai is
strongly adjacent to aj , and ai is strongly antiadjacent to bj . Now if follows
from the symmetry that Ai is strongly complete to Aj . Similarly, since every
vertex of Bj has a neighbor in Aj , it follows that Ai is strongly anticomplete
to Bj . This proves (1).

(2) Let v ∈ V (G) \ W and let i ∈ {1, . . . , k}. Suppose v has a neighbor
ai ∈ Ai and a neighbor bi ∈ Bi. Then ai is strongly antiadjacent to bi.

Assume ai is adjacent to bi. From the symmetry we may assume that i = 1.
Suppose v has a neighbor a2 ∈ A2 and a neighbor b2 ∈ B2. Since G is
unfriendly a2-a1-b1-b2 is not a three edge path with center v, and therefore
a2 is strongly adjacent to b2. Let a3 ∈ A3 and b3 ∈ B3 be adjacent. Then
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G|{a1, a2, a3, b1, b2, b3} is a 3-prism and v is complete to {a1, a2, b1, b2}, con-
trary to 4.1. This proves, using symmetry, that for every j ∈ {2, . . . , k}, v
is strongly anticomplete to at least one of Aj , Bj . Suppose that for some
j,m ∈ {2, . . . , k}, v has a neighbor aj ∈ Aj and bm ∈ Bm. Then j 6= m,
and aj-a1-b1-bm is a path with center v, a contradiction. This proves that
v is strongly anticomplete to at least one of A \ A1 and B \ B1. From the
symmetry we may assume that v is strongly anticomplete to B \ B1. If for
some j ∈ {2, . . . , k}, v has an antineighbor aj ∈ Aj , then {aj , a1, v, b1, bm}
is a bull for every bm ∈ Bm with m ∈ {2, . . . , k} \ {j}. This proves that v is
strongly complete to A \A1. But now the sets A1 ∪ {v}, . . . , Ak, B1, . . . , Bk

form a hyperprism in G, contrary to the maximality of W . This proves (2).

(3) Let v ∈ V (G) \ W and let i, j,m ∈ {1, . . . , k} be all distinct. Sup-
pose bi ∈ Bi is adjacent to v, and bj ∈ Bj , am ∈ Am and bm ∈ Bm are
antiadjacent to v. Then am is antiadjacent to bm.

If am is adjacent to bm, then {v, bi, bj , bm, am} is a bull, a contradiction.
This proves (3).

(4) Let v ∈ V (G) \ W and let i ∈ {1, . . . , k}. Then v is strongly anti-
complete to at least one of Ai, Bi.

Suppose not. We may assume that v has a neighbor in A1 and a neigh-
bor in B1. For j ∈ {1, . . . , k}, let A′j be the set of neighbors of v in Aj , and
A′′j = Aj \ A′j . Let B′j and B′′j be defined similarly. By (2), A′j is strongly
anticomplete to B′j . Since every vertex in Aj has a neighbor in Bj , it follows
that if A′j is non-empty, then so is B′′j ; and if B′j is non-empty, then so is
A′′j . In particular, A′1, B

′
1, A

′′
1 and B′′1 are all non-empty.

Suppose that some a2 ∈ A′′2 is adjacent to some b2 ∈ B′′2 . By (3), and
the symmetry, it follows that v is strongly complete to A3 ∪ B3, and so
A′′3 = B′′3 = ∅, a contradiction. This proves, using symmetry, that for every
j ∈ {2, . . . , k}, A′′j is strongly anticomplete to B′′j . Since every vertex of Aj

has a neighbor in Bj , it follows that A′′j 6= ∅ if and only if B′j 6= ∅, and,
symmetrically, B′′j 6= ∅ if and only if A′j 6= ∅.

If v is anticomplete to B \B1, then v is complete to A \A1, and the sets
A1∪{v}, . . . , Ak, B1, . . . , Bk form a hyperprism, contrary to the maximality
of W . This proves that for some 2 ≤ s ≤ k, B′s 6= ∅, and, from the symmetry,
for some 2 ≤ t ≤ k, A′t 6= ∅. It follows that A′′s 6= ∅ and B′′t 6= ∅. Now, by (3)
(and from the symmetry if s = t), A′′1 is strongly anticomplete to B′′1 .

Next we claim that for j ∈ {1, . . . , k}, A′j is strongly complete to A′′j , and
B′j to B′′j . Suppose there exist a′j ∈ A′j and a′′j ∈ A′′j antiadjacent. Choose
b ∈ B \Bj adjacent to v (such a vertex b exists for j is different from at least
one of 1, t). Let bj ∈ Bj be adjacent to a′′j . Then bj ∈ B′j , and so, by (2), bj
is strongly antiadjacent to a′j . Now {a′j , v, b, bj , a′′j } is a bull, a contradiction.
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This proves that A′j is strongly complete to A′′j , and from the symmetry B′j
is strongly complete to B′′j .

Let J = {j ∈ {1, . . . , k} : A′j 6= ∅}. Then B′′j 6= ∅ for j ∈ J . Moreover,
for j ∈ {1, . . . , k} \ J , B′′j = ∅. Then |J | ≥ 2. Let

Ã0 =
k⋃

j=1

A′′j ∪ {v},

B̃0 =
k⋃

j=1

B′j

and for j ∈ J , let

Ãj = A′j and B̃j = B′′j .

Now, since |J | ≥ 2, the sets Ã0, {Ãj}j∈J , B̃0, {B̃j}j∈J form a hyper-
prism, contrary to the maximality of W . This proves (4).

(5) Let v ∈ V (G) \ W . Then v is strongly anticomplete to at least one
of A,B.

Suppose v has neighbors a1 ∈ A and b2 ∈ B. From the symmetry we
may assume that a1 ∈ A1. By (4), b2 6∈ B1, and therefore we may assume
that b2 ∈ B2. Now by (4), v is strongly anticomplete to B1 ∪A2.

Suppose v is strongly complete to B \ B1. By (4), this implies that
v is strongly anticomplete to A \ A1. But now the sets A1, . . . , Ak, B1 ∪
{v}, . . . , Bk form a hyperprism, contrary to the maximality of W . This
proves that v has an antineighbor in b ∈ B \ B1. From the symmetry,
renumbering B2, . . . , Bk if necessary, we may assume that b 6∈ B2. Now
since v has a neighbor in B2, and since every vertex in A1 has a neighbor
in B1, (3) implies that v is strongly complete to A1. From the symmetry,
it follows that for every i ∈ {1, . . . , k}, v is either strongly complete or
strongly anticomplete to Ai, and the same for Bi. Consequently, v is strongly
complete to A1 ∪ B2, and strongly anticomplete to B1 ∪ A2. Now by (3)
and (4), for every i ∈ {3, . . . , k}, v is strongly complete to one of Ai, Bi, and
strongly anticomplete to the other. From the symmetry between A and B,
we may assume that v is strongly complete to Ai for at least two values of
i.

Let I = {i ∈ {1, . . . , k} : v is strongly complete to Ai}. Then v is
strongly complete to

⋃
i 6∈I Bi, and strongly anticomplete to (

⋃
i∈I Bi) ∪

(
⋃

i 6∈I Ai). Let

Ã0 =
⋃
i 6∈I

Ai ∪ {v},

B̃0 =
⋃
i 6∈I

Bi
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and for i ∈ I, let

Ãi = Ai and B̃i = Bi.

Now, since |I| ≥ 2, it follows that the sets Ã0, {Ãi}i∈I , B̃0, {B̃i}i∈I form
a hyperprism, contrary to the maximality of W . This proves (5).

(6) Let v ∈ V (G) \ (A ∪B). Then one of the following holds for v:

1. possibly with A and B switched, for some i ∈ {1, . . . , k}, v strongly
complete to A \Ai and strongly anticomplete to B

2. v is strongly anticomplete to A ∪B.

We may assume that v has a neighbor a1 ∈ A1, for otherwise (5.2) holds.
Now (5) implies that v is strongly anticomplete to B. If there exist distinct
i, j ∈ {2, . . . , k} such that v has an antineighbor ai ∈ Ai and aj ∈ Aj , then,
choosing bi ∈ Bi to be a neighbor of ai, we get a contradiction to (3). So
we may assume that v is strongly complete to A \ (A1 ∪ A2). By the same
argument with the roles of A1, and, say, A3, exchanged, we deduce that v
is strongly complete to A1, and (5.2) holds with i = 2. This proves (6).

Let A0 be the set of vertices of V (G) \ W that are strongly complete to
A, and for 1 ≤ i ≤ k, let A′i be the set of vertices of V (G) \ (W ∪ A0)
that are strongly complete to A \ Ai. Define B0, B

′
1, . . . , B

′
k similarly. Let

N be the set of vertices of V (G) \W that are strongly anticomplete to W .
By (6), the sets A0, A

′
1, . . . , A

′
k, B0, B

′
1, . . . , B

′
k, N are pairwise disjoint and

have union V (G) \W .

(7) N = ∅.

Suppose not, and choose n ∈ N . Since G is unfriendly, it follows that G is
connected, and, from the symmetry, we may assume that n has a neighbor
a in A0 ∪ A′1. Let a2 ∈ A2, a3 ∈ A3, and choose b2 ∈ B2 adjacent to a2.
Then {n, a, a3, a2, b2} is a bull, a contradiction. This proves (7).

(8) Let i, j ∈ {1, . . . , k}. Then A0 ∪A′i is strongly anticomplete to B0 ∪B′j.

From the maximality of W , A0 ∪ A′i is strongly anticomplete to B0 ∪ B′i
for every i ∈ {1, . . . , k}. Suppose a ∈ A′i has a neighbor b ∈ B′j where
1 ≤ i < j ≤ k. Let bj ∈ Bj be antiadjacent to b, and let aj ∈ Aj be a
neighbor of bj . Choose am ∈ A \ (Ai ∪ Aj). Now {bj , aj , am, a, b} is a bull,
a contradiction. This proves (8).

(9) Let i, j ∈ {1, . . . , k} such that i 6= j. Then A′i is strongly complete
to A′j ∪A0.
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Suppose a′i ∈ A′i has an antineighbor a′j ∈ A′j ∪A0. Let ai ∈ Ai be antiadja-
cent to a′i and let bi ∈ Bi be a neighbor of ai. Choose m ∈ {1, . . . , k} \ {i, j}
and am ∈ Am. Now {a′i, am, a

′
j , ai, bi} is a bull, a contradiction. This

proves (9).

By (1), (8) and (9), (A1 ∪ A′1 ∪ A0, B1 ∪ B′1 ∪ A0) is a homogeneous pair
in G. Since G is unfriendly, it follows that this is not a tame homogeneous
pair, and G does not admit a homogeneous set decomposition, and therefore
A′1 = B′1 = A0 = B0 = ∅, and |A1| = |B1| = 1. Form the symmetry, we
deduce that A′i = B′i = ∅, and |Ai| = |Bi| = 1 for every i ∈ {1, . . . , k}. If
k > 3, then (A \ (A1 ∪A2), B \ (B1 ∪B2) is a tame homogeneous pair in G,
a contradiction. Thus k = 3 and G is a prism. This proves 4.2.

5 Lemmas about unfriendly trigraphs

In this section we prove a few lemmas about unfriendly trigraphs.

5.1 Let G be unfriendly graph, let m > 2 be an integer, and let Y1, . . . , Ym

be pairwise disjoint anticonnected sets, such that for i, j ∈ {1, . . . ,m}, Yi is
complete to Yj. Let v ∈ V (G) \ (

⋃m
i=1 Yi), assume that |Y1| > 1 and v has a

neighbor and an antineighbor in
⋃m

i=2 Yi. Then v is either strongly complete,
or strongly anticomplete to Y1.

Proof. Suppose not. Then v has a neighbor a and an antineighbor a′ in
Y1, and by 2.2 we may assume that a and a′ are distinct and antiadjacent.
From the symmetry, we may assume that v has a neighbor x ∈ Y2 and an
antineighbor h ∈ Y3. But now v-a-h-a′ is a path, and x is a center for it,
contrary to the fact that G is unfriendly. This proves 5.1.

5.2 Let G be an unfriendly trigraph such that there is no prism in G, and
let a1-a2-a3-a4-a1 be a hole of length four. Let K be the set of vertices that
are complete to {a1, a2} and anticomplete to {a3, a4}. Then K is a strong
clique.

Proof. Suppose some two vertices of K are not strongly adjacent, and
let C be an anti-component of K with |C| > 1. Since G is unfriendly, it
follows that C is not a homogeneous set in G, and so, by 2.2 applied in G,
there exist vertices c, c′, v such that c, c′ ∈ C, v 6∈ C, v is adjacent to c′ and
antiadjacent to c, and c′ is antiadjacent to c. Since {a4, a1, c

′, a2, c} is not a
bull, it follows that v 6= a1, and from the symmetry v 6= a2. Since a4-c′-a2-c
is not a path with center a1, it follows that v 6= a4, and from the symmetry
v 6= a3.

Suppose first that v is anticomplete to {a1, a2}. Since {v, c′, a2, a1, a4}
is not a bull, it follows that v is strongly adjacent to a4, and, similarly,
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v is strongly adjacent to a3. But now G|{a1, a2, c
′, a3, a3, v} is a prism, a

contradiction. So we may assume that v is strongly adjacent to a1, and by
5.1, v is strongly adjacent to a2. Since {c, a2, c

′, v, a4} is not a bull, it follows
that v is strongly antiadjacent to a4, and similarly to a3. But now v ∈ C, a
contradiction. This proves 5.2.

5.3 Let G be an unfriendly trigraph such that there is no prism in G, let
a1-a2-a3-a4-a1 be a hole in G, and let c be a center and a an anticenter for
{a1, a2, a3, a4}. Then c is strongly antiadjacent to a.

Proof. Suppose c is adjacent to a.

(1) Let i ∈ {1, . . . , 4}. Then ai is strongly adjacent to ai+1 (here the ad-
dition is performed mod 4), c is strongly adjacent to ai, and a is strongly
antiadjacent to ai.

Since ai-ai+3-ai+2-ai+1 is not a path with a center c, it follows that ai is
strongly adjacent to ai+1. Since {ai, ai+1, ai+2, c, a} is not a bull, it fol-
lows that ai is strongly adjacent to c. Finally, since a-ai-ai+1-ai+2 is not a
path with center c, we deduce that a is strongly antiadjacent to ai. This
proves (1).

Let A1, A2, A3, A4 be connected subsets of V (G), where ai ∈ Ai for i ∈
{1, . . . , 4}, such that

• for i ∈ {1, . . . , 4}, Ai is strongly complete to Ai+1 (with addition mod
4),

• for i = 1, 2, Ai is anticomplete to Ai+2,

• c is strongly complete to A1 ∪A2 ∪A3 ∪A4

• a is strongly anticomplete to A1 ∪A2 ∪A3 ∪A4.

Let W = A1 ∪A2 ∪A3 ∪A4, and assume that A1, A2, A3, A4 are chosen
with W maximal. Since G is unfriendly, it follows that A1 ∪ A3 is not a
homogeneous set in G, and so some vertex v of V (G)\ (A1∪A3) is mixed on
A1 ∪A3. Then v 6∈ A2 ∪A3 ∪ {a, c}. We may assume that v has a neighbor
v1 ∈ A1, and antineighbor v3 ∈ A3. Since A1 ∪ A3, A2 ∪ A4 and {c} are
three anticonnected sets complete to each other, 5.1 implies that v is either
strongly complete or strongly anticomplete to A2 ∪A4 ∪ {c}.

Suppose first that v is strongly anticomplete to A2 ∪ A4 ∪ {c}. Since
{v, v1, a2, c, a} is not a bull, it follows that v is adjacent to a. But now
v-a-c-v1-v is a hole of length four, and a2, a4 are two antiadjacent vertices,
each complete to {v1, c} and anticomplete to {v, a}, contrary to 5.2. This
proves that v is strongly complete to A2 ∪ A4 ∪ {c}. Since a-v-a2-v3 is
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not a path with center c, it follows that v is strongly antiadjacent to a.
If v is anticomplete to A3, then replacing A1 by A1 ∪ {v} contradicts the
maximality of W , so v has a strong neighbor in A3, and therefore A3 6= {v3}.
Since A3 is connected, 2.2 implies that there exist vertices x, y ∈ A3, such
that v is adjacent to x and antiadjacent to y, and x is adjacent to y. But
now y-x-v-v1 is a path, and c is a center for it, contrary to the fact that G
is unfriendly. This proves 5.3.

5.4 Let H be a trigraph such that no induced subtrigraph of H is a path of
length three. Then either

1. H is not connected, or

2. H is not anticonnected, or

3. there exist two vertices v1, v2 ∈ V (H) such that v1 is semi-adjacent to
v2, and V (H) \ {v1, v2} is strongly complete to v1 and strongly anti-
complete to v2.

Proof. Let X,Y ⊆ V (H) such that X 6= ∅, Y 6= ∅, X is either complete, or
anticomplete to Y , and there is at most one semi-adjacent pair xy with x ∈
X and y ∈ Y . Assume that X,Y are chosen with X ∪ Y maximal. Passing
to the complement if necessary, we may assume that X is anticomplete to Y .
First we show that X∪Y = V (H). Suppose not. Let v ∈ V (H)\(X∪Y ). Let
X ′, Y ′ be the set of neighbors of v in X,Y , respectively. By the maximality
of X ∪ Y , it follows that X ′ 6= ∅ and Y ′ 6= ∅. Since x-x′-v-y′ is not a path,
where x ∈ X \ X ′, x′ ∈ X ′ and y′ ∈ Y ′, it follows that X ′ is strongly
anticomplete to X \ X ′. Similarly, Y ′ is strongly anticomplete to Y \ Y ′.
Now X ′ ∪ Y ′ ∪ {v} is anticomplete to (X \ X ′) ∪ (Y \ Y ′), and the only
semi-adjacent pairs xy with x ∈ X ′ ∪ Y ′ ∪ {v} and y ∈ (X \X ′) ∪ (Y \ Y ′)
are those with x ∈ X and y ∈ Y . It follows from the maximality of X ∪ Y
that (X \X ′) ∪ (Y \ Y ′) = ∅. Now {v} is complete to X ∪ Y , and since v
is semi-adjacent to at most one vertex of H, it follows that there is at most
one semi-adjacent pair with a vertex in X ∪Y and a vertex in {v}, contrary
to the maximality of X ∪ Y . This proves that X ∪ Y = V (H).

If X is strongly anticomplete to Y , then the theorem holds. So we may
assume that some x ∈ X and y ∈ Y are semi-adjacent. Since x′-x-y-y′ is not
a path for x′ ∈ X\{x} and y′ ∈ Y \{y}, we may assume, from the symmetry,
that x is strongly anticomplete to X \ {x}. If X 6= {x}, then Y ∪ {x} is
strongly anticomplete to X \{x}, and the theorem holds, so we may assume
that X = {x}. Let Y1 be the set of neighbors of y in Y , and Y2 the set of
strong antineighbors of y in Y . Since y is semi-adjacent to x, it follows that
y is strongly complete to Y1. If some y1 ∈ Y1 is adjacent to some y2 ∈ Y2,
then x-y-y1-y2 is a path, a contradiction. So Y1 is strongly anticomplete to
Y2. But now, if Y2 = ∅, then the last outcome of the theorem holds, and if
Y2 6= ∅ then the first outcome of the theorem holds. This proves 5.4.
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5.5 Let G be an unfriendly trigraph with no prism, and let u, v ∈ V (G) be
adjacent. Let A, B be subsets of V (G) such that

• u is strongly complete to A and strongly anticomplete to B,

• v is strongly complete to B and strongly anticomplete to A,

• No vertex of V (G) \ (A ∪B) is mixed on A, and

• if x, y ∈ B are adjacent, then no vertex of V (G) \ (A∪B) is mixed on
{x, y}.

Then A = K ∪ S, where K is a strong clique and S is a strongly stable set.

Proof. Let K,S be subsets of A, such that K is a strong clique and K is
strongly complete to A \ (K ∪ S), and S is a strongly stable set and S is
strongly anticomplete to A\ (K∪S). Assume that K and S are chosen with
K ∪S maximal. Let Z = A\ (K ∪S). We may assume that Z is non-empty,
for otherwise the theorem holds.

(1) There do not exist k, s ∈ Z, such that k is semi-adjacent to s, k is
strongly complete to Z \ {k, s} and s is strongly anticomplete to Z \ {k, s}.

If such k, s exist, then K ∪ {k} and S ∪ {s} contradict the maximality
of K ∪ S. This proves (1).

(2) Z is anticonnected.

Suppose not. If some anticomponent Z0 of Z has size one, then K ∪ Z0, S
contradict the maximality of K ∪ S, so we may assume that there exist
two anticomponents, Z1, Z2 of Z, each with at least two vertices. Since
Z1 is not a homogeneous set in G, it follows that there exists a vertex
v1 ∈ V (G) \ Z1 such that v1 is mixed on Z1. Then v1 6∈ A. By 2.2,
there exist vertices z1, z′1 ∈ Z1 such that z1 is antiadjacent to z′1, and v1
is adjacent to z1 and antiadjacent to z′1. Let v2, z2, z′2 be defined similarly.
Then v1, v2 ∈ B. Since {v, v1, z1, z2, z′1} is not a bull, it follows that v1 is
strongly antiadjacent to z2. Similarly, v2 is strongly antiadjacent to z1. Since
{v1, z1, u, z2, v2} is not a bull, it follows that v1 is strongly adjacent to v2.
But now G|{u, z1, z2, v, v1, v2} is a prism, a contradiction. This proves (2).

Since u is complete to Z and G is unfriendly, it follows that there is no
path of length three in G|Z. Now it follows from 5.4, (1), and (2) that Z
is not connected. If some component Z0 of Z has size one, then K,S ∪ Z0

contradict the maximality of K ∪ S, so every component of Z has at least
two vertices and, in particular, that there exist two components, Z1, Z2 of
Z, each with at least two vertices. Let i ∈ {1, 2}. Since Zi is not a homoge-
neous set in G, it follows that there exists a vertex vi ∈ V (G) \Zi such that
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vi is mixed on Zi. Then vi 6∈ A, and therefore vi ∈ B. By 2.2, there exist
vertices zi, z′i ∈ Zi such that zi is adjacent to z′i, and vi is adjacent to zi and
antiadjacent to z′i. Since for z ∈ (Z ∪S) \Zi, {vi, zi, z

′
i, u, z} is not a bull, it

follows that vi is strongly complete to (Z ∪ S) \ Zi. Let Bi be the set of all
vertices of V (G) \ {u} that are mixed on Zi. Then Bi ⊆ B, Bi is strongly
complete to (A ∪ S) \ Zi, and B1 ∩B2 = ∅.

Let {i, j} = {1, 2}.

(3) If b ∈ V (G) \ (A ∪ Bi) has a neighbor in Bi, then v is strongly anti-
complete to Zi.

Suppose not. Since b 6∈ Bi, it follows that b is strongly complete to Zi.
Let bi ∈ Bi be adjacent to b. By 2.2, there exist vertices z, z′ ∈ Zi such
that z is adjacent to z′, and bi is adjacent to z and antiadjacent to z′. Since
G is unfriendly, it follows that b is not a center for the path v-bi-z-z′, and
therefore b is strongly antiadjacent to v. Consequently, b 6∈ B, and so b is
strongly complete to A. Choose zj ∈ Zj . Now zj-bi-z-z′ is a path, and b is
a center for it, contrary to the fact that G is unfriendly. This proves (3).

(4) Let b ∈ V (G) \ (A ∪ B1 ∪ B2), bi ∈ Bi and bj ∈ Bj, and assume that
b is adjacent to bi and antiadjacent to bj. Then b ∈ B, and b is strongly
anticomplete to Bj and strongly complete to Zj.

By (3), bi is strongly antiadjacent to bj . By 2.2, there exist z, z′ ∈ Zj

such that z is adjacent to z′, and bj is adjacent to z and antiadjacent to z′.
Since bi is strongly complete to Zj , and since {b, bi, z′, z, bj} is not a bull,
it follows that b has a neighbor in Zj . Since b is adjacent to bi, (3) implies
that b is strongly anticomplete to Zi, and therefore b has a neighbor and an
antineighbor in A. Since b is not in A, it follows that b ∈ B. Now by (3), b
is strongly anticomplete to Bj , and since b 6∈ Bj , b is strongly complete to
Zj . This proves (4).

Let Ci be the set of all vertices of V (G)\ (A∪B1∪B2) that have a neighbor
in Bi and an antineighbor in Bj . By (4), Ci ⊆ B and Ci is strongly anti-
complete to Bj . Let X be the vertices of B \ (B1 ∪ B2) that are strongly
anticomplete to B1 ∪B2, and let Y be the vertices of B \ (B1 ∪B2) that are
strongly complete to B1 ∪B2. By (4), B = B1 ∪B2 ∪C1 ∪C2 ∪X ∪ Y . Let
Xi be the vertices of X with a neighbor in Ci, and let X0 = X \ (X1 ∪X2).
By (3), Bi is strongly anticomplete to Bj . Since v is complete to B, and
G is unfriendly, it follows that there is no path of length three in G|B, and
therefore Ci is strongly anticomplete to Cj ∪Xj , Xi is disjoint from Xj , and
the sets Xi, Xj , X0 are pairwise strongly anticomplete to each other.
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(5) K is strongly anticomplete to B1 ∪B2.

Suppose some k in K has a neighbor b1 ∈ B1. By 2.2, there exist z1, z′1 ∈ Z1

such that b1 is adjacent to z and antiadjacent to z′, and z is adjacent to z′.
Let z ∈ Z2. Then z is adjacent to b1, and z-b1-z-z′ is a path with center k.
This proves (5).

(6) Both C1 and C2 are non-empty.

Suppose C1 is empty. We claim that (Z1, B1) is a homogeneous pair. Since
Z1 is a component of Z, no vertex of V (G) \ B1 is mixed on Z1. Suppose
some w ∈ V (G) \ (Z1 ∪B1) is mixed on B1. Then w 6∈ B2. Since C1 = ∅, it
follows that w has a neighbor in B2. Since w has an antineighbor in B1, we
deduce that w ∈ C2 ∪ A, and since w has a neighbor in B1, it follows that
w ∈ A. Since B1 is strongly complete to (Z ∪S) \Z1, it follows that w ∈ K,
contrary to (5). This proves (6).

Let Si be the vertices of S that are strongly complete to K and are not
strongly complete to Ci ∪ Xi. To complete the proof, we show that (Zi ∪
Si, Bi ∪ Ci ∪Xi) is a homogeneous pair in G, contradicting the fact that G
is unfriendly.

(7) Let a, b, c ∈ B and w ∈ V (G) \ B, such that a is adjacent to b, c is
anticomplete to {a, b}, and w is adjacent to a and anticomplete to {b, v}.
Then w ∈ A and w is strongly adjacent to c.

Since w is mixed on {a, b}, it follows that w ∈ A. Since {w, a, b, v, c} is
not a bull, it follows that w is strongly adjacent to c. This proves (7).

(8) No vertex of V (G) \ (Zi ∪ Si ∪Bi ∪Ci ∪Xi) is mixed on Bi ∪Ci ∪Xi.

First we claim that K is strongly anticomplete to Bi ∪ Ci ∪ Xi. Choose
w ∈ K. By (5), w is strongly anticomplete to Bi ∪ Bj . Since w is strongly
anticomplete to Bj , and Bj is strongly anticomplete to Bi ∪ Ci ∪Xi, it fol-
lows from (7) there there do not exit vertices a, b ∈ Bi ∪ Ci ∪Xi, such that
a is adjacent to b, and w is mixed on {a, b}. Now, since every vertex of Ci

has a neighbor in Bi, it follows that w is strongly anticomplete to Ci; and
since very vertex of Xi has a neighbor in Ci, it follows that w is strongly
anticomplete to Xi. This proves the claim.

Next suppose that r ∈ (Z ∪S ∪Y ) \ (Zi∪Si) is not strongly complete to
Bi ∪ Ci ∪Xi. Then r is strongly complete to Bi, and, since every vertex of
Ci has a neighbor in Bi, and every vertex of Xi has a neighbor in Ci, there
exist p, q ∈ Bi ∪Ci ∪Xi, such that p is adjacent to q, r is adjacent to p and
antiadjacent to q, and q ∈ Ci ∪ Xi. Assume first that r ∈ Z \ Zi. By the
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maximality of S ∪K, it follows that every component of Z has size at least
two, and so, from the symmetry we may assume that r ∈ Zj . By (3), r is
strongly anticomplete to Cj ; and since Cj is strongly anticomplete to {p, q}
we get a contradiction to (7). This proves that Z \Zi is strongly complete to
Bi ∪Ci ∪Xi, and therefore r ∈ (S ∪ Y ) \ Si. Choose zj ∈ Zj . If r ∈ Y , then
zj-r-p-q is a path with center v, contrary to the fact that G is unfriendly,
so r ∈ S \ Si. Since r is antiadjacent to q and r 6∈ Si, we deduce that there
exists k ∈ K antiadjacent to r. Now {r, p, q, zj , k} is a bull, a contradiction.
This proves that (Z ∪S ∪Y ) \ (Zi ∪Si) is strongly complete to Bi ∪Ci ∪Xi.
Since Bj ∪Cj ∪Xj ∪X0 is strongly anticomplete to Bi ∪Ci ∪Xi, it follows
that no vertex of (A∪B) \ (Zi ∪Si ∪Bi ∪Ci ∪Xi) is mixed on Bi ∪Ci ∪Xi.

Let w ∈ V (G) \ (Zi ∪ Si ∪ Bi ∪ Ci ∪ Xi), and assume that w is mixed
on Bi ∪ Ci ∪ Xi. Then w 6∈ (A ∪ B ∪ {u, v}). Applying (4) twice, we de-
duce that w is not mixed on Bi. Since every vertex of Ci has a neighbor
in Bi, and every vertex of Xi has a neighbor in Ci, it follows that there
exist two adjacent vertices a, b ∈ Bi ∪ Ci ∪Xi such that w is adjacent to a
and antiadjacent to b. But then w ∈ A∪B, a contradiction. This proves (8).

(9) No vertex of V (G) \ (Zi ∪ Si ∪Bi ∪ Ci ∪Xi) is mixed on Zi ∪ Si.

Since no vertex of V (G) \ (A ∪ B) is mixed on A, it is enough to show
that no vertex of (A ∪ B) \ (Zi ∪ Si ∪ Bi ∪ Ci ∪ Xi) is mixed on Zi ∪ Si.
Since K is strongly complete to Zi ∪ Si, and (Z ∪ S) \ (Zi ∪ Si) is strongly
anticomplete to (Zi ∪ Si), it follows that no vertex of A \ (Zi ∪ Si) is mixed
on Zi ∪ Si. By (8) and symmetry, and since Zi ∪ Si is strongly complete
to Bj , we deduce that Zi ∪ Si is strongly complete to Bj ∪ Cj ∪ Xj . We
claim that no vertex of X0 is mixed on Zi ∪ Si. If Si = ∅, then no vertex of
B \ Bi is mixed on Zi ∪ Si, and the claim follows. So we may assume that
Si 6= ∅. Suppose b ∈ X0 has an antineighbor s ∈ Zi ∪ Si. Since b is strongly
anticomplete to Bi ∪ Ci ∪ Xi, (7) implies that there do not exist adjacent
vertices p, q ∈ Bi∪Ci∪Xi, such that s is mixed on {p, q}. Since every vertex
of Ci has a neighbor in Bi, and every vertex of Xi has a neighbor in Ci, it
follows that either s is mixed on Bi, or s is strongly complete to Bi∪Ci∪Xi,
or s is strongly anticomplete to Bi ∪ Ci ∪ Xi. Since every vertex of Si is
strongly complete to Bi and has an antineighbor in Bi ∪ Ci ∪Xi, it follows
that s 6∈ Si. Therefore s ∈ Zi, and hence b is strongly anticomplete to Zi.
Consequently, there do not exist adjacent vertices p, q ∈ Bi ∪ Ci ∪Xi, and
z ∈ Zi such that z is mixed on {p, q}. By (3), Ci is strongly anticomplete to
Zi. Let ci ∈ Ci and let bi ∈ Bi be a neighbor of ci. Then bi has a neighbor
z ∈ Zi. But now z is adjacent to bi and antiadjacent to ci, a contradiction.
This proves that Zi ∪ Si is strongly complete to X0, and the claim follows.

By (3), Y is strongly anticomplete to Zi. Suppose some vertex y ∈ Y
has a neighbor s ∈ Si. Let bj ∈ Bj , and let b ∈ Ci ∪Xi be an antineighbor
of s. Since s 6∈ Zj , it follows that bj is strongly adjacent to s. Since Y is
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strongly complete to Bi, (8) implies that y is strongly adjacent to b. Now
{u, s, bj , y, b} is a bull, a contradiction. So Y is strongly anticomplete to Si,
and therefore to Zi ∪Si. Therefore, no vertex of B \ (Bi ∪Ci ∪Xi) is mixed
on Zi ∪Xi. This proves (9).

Now, it follows from (8) and (9) that (Zi ∪ Si, Bi ∪ Ci ∪ Xi) is a homo-
geneous pair in G, contrary to the fact that G is unfriendly. This proves 5.5.

5.6 Let G be an unfriendly bull-free trigraph with no prism. Then there do
not exist six vertices a, b, c, d, x, y ∈ V (G) such that

• the pairs ab, cd, xy are adjacent,

• {a, b} is anticomplete to {c, d}, and

• {x, y} is complete to {a, b, c, d}.

Proof. Since b-a-y-c is not a path with center x, it follows that y is
strongly adjacent to b, and from the symmetry, {x, y} is strongly adjacent
to {a, b, c, d}.

Let k ≥ 2 be an integer, and let Y0, . . . , Yk be pairwise disjoint anticon-
nected sets, such that

• Y0 is strongly complete to
⋃k

i=1 Yi,

• for i, j ∈ {1, . . . , k}, Yi is complete to Yj , and

• {a, b, c, d} ⊆ Y0.

We may assume that Y0, . . . , Yk are chosen with W =
⋃k

i=0 Yi maximal.

(1) Let v ∈ V (G) \ W and assume that v has a neighbor in Y0. Then v
is strongly anticomplete to W \ Y0.

We may assume that v has a neighbor in W \ Y0. Suppose first that v
is mixed on Y0. By 5.1, it follows that v strongly complete to W \ Y0, and
therefore Y0 ∪ {v}, Y1, . . . , Yk contradict the maximality of W . This proves
that v is strongly complete to Y0.

Next suppose that v has a neighbor in Y1, and v is not complete to Y1.
Then |Y1| > 1, and 5.1 implies that v is strongly complete to W \ Y1. But
then replacing Y1 with Y1∪{v} contradicts the maximality of W . Using the
symmetry, this proves that if v has a neighbor in Yi with 1 ≤ i ≤ k, then v
is complete to Yi.

Let I be the set of all i ∈ {1, . . . , k}, such that v is complete to Yi, and
let J = {1, . . . , k}\I. Then v is strongly anticomplete to

⋃
j∈J Yj . From the

symmetry we may assume that I = {1, . . . , t} for some t ∈ {1, . . . , k}. Let
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Zt+1 = {v} ∪
⋃

j∈J Yj . Then Y0, Y1, . . . , Yt, Zt+1 contradict the maximality
of W . This proves (1).

Since W \ Y0 is strongly complete to Y0, and since Y0 is not a homoge-
neous set in G, it follows that some vertex of V (G) \ Y0 has a neighbor in
Y0. Let Z0 be the set of all vertices of V (G) \W with a neighbor in Y0.
Then Z0 6= ∅, and by (1), Z0 is strongly anticomplete to W \ Y0. Moreover,
no vertex of V (G) \ (Y0 ∪ Z0) is mixed on Y0.

Since Y0 is strongly complete to W \ Y0, and Z0 is strongly anticomplete
to W \ Y0, and since W \ Y0 is not a homogeneous set in G, it follows that
some vertex z1 ∈ V (G) \ (W ∪ Z0) is mixed on W \ Y0. Then z1 is strongly
anticomplete to Y0. We may assume that z1 has a neighbor y1 ∈ Y1 and
antineighbor y2 ∈ Y2.

(2) z1 is strongly complete to Z0.

Suppose z0 ∈ Z0 is antiadjacent to z1. Let y0 ∈ Y0 be a neighbor of z0.
Then {z0, y0, y2, y1, z1} is a bull, a contradiction. This proves (2).

(3) Let s, t ∈ Z0 be adjacent, and let v ∈ V (G) \ (Y0 ∪ Z0). Then v is
not mixed on {s, t}.

Suppose that v is adjacent to s and antiadjacent to t. Let ys ∈ Y0 be
adjacent to s, and yt to t, choosing ys = yt if possible. Since v is mixed on
Z0, it follows that v 6∈ (W \ Y0). Since v 6∈ Z0, it follows that v is strongly
antiadjacent to ys, yt.

Assume first that ys = yt. Since {v, s, t, yt, w} is not a bull for any
w ∈ W \ Y0, it follows that v is strongly complete to W \ Y0. But now
Y0∪{v}, Y1, . . . , Yk contradict the maximality ofW . This proves that ys 6= yt,
and therefore s is antiadjacent to yt, and t to ys. Since {ys, s, z1, t, yt} is not a
bull, it follows that ys is strongly adjacent to yt. But nowG|{s, t, z1, ys, yt, y1}
is a prism, a contradiction. This proves (3).

Now y1, z1 are adjacent, and Y0, Z0 are subsets of V (G) such that

• y1 is strongly complete to Y0 and strongly anticomplete to Z0,

• z1 is strongly complete to Z0 and strongly anticomplete to Y0,

• No vertex of V (G) \ (Y0 ∪ Z0) is mixed on Y0, and

• if s, t ∈ Z0 are adjacent, then no vertex of V (G) \ (Y0 ∪ Z0) is mixed
on {s, t}.

By 5.5, we deduce that Y0 = K ∪ S, where K is a strong clique and S is a
strongly stable set. But then at least one of a, b is in K, and at least one
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of c, d is in K, contrary to the fact that {a, b} is strongly anticomplete to
{c, d}. This proves 5.6.

Let G be a trigraph, let N ⊆ V (G) with |N | = k. We say that N , or
G|N , is a matching of size k in G if N = {a1, . . . , ak, b1, . . . , bk} and for
distinct i, j ∈ {1, . . . , k} the pairs aibi are adjacent, and the pairs aibj are
antiadjacent.

5.7 Let G be a bull-free trigraph, let v be a vertex of G and let N be
the set of neighbors of v. Let H = G|N . Let a1, a2, b1, b2 ∈ N such that
H|{a1, a2, b1, b2} is a matching of size two in G, where the pairs a1b1 and
a2b2 are adjacent. For i = 1, 2 let Ci be the component of H containing
{ai, bi}, and let Di be the set of vertices of V (G) \ (N ∪ {v}) that are mixed
on Ci. Then

1. C1 ∩ C2 = ∅,

2. Di is strongly complete to N \ Ci, and consequently D1 ∩D2 = ∅,

3. Let i ∈ {1, 2} and let x ∈ V (G) \ (N ∪ Di) have a neighbor di ∈ Di.
Then x is strongly anticomplete to Ci,

4. D1 is strongly anticomplete to D2.

Proof. First we prove the first assertion of 5.7. It is enough to show that
there is no path from {a1, b1} to {a2, b2} in H. First we claim that {a1, b1}
is strongly anticomplete to {a2, b2}. For suppose not, from the symmetry
we may assume that a1 is adjacent to a2. Then b1-a1-a2-b2 is a path, an v
is a center for it, contrary to the fact that G is unfriendly. This proves that
{a1, b1} is strongly anticomplete to {a2, b2}.

Next suppose that there is a path P from {a1, b1} to {a2, b2} in H. Since
v is a weak center for P , it follows that P has length less than three, and
so some vertex p ∈ N has a neighbor in {a1, b1} and a neighbor in {a2, b2}.
From the symmetry we may assume that p is adjacent to a1 and to a2. Since
b1-a1-p-a2 is not a path with center v, it follows that p is adjacent to b1, and
similarly to b2. But now the vertices a1, b1, a2, b2, v, p contradict 5.6. This
proves the first assertion of 5.7.

To prove the second assertion of 5.7, let d ∈ Di and suppose that d has
an antineighbor n ∈ N \ Ci. By 2.2, there exist ci, c′i ∈ Ci such that ci
is adjacent to c′i, and d is adjacent to ci and antiadjacent to c′i. But now
{d, ci, c′i, v, n} is a bull, a contradiction. This proves the second assertion of
5.7.

To prove the third assertion, suppose that x has a neighbor in Ci. Since
x 6∈ Di ∪ Ci, it follows that x is strongly complete to Ci. Since x 6∈ N , it
follows that x is strongly antiadjacent to v. By 2.2, there exist ci, c′i ∈ Ci

such that ci is adjacent to c′i, and di is adjacent to ci and antiadjacent to
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c′i. Now v-c′i-x-di is a path, and ci is a center for it, a contradiction. This
proves the third assertion of 5.7.

Finally, the last assertion of 5.7 follows from the second and the third
assertion.

5.8 Let G be an unfriendly bull-free trigraph with no prism, let v ∈ V (G)
and let N be the set of neighbors of v in G. Then no induced subtrigraph of
G|N is a matching of size three.

Proof. Suppose not, and let {a1, a2, a3, b1, b2, b3} ⊆ N be as in the definition
of a matching, and let H = G|N . For i ∈ {1, 2, 3} let Ci be the component
of H containing {ai, bi}. By 5.7 C1, C2, C3 are all distinct components of H.
For i ∈ {1, 2, 3} let Di be the set of vertices of V (G) \ Ci that are mixed
on Ci. Since G is unfriendly, it follows that Ci is not a homogeneous set,
and (Ci, {v}) is not a homogeneous pair, and therefore Di 6= ∅. Since Ci is
a component of N , it follows that v is strongly anticomplete to Di. By 5.7,
Di is strongly complete to N \Ci, the sets D1, D2, D3 are pairwise disjoint,
and Di is strongly anticomplete to Dj .

(1) Let i ∈ {1, 2, 3}. No vertex of V (G) \ (N ∪Di) is mixed on Di.

From the symmetry, may assume i = 1. Suppose x ∈ V (G) \ (N ∪ D1)
is mixed on D1. Then x 6= v, and by 5.7, x 6∈ D2 ∪ D3. Let d1 ∈ D1 be
adjacent to x. By 5.7, d1 is strongly complete to C2 ∪C3. By 5.6, {x, d1} is
not complete to a2, b2, a3, b3, and, since x 6∈ D2 ∪D3, we may assume, from
the symmetry, that x is strongly anticomplete to C2. Let d2 ∈ D2. By 2.2,
there exist c2, c′2 ∈ C2 such that c2 is adjacent to c′2, and d2 is adjacent to c2
and antiadjacent to c′2. Since {x, d1, c

′
2, c2, d2} is not a bull, it follows that

x is adjacent to d2, and therefore x is strongly complete to D2. By 5.7, x is
strongly anticomplete to C1. But now, applying the previous argument with
the roles of D1 and D2 exchanged, we deduce that x is strongly complete to
D1, a contradiction. This proves (1).

Now, since v is semi-adjacent to at most one vertex of G, we may assume
that v is strongly complete to C1. But then, by (1), (C1, D1) is a homoge-
neous pair in G, contrary to the fact that G is unfriendly. This proves 5.8.

5.9 Let G be an unfriendly bull-free trigraph, let {a1, a2, b1, b2} be a match-
ing of size two in G (with the usual notation), and let c ∈ V (G)\{a1, a2, b1, b2}
be complete to {a1, a2, b1, b2}. Then the following statements hold:

1. For i = 1, 2 let di ∈ V (G) \ (N(c) ∪ {c}) be mixed on {ai, bi}, and let
y ∈ V (G) \ {a1, a2, b1, b2, d1, d2, c} be adjacent to both d1 and d2, Then
y is strongly adjacent to c.
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2. Let x ∈ V (G) be a neighbor of c, such that there is no path in G|N(c)
from x to {a1, a2, b1, b2}. Then x is strongly adjacent to c. Let c′ ∈
V (G) be an antineighbor of c, such that c′ has a neighbor in {a1, b1}
and in {a2, b2}. Then x is strongly adjacent to c′.

Proof. Let X be the set of neighbors of c. Let {i, j} = {1, 2}. For i = 1, 2
let Xi be the component of X containing ai, bi. By 5.7, X1 ∩X2 = ∅. Let
X ′ = X \ (X1 ∪ X2). By 5.8, X ′ is strongly stable. If c is not strongly
complete to Xi, let Ci = {c}, and otherwise let Ci = ∅. Let Yi be the set
of vertices of V (G) \ (X ∪ {c}) that are mixed on Xi. Let C be the set
of vertices of V (G) \ {c} that are strongly complete to X1 ∪ X2. By 5.6
C ∪ {c} is a strongly stable set. By 5.7 Yi is strongly complete to X \Xi,
and Y1 is strongly anticomplete to Y2. Let Zi be the set of vertices of
V (G) \ (C ∪{c}∪X ∪Y1 ∪Y2) with a neighbor in Yi and an antineighbor in
Yj .

We claim that Zi 6= ∅. Suppose not. Since (Xi, Ci ∪ Yi) is not a homo-
geneous pair in G, it follows that some vertex v ∈ V (G) \ (Xi ∪ Ci ∪ Yi) is
mixed on Ci∪Yi. By 5.7, v 6∈ X. So v has a neighbor in Yi and v is strongly
antiadjacent to c. Since Zi = ∅, it follows that v is strongly complete to Yj .
By 5.7, it follows that v is strongly anticomplete to X1∪X2. Let y ∈ Yi∪Ci

be antiadjacent to v. By 2.2, there exist x, x′ ∈ Xi such that y is adjacent
to x and antiadjacent to x′, and x is adjacent to x′. Let y2 ∈ Y2. Now
{v, y2, x

′, x, y} is a bull, a contradiction. This proves that Zi 6= ∅.
By 5.7, Zi is strongly anticomplete to Xi. Let Wi be the set of vertices

of V (G) \ (C ∪ {c} ∪X ∪ Y1 ∪ Y2 ∪ Z1 ∪ Z2) with a neighbor in Zi and an
antineighbor in Yj .

(1) Zi is strongly complete to Xj and strongly anticomplete to Yj.

Suppose some zi ∈ Zi has an antineighbor in Xj . Since Zi∩(C∪X∪Yj) = ∅,
it follows that zi is strongly anticomplete to Xj . Let yj ∈ Yj be antiadjacent
to zi. By 2.2, there exist xj , x

′
j ∈ Xj such that xj is adjacent to x′j , and

yj is adjacent to xj and antiadjacent to x′j . Let yi ∈ Yi be adjacent to zi.
Then, by 5.7, {zi, yi, x

′
j , xj , yj} is a bull, a contradiction. This proves that

Zi is strongly complete to Xj . Now it follows from 5.7 that Zi is strongly
anticomplete to Yj . This proves (1).

(2) Wi is strongly complete to Xj and anticomplete to Yj.

Suppose not, and let wi ∈ Wi and xj ∈ Xj be antiadjacent. Let zi ∈ Zi

be adjacent to wi, and let yi ∈ Yi be adjacent to zi. Then yi is strongly
antiadjacent to wi. But now, by (1), {wi, zi, yi, xj , c} is a bull, a contradic-
tion. Now it follows from 5.7 that Wi is strongly anticomplete to Yj . This
proves (2).
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Since Wi∩(C∪{c}∪Yi) = ∅, it follows that Wi is strongly anticomplete to Xi.

(3) Zi ∪Wi is strongly anticomplete to Zj.

Suppose zj ∈ Zj has a neighbor w ∈ Zi ∪ Wi. Let yj ∈ Yj be adjacent
to zj . Let xi ∈ Xi. Then xi is antiadjacent to w, by (1) xi is adjacent to
zj , and by (2) w is antiadjacent to yj . But now {c, xi, yj , zj , w} is a bull, a
contradiction. This proves (3).

(4) W1 is strongly anticomplete to W2.

Suppose w1 ∈ W1 is adjacent to w2 ∈ W2. Let z2 ∈ Z2 be adjacent to
w2. Let x1 ∈ X1. Then x1 is antiadjacent to w1. By (2), x1 is adjacent
to w2 and to z2. But now {w1, w2, z2, x1, c} is a bull, a contradiction. This
proves (4).

(5) C is strongly anticomplete to Yi. Every vertex of V (G) \ X that has
both a neighbor in X1 and a neighbor in X2 belongs to Y1 ∪ Y2 ∪ C ∪ {c}.

Let v ∈ C. By 5.7, C is strongly anticomplete to Yi. Now let v be a
vertex with both a neighbor in X1 and a neighbor in X2. If v is mixed
on one of X1, X2, then v ∈ Y1 ∪ Y2 ∪ {c}; and if v is strongly complete to
X1 ∪X2, then v ∈ C ∪ {c}. This proves (5).

Let M = X1 ∪X2 ∪ Y1 ∪ Y2 ∪ Z1 ∪ Z2 ∪W1 ∪W2.

(6) Suppose a ∈ V (G) \ M is strongly complete to Y1 ∪ Y2, and is anti-
adjacent to {c}. Then c is strongly complete to X1 ∪X2, and a is strongly
complete to Y1 ∪ Z1 ∪W1 ∪ Y2 ∪ Z2 ∪W2 .

By 5.7, a is strongly anticomplete to X1∪X2. Suppose that c is not strongly
complete to Xi. By 2.2, there exist xi, x

′
i ∈ Xi, such that xi is adjacent to

x′i, and c is adjacent to xi and antiadjacent to x′i. Let yj ∈ Yj . Now
{a, yj , x

′
i, xi, ci} is a bull, a contradiction. This proves that c is strongly

complete to X1 ∪X2.
Suppose a has an antineighbor zi ∈ Zi. Let yi ∈ Yi be adjacent to zi,

and let xj ∈ Xj . Then {a, yi, zi, xj , c} is a bull, a contradiction. This proves
that a is strongly complete to Z1 ∪ Z2. Next suppose that a has an an-
tineighbor wi ∈ Wi. Let zi ∈ Zi be adjacent to wi, and let xj ∈ Xj . Then
{a, zi, wi, xj , c} is a bull, a contradiction. This proves that a is strongly
complete to W1 ∪W2, and completes the proof of (6).

(7) Suppose a ∈ V (G) \ (M ∪ C) has a neighbor in Yi ∪ Zi ∪Wi and is an-
tiadjacent to {c}. Then a is strongly complete to Y1∪Z1∪W1∪Y2∪Z2∪W2.
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Suppose first that a is strongly anticomplete to Yi∪Zi. Then it follows from
5.7 that a 6∈ X ′, and therefore a is antiadjacent to c. Let wi ∈ Yi ∪ Zi ∪Wi

be a neighbor of a. Then wi ∈ Wi. Let zi ∈ Zi be adjacent to wi and let
xj ∈ Xj . Since {c, xj , zi, wi, a} is not a bull, it follows that xj is adjacent
to a. Let yi ∈ Yi be adjacent to zi. Now yi-zi-wi-a is a path, and xj is a
center for it, a contradiction. This proves that a has a neighbor in Yi ∪ Zi.
We claim that a is strongly complete to Yj . If a ∈ X ′, the claim follows
from 5.7, and if a 6∈ X ′, the claim follows from the fact that a 6∈ Zi ∪Wi.
Similarly, a is strongly complete to Yi. Now (7) follows from (6).

(8) Suppose that there exists a ∈ V (G) \ (M ∪ C) with a neighbor in Y1 ∪
Y2 ∪ Z1 ∪ Z2 ∪W1 ∪W2 and antiadjacent to c. Then every vertex of X ′ is
strongly complete to one of Y1 ∪ Z1 ∪W1 and Y2 ∪ Z2 ∪ Y2.

By (7), a is strongly complete to Y1∪Y2∪Z1∪Z2∪W1∪W2. Suppose x′ ∈ X ′
has an antineighbor b1 ∈ Y1∪Z1∪W1 an an antineighbor b2 ∈ Y2∪Z2∪W2.
Then b1 ∈ Z1 ∪W1, and b2 ∈ Z2 ∪W2.

First we claim that x′ is strongly antiadjacent to a. Suppose not. Let P
be a path from b1 to x′ with interior in Z1∪Y1. Let y2 ∈ Y2. Then b1-P -x′-y2

is a path of length at least three, and a is a center for it, a contradiction.
This proves that x′ is strongly antiadjacent to a.

Since x′ is strongly complete to Y1, it follows that there exist b, b′ ∈
Y1 ∪ Z1 ∪W1 such that b is adjacent to b′, and x′ is adjacent to b and an-
tiadjacent to b′. But now {x′, b, b′, a, b2} is a bull, a contradiction. This
proves (8).

(9) Suppose that there exist

• a ∈ V (G) \ (M ∪ C) with a neighbor in Y1 ∪ Y2 ∪ Z1 ∪ Z2 ∪W1 ∪W2

and antiadjacent to c, and

• b ∈ V (G) \ (Xi ∪ Yi ∪ Zi ∪Wi ∪ C ∪ {c}) with a neighbor in Xi.

Then b is strongly complete to X.

Since b 6∈ Yi, it follows that b is strongly complete to Xi. We may as-
sume that b has an antineighbor x′ ∈ X \ Xi. Since b 6∈ C, it follows that
b is not strongly complete to Xj . Since b 6∈ Yj , it follows that b is strongly
anticomplete to Xj . Since b 6∈ Xi, it follows that b is strongly antiadjacent
to c. By 5.7, b is strongly anticomplete to Yi, and so by (7) b is strongly
anticomplete to Yj ∪ Zj . Let zj ∈ Zj and yj ∈ Yj be adjacent. Let xj ∈ Xj

be adjacent to yj . Let xi ∈ Xi. Then {b, xi, zj , yj , xj} is a bull, a contradic-
tion. This proves (9).

32



(10) Suppose that there exists a ∈ V (G) \ (M ∪ C) with a neighbor in
Y1 ∪ Y2 ∪ Z1 ∪ Z2 ∪W1 ∪W2 and antiadjacent to c. Then

• if v ∈ C is antiadjacent to a, then v is strongly anticomplete to Y1 ∪
Z1 ∪W1 ∪ Y2 ∪ Z2 ∪W2, and

• every vertex of C is strongly anticomplete to either Y1 ∪ Z1 ∪W1 or
Y2 ∪Z2 ∪W2. Moreover, if v ∈ C has a neighbor in Yi ∪Zi ∪Wi, then
v has a neighbor in Zi.

By (5), C is strongly anticomplete to Y1 ∪ Y2. By (7), a is strongly
complete to Y1 ∪ Z1 ∪W1 ∪ Y2 ∪ Z2 ∪W2.

Suppose first that v is antiadjacent to a. If v has a neighbor zi ∈ Zi, then,
choosing yi ∈ Yi adjacent to zi, and yj ∈ Yj , we observe that {v, zi, yi, a, yj}
is a bull, a contradiction. This proves that v is strongly anticomplete to Zi.
Next assume that v has a neighbor wi ∈ Wi. Let zi ∈ Zi be adjacent to
wi, and let yi ∈ Yi be adjacent to zi. Then v-wi-zi-yi is a path, and every
xj ∈ Xj is a center for it, contrary to the fact that G is unfriendly. This
proves the first assertion of (10).

Now suppose that v ∈ C has a neighbor ui ∈ Zi∪Wi. Then v is strongly
adjacent to a. Let Pi be a path from ui ∈ Zi ∪Wi adjacent to v to some
vertex yi ∈ Yi, with interior in Yi ∪ Zi ∪Wi, and such that ui is the only
neighbor of v in Pi.

If v is strongly anticomplete to Zi, then ui ∈ Wi, yi-Pi-ui-v is a path,
and every vertex of X2 is a center for it, a contradiction. This proves that
if v has a neighbor in Zi ∪Wi, then v has a neighbor in Zi.

Finally, if v has both a neighbor in Z1 ∪W1 and a neighbor in Z2 ∪W2,
then y1-P1-u1-v-u2-P2-y2 is a path of length at least three (in fact, at least
four), and a is a center for it, contrary to the fact that G is unfriendly. This
proves (10).

(11) Every vertex of V (G) \ (M ∪ C) with a neighbor in Y1 ∪ Y2 ∪ Z1 ∪
Z2 ∪W1 ∪W2 is strongly adjacent to c.

Suppose there exists a ∈ V (G) \ M with a neighbor in Y1 ∪ Y2 ∪ Z1 ∪
Z2 ∪ W1 ∪ W2 and antiadjacent to c. By (7), a is strongly complete to
Y1 ∪ Y2 ∪ Z1 ∪ Z2 ∪W1 ∪W2. By (6), C1 ∪ C2 = ∅. Let X ′i be the the set
of vertices of X ′ that are not strongly complete to Yi ∪ Zi ∪Wi. By (8),
X ′1 ∩X ′2 = ∅. Let C ′i be the vertices of C with a neighbor in Yi ∪ Zi ∪Wi.

Then (Xi ∪X ′i, Yi ∪ Zi ∪ Yi ∪C ′i) is not a homogeneous pair in G. Since
X2∪(X ′\X ′1) is strongly complete to Y1∪Z1∪W1, and by (7), it follows that
no vertex of V (G) \ (X1 ∪X ′1 ∪Y1 ∪Z1 ∪W1 ∪C ′1) is mixed on Y1 ∪Z1 ∪W1.

Suppose that some vertex v of V (G) \ (X1 ∪ X ′1 ∪ Y1 ∪ Z1 ∪W1 ∪ C ′1)
is mixed on Y1 ∪ Z1 ∪ W1 ∪ C ′1. Assume first that v has a neighbor in
Y1 ∪ Z1 ∪W1. Then v 6∈ C. Then v is strongly complete to Y1 ∪ Z1 ∪W1,
and has an antineighbor c′ ∈ C ′1. By (10), c′ has a neighbor z1 ∈ Z1, and
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c′ is strongly anticomplete to Y2 ∪ Z2 ∪ W2. Let y1 ∈ Y1 be adjacent to
z1. Since {c′, z1, y1, v, u} is not a bull for any u ∈ Y2 ∪ Z2 ∪W2 ∪ {c}, it
follows that v is strongly anticomplete to Y2 ∪ Z2 ∪W2 ∪ {c} (we remind
the reader that C ∩ {c} is a strongly stable set). Then v 6∈ X, and, since
v 6∈ Y1∪Z1∪W1, it follows that v 6∈M , contrary to (7). This proves that v is
strongly anticomplete to Y1 ∪Z1 ∪W1, and has a neighbor c′ ∈ C ′1. By (10),
c′ has a neighbor z1 ∈ Z1, and, again by (10), c′ is strongly anticomplete
to Y2 ∪ Z2 ∪W2. Let y1 ∈ Y1 be adjacent to z1. Then v-c′-z1-y1 is a path,
and since vertices of X2 are not centers for it, it follows that v is strongly
anticomplete to X2. Since {v, c′, z1, x2, c} is not a bull for any x2 ∈ X2, it
follows that v is strongly adjacent to c, and therefore v ∈ X. Since v is
strongly anticomplete to Y1, it follows that v ∈ X1, a contradiction. This
proves that no vertex of V (G) \ (X1 ∪X ′1 ∪ Y1 ∪ Z1 ∪W1 ∪C ′1) is mixed on
Y1 ∪ Z1 ∪W1 ∪ C ′1.

Therefore, some vertex v ∈ V (G)\(X1∪X ′1∪Y1∪Z1∪W1∪C ′1) is mixed
on X1∪X ′1. By (6) and (7), c is strongly complete to X1∪X ′1, and so v 6= c.
Suppose first that v has a neighbor in X1. Since v 6∈ Y1, it follows that v is
strongly complete to X1, and has an antineighbor x′1 ∈ X ′1. By (9), v ∈ C.
Since v 6∈ C ′1, it follows that v is strongly anticomplete to Y1 ∪ Z1 ∪W1.
Since x′1 ∈ X ′1, it follows that there exist p, q ∈ Y1 ∪ Z1 ∪W1 such that p
is adjacent to q, and x′1 is adjacent to p and antiadjacent to q. But now
{v, x2, q, p, x

′
1} is a bull for every x2 ∈ X2, a contradiction. This proves that

v is strongly anticomplete to X1. Then v 6∈ C; and since v 6∈ Y1 ∪ Z1 ∪W1,
it follows that v 6∈ M . We deduce from (9) that v is strongly anticomplete
to X1 ∪X2. Since v is mixed on X1 ∪X ′1, it follows that v has a neighbor
x′1 ∈ X ′1. Let z2 ∈ Z2, y2 ∈ Y2 adjacent to z2, and x2 ∈ X2 adjacent to y2.
Since {v, x′1, z2, y2, x2} is not a bull, it follows that v is strongly adjacent
to one of y2, z2. By 5.8 applies to {v, x′1}, {a1, b1}, {a2, b2} and c, it follows
that v is strongly anticomplete to c, and so, by (7), v is strongly complete
to Y1 ∪ Z1 ∪W1 ∪ Y2 ∪ Z2 ∪W2. Let y2 ∈ Y2. Since x′1 ∈ X ′1, it follows
that there exist p, q ∈ Y1 ∪ Z1 ∪W1 such that p is adjacent to q, and x′1 is
adjacent to p and antiadjacent to q. Now q-p-x′1-y2 is a path of length three,
and v is a center for it, a contradiction. This proves (11).

We can now prove the first assertion of the theorem. For i = 1, 2 let di ∈
V (G)\(N(c)∪{c}) be mixed on {ai, bi}, and let y ∈ V (G)\{a1, a2, b1, b2, d1, d2, c}
be adjacent to both d1 and d2. We may assume that di is adjacent to ai and
antiadjacent to bi. Suppose y is antiadjacent to c. Since di ∈ Yi, it follows
that y has a neighbor in Y1, and a neighbor in Y2. By (5), y 6∈ C, and so,
by (11), y ∈M . Since y has a neighbor in Y1, it follows that y 6∈ Y2∪Z2∪W2,
and since y has a neighbor in Y2, it follows that y 6∈ Y1∪Z1∪W1. Therefore
y ∈ X1 ∪X2, and, in particular, y is adjacent, and therefore semi-adjacent
to c. From the symmetry, we may assume that y ∈ X1. Since d1-y-b1-c is
not a path with center a1, it follows that y is not complete to {a1, b1}. Let
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p, q ∈ X1 \ {y} be adjacent. Since {a2, c, p, q, y} is not a bull, it follows that
v is either strongly complete or strongly anticomplete to {p, q}. But this
implies that y is strongly anticomplete to {a1, b1}, and there is no path in
G|X1 from y to {a1, b1}, contrary to the fact that X1 is connected. This
proves the first assertion of the theorem.

To prove the second assertion, let x ∈ V (G) be a neighbor of c, such that
there is no path in G|N(c) from x to {a1, a2, b1, b2}. Then x ∈ X ′. By 5.7,
x is strongly complete to Y1 ∪Y2, and therefore, by the first assertion of the
theorem, x is strongly adjacent to c. Let c′ ∈ V (G) be an antineighbor of
c, such that c′ has a neighbor in {a1, b1} and in {a2, b2}. Suppose that c′ is
antiadjacent to x. Then 5.7 implies that c′ is not mixed on {a1, b1}, and so c′

is strongly complete to {a1, b1}. Similarly, c′ is strongly complete to {a2, b2}.
By 5.6, c′ is strongly anticomplete to c, and therefore, c′ 6∈ X1 ∪X2. Now,
since c′ is strongly anticomplete to x′, 5.7 implies that c′ is strongly complete
to X1 ∪ X2, and therefore c′ ∈ C. Choose di ∈ Yi, and let a′i, b

′
i ∈ Xi be

such that a′i is adjacent to b′i, and yi is adjacent to a′i and antiadjacent to
b′i. By (5), c′ is strongly antiadjacent to di. By 5.7, x′ is adjacent to d1, d2.
But now, applying the first assertion of the theorem to {a′1, b′1, a′2, b′2, c′, x}
we deduce that c′ is strongly adjacent to x, a contradiction. This proves 5.9.

6 Frames

In this section we study unfriendly trigraphs that contain a three edge path
and do not contain a prism. Let G be such a trigraph. We choose a maximal
subtrigraph H of G such that there is no triangle in H, and analyze how
the vertices of V (G) \V (H) attach to H. It turns out that each component
of V (G) \ V (H) is a strong clique, no vertex of H has neighbors in more
than two components of V (G) \V (H), and we can describe how each of the
cliques “connects” to H, thus proving that G ∈ T1.

We start with a lemma.

6.1 Let G be an unfriendly trigraph with no prism, and let h1-h2-h3-h4-h5-h1

be a hole of length five in G, say H. Then no vertex of V (G) \ V (H) is ad-
jacent to h1, h2, h5.

Proof. Suppose some v ∈ V (G) \ V (H) is adjacent to h1, h2, h5. Since
{h2, v, h1, h5, h4} and {h2, h1, v, h5, h4} are not bulls, it follows that h2 is
strongly complete to {v, h1}, and from the symmetry, h5 is strongly complete
to {v, h1}. Since h5-v-h2-h3 is not a path with center h1, it follows that h3

is strongly antiadjacent to h1, and therefore h3 is strongly anticomplete to
{v, h1}. From the symmetry h4 is strongly anticomplete to {v, h1}.

Let X the set of vertices of V (G) \ {h2, h3, h4, h5} that are strongly
complete to {h2, h5} and strongly anticomplete to {h3, h4} and let C be a
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component of X such that v, h1 ∈ C. Since G is unfriendly, it follows that
C is not a homogeneous set in G, and therefore some vertex w ∈ V (G) \ C
is mixed on C. Then w 6∈ V (H). By 2.2, there exists c, c′ ∈ C such that c
is adjacent to c′, and w is adjacent to c and antiadjacent to c′.

Assume first that w is antiadjacent to h5. Since {w, c, c′, h5, h4} is not a
bull, it follows that w is strongly adjacent to h4. If w is antiadjacent to h2,
then, form the symmetry, w is strongly adjacent to h3, and {h2, h3, w, h4, h5}
is a bull, a contradiction; thus w is strongly adjacent to h2. Since c-h2-h3-h4

is not a path with center w, it follows that w is strongly antiadjacent to h3.
But now, {h5, c, w, h2, h3} is a bull, a contradiction. This proves that w is
strongly adjacent to h5, and so, from the symmetry, w is strongly adjacent to
h2. Since h5-c-h2-h3 is not a path with center w, it follows that w is strongly
antiadjacent to h3, and from the symmetry, w is strongly antiadjacent to
h4. But then w ∈ C, a contradiction. This proves 6.1.

A frame is a trigraph T such that

• T is connected, and

• there is no triangle in T , and

• T has an induced subtrigraph which is a path of length three.

A trigraph is called framed if some induced subtrigraph of it is a frame. We
prove the following:

6.2 Every unfriendly framed trigraph with no prism is in T1.

Proof. Let G be an unfriendly framed trigraph, and let F be an induced
subtrigraph of G that is a frame. We may assume that there is a triangle
in G, for otherwise G admits an H-structure where H is the empty graph.
Since G is unfriendly, it follows that G is connected. Assume that F is cho-
sen with |V (F )| maximum, subject to that with |η(F )| + |σ(F )| maximum
(we remind the reader that η(F ) is the number of strongly adjacent pairs of
vertices in F , and σ(F ) is the number of semi-adjacent pairs).

(1) Every vertex of V (G) \ V (F ) has a neighbor in V (F ).

Suppose some vertex of V (G) \ V (F ) is strongly anticomplete to V (F ).
Since G is connected, there exist vertices u, v ∈ V (G) \ V (F ) such that u
has a neighbor in V (F ), and v is strongly anticomplete to V (F ). Let N be
the set of neighbors of u in V (F ), and let M = V (F )\N . By the maximality
of |V (F )|, there are two adjacent vertices in N . Let C be a component of
N with |C| > 1. Since G is unfriendly, F contains a path of length three
and u is complete to C, it follows that C 6= V (F ). Since F is connected,
some vertex f ∈ V (F ) has a neighbor in C, and since C is a component of
N , it follows that f belongs to M . Let c ∈ C be adjacent to f . Since C is
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connected, it follows that c has a neighbor, say c′, in C. Since F is triangle-
free, we deduce that f is strongly antiadjacent to c′. But now {v, u, c′, c, f}
is a bull, a contradiction. This proves (1).

For a vertex v ∈ V (G) \ V (F ), let NF (v) be the set of neighbors of v in
V (F ), and let M(v) = V (F ) \NF (v).

(2) Let H be a triangle free trigraph, no induced subtrigraph of which is a
path of length three, and assume that H is connected. Then V (H) = S1∪S2,
where S1 and S2 are disjoint strongly stable sets, complete to each other.
Moreover, if both |S2| > 1 and |S2| > 1, then S1 is strongly complete to S2.

By 5.4, and since H is connected, one of the following holds:

• H is not anticonnected, or

• there exist two vertices v1, v2 ∈ V (H) such that v1 is semi-adjacent
to v2, and V (H) \ {v1, v2} is strongly complete to v1 and strongly
anticomplete to v2.

Assume first that H is not anticonnected. Since H is triangle free, H
has exactly two anti-components, and each of them is a strongly stable set,
and (2) holds.

Next assume that there exist two vertices v1, v2 ∈ V (H) such that
v1 is semi-adjacent to v2, and V (H) \ {v1, v2} is strongly complete to v1
and strongly anticomplete to v2. Since H is triangle free, it follows that
V (H) \ {v1} is strongly stable, and again (2) holds. This proves (2).

(3) Let v ∈ V (G) \ V (F ). Then there exist non-empty strongly stable sets
S1(v) and S2(v) in F , such that NF (v) = S1(v) ∪ S2(v), S1(v) is complete
to S2(v), and if both |S1(v)| > 1 and |S2(v)| > 1, then S1(v) is strongly
complete to S2(v).

Let H = F |NF (v). Since G is unfriendly, it follows that no induced subtri-
graph of H is a path of length tree. If H is connected, (3) follows from (2),
so we may assume not. It follows from the maximality of |V (F )| that some
two vertices of NF (v) are adjacent. Let C be component of NF (v) with
|C| > 1. Since H is not connected, it follows that NF (v) 6= C. Since F is
connected, some vertex m ∈ V (F ) \C has a neighbor in C, and since C is a
component of NF (v), we deduce that m ∈M(v). Let c ∈ C be a neighbor of
m. Since C is connected and F is triangle free, there exists c′ ∈ C such that
c′ is adjacent to c and antiadjacent to m. Since {m, c, c′, v, n} is not a bull
for any n ∈ NF (v) \C, it follows that m is strongly complete to NF (v) \C.
Since F is triangle-free, it follows that the set NF (v) \ C is strongly stable.

By (2), C = C1 ∪ C2, such that C1 and C2 are disjoint non-empty
strongly stable sets, and C1 is complete to C2. Let n ∈ NF (v) \ C. If both
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|C1| > 1 and |C2| > 1, then G|C contains a hole of length four, with cen-
ter v and anticenter n, contrary to 5.3. So we may assume that |C1| = 1,
say C1 = {c1}. Let F ′ = G|((V (F ) \ {c1}) ∪ {v}). By the choice of F ,
|η(F ′)| + |σ(F )′| ≤ |η(F )| + |σ(F )|, and therefore some vertex m1 ∈ M(v)
is adjacent to c1. By the argument in the previous paragraph with m re-
placed by m1, we deduce that m1 is strongly complete to NF (v) \ C. Now
c1-m1-n-v-c1 is a hole of length four, and, since F is triangle-free, it follows
that every vertex of C2 is complete to {c1, v} and anticomplete to {m1, n}.
By 5.2, it follows that C2 is a strong clique, and therefore |C2| = 1, say
C2 = {c2}. Exchanging the roles of c1 and c2, we deduce that some vertex
m2 ∈ M(v) is adjacent to c2 and to n. Since F is triangle-free, it follows
that m1 6= m2, and since {m1, c1, v, c2,m2} is not a bull, it follows that
m2 is strongly adjacent to m1. But now {m1,m2, n} is a triangle in F , a
contradiction. This proves (3).

(4) Let u, v ∈ V (G) \ V (F ) be adjacent. Then there exist s1, s2 ∈ NF (u) ∩
NF (v) such that s1 is adjacent to s2.

Let S1(u), S1(v), S2(u), S2(v) be as in (3). Since S1(u), S1(v), S2(u), S2(v)
are non-empty strongly stable sets, and since S1(u) is complete to S2(u),
and S1(v) to S2(v), we may assume that S1(u)∩S2(v) = S2(u)∩S1(v) = ∅.

If both S1(u) ∩ S1(v) and S2(u) ∩ S2(v) are non-empty then (3) holds,
so we may assume that S2(u) ∩ S2(v) = ∅. From the maximality of |V (F )|,
there exist tu ∈ S2(u) and tv ∈ S2(v).

Suppose S1(u) ∩ S1(v) 6= ∅, and choose s ∈ S1(u) ∩ S1(v). Since F
is triangle free and s is adjacent to both tu and tv, it follows that tu is
antiadjacent to tv. But now tu-u-v-tv is a path, and s is a center for it,
contrary to the fact that G is unfriendly. This proves that S1(u)∩S1(v) = ∅.

If |S1(u)| > 1 and |S2(u)| > 1, then G|(S1(u) ∪ S2(u)) contains a hole
of length four, say H; and u is a center for H and v is an anticenter for H,
contrary to 5.3, since u is adjacent to v. So we may assume that S1(u) =
{su}, say. Similarly, we may assume that S1(v) = {sv}.

Suppose su is strongly antiadjacent to sv. Let F ′ = (F \{su, sv})+{u, v}.
Then F ′ is triangle-free, and therefore |η(F ′)| + |σ(F ′)| ≤ |η(F )| + |σ(F )|.
Consequently, we may assume from the symmetry, that su has a neighbor
m ∈M(u). Then m is strongly anticomplete to S2(u). Since {m, su, tu, u, v}
is not a bull, it follows that m ∈ NF (v); and since su is strongly antiadjacent
to sv, we deduce that m ∈ S2(v). Now u-su-m-v-u is a hole of length four,
and, since F is triangle free, S2(u) is complete to {u, su} and anticomplete
to {m, v}. Therefore, 5.2 implies that S2(u) is a strong clique, and therefore
|S2(u)| = 1, namely S2(u) = {tu}. Since F is triangle free, it follows that tu
is strongly antiadjacent to m. Since G|{u, su, tu, v,m, sv} is not a prism, it
follows that sv is strongly antiadjacent to tu. Let F ′′ = (F \{tu, sv})+{u, v}.
Then F ′′ is triangle-free, and therefore |η(F ′′)|+ |σ(F ′′)| ≤ |η(F )|+ |σ(F )|.
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Consequently, either tu has a neighbor inM(u), or sv has a neighbor inM(v).
If sv has a neighbor x ∈ M(v), then x 6= su, tu, and so {x, sv,m, v, u} is a
bull, a contradiction. Thus tu has a neighbor y ∈M(u). Since {y, tu, su, u, v}
is not a bull, it follows that y ∈ S2(v). Then y 6= m, and since F is
triangle free, we deduce that y is strongly antiadjacent to su. But then
{m, su, u, tu, y} is a bull, a contradiction. This proves that su is adjacent to
sv.

Now u-su-sv-v-u is a hole of length four, S2(u) is complete to {u, su}
and anticomplete to {v, sv}, and S2(v) complete to {v, sv} and anticom-
plete to {u, su}. Thus, 5.2 implies that |S2(u)| = |S2(v)| = 1, and therefore
S2(u) = {tu}, and S2(v) = {tv}. Now, reversing the roles of S1(u) and
S2(u), and of S1(v) and S2(v), we deduce that tu is adjacent to tv. But
then, since F is triangle free, it follows that G|{u, su, tu, v, sv, tv} is a prism,
a contradiction. This proves (4).

(5) Let u, v ∈ V (G) \ V (F ) be antiadjacent. Then NF (u) ∩ NF (v) is a
strongly stable set.

Let S1(u), S2(u), S1(v), S2(v) be as in (3). Suppose s1, s2 ∈ NF (u) ∩NF (v)
are adjacent. We may assume that s1 ∈ S1(u)∩S1(v), and s2 ∈ S2(u)∩S2(v).
Then S2(u) ∩ S1(v) = S1(u) ∩ S2(v) = ∅.

First we claim that NF (u) = NF (v). Suppose S2(u) \ S2(v) 6= ∅, and let
t ∈ S2(u) \S2(v). Then t-u-s2-v is a path, and s1 is a center for it, contrary
to the fact that G is unfriendly. Therefore, S2(u) \ S2(v) = ∅, and, form
the symmetry, this implies that NF (u) = NF (v), and the claim follows. Let
S1(u) = S1(v) = S1, and S2(u) = S2(v) = S2.

Let C0 be the set of all vertices of V (G)\V (F ) that are complete to S1∪S2

and strongly anticomplete to V (F ) \ (S1 ∪ S2). Let C be an anticomponent
of C0 with u, v ∈ C. Since C is not a homogeneous set in G, it follows from
2.2 that there exist c1, c2 ∈ C and x ∈ V (G)\C, such that c1 is antiadjacent
to c2, and x is adjacent to c1 and antiadjacent to c2.

Suppose first that x 6∈ S1∪S2. By 5.1, it follows that x is either strongly
complete or strongly anticomplete to S1 ∪ S2. If x is strongly complete to
S1 ∪ S2, then, x ∈ V (G) \ V (F ), and since x is antiadjacent to c2, the claim
above implies that NF (x) = NF (c2) = S1 ∪ S2, contrary to the fact that
x 6∈ C. Therefore x is strongly anticomplete to S1 ∪ S2. Since x 6∈ S1 ∪ S2,
and since x is adjacent to c1, it follows that x ∈ V (G) \ V (F ). But now
(4) implies that NF (x)∩NF (c1) 6= ∅, contrary to the fact that x is strongly
anticomplete to S1 ∪ S2. This proves that x ∈ S1 ∪ S2, say x ∈ S1. Since
for any s ∈ S1 \ {x}, x-c1-s-c2 is not a path with center s2, it follows that
S1 = {x}. Since (C, {x}) is not a homogeneous pair in G, it follows that
some vertex y ∈ S2 is mixed on C, and therefore S2 = {y} and y is semi-
adjacent to some vertex c3 ∈ C. Since x is semi-adjacent to c2, it follows
that c2 6= c3. Suppose that there exist x′, y′ ∈ V (F ) \ {x, y} such that x′
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is adjacent to x, and y′ to y. Since F us triangle free, it follows that x′ is
strongly antiadjacent to y, and y′ to x. Since {x′, x, u, y, y′} is not a bull, we
deduce that x′ is adjacent to y′. But now x-y-y′-x′-x is a hole of length four,
and {u, v} is complete to {x, y} and anticomplete to {x′, y′}, contrary to
5.2. So we may assume from the symmetry that y is strongly anticomplete
to V (F ) \ {x, y}. Since F is connected and since there is a three-edge path
in F , it follows that there exists a vertex x′ ∈ V (F ) \ {x, y} adjacent to
x. Since {x′, x, c3, y, c2} is not a bull, it follows that c2 is strongly adjacent
to c3. Since C is anticonnected, there is an antipath Q from c2 to c3 with
V (Q) ⊆ C. Since x is complete to C and G is unfriendly, it follows that Q
has a unique internal vertex, say q. Then q is complete to {x, y} and strongly
antiadjacent to x′. But now {x′, x, q, y, c2} is a bull, a contradiction. This
proves (5).

(6) Let C be a component of V (G) \ V (F ). Then C is a strong clique.

Suppose C is not a strong clique. Then, since C is connected, there ex-
ist vertices x, y, z ∈ C, such that y is adjacent to both x and z; and x is
antiadjacent to z. By (4), there exist a, b, c, d ∈ V (F ) such that a is adjacent
to b, c is adjacent to d, {x, y} is complete to {a, b} and {y, z} is complete to
{c, d}. By (5), z is not complete to {a, b}, and x is not complete to {c, d};
and therefore {a, b} 6= {c, d}. Suppose b is complete to {z, d}. Since F is
triangle-free, it follows that a is strongly antiadjacent to d. By (5), x is
strongly antiadjacent to d, and z to a. But now {x, a} is anticomplete to
{z, d}, and {y, b} is complete to {x, a, z, d}, contrary to 5.6. This proves that
b is not complete to {z, d}, and, in particular, b 6= c. From the symmetry,
this implies that a is not complete to {z, c}, and that {a, b} ∩ {c, d} = ∅.
Since a, b, c, d,∈ NF (y), by (3) and the symmetry we may assume that a is
adjacent to c and b to d. Since F is triangle-free, it follows that b is strongly
antiadjacent to c. Since b is adjacent to d, it follows that b is antiadjacent
to z, and, since a is adjacent to c, it follows that a is antiadjacent to z. But
now z-c-a-b is a path, and y is a center for it, contrary to the fact that G is
unfriendly. This proves (6).

Let C be a component of V (G) \ V (F ), and let f ∈ V (F ). We denote
by C(f) the set of vertices of C that are adjacent to f , and by NF (C) the
set of vertices of F with a neighbor in C.

(7) Let C be a component of V (G) \ V (F ), and let c ∈ C. For i = 1, 2
let Si(c) be defined as in (3). Then, for i = 1, 2 there exists si ∈ Si(c) such
that si is complete to C.

Choose s1 ∈ S1(c) with C(s1) maximal. We may assume that C(s1) 6= C, for
otherwise (7) holds. Let c′ ∈ C \C(s1). By (4), c′ has a neighbor s′1 ∈ S1(c).
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It follows from the maximality of C(s1), there exists c1 ∈ C(s1) such that
s′1 is strongly antiadjacent to c1. But now s1-c1-c′-s′1 is a path with center
c, a contradiction. This proves (7).

(8) Let C be a component of V (G) \ V (F ). Then NF (C) = S1(C) ∪ S2(C)
where each of S1(C), S2(C) is a non-empty strongly stable set.

Let c ∈ C, and let S1(c), S2(c) be as in (3). By (7), for i = 1, 2 there
exists si ∈ Si(c) such that C is complete to si. Now, by (3), we may assume
that for every c′ ∈ C, S1(c′) is complete to s2, and S2(c′) is complete to s1.
For i = 1, 2, let Si(C) =

⋃
c′∈C Si(c′). Then NF (C) = S1(C) ∪ S2(C). But

S1(C) is complete to s2, and S2(C) is complete to s1, and therefore, since
F is triangle free, it follows that each of S1(C) and S2(C) is strongly stable.
This proves (8).

For a component C of V (G) \ V (F ) we call the sets S1(C), S2(C) defined
in (8) the anchors of C.

(9) Let C be a component of V (G) \V (F ). Let S1(C), S2(C) be the anchors
of C, for i = 1, 2 let Ti(C) be the set of vertices of V (F ) \ (S1(C) ∪ S2(C))
with a neighbor in Si(C); and for si ∈ Si(C), let Ti(si) be the set of neighbors
of si in V (F ) \ (S1(C) ∪ S2(C)). Then

• for every s, s′ ∈ S1(C) either s is strongly complete to C(s′), or s′ is
strongly complete to C(s),

• Let s1 ∈ S1(C) be antiadjacent to s2 ∈ S2(C). Then every vertex of C
is strongly adjacent to one of s1, s2. If some c ∈ C is adjacent to both
s1 and s2, then C = {c}, NF (C) = {s1, s2} and s1 is semi-adjacent to
s2.

• for every s, s′ ∈ S1(C), if some vertex of C(s′) is antiadjacent to s,
then s is strongly complete to T (s′).

• T1(s1) is disjoint from and strongly complete to T2(s2) for every s1 ∈
S1(c), s2 ∈ S2(c) and c ∈ C.

• let c ∈ C, s1 ∈ S1(C) and s2 ∈ S2(C) such that c is adjacent to both
s1 and s2. Then every vertex of C is strongly adjacent to at least one
of s1, s2.

Let s, s′ ∈ S1(C), and suppose there exist c ∈ C adjacent to s and
antiadjacent to s′, and c′ ∈ C adjacent to s′ and antiadjacent to s. By (4),
there is s2 ∈ S2(C) adjacent to both c, c′. By (3), s2 is adjacent to both s
and s′. But now s-c-c′-s′ is a path, and s2 is a center for it, contrary to the
fact that G is unfriendly. This proves the first assertion of (9).
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Next assume that s1 ∈ S1(C) is antiadjacent to s2 ∈ S2(C). Suppose
first that some c ∈ C is adjacent to both s1 and s2. By (3), it follows
that S1(c) = {s1}, S2(c) = {s2}, and s1 is semi-adjacent to s2. Suppose
there exists c′ ∈ C \ {c}. By (4), c′ is complete to {s1, s2}. Suppose c′ has a
neighbor f ∈ V (F )\{s1, s2}. By (3), we may assume that f is adjacent to s1
and antiadjacent to s2. But now f -s1-c-s2 is a path, and c′ is a center for it,
a contradiction. Therefore, NF (C) = {s1, s2}. Since s1 is semi-adjacent to
s2, it follows that C is strongly complete to NF (C), and C is a homogeneous
set in G, contrary to the fact that G is unfriendly. Thus C = {c}, and the
second assertion of (9) holds. So we may assume that C(s1) ∩ C(s2) = ∅.
Suppose there exists a vertex c ∈ C anticomplete to {s1, s2}. For i = 1, 2, let
ci ∈ C be adjacent to si. If c, c1, c2 are all distinct, then {s1, c1, c, c2, s2} is a
bull, a contradiction. Thus we may assume that c = c1. By (7), there exists
a vertex s ∈ S2(C) adjacent to both c1 and c2. Since c1 is semi-adjacent to
s1, it follows that c1 is strongly antiadjacent to s2, and so s 6= s2. By (3), s
is adjacent to s1. But now {s1, s, c1, c2, s2} is a bull, a contradiction. This
proves the second assertion of (9).

Next let s, s′ ∈ S1(C), and assume that some vertex c′ ∈ C(s′) is antiad-
jacent to s, and some vertex t′ ∈ T1(s′) is antiadjacent to s. Let s2 ∈ S2(C)
be complete to C (such a vertex s2 exists by (7)). By the second assertion
of (9), and since both s, s′ have neighbors in C, it follows that s2 is adjacent
to both s, s′. But now, since F is triangle-free, {t′, s′, c′, s2, s} is a bull, a
contradiction. This proves the third assertion of (9).

Next, let c ∈ C, and for i = 1, 2, let si ∈ Si(c), and let ti ∈ Ti(si). By (3),
s1 is adjacent to s2. Since F is triangle free, s1 is strongly antiadjacent to
t2, and s2 to t1, and therefore t1 6= t2. Now since {t1, s1, c, s2, t2} is not a
bull, it follows that t1 is strongly adjacent to t2, and the fourth assertions
of (9) follows.

Finally, suppose that there exist c, c′ ∈ C, s1 ∈ S1(C) and s2 ∈ S2(C)
such that c is adjacent to both s1 and s2, and c′ is antiadjacent to both s1, s2.
Since c is semi-adjacent to at most one of s1, s2, it follows that c is strongly
adjacent to at least one of s1, s2, and so c 6= c′. By the second assertion
of (9), s1 is adjacent to s2. Since c′ is semi-adjacent to at most one of s1, s2,
we may assume that s1 is strongly antiadjacent to c′. By (7), there exists
s ∈ S1(C) complete to C. Then s 6= s1. By the second assertion of (9),
since s2 has a neighbor in C, it follows that s is adjacent to s2. But now
s1-s2-s-c′ is a path, and c is a center for it, contrary to the fact that G is un-
friendly. This proves the fifth assertion of (9), and completes the proof of (9).

(10) Let C be a component of V (G) \ (F ), with anchors S1, S2. For i = 1, 2,
let Ti be the set of vertices of V (F ) \ (S1 ∪ S2) with a neighbor in Si. Then
G|(C ∪ S1 ∪ S2 ∪ T1 ∪ T2) is a (C, S1, S2, T1, T2)-clique connector.

Let |C| = t. By (9), we can number the vertices of C as {c1, . . . , ct} such
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that for every s ∈ S1, N(s) ∩ C = {c1, . . . , ci} for some i ∈ {1, . . . , t},
and s is strongly complete to {c1, . . . , ci−1}, and for every s ∈ S2, N(s) ∩
C = {ct−i+1, . . . , ct} for some i ∈ {1, . . . , t}, and s is strongly complete
to {ct−i+2, . . . , ct}. Let i ∈ {1, . . . , t}. Let Ai be the set of vertices of S1

that are strongly complete to {c1, . . . , ci−1}, adjacent to ci and strongly an-
ticomplete to {ci+1, . . . , ct}. Let A′i be the set of vertices of Ai that are
semi-adjacent to ci. Let Bi be the set of vertices of S2 that are strongly
complete to {ct−i+2, . . . , ct}, adjacent to ct−i+1 and strongly anticomplete
to {c1, . . . , ct−i}. Let B′i be the set of vertices of Bi that are semi-adjacent to
ct−i+1. Then S1 =

⋃t
i=1Ai, and S2 =

⋃t
i=1Bi. Let i ∈ {1, . . . , t}. Let Ci be

the set of vertices of T1 with a neighbor in Ai, and that are strongly anticom-
plete to

⋃
j>iAj , and let Di be the set of vertices of T2 with a neighbor in Bi,

and that are strongly anticomplete to
⋃

j>iBj . Then T1 =
⋃t

i=1Ci, and T2 =⋃t
i=1Di. We show that the sets C,A1, . . . , At, B1, . . . , Bt, C1, . . . , Ct, D1 . . . , Dt

satisfy the axioms of a clique connector.
If i+ j 6= t, then either some vertex of C is complete to Ai∪Bj , or some

vertex of C is anticomplete to Ai∪Bj . Therefore, (9) implies, that if i+j 6= t,
and Ai is not strongly complete to Aj , then |C| = |S1| = |S2| = 1, and S1 is
complete to S2. Since for every i, ci is anticomplete to A′i ∪Bt−i, it follows
from (9) that A′i is strongly complete to Bt−i, and from the symmetry B′t−i

is strongly complete to Ai.
Next we show that S1 is strongly anticomplete to T2. Suppose s1 ∈ S1

has a neighbor t ∈ T2. Let s2 ∈ S2 be a neighbor of t. Then, since F is
triangle-free, it follows that s is strongly antiadjacent to t, and so s1 ∈ Ai\A′i
and s2 ∈ Bt−i \B′t−i for some i ∈ {1, . . . , t}. Now ci-ci+1-s2-t-s1-ci is a hole
of length five. By (7), there exists s′1 ∈ S1 complete to C. Then s′1 6= s1, and
s′1 is adjacent to ci, ci+1, and, by (9), s2, contrary to 6.1. This proves that
S1 is strongly anticomplete to T2. Similarly, S2 is strongly anticomplete to
T1.

By (9), for i ∈ {1, . . . , t}, Ci is strongly complete to
⋃

j<iAj , and Di is
strongly complete to

⋃
j<iBj .

We claim that for i ∈ {1, . . . , t}, Ci is strongly complete to A′i. Suppose
c ∈ Ci is antiadjacent to a′ ∈ A′i. Since a′ is semi-adjacent to ci, it follows
that a′ is strongly antiadjacent to c. Since c ∈ Ci, there is a vertex a ∈
Ai \ {a′} that is adjacent to c. But then a is adjacent to both ci and c,
and a′ is antiadjacent to both ci and c, contrary to (9). This proves that
Ci is strongly complete to A′i. Similarly, for i ∈ {1, . . . , t}, Di is strongly
complete to B′i.

Finally, let i, j ∈ {1, . . . , t}, such that i + j > t. We claim that Ci is
strongly complete to Dj . Suppose c ∈ Ci is antiadjacent to d ∈ Dj . Let
ai ∈ Ai be adjacent to c, and let bj ∈ Bj be adjacent to d. Since j > t− i,
it follows that bj is adjacent to ci. But now {c, ai, ci, bj , d} is a bull, a
contradiction.

Finally, by (7), At 6= ∅ and Bt 6= ∅. Thus, all the axioms of a clique
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connector are satisfied. This proves (10).

Now, if NF (C1) ∩ NF (C2) = ∅ for every two components C1, C2 of V (G) \
V (F ), then taking H to be the graph whose vertices are the components of
V (G) \ V (F ), and with E(H) = ∅, we observe, using (10), that G admits
an H-structure and thus G ∈ T1. Consequently, we may assume that there
exist components C1, C2 of V (G) \ V (F ) with NF (C1) ∩ NF (C2) 6= ∅ For
i, j ∈ {1, 2} let Si(Cj) be the anchors of C1, C2.

(11) Renumbering the anchors if necessary, we may assume that S1(C1) ∩
S2(C2) = S2(C1) ∩ S1(C2) = ∅.

From the symmetry, it is enough to show that at most one of the sets
S1(C1) ∩ S1(C2) and S1(C1) ∩ S2(C2) is non-empty. Suppose there exist
s1 ∈ S1(C1) ∩ S1(C2) and s2 ∈ S1(C1) ∩ S2(C2). Since, by (8), S1(C1) is a
strongly stable set, it follows that s1 is strongly antiadjacent to s2. By (9),
C2(s1) ∩ C2(s2) = ∅. Let c1 ∈ C2(s1), c2 ∈ C2(s2). Also by (9), there exists
c ∈ C1(s1) ∩ C1(s2). Now s1-c-s2-c2-c1-s1 is a hole of length five. By (7),
there exists s′2 ∈ S2(C2) complete to C2. But now by (9), s1 is adjacent to
s′2, contrary to 6.1. This proves (11).

In view of (11), we may henceforth assume that S1(C1) ∩ S1(C2) 6= ∅, and
S1(C1) ∩ S2(C2) = S2(C1) ∩ S1(C2) = ∅

(12) Let s ∈ S1(C1) ∩ S1(C2), and s′ ∈ S1(C1) \ S1(C2). Then s′ is strongly
complete to C1(s).

Suppose not, and let c ∈ C1(s) be antiadjacent to s′. Let c2 ∈ C2(s).
By (7), there exists s2 ∈ S2(C1) complete to C1. By (9), s2 is strongly
adjacent to both s, s′. Since {c2, s, c, s2, s′} is not a bull, it follows that s2 is
strongly adjacent to c2. But now s1, s2 ∈ NF (c) ∩NF (c2), contrary to (5).
This proves (12).

(13) No vertex of F has a neighbor in three different components of V (G) \
V (F ).

Let f ∈ V (F ), and let C1, C2, C3 be three distinct components of V (G) \
V (F ), such that f has a neighbor in each of C1, C2, C3. For i ∈ {1, 2, 3},
let ci ∈ Ci be adjacent to f . We may assume that f ∈ S1(Ci). By (7),
there exists a vertex xi ∈ S2(Ci), that is strongly complete to Ci. By (9),
f is adjacent to each of x1, x2, x3, and therefore, by (5), xi is strongly an-
tiadjacent to cj for 1 ≤ i 6= j ≤ 3. Since F is triangle-free, it follows that
{c1, c2, c3, x1, x2, x3} is a matching of size three in G|(NF (c), contrary to 5.8.
This proves (13).
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(14) Every vertex of V (G) \ (C1 ∪ C2 ∪ NF (C1) ∪ NF (C2)) with a neigh-
bor in S1(C1) ∩ S1(C2) is strongly complete to S1(C1) ∩ S1(C2).

Suppose x ∈ V (G) \ (C1 ∪ C2 ∪ NF (C1) ∪ NF (C2)) has a neighbor s1 ∈
S1(C1) ∩ S1(C2). For i = 1, 2 let ai ∈ Ci be complete to S1(C1) ∩ S1(C2)
(such a vertex exists by (9)), and let bi ∈ S2(Ci) be complete to Ci (such a
vertex exists by (7)). By (9), for i = 1, 2, bi is complete to S1(C1)∩ S1(C2).

We claim that there is no path in G|(N(s1) from x to {a1, b1, a2, b2}.
Suppose there is, and let p be a neighbor of x in the path. Since {s1, x, p} is
a triangle, and s1 ∈ V (F ), it follows that at least one of p, x ∈ V (G)\V (F ).
Since x 6∈ C1 ∪ C2 ∪NF (C1) ∪NF (C2), it follows that p 6∈ C1 ∪ C2, and so
there exist a component C3 of V (G)\V (F ), different from C1, C2, such that
one of p, x ∈ C3. But now s1 has a neighbor in three different components
of V (G) \ V (F ), contrary to (13). This proves the claim.

Now, since every vertex of S1(C1) ∩ S1(C2), has a neighbor in {a1, b1}
(namely a1) and a neighbor in {a2, b2} (namely a2), the second assertion
of 5.9 implies that x is strongly complete to S1(C1)∩S1(C2). This proves (14).

(15) There exists s2 ∈ S2(C1), complete to C1 and with a neighbor in
S1(C2) \ S1(C1).

The first assertion of (9) implies that there exists c1 ∈ C1 complete to
S1(C1). Let S be the set of neighbors of c1 in S2(C1). We may assume that
c1 is chosen with S minimal, and subject to that with the minimum number
of strong neighbors in S2(C1).

First we claim that every vertex of S is strongly complete to C1 \ {c1}.
Suppose some s ∈ S has an antineighbor c ∈ C1\{c1}. Since c1 is adjacent to
s and complete to S1(C1), the last assertion of (9) implies that c is strongly
complete to S1(C1).

We claim that c has a neighbor in S2(C1) \ S. Suppose not. It follows
from the choice of c1 that c is complete to S and semi-adjacent to s, and so
the first assertion of (9) implies that c1 is strongly complete to S, contrary
to the choice of c1. This proves the claim. Let s2 ∈ S2(C1)\S be a neighbor
of c. But now s is adjacent to c1 and antiadjacent to c, and s2 is adjacent
to c and strongly antiadjacent to c1, contrary to (9). This proves that S is
strongly complete to C1 \ {c1}.

Let X be the set of vertices of S1(C1) that are semi-adjacent to a vertex
of S ∪ {c1}. Since c1 is complete to S1(C1), (9) implies that either X =
∅, or X consists of the unique vertex semi-adjacent to c1, or |S1(C1)| =
|S2(C1)| = |C1| = 1, and X consists of the unique vertex of S1(C1) that is
semi-adjacent to the unique vertex of S2(C1) = S. In all cases, |X| ≤ 1.
Since G is unfriendly, it follows that S ∪ {c1} is not a homogeneous set in
G, and (S ∪ {c1}, X) is not homogeneous pair in G. Therefore, some vertex
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v ∈ V (G) \ (S ∪X ∪ {c1}) is mixed on S ∪ {c1}.
Suppose first that v is strongly antiadjacent to c1. Then v has a neighbor

s ∈ S. Let s1 ∈ S1(C1) ∩ S1(C2). Since both s, s1 are adjacent to c1, (9)
implies that s is adjacent to s1. Let c2 ∈ C2 be adjacent to s1. By (5), c2 is
antiadjacent to s. By (5), and since v is strongly antiadjacent to c1, it follows
that v is strongly antiadjacent to s1. Since {c2, s1, c1, s, v} is not a bull, it
follows that v is strongly adjacent to c2. Consequently, v ∈ C2 ∪ NF (C2).
If v ∈ S2(C2), then, by (9), v is strongly adjacent to s1, a contradiction.
If v ∈ S1(C2), then , since v is strongly antiadjacent to c1, it follows that
v ∈ S1(C2) \ S1(C1), and s is a vertex complete to C1 and adjacent to v;
and thus (15) holds. So we may assume that v ∈ C2. Then s ∈ S2(C2). By
the maximality of F , v has a neighbor s2 ∈ S1(C2). By (9), s2 is adjacent
to s. If s2 ∈ S1(C1), then c1, v are both adjacent to s, s2, contrary to (5).
Consequently, s2 ∈ S1(C2) \ S1(C1), s is adjacent to s2 and s is complete to
C1; and therefore again (15) holds.

This proves that we may assume that v is adjacent to c1. Since v 6∈ X,
v is strongly adjacent to c1, and has a strong antineighbor in S. Since v is
adjacent to c1, it follows that v ∈ C1∪NF (C1). Since S is strongly complete
to C1 \ {c1}, it follows that v ∈ NF (C1). Since v is adjacent to c1 and
v 6∈ S, it follows that v 6∈ S2(C1). Consequently, v ∈ S1(C1). But by (9),
since c1 is complete to S ∪ S1(C1), it follows that S is complete to S1(C1),
a contradiction. This proves (15).

(16) Let T1 be the set of vertices of V (G)\(C1∪C2∪NF (C1)∪NF (C2)) that
are strongly complete to S1(C1)∩ S1(C2). Then S1(C1)∪ S1(C2) is strongly
anticomplete to V (F ) \ (NF (C1) ∪NF (C2) ∪ T1).

Suppose some vertex s1 ∈ S1(C1) has a neighbor f1 ∈ V (F ) \ (NF (C1) ∪
NF (C2) ∪ T1). By (14), s1 6∈ S1(C2) and f1 is strongly anticomplete to
S1(C1) ∩ S1(C2).

By (15), there exist vertices p1 ∈ S2(C1), q1 ∈ S1(C2) \ S1(C1), p2 ∈
S2(C2), q2 ∈ S1(C1) \S1(C2), such that for i = 1, 2 pi is complete to Ci and
adjacent to qi. Let c ∈ C2 be adjacent to q1. By (9), p2 is adjacent to q1.

Let c′ ∈ C1 be adjacent to s1. By (9), s1 is adjacent to p1. Since
{f1, s1, c

′, p1, q1} is not a bull and F is triangle-free, it follows that f1 is
adjacent to q1. Now, since {f1, q1, c, p2, q2} is not a bull and F is triangle-
free, it follows that f1 is adjacent to q2.

Let s ∈ S1(C1)∩S1(C2). For i = 1, 2, let ci ∈ Ci be adjacent to s. Then
{c1, c2, p1, p2} is a matching of size two in G, s is complete to {c1, c2, p1, p2},
q1 is adjacent to p1 and antiadjacent to c1, q2 is adjacent to p2 and antiad-
jacent to c2, and f1 is adjacent to q1, q2 and antiadjacent to s, contrary to
the first assertion of 5.9. This proves (16).

(17) S2(C1) ∪ S2(C2) is strongly complete to S1(C1) ∩ S1(C2); and con-
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sequently if S1(C1) ∩ S1(C2) 6= ∅, then S2(C1) ∪ S2(C2) is a strongly stable
set.

Suppose not. We may assume that there exist vertices a ∈ S1(C1) ∩ S1(C2)
and v ∈ S2(C1) that are antiadjacent. For i = 1, 2, let Vi be the set of
neighbors of a in Ci. Since S1(C1) ∩ S1(C2) 6= ∅ and, by (15), we deduce
that S1(C1) \ S1(C2) 6= ∅ and S1(C2) \ S1(C1) 6= ∅. Now it follows from (9)
that v is strongly anticomplete to V1 ∪ V2.

Let p1 ∈ S2(C1) be a vertex complete to C1, and let q1 ∈ S1(C2)\S1(C1)
be adjacent to p1. Let p2 ∈ S2(C2) be a vertex complete to C2, and let
q2 ∈ S1(C1) \ S1(C2) be adjacent to p2 (such p1, q1, p2, q2 exist by (15)).
Then v 6= p1, p2. By (9), p1 is strongly adjacent to both q2 and a, and p2 is
strongly adjacent to both q1 and a. For i = 1, 2, let vi ∈ Vi. Since v is anti-
adjacent to a, 5.9, applied to the matching {p1, p2, v1, v2} implies that v is
antiadjacent to at least one of q1, q2. Suppose first that v is antiadjacent to
q1. Let c1 ∈ C1 be adjacent to v. Then {v, c1, v1, p1, q1} is a bull, a contra-
diction. So v is strongly adjacent to q1, and therefore v is antiadjacent to q2.
From the symmetry, it follows that v 6∈ S2(C2). Since p2 is adjacent to q1,
and since {p2, q1, v} and {q1, p2, q2} are not triangles in G|F , it follows that
q1 is strongly antiadjacent to q2, and p2 is strongly antiadjacent to v. Let
c2 ∈ C2 be adjacent to q1. Now {q2, p2, c2, q1, v} is a bull, a contradiction.
This proves the first assertion of (17). The second assertion now follows,
since F is triangle-free. This proves (17).

Let Q0 = R0 = T0 = U0 = ∅, and let P0 = S0 = S1(C1) ∩ S1(C2). For
i ≥ 1, let us define the sets Pi, Qi, Ri, Si, Ti, Ui recursively as follows:

• Let Qi be the set of vertices of C1 \ (
⋃

j<iQj) with a neighbor in Pi−1.

• Let Ri be the set of vertices of S2(C1) \ (
⋃

j<iRj) with a neighbor in
Qi.

• Let Si be the set of vertices of S1(C2) \ (
⋃

j<i Sj) with a neighbor in
Ri.

• Let Ti be the set of vertices of C2 \ (
⋃

j<i Tj) with a neighbor in Si−1.

• Let Ui be the set of vertices of S2(C2) \ (
⋃

j<i Uj) with a neighbor in
Ti.

• Let Pi be the set of vertices of S1(C1) \ (
⋃

j<i Pj) with a neighbor in
Ui.

We observe that the definition above is symmetric under exchanging C1

and C2. Let P =
⋃

i≥0 Pi, and let Q,R, S, T, U be defined similarly. Let
W = P ∪ Q ∪ R ∪ S ∪ T ∪ U . The maximality of |V (F )| implies that
Q1, R1, T1, U1 are all non-empty, and, by (15), S1 and P1 are non-empty.
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(18) Let i ≥ 1. If c ∈ C1 has a neighbor in Ui, then c ∈
⋃

j≤i+1Qj. If
c ∈ C2 has a neighbor in Ri, then c ∈

⋃
j≤i+1 Tj.

From the symmetry, it is enough to prove the first assertion of (18). Let
u ∈ Ui be adjacent to c ∈ C1. Let s ∈ S1(C1) be adjacent to c. By (9), u is
adjacent to s, and therefore s ∈

⋃
j≤i Pj . But then, since c is adjacent to s,

it follows that c ∈
⋃

j≤i+1Qj . This proves (18).

(19) No vertex of V (G) \W is mixed on P ∪ S.

Suppose some v ∈ V (G) \W is mixed on P ∪ S. Let i be minimum such
that v is mixed on

⋃
j≤i(Pj ∪ Sj). By (14), i > 0.

We claim that v is strongly complete to
⋃

j<i(Pj ∪ Sj) and has an an-
tineighbor in Pi∪Si. If v is strongly anticomplete to Pi∪Si, then, since v is
mixed on

⋃
j≤i(Pj ∪ Sj), the claim follows from the minimality of i, and so

we may assume that v has a neighbor in Pi ∪ Si. Now it follows from (16)
that v is strongly complete to P0 = S0, and again, by the minimality of i, it
follows that v is strongly complete to

⋃
j<i(Pj ∪ Sj). This proves the claim.

From the symmetry, we may assume that v has an antineighbor p ∈ Pi.
By the claim in the first paragraph, it follows that v is strongly complete
to

⋃
j<i(Pj ∪ Sj). Since p ∈ Pi, there exist u ∈ Ui, t ∈ Ti, and s ∈ Si−1

such that {u, t, s} is a triangle, and p is adjacent to u. Then v is strongly
adjacent to s. Since p 6∈ P0, it follows that p is strongly antiadjacent to t.
Since F is triangle-free, p is strongly antiadjacent to s. If v is adjacent to t,
then v ∈ NF (C2), which, since v is adjacent to s, implies that v ∈ S2(C2),
and so v ∈ U ⊆ W , a contradiction. So v is strongly antiadjacent to t. If v
is adjacent to u, then {s, u, v} is a triangle, and so v 6∈ V (F ), but {t, v} is
complete to {s, u}, contrary to (5). So v is strongly antiadjacent to u. But
now {v, s, t, u, p} is a bull, a contradiction. This proves (19).

(20) No vertex of V (G) \W is mixed on Q1 ∪R1.

Suppose v ∈ V (G) \ W is mixed on Q1 ∪ R1. The last assertion of (9)
implies that C1 \Q1 is strongly complete to Q1∪R1; by the definition of R1,
S2(C1) \R1 is strongly anticomplete to Q1 ∪R1; and by (12), S1(C1) \P0 is
strongly complete to Q1. Now, by (15), |S1(C1)| 6= 1, and so, by (9), since
every vertex of R1 has a neighbor in Q1, it follows that S1(C1)\P0 is strongly
complete to R1. This proves that no vertex in (C1∪S1(C1)∪S2(C2)) \W is
mixed on S1 ∪R1, and so v 6∈ C1 ∪S1(C1)∪S2(C1). Therefore, v is strongly
anticomplete to Q1. Since v is mixed on Q1 ∪ R1, it follows that v has a
neighbor r ∈ R1. Then there exist q ∈ Q1 and p ∈ P0 such that {r, q, p} is a
triangle. Let c2 ∈ C2 be adjacent to p. By (5), c2 is strongly antiadjacent to
r. Since F is triangle-free and by (5), v is strongly antiadjacent to p. Since
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{v, r, q, p, c2} is not a bull, it follows that v is strongly adjacent to c2, and
therefore v ∈ C2∪S1(C2)∪S2(C2). Since v 6∈ S2, it follows that v 6∈ S1(C2).
Since v is antiadjacent to p, (17) implies that v 6∈ S2(C2). Therefore v ∈ C2.
But now, by (18), v ∈ T , contrary to the fact that v 6∈W . This proves (20).

(21) No vertex of V (G) \W is mixed on Q ∪R and no vertex of V (G) \W
is mixed on T ∪ U .

Suppose some v ∈ V (G) \ W is mixed on Q ∪ R or on T ∪ U . Let i be
minimum such that v is mixed on

⋃
j≤i(Qj ∪Rj) or on

⋃
j≤i(Tj ∪Uj). From

the symmetry, we may assume that v is mixed on
⋃

j≤i(Qj ∪Rj). By (20),
i > 1

From the minimality of i, it follows that either v is strongly anticomplete
to

⋃
j<i(Qj ∪ Rj) and has a neighbor in Qi ∪ Ri, or v is strongly complete

to
⋃

j<i(Qj ∪Rj) and has an antineighbor in Qi ∪Ri.
Suppose v is strongly anticomplete to

⋃
j<i(Qj ∪ Rj) and has a neigh-

bor in Qi ∪ Ri. Assume first that v has a neighbor in Qi. Then, since v is
strongly anticomplete to Q1, it follows that v 6∈ C1, and by (12), v 6∈ S1(C1).
So v ∈ S2(C1), but then v ∈ Ri, a contradiction. So v is strongly anticom-
plete to Qi, and therefore v has a neighbor ri ∈ Ri. Then that there exist
qi ∈ Qi and pi−1 ∈ Pi−1 such that {ri, qi, pi−1} is a triangle. Since i > 1,
there exists ui−1 ∈ Ui−1, adjacent to pi−1. We claim that v is adjacent to
ui−1. Suppose not. Since F it triangle-free and by (5), it follows that ui−1

is strongly antiadjacent to ri, and v is strongly antiadjacent to pi−1. Since
{ui−1, pi−1, qi, ri, v} is not a bull, it follows that ui−1 is adjacent to qi, and
therefore ui−1 ∈ S2(C1) ∩ S2(C2). But v is adjacent to ri and antiadja-
cent to ui−1, contrary to (16). This proves the claim that v is adjacent to
ui−1. It follows from the definition of Ui−1 that there exist ti−1 ∈ Ti−1 and
si−2 ∈ Si−2 such that {ui−1, ti−1, si−2} is a triangle. From the minimality
of i and since v is adjacent to ui−1, we deduce that v is adjacent to ti−1.
Consequently, v ∈ C2 ∪ S1(C2) ∪ S2(C2). Since v is adjacent to ui−1, it
follows that v 6∈ S2(C2). Since v is adjacent to ri, and v 6∈ T , (18) implies
that v 6∈ C2. Therefore, v ∈ S1(C1), and so, since v is adjacent to ri, it
follows that v ∈ Si, contrary to the fact that v 6∈ W . This proves that v is
strongly complete to

⋃
j<i(Qj ∪Rj) and has an antineighbor in Qi ∪Ri.

In particular, v has a neighbor in C1, and so v ∈ C1 ∪ S1(C1) ∪ S2(C1).
Since v is strongly complete to R1, it follows that v 6∈ S2(C1). Suppose
v ∈ C1. Then v is strongly complete to Q, and so v has an antineighbor
r ∈ Ri. Since v 6∈ Qi, it follows that v is strongly anticomplete to Pi−1. But
some vertex of Qi is adjacent adjacent to r and has a neighbor in Pi−1, con-
trary to the last assertion of (9). This proves that v 6∈ C1, and so v ∈ S1(C1).
Since v 6∈ P0, it follows that v is strongly anticomplete to C2. By (9), and
since |S1(C1)| > 1, we deduce that if v is strongly complete to Qi, then v
is strongly complete to Ri, and hence v has an antineighbor qi ∈ Qi. Since
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qi ∈ Qi, there exist p ∈ Pi−1 adjacent to qi. Since i > 1, there exists u ∈ Ui−1

adjacent to p. Since v is strongly anticomplete to C2, it follows from the
minimality of i that v is strongly antiadjacent to u. Let q1 ∈ Q1. Since
i > 1, both p and v are adjacent to q1. Since u is antiadjacent to v, (17)
implies that u 6∈ S2(C1). But now {u, p, qi, q1, v} is a bull, a contradiction.
This proves (21).

(22) For every i > 0, Pi is strongly complete to
⋃

j≤i(Qj ∪Rj).

Suppose pi ∈ Pi is antiadjacent to q ∈ Qj with j ≤ i. By (12), j > 1.
Let pj−1 ∈ Pj−1 be adjacent to q. Since j > 1, there exists u ∈ Uj−1

adjacent to pj−1. But now, since pi ∈ Pi, it follows that pi is strongly an-
tiadjacent to u, and therefore u 6∈ NF (C1), contrary to the third assertion
of (9). Now, since, by (15), |S1(C1)| > 1, Pi is strongly complete to

⋃
j≤iQj ,

and every vertex of
⋃

j≤iRj has a neighbor in
⋃

j≤iQj , (9) implies that Pi

is strongly complete to
⋃

j≤iRj . This proves (22).

(23) For every i > 0, Ri is strongly complete to C1 \ (
⋃

j≤iQj).

Suppose r ∈ Ri has an antineighbor c ∈ C1 \ (
⋃

j≤iQj). Choose q ∈ Qi and
p ∈ Pi−1 such that {p, q, r} is a triangle (this is possible by the definition
of Qi and Ri, and by the maximality of |V (F )|). Since c 6∈

⋃
j≤iQj , it fol-

lows that c is antiadjacent to both p and r, contrary to (9). This proves (23).

(24) For i > 0, Ri is strongly complete to
⋃

j<i Sj.

Suppose ri ∈ Ri has an antineighbor s ∈ Sj with j < i. By (17), j > 0, and
so there exists rj ∈ Rj adjacent to sj . Let q ∈ Qj be adjacent to rj . Then,
since ri 6∈ Rj , it follows that q is strongly antiadjacent to ri, contrary to the
third assertion of (9). This proves (24).

(25) P ∪ S is strongly complete to (S2(C1) ∪ S2(C2)) \ W , and strongly
anticomplete to (C1 ∪ C2 ∪ S1(C1) ∪ S1(C2)) \W .

By (17), S2(C1) ∪ S2(C2) is strongly complete to P0, and so by (19) P ∪ S
is strongly complete to (S2(C1)∪S2(C2))\W . Since each of S1(C1), S1(C2)
is a strongly stable set, it follows that (S1(C1) ∪ S2(C2)) \ P0 is strongly
anticomplete to P0. Now (19) implies that (S1(C1)∪S2(C2))\W is strongly
anticomplete to P ∪ S. Finally, it follows from the definition of Q and T ,
that (C1 ∪ C2) \W is strongly anticomplete to P ∪ S. This proves (25).

(26) Q ∪ R is strongly complete to (C1 ∪ S1(C1)) \ W and strongly anti-
complete to (S2(C1) ∪ S1(C2) ∪ S2(C2) ∪ C2) \W .
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Since Q ⊆ C1 and C1 is a strong clique, it follows from (21) that Q ∪ R
is strongly complete to C1 \W . By (12), S1(C1) \ P0 is strongly complete
to Q1, and so by (21), Q ∪R is strongly complete to S1(C1) \W .

In order to show that Q∪R is strongly anticomplete to (S2(C1)∪S1(C2)∪
S2(C2)∪C2)\W , it is enough, by (21), to prove that every vertex of (S2(C1)∪
S1(C2) ∪ S2(C2) ∪ C2) \W has an antineighbor in Q ∪R.

Since C2 ∪ (S2(C2) \S2(C1)) is strongly anticomplete to C1 and Q ⊆ C1,
it follows that every vertex of C2∪(S2(C2)\S2(C1)) is strongly anticomplete
to Q. Since S2(C1) is a strongly stable set and R ⊆ S2(C1) it follows that
every vertex of S2(C1) \W is a strongly anticomplete to R. Finally, by the
definition of S, S1(C2) \W is strongly anticomplete to R. This proves (26).

(27) P is strongly complete to R.

Suppose p ∈ P is antiadjacent to r ∈ R. Let i, j be integers such that
p ∈ Pi and r ∈ Rj . By (22) i < j. By (17), i > 0, and so there exists u ∈ Ui

adjacent to p. By (3), there exist t ∈ Ti and s ∈ Si−1 such that {s, t, u} is a
triangle. By (24), since i < j, it follows that r is strongly adjacent to s. But
now, since F is triangle-free, and since, by (17), both p and r are strongly
antiadjacent to t, it follows that {r, s, t, u, p} is a bull, a contradiction. This
proves (27).

It follows from (27) and the symmetry that S is strongly complete to U .

(28) If W ∩ S2(C1) ∩ S2(C2) 6= ∅, then P = S1(C1), Q = C1, R = S2(C1),
S = S1(C2), T = C2 and U = S2(C2).

From the symmetry, we may assume that there exist w ∈ R∩S2(C1)∩S2(C2).
By (17), w is strongly complete to S1(C2), therefore S1(C2) \ S1(C1) ⊆ S,
and so S = S1(C2). It follows that T = C2, and, consequently U = S2(C2);
in particular, w ∈ U . But now, for, the symmetry, P = S1(C1), Q = C1 and
R = S2(C1). This proves (28).

(29) If W ∩S2(C1)∩S2(C2) 6= ∅, then V (G) = C1 ∪C2 ∪S1(C1)∪S2(C1)∪
S1(C2) ∪ S2(C2).

Suppose not. Then there exists v ∈ V (G) \ (C1 ∪ C2 ∪ S1(C1) ∪ S2(C1) ∪
S1(C2) ∪ S2(C2)) with a neighbor in C1 ∪ C2 ∪ S1(C1) ∪ S2(C1) ∪ S1(C2) ∪
S2(C2). By (28), P = S1(C1), Q = C1, R = S2(C1), S = S1(C2), T = C2 and
U = S2(C2). Since v ∈ V (G)\(C1∪C2∪S1(C1)∪S2(C1)∪S1(C2)∪S2(C2)),
it follows that v is strongly anticomplete to C1∪C2, and so (21) implies that
v is strongly anticomplete to C1 ∪ C2 ∪ S2(C1) ∪ S2(C2). So v has a neigh-
bor in S1(C1) ∪ S1(C2), and therefore, by (20), v is strongly complete to
S1(C1) ∪ S1(C2). Let s2 ∈ S2(C1) ∩ S2(C2). For i = 1, 2 let ci ∈ Ci be
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adjacent to s2, and let s1 ∈ S1(C1) be adjacent to c1. Then, by (9), s1 is
adjacent to s2, and so by (5), s1 is strongly antiadjacent to c2. But now
{v, s1, c1, s2, c2} is a bull, a contradiction. This proves (29).

(30) P ∪ S and R ∪ U are strongly stable sets.

Since P0 is strongly complete to R ∪ U and F is triangle-free, it follows
that R ∪ U is a strongly stable set. Since P ⊆ S1(C1) and S ⊆ S1(C2), it
follows that each of P, S is a strongly stable set. So it is enough to prove
that P \ S is strongly anticomplete to S \ P . Suppose p ∈ P is adjacent to
s ∈ S. Let i, j be integers such that p ∈ Pi and s ∈ Sj . Then i, j > 0, and
so there exists r ∈ Rj adjacent to s. By (27), p is adjacent to r. But now
{p, r, s} is a triangle in F , a contradiction. This proves (30).

Let Z = P ∪ S and L = R ∪ U .

(31) If S2(C1) ∩ S2(C2) ∩ W = ∅, then G|(Q ∪ T ∪ Z ∪ L) is a Z-melt,
and if S2(C1) ∩ S2(C2) ∩W 6= ∅, than G|(Q ∪ T ∪ Z ∪ L) is a double melt.

First we observe that Q,T are strong cliques, and, by (30), Z,L are strongly
stable sets. By (15), |Z| > 1 and |L| > 1. Let |Q| = m and |T | = n. By (9),
we can number the vertices of Q as {q1, . . . , qm} such that for every p ∈ P ,
N(p) ∩Q = {q1, . . . , qi} for some i ∈ {1, . . . ,m}, and p is strongly complete
to {q1, . . . , qi−1}; and for every r ∈ R, N(r) ∩ Q = {qm−i+1, . . . , qm} for
some i ∈ {1, . . . ,m}, and r is strongly complete to {qm−i+2, . . . , qm}. Sim-
ilarly, we can number the vertices of T as {t1, . . . , tn} such that for every
s ∈ S, N(s)∩T = {tn+1−j , . . . , tn} for some j ∈ {1, . . . , n}, and s is strongly
complete to {tn+2−j , . . . , tn}, and for every u ∈ U , N(u) ∩ T = {t1, . . . , tj}
for some j ∈ {1, . . . , n}, and u is strongly complete to {t1, . . . , tj−1}.

Let A0,0 = B0,0 = ∅. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} let Ai,j

be the set of vertices of Z that are strongly complete to {q1, . . . , qi−1} ∪
{tn−j+2, . . . , tn}, complete to {qi} ∪ {tn−j+1}, and strongly anticomplete
to {qi+1, . . . , qm} ∪ {t1, . . . , tn−j}; and let Bi,j be the set of vertices of L
that are strongly complete to {qm−i+2, . . . , qm}∪ {t1, . . . , tj−1}, complete to
{qm−i+1}∪{tj}, and strongly anticomplete to {q1, . . . , qm−i}∪{tj+1, . . . , tn}.
For i ∈ {1, . . . ,m}, let Ai,0 be the set of vertices of Z that are strongly
complete to {q1, . . . , qi−1}, complete to {qi}, and strongly anticomplete to
{qi+1, . . . , qm} ∪ T . For j ∈ {1, . . . , n}, A0,j be the set of vertices of Z
that are strongly complete to {tn−j+2, . . . , tn}, complete to {tn−j+1}, and
strongly anticomplete to Q ∪ {t1, . . . , tn−j}. For i ∈ {1, . . . ,m}, let Bi,0 be
the set of vertices of L that are strongly complete to {qm−i+2, . . . , qm},
complete to {qm−i+1}, and strongly anticomplete to {q1, . . . , qm−i} ∪ T .
Finally, for j ∈ {1, . . . , n}, let B0,j be the set of vertices of L that are
strongly complete to {t1, . . . , tj−1}, complete to {tj}, and strongly anti-
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complete to Q ∪ {tj+1, . . . , tn}. Then Z =
⋃

0≤i≤m

⋃
0≤j≤nAi,j and L =⋃

0≤i≤m

⋃
0≤j≤nBi,j .

Since every vertex of Q∪ T has a neighbor in both Z and L, (9) implies
that the sets

⋃
0≤j≤nAm,j ,

⋃
0≤j≤nBm,j ,

⋃
0≤i≤mAi,n and

⋃
0≤i≤mBi,n are

all non-empty.
Let i, i′ ∈ {0, . . . ,m} and j, j′ ∈ {0, . . . , n}, such that i′ > i and j′ > j,

and let a ∈ Ai,j and a′ ∈ Ai′,j′ . Since A0,0 = ∅, we may assume that i > 0.
Then a′ is complete {qi, qi′ , tn−j′+1}, and a is anticomplete to {qi′ , tn−j′+1}
and adjacent to qi, and so {a, qi, qi′ , a′, tn−j′+1} is a bull, a contradiction.
This proves that one of Ai,j and Ai′,j′ is empty. Similarly, one of the sets
Bi,j and Bi′,j′ is empty.

By (17), for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, Ai,j is strongly complete
to L, and Bi,j is strongly complete to Z. By (27), for every i, i′ ∈ {1, . . . ,m}
and j, j′ ∈ {1, . . . , n}, Ai,0 is strongly complete to Bi′,0, and A0,j is strongly
complete to B0,j′ .

Let i ∈ {1, . . . ,m} and j ∈ {1, . . . n}. Let Aj
i,0 be the set of vertices of Ai,0

with that have a neighbor in B0,j are strongly anticomplete to
⋃

j<k≤nB0,k.
Let A0

i,0 be the set of vertices of Ai,0 that are strongly anticomplete to⋃
1≤k≤nB0,k. Let Ai

0,j be the set of vertices of A0,j that have a neighbor
in Bi,0 and are strongly anticomplete to

⋃
i<k≤mBk,0. Let A0

0,j be the set
of vertices of A0,j that are strongly anticomplete to

⋃
1≤k≤mBk,0. Let Bj

i,0

be the set of vertices of Bi,0 that have a neighbor in A0,j and are strongly
anticomplete to

⋃
j<k≤nA0,k. Let B0

i,0 be the set of vertices of Bi,0 that
are strongly anticomplete to

⋃
1≤k≤nA0,k. Let Bi

0,j be the set of vertices of
B0,j with a neighbor in Ai,0 that are strongly anticomplete to

⋃
i<k≤mAk,0.

Finally, let B0
0,j be the set of vertices of B0,j that are strongly anticomplete

to
⋃

1≤k≤mAk,0. Then

Ai,0 =
⋃

0≤k≤n

Ak
i,0,

A0,j =
⋃

0≤k≤m

Ak
0,j ,

Bi,0 =
⋃

0≤k≤n

Bk
i,0,

and
B0,j =

⋃
0≤k≤m

Bk
0,j .

We observe that for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, Ai,0 ⊆ P \
P0, A0,j ⊆ S \ S0, Bi,0 ⊆ R and B0,j ⊆ U . Therefore every vertex
of A0

i,0 has a neighbor in
⋃

1≤p≤m

⋃
1≤q≤nBp,q, every vertex of B0

i,0 has a
neighbor in

⋃
1≤p≤m

⋃
1≤q≤nAp,q, every vertex of A0

0,j has a neighbor in⋃
1≤p≤m

⋃
1≤q≤nBp,q, and every vertex of B0

0,j has a neighbor in⋃
1≤p≤m

⋃
1≤q≤nAp,q.
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By (9), Ai
0,j is strongly complete to

⋃
1≤s<iBs,0, Aj

i,0 is strongly complete
to

⋃
1≤s<j B0,s, B

j
i,0 is strongly complete to

⋃
1≤s<j A0,s and Bi

0,j is strongly
complete to

⋃
1≤s<iAs,0. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} let A′i,0

be the set of vertices of Ai,0 that are semi-adjacent to qi, let A′0,j be the
set of vertices of A0,j that are semi-adjacent to tn−j+1, let B′i,0 be the set
of vertices of Bi,0 that are semi-adjacent to qm−i+1, and let B′0,j be the
set of vertices of B0,j that are semi-adjacent to tj . Then, by (9), A′i,0 is
strongly complete to

⋃
1≤s≤nB

i
0,s, A

′
0,j is strongly complete to

⋃
1≤s≤mBj

s,0,
B′i,0 is strongly complete to

⋃
1≤s≤nA

i
0,s, and B′0,j is strongly complete to⋃

1≤s≤mAj
s,0. Since P0 6= ∅, it follows that there exist i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n} such that either Ai,j 6= ∅. Finally, let i, s, s′ ∈ {1, . . . ,m} and
j, t, t′ ∈ {1, . . . , n} such that t′ ≥ j ≥ n + 1 − t and s ≥ i ≥ m + 1 − s′,
and let a ∈ As,t and b ∈ Bs′,t′ . Then {a, b} is complete to {qi, tj}, and a is
adjacent to b, contrary to (5). This proves that at least one of As,t, Bs′,t′ is
empty.

Thus all the conditions of the definition of a melt are satisfied, and so
G|(Q∪ T ∪Z ∪L) is a melt. Moreover, if S2(C1)∩ S2(C2)∩W = ∅, then R
is strongly anticomplete to T and U is strongly anticomplete to Q, and so
G|(Q ∪ T ∪ Z ∪ L) is a Z-melt. If S2(C1) ∩ S2(C2) ∩W 6= ∅, then, by (28),
R ∩ U 6= ∅, and so G|(Q ∪ T ∪ Z ∪ L) is a double melt. This proves (31).

Now, if S2(C1) ∩ S2(C2) ∩ W 6= ∅, (29) and (31) imply that G is a dou-
ble melt, and so G ∈ T1. So we may assume that S2(C1) ∩ S2(C2) ∩W = ∅.

If S2(C1) ∩ S2(C2) = ∅, let Q′ = T ′ = Z ′ = L′ = ∅. Assume S2(C1) ∩
S2(C2) 6= ∅. Let P ′0 = S′0 = S2(C1) ∩ S2(C2), let Q′0 = R′0 = T ′0 = U ′0 = ∅,
and for i ≥ 1, define P ′i , Q

′
i, R
′
i, S
′
i, T
′
i , U

′
i similarly to Pi, Qi, Ri, Si, Ti, Ui.

Let P ′ =
⋃

i≥1 P
′
i , and let Q′, R′, S′, T ′, U ′ be defined similarly. Let W ′ =

P ′ ∪ Q′ ∪ R′ ∪ S′ ∪ T ′ ∪ U ′. Let Z ′ = P ′ ∪ S′ and L′ = R′ ∪ U ′. By the
remark following (31), we may assume that W ′∩S1(C1)∩S1(C2) = ∅. Now,
by (31), G|(Q′ ∪ T ′ ∪ Z ′ ∪ L′) is a Z ′-melt.

(32) W ∩W ′ = ∅.

Suppose W ∩ W ′ 6= ∅, let i ≥ 0 be minimum such that (Pi ∪ Qi ∪ Ri ∪
Si ∪ Ti ∪ Ui) ∩W ′ 6= ∅, and let v ∈ (Pi ∪Qi ∪Ri ∪ Si ∪ Ti ∪ Ui) ∩W ′. Since
P0 ∩W ′ = ∅, it follows that i > 0.

Assume first that v ∈ Qi. Then there there exists pi−1 ∈ Pi−1 adjacent
to v. Since Q ⊆ C1 and W ′ ∩ C1 ⊆ Q′, we deduce that v ∈ Q′, and so
pi−1 ∈ R′, contrary to the minimality of i. This proves that Qi ∩W ′ = ∅,
and, from the symmetry, that Ti ∩W ′ = ∅.

Next assume that v ∈ Ri. Then there there exists q ∈ Qi adjacent
to v. Since v ∈ Ri, and since W ∩ S2(C1) ∩ S2(C2) = ∅, it follows that
v ∈ S2(C1) \ S2(C2), and so v ∈ P ′. But now q ∈ Q′, contrary to the fact
that Qi ∩W ′ = ∅. This proves that Ri ∩W ′ = ∅, and, from the symmetry,
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Ui ∩W ′ = ∅.
Consequently, v ∈ Pi ∪ Si, and form the symmetry we may assume that

v ∈ Pi. Since i > 0, it follows that there exists u ∈ Ui, adjacent to v. Also
since i > 0, we deduce that v ∈ S1(C1) \ S1(C2), and so v ∈ R′. But then
u ∈ S′, contrary to the fact that Ui ∩W ′ = ∅. This proves (32).

Let Z(C1, C2) = Z, Q(C1, C2) = Q, T (C1, C2) = T , R(C1, C2) = R and
U(C1, C2) = U . Let Z ′(C1, C2) = Z ′, Q′(C1, C2) = Q′, T ′(C1, C2) = T ′,
R′(C1, C2) = R′ and U ′(C1, C2) = U ′. For every pair of distinct components
C ′1, C

′
2 of V (G) \ V (F ) with NF (C ′1) ∩ NF (C ′2) 6= ∅, we define Z(C ′1, C

′
2),

Q(C ′1, C
′
2), T (C ′1, C

′
2), R(C ′1, C

′
2) U(C ′1, C

′
2), Z ′(C ′1, C

′
2), Q′(C ′1, C

′
2), T ′(C ′1, C

′
2),

R′(C ′1, C
′
2) and U ′(C ′1, C

′
2) similarly.

Let C ′1, C
′
2 be two distinct components of V (G) \ V (F ). For i, j ∈ {1, 2}

let Si(C ′j) be their anchors. We may assume that S1(C ′1)∩S2(C ′2) = S2(C ′1)∩
S1(C ′2) = ∅. Let i(C ′1, C

′
2) be the number of non-empty sets among S1(C ′1)∩

S1(C ′2) and S2(C ′1) ∩ S2(C ′2).
Let H be the graph whose vertices are the components of V (G) \ V (F ),

and such that if C ′1, C
′
2 ∈ V (H), then there are i(C ′1C

′
2) edges with ends

C ′1, C
′
2. Then H is a loopless graph.

(33) H is triangle-free and maxdeg(H) ≤ 2.

Let C1, C2, C3 be components of V (G)\V (F ). Suppose S1(C1)∩S1(C2) 6= ∅.
We claim that for i ∈ {1, 2} S1(C1) ∩ Si(C3) = S1(C2) ∩ Si(C3) = ∅. For
suppose there is a vertex x ∈ S1(C1) ∩ S1(C3). Let c be a vertex of C3

adjacent to x. Then, by (16), c is strongly complete to S1(C1) ∩ S1(C2),
contrary to (13). This proves the claim. It follows from the claim that
maxdeg(H) ≤ 2.

Suppose there is a triangle in H. That means that there exist component
C1, C2, C3, and, in view of the claim in the previous paragraph, renumber-
ing the anchors, we may assume that there exist u ∈ S1(C1) ∩ S1(C2),
v ∈ S2(C2) ∩ S2(C3), and w ∈ S1(C3) ∩ S2(C1). But now, by (17), {u, v, w}
is a triangle in F , a contradiction. This proves (33).

We show that G admits an H-structure. Let us define a map

h : V (H) ∪ E(H) ∪ (E(H)× V (H))→ 2V (G).

Let C1, C2 be distinct components of V (G) \ V (F ). If there is a unique
edge e with ends C1, C2 let h(e) = Z(C1, C2), h(e, C1) = Q(C1, C2) ∪
R(C1, C2) and h(e, C2) = T (C1, C2) ∪ U(C1, C2). Let C3 be a component
of V (G) \ V (F ), distinct from C1, C2, and assume that f is an edge of
H with ends C1, C3. We observe that by (13) and (16), if S1(C1) and
S2(C1) are the anchors of C1, then, up to symmetry, Z(C1, C2)∩NF (C1) ⊆
S1(C1), and Z(C1, C3) ∩ NF (C1) ⊆ S2(C1). If there are two edges e, e′
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with ends C1, C2 let h(e) = Z(C1, C2), h(e, C1) = Q(C1, C2) ∪ R(C1, C2)
and h(e, C2) = T (C1, C2) ∪ U(C1, C2); and h(e′) = Z ′(C1, C2), h(e′, C1) =
Q′(C1, C2) ∪ R′(C1, C2) and h(e′, C2) = T ′(C1, C2) ∪ U ′(C1, C2). For every
component C of V (G) \ V (F ), let h(C) = C \ (

⋃
e∈E(H)

⋃
C∼e h(e, C)). Let

L = V (G) \ h(V (H) ∪ E(H) ∪ (E(H)× V (H))).
It follows from the definition of h that

• every vertex of V (G)\L is in h(x) for exactly one element x of V (H)∪
E(H) ∪ (E(H)× V (H)), and

• h(v) 6= ∅ for every v ∈ V (H) of degree zero, and

• h(e) 6= ∅ for every e ∈ E(H), and

• h(e, v) 6= ∅ if e is incident with v, and

• h(e, v) = ∅ if e is not incident with v, and

• for u, v ∈ V (H), h(u) is strongly anticomplete to h(v).

Since L∪ (
⋃

e∈E(H) h(e)) ⊆ V (F ), it follows that G|(L∪ (
⋃

e∈E(H) h(e))) has
no triangle. Since h(C) ⊆ C for every component C of V (G)\V (F ), it follows
that h(v) is a strong clique for every v ∈ V (H). Since h(e) = Z(C1, C2) for
every edge C1C2 of H, it follows that every vertex of L has a neighbor in
at most one of the sets h(v) where v ∈ V (H). By (19), for every e ∈ E(H),
every vertex of L is either strongly complete or strongly anticomplete to
h(e), and for every e, f ∈ E(H), h(e) is either strongly complete or strongly
anticomplete to h(f). By (25) and (32), if e, f ∈ E(H), and e and f share
an end, then h(e) is strongly complete to h(f). By (25), for every e ∈ E(H)
and v ∈ V (H), h(e) is strongly anticomplete to h(v).

Let v ∈ V (H), let Sv be the vertices of L with a neighbor in h(v), and
let Tv be the vertices of (L ∪ (

⋃
e∈E(H) h(e))) \ Sv with a neighbor in Sv.

Then Sv contains every every vertex of F with a neighbor in h(v), and Tv

contains every vertex of V (F ) \ Sv with a neighbor in Sv. Now, by (10)
applied to the graph G|(V (F ) ∪ h(v)), it follows that there is a partition
of Sv into two sets Av, Bv, and a partition of Tv into two sets Cv, Dv such
that G|(h(v)∪Sv ∪ Tv) is an (h(v), Av, Bv, Cv, Dv)-clique connector. By (9)
and (15), for v ∈ V (H), if there exist a ∈ Av and b ∈ Bv antiadjacent with
a common neighbor in h(v), then v has degree zero in H.

Let e be an edge of H with ends u, v. Then (26) and (32) imply that if
f ∈ E(H)\{e} is incident with v then h(e, v) is strongly complete to h(f, v).
By (31), G|(h(e)∪h(e, v)∪h(e, f)) is an h(e)-melt, such that if (K,M,A,B)
are as in the definition of a melt, then K ⊆ h(e, v), M ⊆ h(e, u), A = h(e),
B ⊆ h(e, v) ∪ h(e, u), every vertex of h(e, v) ∩ B has a neighbor in K, and
every vertex of h(e, u)∩B has a neighbor in M (and, in particular, h(e, v) is
strongly anticomplete to h(e, u)). It follows from (21) and (26) that h(e, v)
is strongly complete to h(v), and h(e, v) is strongly anticomplete to h(w)
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for every w ∈ V (H) \ {v}; and h(e, v) is strongly anticomplete to h(f, w)
for every f ∈ E(H) \ {e} and w ∈ V (H) \ {v}; and h(e, v) is strongly
anticomplete to h(f) for every f ∈ E(H) \ {e}.

We may assume that Av = S1(v) ∩ L,Au = S1(u) ∩ L,Bv = S2(v) ∩
L,Bu = S2(u)∩L, and S1(u)∩S2(v) = S2(v)∩S1(u) = ∅. Switching the roles
of Au∪Av an Bu∪Bv if necessary, we may assume that h(e) ⊆ S1(v)∪S1(u).

• (25) implies that h(e) is strongly complete to Bu ∪Bv,

• (26) implies that h(e, v) is strongly complete to Av, and strongly an-
ticomplete to L \Av,

• By (16), (19) and (25), every vertex of (L∪(
⋃

e∈E(H) h(e)))\(Au∪Av)
with a neighbor in Au ∪Av is strongly complete to h(e).

Thus, in view of (33), all the conditions of the definition of an H-structure
are satisfied, and so G admits an H-structure, and therefore G ∈ T1. This
completes the proof of 6.2.

We can now prove 3.4, which we restate.

6.3 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition.

Let us first remind the reader the main result of [1].

6.4 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.

Proof of 6.3. We may assume that G does not admit a homogeneous
set decomposition or a homogeneous pair decomposition. Assume first that
there are paths P and Q, each of length three, in G, and that there is a
center for P and an anticenter for Q in G. By 6.4, either

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.
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So one of G,G belongs to T0. But then G is not elementary, a contradiction.
Consequently, no such paths P,Q exist in G, and therefore we may assume
that either G or G is unfriendly. Since one of the outcomes of 6.3 holds for
G if and only if one of the outcomes of 6.3 holds for G, we may assume that
G is unfriendly. Since if G is a prism, then G has no triangle, and therefore
admits and H-structure with H being the empty graph, 4.2 implies that no
induced subtrigraph of G is a prism.

If G is framed, then by 6.2, G ∈ T1, so we may assume that G is not
framed. It follows that no induced subtrigraph of G is a path of length three.
So by 5.4, one of the following holds:

• G is not connected, or

• G is not anticonnected, or

• there exist two vertices v1, v2 ∈ V (G) such that v1 is semi-adjacent
to v2, and V (G) \ {v1, v2} is strongly complete to v1 and strongly
anticomplete to v2.

Since G does not admit a homogeneous set decomposition, if G is not
connected or G is not anticonnected, then |V (G)| = 2 and G ∈ T1. Thus
we may assume that there exist two vertices v1, v2 ∈ V (G) such that v1
is semi-adjacent to v2, and V (G) \ {v1, v2} is strongly complete to v1 and
strongly anticomplete to v2. Since G does not admit a homogeneous set
decomposition, it follows that |V (G) \ {v1, v2}| = 1. But then G ∈ T1. This
proves 6.3.
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