The structure of bull-free graphs II - elementary trigraphs

Maria Chudnovsky *
Columbia University, New York, NY 10027
USA

May 6, 2006; revised April 25, 2011

Abstract

The bull is a graph consisting of a triangle and two pendant edges. A graph is called bull-free if no induced subgraph of it is a bull. This is the second paper in a series of three. The goal of the series is to give a complete description of all bull-free graphs. We call a bull-free graph elementary if it does not contain an induced three-edge-path P such that some vertex $c \notin V(P)$ is complete to $V(P)$, and some vertex $a \notin V(P)$ is anticomplete to $V(P)$. In this paper we prove that every elementary graph either belongs to one a few basic classes, or admits a certain decomposition.

1 Introduction

All graphs in this paper are finite and simple, unless stated otherwise. The bull is a graph with vertex set $\left\{x_{1}, x_{2}, x_{3}, y, z\right\}$ and edge set

$$
\left\{x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}, x_{1} y, x_{2} z\right\}
$$

Let G be a graph. We say that G is bull-free if no induced subgraph of G is isomorphic to the bull. The complement of G is the graph \bar{G}, on the same vertex set as G, and such that two vertices are adjacent in G if and only if they are non-adjacent in \bar{G}. A clique in G is a set of vertices, all pairwise adjacent. A stable set in G is a clique in the complement of G. A clique of size three is called a triangle and a stable set of size three is a triad. For a subset A of $V(G)$ and a vertex $b \in V(G) \backslash A$, we say that b is complete to A if b is adjacent to every vertex of A, and that b is anticomplete to A if b is not adjacent to any vertex of A. For two disjoint subsets A and B of

[^0]$V(G), A$ is complete to B if every vertex of A is complete to B, and A is anticomplete to B every vertex of A is anticomplete to B. For a subset X of $V(G)$, we denote by $G \mid X$ the subgraph induced by G on X, and by $G \backslash X$ the subgraph induced by G on $V(G) \backslash X$.

Let us call a bull-free graph G elementary if it does not contain an induced three-edge-path P such that some vertex $c \notin V(P)$ is complete to $V(P)$ and some vertex $a \notin V(P)$ is anticomplete to $V(P)$. In this paper we prove that every elementary graph either belongs to a one of a few basic classes, or admits a decomposition.

This paper is organized as follows. In the next section we define an object called a "trigraph", which is a generalization of a graph, but is more convenient for stating the main result of this series of papers. Most of the definitions of Section 2 appeared in [1], but we include them here for the reader's convenience. In Section 3 we state the main theorem of this paper, 3.4, giving all the necessary definitions. We also define the class of "unfriendly trigraphs", which is the subject of most of the theorems in this paper. In Section 4, we study unfriendly trigraphs, that contain a "prism" (an induced subtrigraph consisting of two disjoint cliques and a matching between them, for a precise definition see Section 4). We prove that every such trigraph satisfies one of the outcomes of 3.4 . Section 5 contains a few useful lemmas about unfriendly trigraphs. In Section 6, we study the behavior of an unfriendly trigraph relative to an induced trianglefree subtrigraph (again, see Section 6 for the definitions). We prove that one of the outcomes of 3.4 holds for every unfriendly trigraph that contains an induced three-edge path. We finish Section 6 with a proof of 3.4 , using a result from [1]

2 Trigraphs

In order to prove our main result, we consider objects, slightly more general than bull-free graphs, that we call "bull-free trigraphs". A trigraph G consists of a finite set $V(G)$, called the vertex set of G, and a map $\theta: V(G)^{2} \rightarrow\{-1,0,1\}$, called the adjacency function, satisfying:

- for all $v \in V(G), \theta_{G}(v, v)=0$
- for all distinct $u, v \in V(G), \theta_{G}(u, v)=\theta_{G}(v, u)$
- for all distinct $u, v, w \in V(G)$, at most one of $\theta_{G}(u, v), \theta_{G}(u, w)=0$.

Two distinct vertices of G are said to be strongly adjacent if $\theta(u, v)=1$, strongly antiadjacent if $\theta(u, v)=-1$, and semi-adjacent if $\theta(u, v)=0$. We say that u and v are adjacent if they are either strongly adjacent, or semiadjacent; and antiadjacent of they are either strongly antiadjacent, or semiadjacent. If u and v are adjacent (antiadjacent), we also say that u is adjacent (antiadjacent) to v, or that u is a neighbor (antineighbor) of v.

Similarly, if u and v are strongly adjacent (strongly antiadjacent), then u is a strong neighbor (strong antineighbor) of v. Let $\eta(G)$ be the set of all strongly adjacent pairs of $G, \nu(G)$ the set of all strongly antiadjacent pairs of G, and $\sigma(G)$ the set of all pairs $\{u, v\}$ of vertices of G, such that u and v are distinct and semi-adjacent. Thus, a trigraph G is a graph if $\sigma(G)$ empty.

Let G be a trigraph. The complement \bar{G} of G is a trigraph with the same vertex set as G, and adjacency function $\bar{\theta}=-\theta$. Let $A \subset V(G)$ and $b \in V(G) \backslash A$. For $v \in V(G)$ let $N(v)$ denote the set of all vertices in $V(G) \backslash\{v\}$ that are adjacent to v, and let $S(v)$ denote the set of all vertices in $V(G) \backslash\{v\}$ that are strongly adjacent to v. We say that b is strongly complete to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete to A if b is strongly antiadjacent to every vertex of A, b is complete to A if b is adjacent to every vertex of A, and b is anticomplete to A if b is antiadjacent to every vertex of A. For two disjoint subsets A, B of $V(G), B$ is strongly complete (strongly anticomplete, complete, anticomplete) to A if every vertex of B is strongly complete (strongly anticomplete, complete, anticomplete, respectively) to A. We say that b is mixed on A, if b is not strongly complete and not strongly anticomplete to A. A clique in G is a set of vertices all pairwise adjacent, and a strong clique is a set of vertices all pairwise strongly adjacent. A stable set is a set of vertices all pairwise antiadjacent, and a strongly stable set is a set of vertices all pairwise strongly antiadjacent. A (strong) clique of size three is a (strong) triangle and a (strong) stable set of size three is a (strong) triad. For $X \subset V(G)$, the trigraph induced by G on X (denoted by $G \mid X)$ has vertex set X, and adjacency function that is the restriction of θ to X^{2}. Isomorphism between trigraphs is defined in the natural way, and for two trigraphs G and H we say that H is an induced subtrigraph of G (or G contains H as an induced subtrigraph) if H is isomorphic to $G \mid X$ for some $X \subseteq V(G)$. We denote by $G \backslash X$ the trigraph $G \mid(V(G) \backslash X)$.

A bull is a trigraph with vertex set $\left\{x_{1}, x_{2}, x_{3}, v_{1}, v_{2}\right\}$ such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle, v_{1} is adjacent to x_{1} and antiadjacent to x_{2}, x_{3}, v_{2}, and v_{2} is adjacent to x_{2} and antiadjacent to x_{1}, x_{3}. For a trigraph G, a subset X of $V(G)$ is said to be a bull if $G \mid X$ is a bull. We say that a trigraph is bull-free if no induced subtrigraph of it is a bull, or, equivalently, no subset of its vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices $\left\{p_{1}, \ldots, p_{k}\right\}$ is a path in G if either $k=1$, or for $i, j \in\{1, \ldots, k\}, p_{i}$ is adjacent to p_{j} if $|i-j|=1$ and p_{i} is antiadjacent to p_{j} if $|i-j|>1$. Under these circumstances we say that P is a path from p_{1} to p_{k}, its interior is the set $P^{*}=V(P) \backslash\left\{p_{1}, p_{k}\right\}$, and the length of P is $k-1$. We also say that P is a $(k-1)$-edge-path. Sometimes we denote P by $p_{1}-\ldots-p_{k}$. An induced subtrigraph H of G with vertices h_{1}, \ldots, h_{k} is a hole if $k \geq 4$, and for $i, j \in\{1, \ldots, k\}, h_{i}$ is adjacent to h_{j} if $|i-j|=1$ or $|i-j|=k-1$; and h_{i} is antiadjacent to h_{j} if $1<|i-j|<k-1$. The length of a hole is
the number of vertices in it. Sometimes we denote H by $h_{1}-\ldots-h_{k}-h_{1}$. An antipath (antihole) is an induced subtrigraph of G whose complement is a path (hole) in \bar{G}.

Let G be a trigraph, and let $X \subseteq V(G)$. Let G_{c} be the graph with vertex set X, and such that two vertices of X are adjacent in G_{c} if and only if they are adjacent in G, and let G_{a} be be the graph with vertex set X, and such that two vertices of X are adjacent in G_{a} if and only if they are strongly adjacent in G. We say that $X($ and $G \mid X)$ is connected if the graph G_{c} is connected, and that X (and $G \mid X$) is anticonnected if $\overline{G_{a}}$ is connected. A connected component of X is a maximal connected subset of X, and an anticonnected component of X is a maximal anticonnected subset of X. For a trigraph G, if X is a component of $V(G)$, then $G \mid X$ is a component of G.

We finish this section by two easy observations from [1].
2.1 If G be a bull-free trigraph, then so is \bar{G}.
2.2 Let G be a trigraph, let $X \subseteq V(G)$ and $v \in V(G) \backslash X$. Assume that $|X|>1$ and v is mixed on X. Then there exist vertices $x_{1}, x_{2} \in X$ such that v is adjacent to x_{1} and antiadjacent to x_{2}. Moreover, if X is connected, then x_{1} and x_{2} can be chosen adjacent.

3 The main theorem

In this section we state our main theorem. We start by describing a few special types of trigraphs.

Clique connectors. Let G be a trigraph. Let $K=\left\{k_{1}, \ldots, k_{t}\right\}$ be a strong clique in G, and let A, B, C, D be strongly stable sets, such that the sets K, A, B, C, D are pairwise disjoint and $A \cup B \cup C \cup D \cup K=$ $V(G)$. Let A_{1}, \ldots, A_{t} be disjoint subsets of A with $\bigcup_{i=1}^{t} A_{i}=A$, and let $B_{1}, \ldots, B_{t}, C_{1}, \ldots, C_{t}, D_{1}, \ldots, D_{t}$ be defined similarly. Let us now describe the adjacencies in G :

- For $i \in\{1, \ldots, t\}$
A_{i} is strongly complete to $\left\{k_{1}, \ldots, k_{i-1}\right\}$,
A_{i} is complete to $\left\{k_{i}\right\}$,
A_{i} is strongly anticomplete to $\left\{k_{i+1}, \ldots, k_{t}\right\}$,
B_{i} is strongly complete to $\left\{k_{t-i+2}, \ldots, k_{t}\right\}$,
B_{i} is complete to $\left\{k_{t-i+1}\right\}$, and
B_{i} is strongly anticomplete to $\left\{k_{1}, \ldots, k_{t-i}\right\}$.

Let A_{i}^{\prime} be the set of vertices of A_{i} that are semi-adjacent to k_{i}, and let B_{t-i+1}^{\prime} be the set of vertices of B_{t-i+1} that are semi-adjacent to k_{i}. (Thus $\left|A_{i}^{\prime}\right| \leq 1$ and $\left.\left|B_{t-i+1}^{\prime}\right| \leq 1.\right)$

- For $i, j \in\{1, \ldots, t\}$, if $i+j \neq t$ and A_{i} is not strongly complete to B_{j}, then $|A|=|B|=|K|=1$ and A is complete to B.
- A_{i}^{\prime} is strongly complete to $B_{t-i}, B_{t-i}^{\prime}$ is strongly complete to A_{i}, and the adjacency between $A_{i} \backslash A_{i}^{\prime}$ and $B_{t-i} \backslash B_{t-i}^{\prime}$ is arbitrary.
- $A \cup K$ is strongly anticomplete to D, and $B \cup K$ is strongly anticomplete to C.
- For $i \in\{1, \ldots, t\}, C_{i}$ is strongly complete to $\bigcup_{j<i} A_{j}$, and C_{i} is strongly anticomplete to $\bigcup_{j>i} A_{j}$.
- For $i \in\{1, \ldots, t\}, C_{i}$ is strongly complete to A_{i}^{\prime}, every vertex of C_{i} has a neighbor in A_{i}, and otherwise the adjacency between C_{i} and $A_{i} \backslash A_{i}^{\prime}$ is arbitrary.
- For $i \in\{1, \ldots, t\}, D_{i}$ is strongly complete to $\bigcup_{j<i} B_{j}$, and D_{i} is strongly anticomplete to $\bigcup_{j>i} B_{j}$.
- For $i \in\{1, \ldots, t\}, D_{i}$ is strongly complete to B_{i}^{\prime}, every vertex of D_{i} has a neighbor in B_{i}, and otherwise the adjacency between D_{i} and $B_{i} \backslash B_{i}^{\prime}$ is arbitrary.
- For $i, j \in\{1, \ldots, t\}$, if $i+j>t$, then C_{i} is strongly complete to D_{j}, and otherwise the adjacency between C_{i} and D_{j} is arbitrary.

If $A_{t} \neq \emptyset$ and $B_{t} \neq \emptyset$, then G is a (K, A, B, C, D)-clique connector.
3.1 Every clique connector is bull-free.

Proof. Let G be a (K, A, B, C, D)-clique connector. Let $|K|=t$.
(1) Let $a \in A$ and $b \in B$, and suppose that k_{i} is adjacent to both a and b for some $i \in\{1, \ldots, t\}$. Then every vertex of K is strongly adjacent to at least one of a, b.

Since k_{i} is adjacent to a, if follows that $a \in \bigcup_{j \geq i} A_{i}$, and since b is adjacent to k_{i}, it follows that $b \in \bigcup_{j \geq t-i+1} B_{j}$. Therefore, a is strongly complete to $\left\{k_{1}, \ldots, k_{i-1}\right\}$, and b is strongly complete to $\left\{k_{i+1}, \ldots, k_{t}\right\}$. Since both a and b are adjacent to k_{i}, and at most one of a, b is semi-adjacent to k_{i}, (1) follows.
(2) There do not exist $k, k^{\prime} \in K$ and $a, a^{\prime} \in A$, such that the pairs $a k, a^{\prime} k^{\prime}$ are adjacent, and the pairs $a k^{\prime}, a^{\prime} k$ are antiadjacent.

Suppose such $a, a^{\prime}, k, k^{\prime}$ exist, say $k=k_{p}$ and $k^{\prime}=k_{q}$ for $p, q \in\{1, \ldots, t\}$. We may assume that $p>q$. Then, since a is adjacent to k_{p}, it follows that $a \in \bigcup_{j \geq p} A_{j}$, and therefore a is strongly adjacent to k_{q}, a contradiction. This proves (2).
(3) Let $a \in A$ and $b \in B$, and suppose that k_{i} is adjacent to both a
and b for some $i \in\{1, \ldots, t\}$. The either a is strongly adjacent to b, or $|A|=|B|=|K|=1$.

We may assume at least one of A, B, K has size at least two. Since a is adjacent to k_{i}, it follows that $a \in \bigcup_{j \geq i} A_{j}$, and since b is adjacent to k_{i}, it follows that $b \in \bigcup_{j \geq t-i+1} B_{j}$, and therefore a is strongly adjacent to b. This proves (3).
(4) Let $a \in A$ and $b \in B$, and suppose that k_{i} is antiadjacent to both a and b for some $i \in\{1, \ldots, t\}$. Then a is strongly adjacent to b.

Suppose a is antiadjacent to b. Then $a \notin A_{i}^{\prime}$ and $b \notin B_{t-i+1}^{\prime}$. Let $p, q \in$ $\{1, \ldots, t\}$ such that $a \in A_{p}$ and $b \in B_{q}$. Since a is antiadjacent to k_{i}, it follows that $p<i$, and since b is antiadjacent to k_{i}, it follows that $q<t-i+1$. But then $p+q<t$, a contradiction. This proves (4).
(5) There do not exist $a, a^{\prime} \in A, k \in K$ and $c \in C$, such that the pairs $a k, a c$ are adjacent, and the pairs $a^{\prime} c, a^{\prime} k$ are antiadjacent.

Let $i, p, q, r \in\{1, \ldots, t\}$ such that $k=k_{i}, a \in A_{p}, a^{\prime} \in A_{q}$ and $c \in C_{r}$. Since a is adjacent to k_{i} and a^{\prime} is antiadjacent to k_{i}, it follows that $p \geq i$ and $q \leq i$. Since c is adjacent to a and antiadjacent to a^{\prime}, it follows that $r \geq p$ and $r \leq q$. Consequently, $p=q=r=i$, and $a^{\prime} \in A_{i}^{\prime}$. But C_{i} is strongly complete to A_{i}^{\prime}, a contradiction. This proves (5).

Suppose that there is a bull T in G. Let $T=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$, where the pairs $b_{1} b_{2}, b_{2} b_{3}, b_{2} b_{4}, b_{3} b_{4}, b_{4} b_{5}$ are adjacent, and all the remaining pairs are antiadjacent.

Since $A \cup D$ and $B \cup C$ are strongly stable sets, it follows that at least one of b_{2}, b_{3}, b_{4} belongs to K.

Suppose first that $\left|K \cap\left\{b_{2}, b_{3}, b_{4}\right\}\right|=1$. Assume first that $b_{3} \in K$, say $b_{3}=k_{i}$ for some $i \in\{1, \ldots, t\}$. Then, since each of A, B is strongly stable, and K is strongly anticomplete to $C \cup D$, we may assume from the symmetry that $b_{2} \in A$ and $b_{4} \in B$. Let $s \in\{1, \ldots, t\}$ such that $b_{2} \in A_{s}$. Then $s \geq i$. Since b_{1} is antiadjacent to b_{3} and adjacent to b_{2}, it follows that $b_{1} \in B \cup C$. Similarly, $b_{5} \in A \cup D$. Suppose $b_{5} \in A$. If $b_{1} \in B$, then, since both b_{1} and b_{5} are antiadjacent to b_{3}, (4) implies that b_{1} is strongly adjacent to b_{5}, a contradiction. So $b_{1} \in C$. But then b_{2} is adjacent to both b_{3}, b_{1}, and b_{5} is antiadjacent to both b_{3}, b_{5}, contrary to (5). This proves that $b_{5} \in D$, and, from the symmetry, $b_{1} \in C$. Then $b_{1} \in \bigcup_{j \geq s} C_{j} \subseteq \bigcup_{j \geq i} C_{j}$, and, similarly, $b_{5} \in \bigcup_{j \geq t-i+1} D_{j}$, and so b_{1} is strongly adjacent to b_{5}, a contradiction. This proves that $b_{3} \notin K$. From the symmetry we may assume that $b_{2} \in K$, say $b_{2}=k_{i}$ for some $i \in\{1, \ldots, t\}$. Let $\{x, y\}=\left\{b_{3}, b_{4}\right\}$. Then, since each of A, B is strongly stable, and K is strongly anticomplete to $C \cup D$, we may
assume from the symmetry that $x \in A$ and $y \in B$. Since b_{1} is adjacent to b_{2}, we may assume from the symmetry, that $b_{1} \in K \cup A$. Since b_{1} is antiadjacent to both $b_{3}, b_{4},(1)$ implies that $b_{1} \notin K$. Therefore $b_{1} \in A$, and so, by (3), b_{1} is strongly adjacent to y, a contradiction. This proves that $\left|K \cap\left\{b_{2}, b_{3}, b_{4}\right\}\right|>1$.

Next suppose that $\left|K \cap\left\{b_{2}, b_{3}, b_{4}\right\}\right|=2$. Assume first that $b_{3} \notin K$. Then $b_{2}, b_{4} \in K$. Then we may assume from the symmetry that $b_{3} \in A$. Since b_{1} is antiadjacent to b_{4}, and b_{5} to b_{2}, it follows that $b_{1}, b_{5} \in A \cup B$. By (2), it follows that not both of b_{1}, b_{5} are in A, and not both are in B. Thus we may assume that $b_{1} \in A$, and $b_{5} \in B$, but now both b_{3}, b_{5} are adjacent to b_{4}, and yet b_{3} is antiadjacent to b_{5}, contrary to (3). This proves that $b_{3} \in K$. From the symmetry we may assume that $b_{2} \in K$ and $b_{4} \in A$. Then $b_{1} \in A \cup B$. Since b_{2} is adjacent to both b_{1} and b_{4}, and since b_{1} is antiadjacent to b_{4}, (3) implies that $b_{1} \in A$. Since b_{5} is adjacent to b_{4}, and antiadjacent to b_{2}, it follows that $b_{5} \in B \cup C$. If $b_{5} \in B$, then, since b_{3} is antiadjacent to both b_{1}, b_{5}, (4) implies that b_{1} is strongly adjacent to b_{5}, a contradiction. So $b_{5} \in C$. But then b_{4} is adjacent to both b_{3}, b_{5}, and b_{1} is antiadjacent to both b_{3}, b_{5}, contrary to (5). This proves that $\left|K \cap\left\{b_{2}, b_{3}, b_{4}\right\}\right|>2$, and therefore $b_{2}, b_{3}, b_{4} \in K$.

Then $b_{1}, b_{5} \in A \cup B$. By (2), not both b_{1}, b_{5} are in A, and, from the symmetry not both are in B. So we may assume that $b_{1} \in A$, and $b_{5} \in B$. But now, since b_{3} is antiadjacent to both b_{1}, b_{5}, (4) implies that b_{1} is strongly adjacent to b_{5}, a contradiction. This proves 3.1.

Melts. Let G be a trigraph, such that $V(G)$ is the disjoint union of four sets K, M, A, B, where A and B are strongly stable sets, and K and M are strong cliques. Assume that $|A|>1$ and $|B|>1$. Let $K=\left\{k_{1}, \ldots, k_{m}\right\}$ and $M=\left\{m_{1}, \ldots, m_{n}\right\}$. Let A be the union of pairwise disjoint subsets $A_{i, j}$ where $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$, and let B be the disjoint union of subsets $B_{i, j}$ where $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$. Let $A_{0,0}=B_{0,0}=\emptyset$. Assume also that

- K is strongly anticomplete to M
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\} A_{i, j}$ is
strongly complete to $\left\{k_{1}, \ldots, k_{i-1}\right\} \cup\left\{m_{n-j+2}, \ldots, m_{n}\right\}$,
complete to $\left\{k_{i}\right\} \cup\left\{m_{n-j+1}\right\}$,
strongly anticomplete to $\left\{k_{i+1}, \ldots, k_{m}\right\} \cup\left\{m_{1}, \ldots, m_{n-j}\right\}$,
and the set $B_{i, j}$ is
strongly complete to $\left\{k_{m-i+2}, \ldots, k_{m}\right\} \cup\left\{m_{1}, \ldots, m_{j-1}\right\}$,
complete to $\left\{k_{m-i+1}\right\} \cup\left\{m_{j}\right\}$,
strongly anticomplete to $\left\{k_{1}, \ldots, k_{m-i}\right\} \cup\left\{m_{j+1}, \ldots, m_{n}\right\}$.
- for $i \in\{1, \ldots, m\}, A_{i, 0}$ is
strongly complete to $\left\{k_{1}, \ldots, k_{i-1}\right\}$, complete to $\left\{k_{i}\right\}$,
strongly anticomplete to $\left\{k_{i+1}, \ldots, k_{m}\right\} \cup M$
- for $j \in\{1, \ldots, n\}, A_{0, j}$ is
strongly complete to $\left\{m_{n-j+2}, \ldots, m_{n}\right\}$,
complete to $\left\{m_{n-j+1}\right\}$,
strongly anticomplete to $K \cup\left\{m_{1}, \ldots, m_{n-j}\right\}$
- for $i \in\{1, \ldots, m\}, B_{i, 0}$ is
strongly complete to $\left\{k_{m-i+2}, \ldots, k_{m}\right\}$,
complete to $\left\{k_{m-i+1}\right\}$,
strongly anticomplete to $\left\{k_{1}, \ldots, k_{m-i}\right\} \cup M$
- for $j \in\{1, \ldots, n\}, B_{0, j}$ is
strongly complete to $\left\{m_{1}, \ldots, m_{j-1}\right\}$,
complete to $\left\{m_{j}\right\}$,
strongly anticomplete to $K \cup\left\{m_{j+1}, \ldots, m_{n}\right\}$
- the sets $\bigcup_{0 \leq j \leq n} A_{m, j}, \bigcup_{0 \leq j \leq n} B_{m, j}, \bigcup_{0 \leq i \leq m} A_{i, n}$ and $\bigcup_{0 \leq i \leq m} B_{i, n}$ are all non-empty
- Let $i, i^{\prime} \in\{0, \ldots, m\}$ and $j, j^{\prime} \in\{0, \ldots, n\}$, and suppose that $i^{\prime}>i$ and $j^{\prime}>j$. Then at least one of the sets $A_{i, j}$ and $A_{i^{\prime}, j^{\prime}}$ is empty, and at least one of the sets $B_{i, j}$ and $B_{i^{\prime}, j^{\prime}}$ is empty
- For $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}, A_{i, j}$ is strongly complete to B, and $B_{i, j}$ is strongly complete to A
- For $i, i^{\prime} \in\{1, \ldots, m\}$ and $j, j^{\prime} \in\{1, \ldots, n\}, A_{i, 0}$ is strongly complete to $B_{i^{\prime}, 0}$, and $A_{0, j}$ is strongly complete to $B_{0, j^{\prime}}$
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots n\}, A_{i, 0}$ is the disjoint union of sets $A_{i, 0}^{k}$ with $k \in\{0, \ldots, n\}$, and $A_{0, j}$ is the disjoint union of sets $A_{0, j}^{k}$ with $k \in\{0, \ldots, m\}$,
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots n\}, B_{i, 0}$ is the disjoint union of sets $B_{i, 0}^{k}$ with $k \in\{0, \ldots, n\}$, and $B_{0, j}$ is the disjoint union of sets $B_{0, j}^{k}$ with $k \in\{0, \ldots, m\}$.
- for $i \in\{1, \ldots, m\}$, every vertex of $A_{i, 0}^{0}$ is strongly anticomplete to $\bigcup_{1 \leq j \leq n} B_{0, j}$, and has a neighbor in $\bigcup_{1 \leq j \leq m} \bigcup_{1 \leq k \leq n} B_{j, k}$
- for $j \in\{1, \ldots, n\}$, every vertex of $A_{0, j}^{0}$ is strongly anticomplete to $\bigcup_{1 \leq i \leq m} B_{i, 0}$, and has a neighbor in $\bigcup_{1 \leq i \leq m} \bigcup_{1 \leq k \leq n} B_{i, k}$
- for $i \in\{1, \ldots, m\}$, every vertex of $B_{i, 0}^{0}$ is strongly anticomplete to $\bigcup_{1 \leq j \leq n} A_{0, j}$, and has a neighbor in $\bigcup_{1 \leq j \leq m} \bigcup_{1 \leq k \leq n} A_{j, k}$
- for $j \in\{1, \ldots, n\}$, every vertex of $B_{0, j}^{0}$ is strongly anticomplete to $\bigcup_{1 \leq i \leq m} A_{i, 0}$, and has a neighbor in $\bigcup_{1 \leq i \leq m} \bigcup_{1 \leq k \leq n} A_{i, k}$
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$,
every vertex of $A_{0, j}^{i}$ has a neighbor in $B_{i, 0}$, every vertex of $B_{i, 0}^{j}$ has a neighbor in $A_{0, j}$, every vertex of $A_{i, 0}^{j}$ has a neighbor in $B_{0, j}$, every vertex of $B_{0, j}^{i}$ has a neighbor in $A_{i, 0}$, $A_{0, j}^{i}$ is strongly complete to $\bigcup_{1 \leq s<i} B_{s, 0}$ $A_{0, j}^{i}$ is strongly anticomplete to $\bigcup_{i<s \leq m} B_{s, 0}$ $A_{i, 0}^{j}$ is strongly complete to $\bigcup_{1 \leq s<j} B_{0, s}$ $A_{i, 0}^{j}$ is strongly anticomplete to $\bigcup_{j<s \leq n} B_{0, s}$ $B_{i, 0}^{j}$ is strongly complete to $\bigcup_{1 \leq s<j} A_{0, s}$ $B_{i, 0}^{j}$ is strongly anticomplete to $\bigcup_{j<s \leq n} A_{0, s}$ $B_{0, j}^{i}$ is strongly complete to $\bigcup_{1 \leq s<i} A_{s, 0}$ $B_{0, j}^{i}$ is strongly anticomplete to $\bigcup_{i<s \leq m} A_{s, 0}$
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ let
$A_{i, 0}^{\prime}$ be the set of vertices of $A_{i, 0}$ that are semi-adjacent to k_{i}
$A_{0, j}^{\prime}$ be the set of vertices of $A_{0, j}$ that are semi-adjacent to m_{n-j+1},
$B_{i, 0}^{\prime}$ be the set of vertices of $B_{i, 0}$ that are semi-adjacent to k_{m-i+1}, $B_{0, j}^{\prime}$ be the set of vertices of $B_{0, j}$ that are semi-adjacent to m_{j}. Then
$A_{i, 0}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq n} B_{0, s}^{i}$,
$A_{0, j}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq m} B_{s, 0}^{j}$,
$B_{i, 0}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq n} A_{0, s}^{i}$,
$B_{0, j}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq m} A_{s, 0}^{j}$.
- there exist $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ such that either $A_{i, j} \neq \emptyset$, or $B_{i, j} \neq \emptyset$.
- Let $i, s, s^{\prime} \in\{1, \ldots, m\}$ and $j, t, t^{\prime} \in\{1, \ldots, n\}$ such that $t^{\prime} \geq j \geq$ $n+1-t$ and $s \geq i \geq m+1-s^{\prime}$. Then at least one of $A_{s, t}$ and $B_{s^{\prime}, t^{\prime}}$ is empty.

Under these circumstances we say that G is a melt. We say that a melt is an A-melt if $B_{i, j}=\emptyset$ for every $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. We say that a melt is a B-melt if $A_{i, j}=\emptyset$ for every $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. We say that a melt is a double melt if there exist $i, i^{\prime} \in\{1, \ldots, m\}$ and $j, j^{\prime} \in\{1, \ldots, n\}$ such that $A_{i, j} \neq \emptyset$, and $B_{i^{\prime}, j^{\prime}} \neq \emptyset$.
3.2 Every melt is bull-free.

Proof. Let G be a melt. We use the notation from the definition of a melt. Suppose there is a bull $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ in G, where the pairs $c_{1} c_{2}, c_{2} c_{3}, c_{3} c_{4}, c_{2} c_{4}, c_{4} c_{5}$ are adjacent, and the pairs $c_{1} c_{3}, c_{1} c_{4}, c_{1} c_{5}, c_{2} c_{5}, c_{3} c_{5}$
are antiadjacent. Let $X=\bigcup_{1 \leq j \leq n}=A_{0, j}, Y=\bigcup_{1 \leq j \leq n} B_{0, j}, Z=A \backslash X$, $W=B \backslash Y$. We observe that the graph $G \backslash M$ is a (\bar{K}, Z, W, Y, X)-clique connector. Therefore, 3.1 implies that $C \cap M \neq \emptyset$, and, similarly, $C \cap K \neq \emptyset$. Since $\left\{c_{2}, c_{3}, c_{4}\right\}$ is a clique and since K is strongly anticomplete to M, we may assume that $M \cap\left\{c_{2}, c_{3}, c_{4}\right\}=\emptyset$. Since $M \cap C \neq \emptyset$, and c_{1} is antiadjacent to c_{5}, and M is a strong clique, we may assume that $c_{1} \in M$ and $c_{5} \notin M$. Then $c_{2} \in A \cup B$, and from the symmetry we may assume that $c_{2} \in A$. Let $i \in\{1, \ldots, m\}$ and $j, k \in\{1, \ldots, n\}$ be such that $c_{1}=m_{j}$ and $c_{2} \in A_{i, k}$. Since c_{2} is adjacent to c_{1}, it follows that $j \geq n-k+1$. Since A, B are both strongly stable sets, it follows that at least one of c_{3}, c_{4} belongs to K, and therefore, since c_{2} is adjacent to both c_{3}, c_{4}, we deduce that $i>0$. Consequently, c_{2} is strongly complete to B. Let

$$
B^{\prime}=\bigcup_{0 \leq i \leq m} \bigcup_{j \leq s \leq n} B_{i, s} .
$$

Then $G \mid\left(K \cup\left\{m_{j}\right\} \cup A \cup\left(B \backslash B^{\prime}\right)\right)$ is a $\left(K, Z, W \backslash B^{\prime},\left(Y \cup\left\{m_{j}\right\}\right) \backslash B^{\prime}, X\right)$ clique connector, and so 3.1 implies that $C \cap B^{\prime} \neq \emptyset$. Since c_{1} is anticomplete to $\left\{c_{3}, c_{4}, c_{5}\right\}$, it follows that $C \cap B_{s, t}=\emptyset$ for every $s \in\{0, \ldots, m\}$ and $t \in\{j+1, \ldots, n\}$, and there exists $s \in\{0, \ldots, m\}$ and $b \in B_{s, j} \cap C$ such that b is semi-adjacent to c_{1}. Since c_{2} is strongly complete to B, it follows that $b \in\left\{c_{3}, c_{4}\right\}$, and the vertex of $\left\{c_{3}, c_{4}\right\} \backslash\{b\}$ belongs to K, say it is k_{p}. Then both c_{2} and b is adjacent to both k_{p} and m_{j}, contrary to the last condition in the definition of a melt. This proves 3.2.

Let H be a graph. For a vertex $v \in V(H)$, the degree of v in H, denoted by $\operatorname{deg}(v)$, is the number of edges of H incident with v. If H is the empty graph let $\operatorname{maxdeg}(H)=0$, and otherwise we define $\operatorname{maxdeg}(H)=$ $\max _{v \in V(H)} \operatorname{deg}(v)$.

The class \mathcal{T}_{1}. Before giving a precise definition of the class \mathcal{T}_{1}, let us describe roughly what a trigraph in this class looks like. The idea is the following. Every trigraph in \mathcal{T}_{1} consists of a triangle-free part X (in what follows $V(X)$ is the union of L, the sets $h(e)$, and the sets $h(e, v) \cap B$), and a collection of pairwise disjoint and pairwise anticomplete strong cliques Y_{v} (in what follows Y_{v} is the union of $h(v)$ and the sets $h(e, v) \backslash B$ for all edges e incident with v). Every vertex of X attaches in at most two cliques Y_{v}. Each Y_{v}, together with vertices of X at distance at most two from Y_{v}, induces a clique connector. If every vertex of X has neighbors in at most one Y_{v}, this describes the graph completely. Describing the adjacency rules for vertices of X that attach in two different cliques, Y_{u} and Y_{v} is more complicated (we need to explain how the clique connectors for Y_{u} and Y_{v} overlap). Without going into details, the structure there is locally a melt.

Let us now turn to the precise definition of \mathcal{T}_{1}. Let H be a loopless triangle-free graph with $\operatorname{maxdeg}(H) \leq 2$ (H may be empty, and may have parallel edges). We say that a trigraph G admits an H-structure if there
exist a subset L of $V(G)$ and a map

$$
h: V(H) \cup E(H) \cup(E(H) \times V(H)) \rightarrow 2^{V(G) \backslash L}
$$

such that

- every vertex of $V(G) \backslash L$ is in $h(x)$ for exactly one element x of $V(H) \cup$ $E(H) \cup(E(H) \times V(H))$, and
- $h(v) \neq \emptyset$ for every $v \in V(H)$ of degree zero, and
- $h(e) \neq \emptyset$ for every $e \in E(H)$, and
- $h(e, v) \neq \emptyset$ if e is incident with v, and
- $h(e, v)=\emptyset$ if e is not incident with v, and
- for $u, v \in V(H), h(u)$ is strongly anticomplete to $h(v)$, and
- $h(v)$ is a strong clique for every $v \in V(H)$, and
- every vertex of L has a neighbor in at most one of the sets $h(v)$ where $v \in V(H)$, and
- $G \mid\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right)$ has no triangle, and
- for every $e \in E(H)$, every vertex of L is either strongly complete or strongly anticomplete to $h(e)$, and
- $h(e)$ is either strongly complete or strongly anticomplete to $h(f)$ for every $e, f \in E(H)$; if e and f share an endpoint, then $h(e)$ is strongly complete to $h(f)$, and
- for every $e \in E(H)$ and $v \in V(H), h(e)$ is strongly anticomplete to $h(v)$, and
- for $v \in V(H)$, let S_{v} be the vertices of L with a neighbor in $h(v)$, and let T_{v} be the vertices of $\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right) \backslash S_{v}$ with a neighbor in S_{v}. Then there is a partition of S_{v} into two sets A_{v}, B_{v}, and a partition of T_{v} into two sets C_{v}, D_{v} such that $G \mid\left(h(v) \cup S_{v} \cup T_{v}\right)$ is an ($h(v), A_{v}, B_{v}, C_{v}, D_{v}$)-clique connector, and
- for $v \in V(H)$, if there exist $a \in A_{v}$ and $b \in B_{v}$ antiadjacent with a common neighbor in $h(v)$, then v has degree zero in H.

Moreover, let e be an edge of H with ends u, v. Then

- if $f \in E(H) \backslash\{e\}$ is incident with v, then $h(e, v)$ is strongly complete to $h(f, v)$, and
- $G \mid(h(e) \cup h(e, v) \cup h(e, u))$ is an $h(e)$-melt, such that if (K, M, A, B) are as in the definition of a melt, then $K \subseteq h(e, v), M \subseteq h(e, u), A=h(e)$, $B \subseteq h(e, v) \cup h(e, u)$, every vertex of $h(e, v) \cap B$ has a neighbor in K, and every vertex of $h(e, u) \cap B$ has a neighbor in M (and, in particular, $h(e, v)$ is strongly anticomplete to $h(e, u))$; and
- $h(e, v)$ is strongly complete to $h(v)$, and $h(e, v)$ is strongly anticomplete to $h(w)$ for every $w \in V(H) \backslash\{v\}$, and
- $h(e, v)$ is strongly anticomplete to $h(f, w)$ for every $f \in E(H) \backslash\{e\}$, and $w \in V(H) \backslash\{v\}$, and
- $h(e, v)$ is strongly anticomplete to $h(f)$ for every $f \in E(H) \backslash\{e\}$.

Furthermore, either the following statements all hold, or they all hold with the roles of $A_{u} \cup A_{v}$ and $B_{u} \cup B_{v}$ switched:

- $h(e)$ is strongly complete to $B_{u} \cup B_{v}$, and
- $h(e, v)$ is strongly complete to A_{v} and strongly anticomplete to $L \backslash A_{v}$, and, and
- every vertex of $\left(L \cup\left(\bigcup_{f \in E(H)} h(f)\right)\right) \backslash\left(A_{u} \cup A_{v}\right)$ with a neighbor in $A_{u} \cup A_{v}$ is strongly complete to $h(e)$.

Let us say that G belongs to \mathcal{T}_{1} if either G is a double melt, or G admits an H structure for some loopless triangle-free graph H with maximum degree at most two.

In the definition of an H-structure, we did not specify the adjacencies between the sets $h(e)$ for disjoint edges e of H, except that

- $h(e)$ is either strongly complete or strongly anticomplete to $h(f)$ for every $e, f \in E(H)$.

In fact, the only constraints on these adjacencies come from the condition that

- $G \mid\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right)$ has no triangle.

To tighten the structure, one might want to add another ingredient, which is a triangle-free supergraph F of the line graph of H, that would "record" for which pairs of disjoint edges e, f of H, the sets $h(e)$ and $h(f)$ are strongly complete to each other. We did not do that here, since such a graph F can be easily reconstructed from the H-structure. The situation concerning the adjacencies between the vertices of L and the sets $h(e)$ is similar.

We observe the following:
3.3 Every trigraph in \mathcal{T}_{1} is bull-free.

Proof. Let $G \in \mathcal{T}_{1}$. If G is a double melt, then 3.3 follows from 3.2, so we may assume not. Let H, h and L be as in the definition of \mathcal{T}_{1}. We use the notation of the definition of \mathcal{T}_{1}. Suppose there is a bull B in G. Let $B=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, where the pairs $v_{1} v_{2}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}, v_{4} v_{5}$ are adjacent, and all the remaining pairs are antiadjacent. Since $G \mid\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right)$ is triangle-free, it follows that at least one of v_{2}, v_{3}, v_{4} belongs to $h(v) \cup h(e, v)$ for some $v \in V(H)$ and $e \in E(H)$. If $\left\{v_{2}, v_{3}, v_{4}\right\} \cap h(e, v)=\emptyset$ for every $e \in E(H)$ and $v \in V(H)$, then $B \subseteq h(v) \cup S_{v} \cup T_{v}$ for some $v \in V(H)$, contrary to the 3.1, since $G \mid\left(h(v) \cup S_{v} \cup T_{v}\right)$ is a clique connector. So we may assume that at least one of v_{2}, v_{3}, v_{4} belongs to $h(e, v)$ for some $v \in V(H)$ and $e \in E(H)$. Let u be the other end of e, and if v has degree two in H, let f be the other edge incident with v. If v has degree one in H, let $X=Y=\emptyset$, and if v has degree two in H, let $X=h(f)$ and $Y=h(f, v)$. Let Z be the set of vertices of $L \cup\left(\left(\bigcup_{g \in E(H) \backslash\{e, f\}} h(g)\right) \backslash\left(S_{v} \cup T_{v}\right)\right)$ that are strongly complete to $h(e)$. Then

$$
B \subseteq h(v) \cup h(e, v) \cup h(e) \cup h(e, u) \cup S_{v} \cup T_{v} \cup X \cup Y \cup Z .
$$

We observe that $h(v) \cup h(e, v) \cup h(e) \cup S_{v} \cup T_{v} \cup X \cup Y \cup Z$ is a clique connector, and so $B \cap h(e, u) \neq \emptyset$. Since each of v_{2}, v_{3}, v_{4} has distance at most two from every vertex of B, it follows that $\left\{v_{2}, v_{3}, v_{4}\right\} \cap(h(v) \cup Y)=\emptyset$. Since $h(e, u)$ is strongly anticomplete to $h(e, v)$, it follows that $B \cap h(e, u) \subseteq\left\{v_{1}, v_{5}\right\}$, and we may assume from the symmetry that $v_{1} \in B \cap h(e, u)$. Then $v_{2} \notin h(e, v)$, and $\left\{v_{3}, v_{4}\right\} \cap h(e, v) \neq \emptyset$. Since v_{2} is complete to $\left\{v_{1}, v_{3}, v_{4}\right\}$, it follows that $v_{2} \in h(e)$. Now, since $\left\{v_{2}, v_{3}, v_{4}\right\}$ is a triangle, $v_{2} \in h(e), h(e)$ is strongly anticomplete to $h(v)$, there is no triangle in $h(e) \cup S_{v}$, and no vertex of S_{v} has both a neighbor in $h(e)$ and a neighbor in $h(e, v)$, it follows that $\left\{v_{3}, v_{4}\right\} \subseteq h(e, v)$. Since v_{5} is adjacent to v_{4} and antiadjacent to v_{3}, it follows that $v_{5} \in h(e, v) \cup h(e)$. But now $B \subseteq h(e) \cup h(e, u) \cup h(e, v)$, contrary to 3.2 . This proves 3.3.

Next let us describe some decompositions (these definitions appear in [1], but we repeat them for completeness). Let G be a trigraph. A proper subset X of $V(G)$ is a homogeneous set in G if every vertex of $V(G) \backslash X$ is either strongly complete or strongly anticomplete to X. We say that G admits a homogeneous set decomposition, if there is a homogeneous set in G of size at least two.

For two disjoint subsets A and B of $V(G)$, the pair (A, B) is a homogeneous pair in G, if A is a homogeneous set in $G \backslash B$ and B is a homogeneous set in $G \backslash A$. We say that the pair (A, B) is tame if

- $|V(G)|-2>|A|+|B|>2$, and
- A is not strongly complete and not strongly anticomplete to B.
G admits a homogeneous pair decomposition if there is a tame homogeneous pair in G.

Let $S \subseteq V(G)$. A center for S is a vertex of $V(G) \backslash S$ that is complete to S, and an anticenter for S is a vertex of $V(G) \backslash S$ that is anticomplete to S. A vertex of G is a center (anticenter) for an induced subgraph H of G if it is a center (anticenter) for $V(H)$.

We say that a trigraph G is elementary if there does not exist a path P of length three in G, such that some vertex c of $V(G) \backslash V(P)$ is a center for P, and some vertex a of $V(G) \backslash V(P)$ is an anticenter for P. The main result of this paper is the following:

3.4 Let G be an elementary bull-free trigraph. Then either

- one of G, \bar{G} belongs to \mathcal{T}_{1}, or
- G admits a homogeneous set decomposition, or
- G admits a homogeneous pair decomposition.

Let us call a bull-free trigraph that does not admit a homogeneous set decomposition, or a homogeneous pair decomposition, and does not contain a path of length three with a center unfriendly. In view of the main result of [1], in this paper we deal mainly with unfriendly graphs (for a precise explanation, see the end of Section 6).

4 Prisms

Let $k \geq 3$ be an integer. A k-prism is a trigraph whose vertex set is the disjoint union of two cliques $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$; and such that for every $i, j \in\{1, \ldots, k\}, a_{i}$ is adjacent to b_{j} if $i=j$ and a_{i} is antiadjacent to b_{j} if $i \neq j$. A prism is a 3 -prism. For a trigraph G, an n-prism in G is an induced subtrigraph of G that is an n-prism.

We start by listing some properties of a prism in an unfriendly trigraph.
4.1 Let G be an unfriendly trigraph, and let P be a k-prism in G. Let A and B be as in the definition of a k-prism. Then

- A and B are strong cliques,
- a_{i} is strongly antiadjacent to b_{j} for every $1 \leq i \neq j \leq k$,
- no vertex $x \in V(G) \backslash V(P)$ is complete to $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ for any $1 \leq$ $i<j \leq k$.

Proof. Let i, j, m be three distinct integers in $\{1, \ldots, k\}$. Since $\left\{a_{i}, b_{i}, b_{m}, b_{j}, a_{j}\right\}$ is not a bull, it follows that a_{i} is strongly adjacent to a_{j}. Therefore, A, and from the symmetry B, is a strong clique. This proves the first assertion of 4.1

If a_{i} is adjacent to b_{j}, then a_{i} is a center for the path $a_{m}-a_{j}-b_{j}-b_{i}$, contrary to the fact that G is unfriendly. This proves the second assertion of 4.1.

Finally, if some vertex $x \in V(G) \backslash V(P)$ is complete to $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$, then since $a_{i}-x-b_{j}-b_{m}$ is not path with center b_{i}, it follows that x is adjacent to b_{m}. But now $a_{i}-a_{j}-b_{j}-b_{m}$ is a path of length three with center x, contrary to the fact that G is unfriendly. This completes the proof of 4.1.

The main result of this section is the following:
4.2 Let G be an unfriendly trigraph. Assume that for some integer $n \geq 3$, G contains an induced subtrigraph that is an n-prism. Then G is a prism.

Proof. Let $A_{1}, \ldots A_{k}, B_{1}, \ldots, B_{k}$ be pairwise disjoint non-empty subsets of $V(G)$ such that for $i, j \in\{1, \ldots, k\}$

- A_{i} is complete to A_{j} and B_{i} is complete to B_{j}
- if $i \neq j$, then A_{i} is anticomplete to B_{j}
- every vertex of A_{i} has a neighbor in B_{i}
- every vertex in B_{i} has a neighbor in A_{i}
- $k \geq 3$.

Let $W=\bigcup_{i=1}^{k}\left(A_{i} \cup B_{i}\right)$. In these circumstances we call $G \mid W$ a hyperprism in G. Since G contains an n-prism, there is a hyperprism in G. We may assume that W is maximal subject to $G \mid W$ being a hyperprism in G. Let $A=\bigcup_{i=1}^{k} A_{i}$ and $B=\bigcup_{i=1}^{k} B_{i}$.
(1) Let $i, j \in\{1, \ldots, k\}$ such that $i \neq j$. Then A_{i} is strongly complete to A_{j}, and strongly anticomplete to B_{j}.

Let $m \in\{1, \ldots, k\} \backslash\{i, j\}$. Let $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$. Choose $b_{i} \in B_{i}$ adjacent to a_{i} and $b_{j} \in B_{j}$ adjacent to a_{j}. Choose $a_{m} \in A_{m}$ and $b_{m} \in B_{m}$ adjacent. Then $G \mid\left\{a_{i}, b_{i}, a_{j}, b_{j}, a_{m}, b_{m}\right\}$ is a 3 -prism, and so by $4.1 a_{i}$ is strongly adjacent to a_{j}, and a_{i} is strongly antiadjacent to b_{j}. Now if follows from the symmetry that A_{i} is strongly complete to A_{j}. Similarly, since every vertex of B_{j} has a neighbor in A_{j}, it follows that A_{i} is strongly anticomplete to B_{j}. This proves (1).
(2) Let $v \in V(G) \backslash W$ and let $i \in\{1, \ldots, k\}$. Suppose v has a neighbor $a_{i} \in A_{i}$ and a neighbor $b_{i} \in B_{i}$. Then a_{i} is strongly antiadjacent to b_{i}.

Assume a_{i} is adjacent to b_{i}. From the symmetry we may assume that $i=1$. Suppose v has a neighbor $a_{2} \in A_{2}$ and a neighbor $b_{2} \in B_{2}$. Since G is unfriendly $a_{2}-a_{1}-b_{1}-b_{2}$ is not a three edge path with center v, and therefore a_{2} is strongly adjacent to b_{2}. Let $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$ be adjacent. Then
$G \mid\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ is a 3 -prism and v is complete to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$, contrary to 4.1. This proves, using symmetry, that for every $j \in\{2, \ldots, k\}, v$ is strongly anticomplete to at least one of A_{j}, B_{j}. Suppose that for some $j, m \in\{2, \ldots, k\}, v$ has a neighbor $a_{j} \in A_{j}$ and $b_{m} \in B_{m}$. Then $j \neq m$, and $a_{j}-a_{1}-b_{1}-b_{m}$ is a path with center v, a contradiction. This proves that v is strongly anticomplete to at least one of $A \backslash A_{1}$ and $B \backslash B_{1}$. From the symmetry we may assume that v is strongly anticomplete to $B \backslash B_{1}$. If for some $j \in\{2, \ldots, k\}, v$ has an antineighbor $a_{j} \in A_{j}$, then $\left\{a_{j}, a_{1}, v, b_{1}, b_{m}\right\}$ is a bull for every $b_{m} \in B_{m}$ with $m \in\{2, \ldots, k\} \backslash\{j\}$. This proves that v is strongly complete to $A \backslash A_{1}$. But now the sets $A_{1} \cup\{v\}, \ldots, A_{k}, B_{1}, \ldots, B_{k}$ form a hyperprism in G, contrary to the maximality of W. This proves (2).
(3) Let $v \in V(G) \backslash W$ and let $i, j, m \in\{1, \ldots, k\}$ be all distinct. Suppose $b_{i} \in B_{i}$ is adjacent to v, and $b_{j} \in B_{j}, a_{m} \in A_{m}$ and $b_{m} \in B_{m}$ are antiadjacent to v. Then a_{m} is antiadjacent to b_{m}.

If a_{m} is adjacent to b_{m}, then $\left\{v, b_{i}, b_{j}, b_{m}, a_{m}\right\}$ is a bull, a contradiction. This proves (3).
(4) Let $v \in V(G) \backslash W$ and let $i \in\{1, \ldots, k\}$. Then v is strongly anticomplete to at least one of A_{i}, B_{i}.

Suppose not. We may assume that v has a neighbor in A_{1} and a neighbor in B_{1}. For $j \in\{1, \ldots, k\}$, let A_{j}^{\prime} be the set of neighbors of v in A_{j}, and $A_{j}^{\prime \prime}=A_{j} \backslash A_{j}^{\prime}$. Let B_{j}^{\prime} and $B_{j}^{\prime \prime}$ be defined similarly. By (2), A_{j}^{\prime} is strongly anticomplete to B_{j}^{\prime}. Since every vertex in A_{j} has a neighbor in B_{j}, it follows that if A_{j}^{\prime} is non-empty, then so is $B_{j}^{\prime \prime}$; and if B_{j}^{\prime} is non-empty, then so is $A_{j}^{\prime \prime}$. In particular, $A_{1}^{\prime}, B_{1}^{\prime}, A_{1}^{\prime \prime}$ and $B_{1}^{\prime \prime}$ are all non-empty.

Suppose that some $a_{2} \in A_{2}^{\prime \prime}$ is adjacent to some $b_{2} \in B_{2}^{\prime \prime}$. By (3), and the symmetry, it follows that v is strongly complete to $A_{3} \cup B_{3}$, and so $A_{3}^{\prime \prime}=B_{3}^{\prime \prime}=\emptyset$, a contradiction. This proves, using symmetry, that for every $j \in\{2, \ldots, k\}, A_{j}^{\prime \prime}$ is strongly anticomplete to $B_{j}^{\prime \prime}$. Since every vertex of A_{j} has a neighbor in B_{j}, it follows that $A_{j}^{\prime \prime} \neq \emptyset$ if and only if $B_{j}^{\prime} \neq \emptyset$, and, symmetrically, $B_{j}^{\prime \prime} \neq \emptyset$ if and only if $A_{j}^{\prime} \neq \emptyset$.

If v is anticomplete to $B \backslash B_{1}$, then v is complete to $A \backslash A_{1}$, and the sets $A_{1} \cup\{v\}, \ldots, A_{k}, B_{1}, \ldots, B_{k}$ form a hyperprism, contrary to the maximality of W. This proves that for some $2 \leq s \leq k, B_{s}^{\prime} \neq \emptyset$, and, from the symmetry, for some $2 \leq t \leq k, A_{t}^{\prime} \neq \emptyset$. It follows that $A_{s}^{\prime \prime} \neq \emptyset$ and $B_{t}^{\prime \prime} \neq \emptyset$. Now, by (3) (and from the symmetry if $s=t$), $A_{1}^{\prime \prime}$ is strongly anticomplete to $B_{1}^{\prime \prime}$.

Next we claim that for $j \in\{1, \ldots, k\}, A_{j}^{\prime}$ is strongly complete to $A_{j}^{\prime \prime}$, and B_{j}^{\prime} to $B_{j}^{\prime \prime}$. Suppose there exist $a_{j}^{\prime} \in A_{j}^{\prime}$ and $a_{j}^{\prime \prime} \in A_{j}^{\prime \prime}$ antiadjacent. Choose $b \in B \backslash B_{j}$ adjacent to v (such a vertex b exists for j is different from at least one of $1, t)$. Let $b_{j} \in B_{j}$ be adjacent to $a_{j}^{\prime \prime}$. Then $b_{j} \in B_{j}^{\prime}$, and so, by (2), b_{j} is strongly antiadjacent to a_{j}^{\prime}. Now $\left\{a_{j}^{\prime}, v, b, b_{j}, a_{j}^{\prime \prime}\right\}$ is a bull, a contradiction.

This proves that A_{j}^{\prime} is strongly complete to $A_{j}^{\prime \prime}$, and from the symmetry B_{j}^{\prime} is strongly complete to $B_{j}^{\prime \prime}$.

Let $\mathcal{J}=\left\{j \in\{1, \ldots, k\}: A_{j}^{\prime} \neq \emptyset\right\}$. Then $B_{j}^{\prime \prime} \neq \emptyset$ for $j \in \mathcal{J}$. Moreover, for $j \in\{1, \ldots, k\} \backslash \mathcal{J}, B_{j}^{\prime \prime}=\emptyset$. Then $|\mathcal{J}| \geq 2$. Let

$$
\begin{gathered}
\tilde{A}_{0}=\bigcup_{j=1}^{k} A_{j}^{\prime \prime} \cup\{v\}, \\
\tilde{B}_{0}=\bigcup_{j=1}^{k} B_{j}^{\prime}
\end{gathered}
$$

and for $j \in \mathcal{J}$, let

$$
\tilde{A}_{j}=A_{j}^{\prime} \text { and } \tilde{B}_{j}=B_{j}^{\prime \prime} .
$$

Now, since $|\mathcal{J}| \geq 2$, the sets $\tilde{A}_{0},\left\{\tilde{A}_{j}\right\}_{j \in \mathcal{J}}, \tilde{B}_{0},\left\{\tilde{B}_{j}\right\}_{j \in \mathcal{J}}$ form a hyperprism, contrary to the maximality of W. This proves (4).
(5) Let $v \in V(G) \backslash W$. Then v is strongly anticomplete to at least one of A, B.

Suppose v has neighbors $a_{1} \in A$ and $b_{2} \in B$. From the symmetry we may assume that $a_{1} \in A_{1}$. By (4), $b_{2} \notin B_{1}$, and therefore we may assume that $b_{2} \in B_{2}$. Now by (4), v is strongly anticomplete to $B_{1} \cup A_{2}$.

Suppose v is strongly complete to $B \backslash B_{1}$. By (4), this implies that v is strongly anticomplete to $A \backslash A_{1}$. But now the sets $A_{1}, \ldots, A_{k}, B_{1} \cup$ $\{v\}, \ldots, B_{k}$ form a hyperprism, contrary to the maximality of W. This proves that v has an antineighbor in $b \in B \backslash B_{1}$. From the symmetry, renumbering B_{2}, \ldots, B_{k} if necessary, we may assume that $b \notin B_{2}$. Now since v has a neighbor in B_{2}, and since every vertex in A_{1} has a neighbor in B_{1}, (3) implies that v is strongly complete to A_{1}. From the symmetry, it follows that for every $i \in\{1, \ldots, k\}, v$ is either strongly complete or strongly anticomplete to A_{i}, and the same for B_{i}. Consequently, v is strongly complete to $A_{1} \cup B_{2}$, and strongly anticomplete to $B_{1} \cup A_{2}$. Now by (3) and (4), for every $i \in\{3, \ldots, k\}, v$ is strongly complete to one of A_{i}, B_{i}, and strongly anticomplete to the other. From the symmetry between A and B, we may assume that v is strongly complete to A_{i} for at least two values of i.

Let $\mathcal{I}=\left\{i \in\{1, \ldots, k\}: v\right.$ is strongly complete to $\left.A_{i}\right\}$. Then v is strongly complete to $\bigcup_{i \notin \mathcal{I}} B_{i}$, and strongly anticomplete to $\left(\bigcup_{i \in \mathcal{I}} B_{i}\right) \cup$ $\left(\bigcup_{i \notin \mathcal{I}} A_{i}\right)$. Let

$$
\begin{gathered}
\tilde{A}_{0}=\bigcup_{i \notin \mathcal{I}} A_{i} \cup\{v\}, \\
\tilde{B}_{0}=\bigcup_{i \notin \mathcal{I}} B_{i}
\end{gathered}
$$

and for $i \in \mathcal{I}$, let

$$
\tilde{A}_{i}=A_{i} \text { and } \tilde{B}_{i}=B_{i} .
$$

Now, since $|\mathcal{I}| \geq 2$, it follows that the sets $\tilde{A}_{0},\left\{\tilde{A}_{i}\right\}_{i \in \mathcal{I}}, \tilde{B}_{0},\left\{\tilde{B}_{i}\right\}_{i \in \mathcal{I}}$ form a hyperprism, contrary to the maximality of W. This proves (5).
(6) Let $v \in V(G) \backslash(A \cup B)$. Then one of the following holds for v :

1. possibly with A and B switched, for some $i \in\{1, \ldots, k\}$, v strongly complete to $A \backslash A_{i}$ and strongly anticomplete to B
2. v is strongly anticomplete to $A \cup B$.

We may assume that v has a neighbor $a_{1} \in A_{1}$, for otherwise (5.2) holds. Now (5) implies that v is strongly anticomplete to B. If there exist distinct $i, j \in\{2, \ldots, k\}$ such that v has an antineighbor $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$, then, choosing $b_{i} \in B_{i}$ to be a neighbor of a_{i}, we get a contradiction to (3). So we may assume that v is strongly complete to $A \backslash\left(A_{1} \cup A_{2}\right)$. By the same argument with the roles of A_{1}, and, say, A_{3}, exchanged, we deduce that v is strongly complete to A_{1}, and (5.2) holds with $i=2$. This proves (6).

Let A_{0} be the set of vertices of $V(G) \backslash W$ that are strongly complete to A, and for $1 \leq i \leq k$, let A_{i}^{\prime} be the set of vertices of $V(G) \backslash\left(W \cup A_{0}\right)$ that are strongly complete to $A \backslash A_{i}$. Define $B_{0}, B_{1}^{\prime}, \ldots, B_{k}^{\prime}$ similarly. Let N be the set of vertices of $V(G) \backslash W$ that are strongly anticomplete to W. By (6), the sets $A_{0}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, B_{0}, B_{1}^{\prime}, \ldots, B_{k}^{\prime}, N$ are pairwise disjoint and have union $V(G) \backslash W$.
(7) $N=\emptyset$.

Suppose not, and choose $n \in N$. Since G is unfriendly, it follows that G is connected, and, from the symmetry, we may assume that n has a neighbor a in $A_{0} \cup A_{1}^{\prime}$. Let $a_{2} \in A_{2}, a_{3} \in A_{3}$, and choose $b_{2} \in B_{2}$ adjacent to a_{2}. Then $\left\{n, a, a_{3}, a_{2}, b_{2}\right\}$ is a bull, a contradiction. This proves (7).
(8) Let $i, j \in\{1, \ldots, k\}$. Then $A_{0} \cup A_{i}^{\prime}$ is strongly anticomplete to $B_{0} \cup B_{j}^{\prime}$.

From the maximality of $W, A_{0} \cup A_{i}^{\prime}$ is strongly anticomplete to $B_{0} \cup B_{i}^{\prime}$ for every $i \in\{1, \ldots, k\}$. Suppose $a \in A_{i}^{\prime}$ has a neighbor $b \in B_{j}^{\prime}$ where $1 \leq i<j \leq k$. Let $b_{j} \in B_{j}$ be antiadjacent to b, and let $a_{j} \in A_{j}$ be a neighbor of b_{j}. Choose $a_{m} \in A \backslash\left(A_{i} \cup A_{j}\right)$. Now $\left\{b_{j}, a_{j}, a_{m}, a, b\right\}$ is a bull, a contradiction. This proves (8).
(9) Let $i, j \in\{1, \ldots, k\}$ such that $i \neq j$. Then A_{i}^{\prime} is strongly complete to $A_{j}^{\prime} \cup A_{0}$.

Suppose $a_{i}^{\prime} \in A_{i}^{\prime}$ has an antineighbor $a_{j}^{\prime} \in A_{j}^{\prime} \cup A_{0}$. Let $a_{i} \in A_{i}$ be antiadjacent to a_{i}^{\prime} and let $b_{i} \in B_{i}$ be a neighbor of a_{i}. Choose $m \in\{1, \ldots, k\} \backslash\{i, j\}$ and $a_{m} \in A_{m}$. Now $\left\{a_{i}^{\prime}, a_{m}, a_{j}^{\prime}, a_{i}, b_{i}\right\}$ is a bull, a contradiction. This proves (9).

By (1), (8) and (9), $\left(A_{1} \cup A_{1}^{\prime} \cup A_{0}, B_{1} \cup B_{1}^{\prime} \cup A_{0}\right)$ is a homogeneous pair in G. Since G is unfriendly, it follows that this is not a tame homogeneous pair, and G does not admit a homogeneous set decomposition, and therefore $A_{1}^{\prime}=B_{1}^{\prime}=A_{0}=B_{0}=\emptyset$, and $\left|A_{1}\right|=\left|B_{1}\right|=1$. Form the symmetry, we deduce that $A_{i}^{\prime}=B_{i}^{\prime}=\emptyset$, and $\left|A_{i}\right|=\left|B_{i}\right|=1$ for every $i \in\{1, \ldots, k\}$. If $k>3$, then $\left(A \backslash\left(A_{1} \cup A_{2}\right), B \backslash\left(B_{1} \cup B_{2}\right)\right.$ is a tame homogeneous pair in G, a contradiction. Thus $k=3$ and G is a prism. This proves 4.2.

5 Lemmas about unfriendly trigraphs

In this section we prove a few lemmas about unfriendly trigraphs.
5.1 Let G be unfriendly graph, let $m>2$ be an integer, and let Y_{1}, \ldots, Y_{m} be pairwise disjoint anticonnected sets, such that for $i, j \in\{1, \ldots, m\}, Y_{i}$ is complete to Y_{j}. Let $v \in V(G) \backslash\left(\bigcup_{i=1}^{m} Y_{i}\right)$, assume that $\left|Y_{1}\right|>1$ and v has a neighbor and an antineighbor in $\bigcup_{i=2}^{m} Y_{i}$. Then v is either strongly complete, or strongly anticomplete to Y_{1}.

Proof. Suppose not. Then v has a neighbor a and an antineighbor a^{\prime} in Y_{1}, and by 2.2 we may assume that a and a^{\prime} are distinct and antiadjacent. From the symmetry, we may assume that v has a neighbor $x \in Y_{2}$ and an antineighbor $h \in Y_{3}$. But now $v-a-h-a^{\prime}$ is a path, and x is a center for it, contrary to the fact that G is unfriendly. This proves 5.1.
5.2 Let G be an unfriendly trigraph such that there is no prism in G, and let $a_{1}-a_{2}-a_{3}-a_{4}-a_{1}$ be a hole of length four. Let K be the set of vertices that are complete to $\left\{a_{1}, a_{2}\right\}$ and anticomplete to $\left\{a_{3}, a_{4}\right\}$. Then K is a strong clique.

Proof. Suppose some two vertices of K are not strongly adjacent, and let C be an anti-component of K with $|C|>1$. Since G is unfriendly, it follows that C is not a homogeneous set in G, and so, by 2.2 applied in \bar{G}, there exist vertices c, c^{\prime}, v such that $c, c^{\prime} \in C, v \notin C, v$ is adjacent to c^{\prime} and antiadjacent to c, and c^{\prime} is antiadjacent to c. Since $\left\{a_{4}, a_{1}, c^{\prime}, a_{2}, c\right\}$ is not a bull, it follows that $v \neq a_{1}$, and from the symmetry $v \neq a_{2}$. Since $a_{4}-c^{\prime}-a_{2}-c$ is not a path with center a_{1}, it follows that $v \neq a_{4}$, and from the symmetry $v \neq a_{3}$.

Suppose first that v is anticomplete to $\left\{a_{1}, a_{2}\right\}$. Since $\left\{v, c^{\prime}, a_{2}, a_{1}, a_{4}\right\}$ is not a bull, it follows that v is strongly adjacent to a_{4}, and, similarly,
v is strongly adjacent to a_{3}. But now $G \mid\left\{a_{1}, a_{2}, c^{\prime}, a_{3}, a_{3}, v\right\}$ is a prism, a contradiction. So we may assume that v is strongly adjacent to a_{1}, and by 5.1, v is strongly adjacent to a_{2}. Since $\left\{c, a_{2}, c^{\prime}, v, a_{4}\right\}$ is not a bull, it follows that v is strongly antiadjacent to a_{4}, and similarly to a_{3}. But now $v \in C$, a contradiction. This proves 5.2.
5.3 Let G be an unfriendly trigraph such that there is no prism in G, let $a_{1}-a_{2}-a_{3}-a_{4}-a_{1}$ be a hole in G, and let c be a center and a an anticenter for $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then c is strongly antiadjacent to a.

Proof. Suppose c is adjacent to a.
(1) Let $i \in\{1, \ldots, 4\}$. Then a_{i} is strongly adjacent to a_{i+1} (here the addition is performed mod 4), c is strongly adjacent to a_{i}, and a is strongly antiadjacent to a_{i}.

Since $a_{i}-a_{i+3}-a_{i+2}-a_{i+1}$ is not a path with a center c, it follows that a_{i} is strongly adjacent to a_{i+1}. Since $\left\{a_{i}, a_{i+1}, a_{i+2}, c, a\right\}$ is not a bull, it follows that a_{i} is strongly adjacent to c. Finally, since $a-a_{i}-a_{i+1^{-}}-a_{i+2}$ is not a path with center c, we deduce that a is strongly antiadjacent to a_{i}. This proves (1).

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be connected subsets of $V(G)$, where $a_{i} \in A_{i}$ for $i \in$ $\{1, \ldots, 4\}$, such that

- for $i \in\{1, \ldots, 4\}, A_{i}$ is strongly complete to A_{i+1} (with addition mod 4),
- for $i=1,2, A_{i}$ is anticomplete to A_{i+2},
- c is strongly complete to $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$
- a is strongly anticomplete to $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$.

Let $W=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$, and assume that $A_{1}, A_{2}, A_{3}, A_{4}$ are chosen with W maximal. Since G is unfriendly, it follows that $A_{1} \cup A_{3}$ is not a homogeneous set in G, and so some vertex v of $V(G) \backslash\left(A_{1} \cup A_{3}\right)$ is mixed on $A_{1} \cup A_{3}$. Then $v \notin A_{2} \cup A_{3} \cup\{a, c\}$. We may assume that v has a neighbor $v_{1} \in A_{1}$, and antineighbor $v_{3} \in A_{3}$. Since $A_{1} \cup A_{3}, A_{2} \cup A_{4}$ and $\{c\}$ are three anticonnected sets complete to each other, 5.1 implies that v is either strongly complete or strongly anticomplete to $A_{2} \cup A_{4} \cup\{c\}$.

Suppose first that v is strongly anticomplete to $A_{2} \cup A_{4} \cup\{c\}$. Since $\left\{v, v_{1}, a_{2}, c, a\right\}$ is not a bull, it follows that v is adjacent to a. But now $v-a-c-v_{1}-v$ is a hole of length four, and a_{2}, a_{4} are two antiadjacent vertices, each complete to $\left\{v_{1}, c\right\}$ and anticomplete to $\{v, a\}$, contrary to 5.2. This proves that v is strongly complete to $A_{2} \cup A_{4} \cup\{c\}$. Since $a-v-a_{2}-v_{3}$ is
not a path with center c, it follows that v is strongly antiadjacent to a. If v is anticomplete to A_{3}, then replacing A_{1} by $A_{1} \cup\{v\}$ contradicts the maximality of W, so v has a strong neighbor in A_{3}, and therefore $A_{3} \neq\left\{v_{3}\right\}$. Since A_{3} is connected, 2.2 implies that there exist vertices $x, y \in A_{3}$, such that v is adjacent to x and antiadjacent to y, and x is adjacent to y. But now $y-x-v-v_{1}$ is a path, and c is a center for it, contrary to the fact that G is unfriendly. This proves 5.3 .
5.4 Let H be a trigraph such that no induced subtrigraph of H is a path of length three. Then either

1. H is not connected, or
2. H is not anticonnected, or
3. there exist two vertices $v_{1}, v_{2} \in V(H)$ such that v_{1} is semi-adjacent to v_{2}, and $V(H) \backslash\left\{v_{1}, v_{2}\right\}$ is strongly complete to v_{1} and strongly anticomplete to v_{2}.

Proof. Let $X, Y \subseteq V(H)$ such that $X \neq \emptyset, Y \neq \emptyset, X$ is either complete, or anticomplete to Y, and there is at most one semi-adjacent pair $x y$ with $x \in$ X and $y \in Y$. Assume that X, Y are chosen with $X \cup Y$ maximal. Passing to the complement if necessary, we may assume that X is anticomplete to Y. First we show that $X \cup Y=V(H)$. Suppose not. Let $v \in V(H) \backslash(X \cup Y)$. Let X^{\prime}, Y^{\prime} be the set of neighbors of v in X, Y, respectively. By the maximality of $X \cup Y$, it follows that $X^{\prime} \neq \emptyset$ and $Y^{\prime} \neq \emptyset$. Since $x-x^{\prime}-v-y^{\prime}$ is not a path, where $x \in X \backslash X^{\prime}, x^{\prime} \in X^{\prime}$ and $y^{\prime} \in Y^{\prime}$, it follows that X^{\prime} is strongly anticomplete to $X \backslash X^{\prime}$. Similarly, Y^{\prime} is strongly anticomplete to $Y \backslash Y^{\prime}$. Now $X^{\prime} \cup Y^{\prime} \cup\{v\}$ is anticomplete to $\left(X \backslash X^{\prime}\right) \cup\left(Y \backslash Y^{\prime}\right)$, and the only semi-adjacent pairs $x y$ with $x \in X^{\prime} \cup Y^{\prime} \cup\{v\}$ and $y \in\left(X \backslash X^{\prime}\right) \cup\left(Y \backslash Y^{\prime}\right)$ are those with $x \in X$ and $y \in Y$. It follows from the maximality of $X \cup Y$ that $\left(X \backslash X^{\prime}\right) \cup\left(Y \backslash Y^{\prime}\right)=\emptyset$. Now $\{v\}$ is complete to $X \cup Y$, and since v is semi-adjacent to at most one vertex of H, it follows that there is at most one semi-adjacent pair with a vertex in $X \cup Y$ and a vertex in $\{v\}$, contrary to the maximality of $X \cup Y$. This proves that $X \cup Y=V(H)$.

If X is strongly anticomplete to Y, then the theorem holds. So we may assume that some $x \in X$ and $y \in Y$ are semi-adjacent. Since $x^{\prime}-x-y-y^{\prime}$ is not a path for $x^{\prime} \in X \backslash\{x\}$ and $y^{\prime} \in Y \backslash\{y\}$, we may assume, from the symmetry, that x is strongly anticomplete to $X \backslash\{x\}$. If $X \neq\{x\}$, then $Y \cup\{x\}$ is strongly anticomplete to $X \backslash\{x\}$, and the theorem holds, so we may assume that $X=\{x\}$. Let Y_{1} be the set of neighbors of y in Y, and Y_{2} the set of strong antineighbors of y in Y. Since y is semi-adjacent to x, it follows that y is strongly complete to Y_{1}. If some $y_{1} \in Y_{1}$ is adjacent to some $y_{2} \in Y_{2}$, then $x-y-y_{1}-y_{2}$ is a path, a contradiction. So Y_{1} is strongly anticomplete to Y_{2}. But now, if $Y_{2}=\emptyset$, then the last outcome of the theorem holds, and if $Y_{2} \neq \emptyset$ then the first outcome of the theorem holds. This proves 5.4.
5.5 Let G be an unfriendly trigraph with no prism, and let $u, v \in V(G)$ be adjacent. Let A, B be subsets of $V(G)$ such that

- u is strongly complete to A and strongly anticomplete to B,
- v is strongly complete to B and strongly anticomplete to A,
- No vertex of $V(G) \backslash(A \cup B)$ is mixed on A, and
- if $x, y \in B$ are adjacent, then no vertex of $V(G) \backslash(A \cup B)$ is mixed on $\{x, y\}$.
Then $A=K \cup S$, where K is a strong clique and S is a strongly stable set.
Proof. Let K, S be subsets of A, such that K is a strong clique and K is strongly complete to $A \backslash(K \cup S)$, and S is a strongly stable set and S is strongly anticomplete to $A \backslash(K \cup S)$. Assume that K and S are chosen with $K \cup S$ maximal. Let $Z=A \backslash(K \cup S)$. We may assume that Z is non-empty, for otherwise the theorem holds.
(1) There do not exist $k, s \in Z$, such that k is semi-adjacent to s, k is strongly complete to $Z \backslash\{k, s\}$ and s is strongly anticomplete to $Z \backslash\{k, s\}$.

If such k, s exist, then $K \cup\{k\}$ and $S \cup\{s\}$ contradict the maximality of $K \cup S$. This proves (1).
(2) Z is anticonnected.

Suppose not. If some anticomponent Z_{0} of Z has size one, then $K \cup Z_{0}, S$ contradict the maximality of $K \cup S$, so we may assume that there exist two anticomponents, Z_{1}, Z_{2} of Z, each with at least two vertices. Since Z_{1} is not a homogeneous set in G, it follows that there exists a vertex $v_{1} \in V(G) \backslash Z_{1}$ such that v_{1} is mixed on Z_{1}. Then $v_{1} \notin A$. By 2.2, there exist vertices $z_{1}, z_{1}^{\prime} \in Z_{1}$ such that z_{1} is antiadjacent to z_{1}^{\prime}, and v_{1} is adjacent to z_{1} and antiadjacent to z_{1}^{\prime}. Let $v_{2}, z_{2}, z_{2}^{\prime}$ be defined similarly. Then $v_{1}, v_{2} \in B$. Since $\left\{v, v_{1}, z_{1}, z_{2}, z_{1}^{\prime}\right\}$ is not a bull, it follows that v_{1} is strongly antiadjacent to z_{2}. Similarly, v_{2} is strongly antiadjacent to z_{1}. Since $\left\{v_{1}, z_{1}, u, z_{2}, v_{2}\right\}$ is not a bull, it follows that v_{1} is strongly adjacent to v_{2}. But now $G \mid\left\{u, z_{1}, z_{2}, v, v_{1}, v_{2}\right\}$ is a prism, a contradiction. This proves (2).

Since u is complete to Z and G is unfriendly, it follows that there is no path of length three in $G \mid Z$. Now it follows from 5.4, (1), and (2) that Z is not connected. If some component Z_{0} of Z has size one, then $K, S \cup Z_{0}$ contradict the maximality of $K \cup S$, so every component of Z has at least two vertices and, in particular, that there exist two components, Z_{1}, Z_{2} of Z, each with at least two vertices. Let $i \in\{1,2\}$. Since Z_{i} is not a homogeneous set in G, it follows that there exists a vertex $v_{i} \in V(G) \backslash Z_{i}$ such that
v_{i} is mixed on Z_{i}. Then $v_{i} \notin A$, and therefore $v_{i} \in B$. By 2.2 , there exist vertices $z_{i}, z_{i}^{\prime} \in Z_{i}$ such that z_{i} is adjacent to z_{i}^{\prime}, and v_{i} is adjacent to z_{i} and antiadjacent to z_{i}^{\prime}. Since for $z \in(Z \cup S) \backslash Z_{i},\left\{v_{i}, z_{i}, z_{i}^{\prime}, u, z\right\}$ is not a bull, it follows that v_{i} is strongly complete to $(Z \cup S) \backslash Z_{i}$. Let B_{i} be the set of all vertices of $V(G) \backslash\{u\}$ that are mixed on Z_{i}. Then $B_{i} \subseteq B, B_{i}$ is strongly complete to $(A \cup S) \backslash Z_{i}$, and $B_{1} \cap B_{2}=\emptyset$.

Let $\{i, j\}=\{1,2\}$.
(3) If $b \in V(G) \backslash\left(A \cup B_{i}\right)$ has a neighbor in B_{i}, then v is strongly anticomplete to Z_{i}.

Suppose not. Since $b \notin B_{i}$, it follows that b is strongly complete to Z_{i}. Let $b_{i} \in B_{i}$ be adjacent to b. By 2.2 , there exist vertices $z, z^{\prime} \in Z_{i}$ such that z is adjacent to z^{\prime}, and b_{i} is adjacent to z and antiadjacent to z^{\prime}. Since G is unfriendly, it follows that b is not a center for the path $v-b_{i}-z-z^{\prime}$, and therefore b is strongly antiadjacent to v. Consequently, $b \notin B$, and so b is strongly complete to A. Choose $z_{j} \in Z_{j}$. Now $z_{j}-b_{i}-z-z^{\prime}$ is a path, and b is a center for it, contrary to the fact that G is unfriendly. This proves (3).
(4) Let $b \in V(G) \backslash\left(A \cup B_{1} \cup B_{2}\right), b_{i} \in B_{i}$ and $b_{j} \in B_{j}$, and assume that b is adjacent to b_{i} and antiadjacent to b_{j}. Then $b \in B$, and b is strongly anticomplete to B_{j} and strongly complete to Z_{j}.

By (3), b_{i} is strongly antiadjacent to b_{j}. By 2.2 , there exist $z, z^{\prime} \in Z_{j}$ such that z is adjacent to z^{\prime}, and b_{j} is adjacent to z and antiadjacent to z^{\prime}. Since b_{i} is strongly complete to Z_{j}, and since $\left\{b, b_{i}, z^{\prime}, z, b_{j}\right\}$ is not a bull, it follows that b has a neighbor in Z_{j}. Since b is adjacent to b_{i}, (3) implies that b is strongly anticomplete to Z_{i}, and therefore b has a neighbor and an antineighbor in A. Since b is not in A, it follows that $b \in B$. Now by (3), b is strongly anticomplete to B_{j}, and since $b \notin B_{j}, b$ is strongly complete to Z_{j}. This proves (4).

Let C_{i} be the set of all vertices of $V(G) \backslash\left(A \cup B_{1} \cup B_{2}\right)$ that have a neighbor in B_{i} and an antineighbor in B_{j}. By (4), $C_{i} \subseteq B$ and C_{i} is strongly anticomplete to B_{j}. Let X be the vertices of $B \backslash\left(B_{1} \cup B_{2}\right)$ that are strongly anticomplete to $B_{1} \cup B_{2}$, and let Y be the vertices of $B \backslash\left(B_{1} \cup B_{2}\right)$ that are strongly complete to $B_{1} \cup B_{2}$. By (4), $B=B_{1} \cup B_{2} \cup C_{1} \cup C_{2} \cup X \cup Y$. Let X_{i} be the vertices of X with a neighbor in C_{i}, and let $X_{0}=X \backslash\left(X_{1} \cup X_{2}\right)$. By (3), B_{i} is strongly anticomplete to B_{j}. Since v is complete to B, and G is unfriendly, it follows that there is no path of length three in $G \mid B$, and therefore C_{i} is strongly anticomplete to $C_{j} \cup X_{j}, X_{i}$ is disjoint from X_{j}, and the sets X_{i}, X_{j}, X_{0} are pairwise strongly anticomplete to each other.
(5) K is strongly anticomplete to $B_{1} \cup B_{2}$.

Suppose some k in K has a neighbor $b_{1} \in B_{1}$. By 2.2 , there exist $z_{1}, z_{1}^{\prime} \in Z_{1}$ such that b_{1} is adjacent to z and antiadjacent to z^{\prime}, and z is adjacent to z^{\prime}. Let $z \in Z_{2}$. Then z is adjacent to b_{1}, and $z-b_{1}-z-z^{\prime}$ is a path with center k. This proves (5).
(6) Both C_{1} and C_{2} are non-empty.

Suppose C_{1} is empty. We claim that $\left(Z_{1}, B_{1}\right)$ is a homogeneous pair. Since Z_{1} is a component of Z, no vertex of $V(G) \backslash B_{1}$ is mixed on Z_{1}. Suppose some $w \in V(G) \backslash\left(Z_{1} \cup B_{1}\right)$ is mixed on B_{1}. Then $w \notin B_{2}$. Since $C_{1}=\emptyset$, it follows that w has a neighbor in B_{2}. Since w has an antineighbor in B_{1}, we deduce that $w \in C_{2} \cup A$, and since w has a neighbor in B_{1}, it follows that $w \in A$. Since B_{1} is strongly complete to $(Z \cup S) \backslash Z_{1}$, it follows that $w \in K$, contrary to (5). This proves (6).

Let S_{i} be the vertices of S that are strongly complete to K and are not strongly complete to $C_{i} \cup X_{i}$. To complete the proof, we show that $\left(Z_{i} \cup\right.$ $\left.S_{i}, B_{i} \cup C_{i} \cup X_{i}\right)$ is a homogeneous pair in G, contradicting the fact that G is unfriendly.
(7) Let $a, b, c \in B$ and $w \in V(G) \backslash B$, such that a is adjacent to b, c is anticomplete to $\{a, b\}$, and w is adjacent to a and anticomplete to $\{b, v\}$. Then $w \in A$ and w is strongly adjacent to c.

Since w is mixed on $\{a, b\}$, it follows that $w \in A$. Since $\{w, a, b, v, c\}$ is not a bull, it follows that w is strongly adjacent to c. This proves (7).
(8) No vertex of $V(G) \backslash\left(Z_{i} \cup S_{i} \cup B_{i} \cup C_{i} \cup X_{i}\right)$ is mixed on $B_{i} \cup C_{i} \cup X_{i}$.

First we claim that K is strongly anticomplete to $B_{i} \cup C_{i} \cup X_{i}$. Choose $w \in K$. By (5), w is strongly anticomplete to $B_{i} \cup B_{j}$. Since w is strongly anticomplete to B_{j}, and B_{j} is strongly anticomplete to $B_{i} \cup C_{i} \cup X_{i}$, it follows from (7) there there do not exit vertices $a, b \in B_{i} \cup C_{i} \cup X_{i}$, such that a is adjacent to b, and w is mixed on $\{a, b\}$. Now, since every vertex of C_{i} has a neighbor in B_{i}, it follows that w is strongly anticomplete to C_{i}; and since very vertex of X_{i} has a neighbor in C_{i}, it follows that w is strongly anticomplete to X_{i}. This proves the claim.

Next suppose that $r \in(Z \cup S \cup Y) \backslash\left(Z_{i} \cup S_{i}\right)$ is not strongly complete to $B_{i} \cup C_{i} \cup X_{i}$. Then r is strongly complete to B_{i}, and, since every vertex of C_{i} has a neighbor in B_{i}, and every vertex of X_{i} has a neighbor in C_{i}, there exist $p, q \in B_{i} \cup C_{i} \cup X_{i}$, such that p is adjacent to q, r is adjacent to p and antiadjacent to q, and $q \in C_{i} \cup X_{i}$. Assume first that $r \in Z \backslash Z_{i}$. By the
maximality of $S \cup K$, it follows that every component of Z has size at least two, and so, from the symmetry we may assume that $r \in Z_{j}$. By (3), r is strongly anticomplete to C_{j}; and since C_{j} is strongly anticomplete to $\{p, q\}$ we get a contradiction to (7). This proves that $Z \backslash Z_{i}$ is strongly complete to $B_{i} \cup C_{i} \cup X_{i}$, and therefore $r \in(S \cup Y) \backslash S_{i}$. Choose $z_{j} \in Z_{j}$. If $r \in Y$, then $z_{j}-r-p-q$ is a path with center v, contrary to the fact that G is unfriendly, so $r \in S \backslash S_{i}$. Since r is antiadjacent to q and $r \notin S_{i}$, we deduce that there exists $k \in K$ antiadjacent to r. Now $\left\{r, p, q, z_{j}, k\right\}$ is a bull, a contradiction. This proves that $(Z \cup S \cup Y) \backslash\left(Z_{i} \cup S_{i}\right)$ is strongly complete to $B_{i} \cup C_{i} \cup X_{i}$. Since $B_{j} \cup C_{j} \cup X_{j} \cup X_{0}$ is strongly anticomplete to $B_{i} \cup C_{i} \cup X_{i}$, it follows that no vertex of $(A \cup B) \backslash\left(Z_{i} \cup S_{i} \cup B_{i} \cup C_{i} \cup X_{i}\right)$ is mixed on $B_{i} \cup C_{i} \cup X_{i}$.

Let $w \in V(G) \backslash\left(Z_{i} \cup S_{i} \cup B_{i} \cup C_{i} \cup X_{i}\right)$, and assume that w is mixed on $B_{i} \cup C_{i} \cup X_{i}$. Then $w \notin(A \cup B \cup\{u, v\})$. Applying (4) twice, we deduce that w is not mixed on B_{i}. Since every vertex of C_{i} has a neighbor in B_{i}, and every vertex of X_{i} has a neighbor in C_{i}, it follows that there exist two adjacent vertices $a, b \in B_{i} \cup C_{i} \cup X_{i}$ such that w is adjacent to a and antiadjacent to b. But then $w \in A \cup B$, a contradiction. This proves (8).
(9) No vertex of $V(G) \backslash\left(Z_{i} \cup S_{i} \cup B_{i} \cup C_{i} \cup X_{i}\right)$ is mixed on $Z_{i} \cup S_{i}$.

Since no vertex of $V(G) \backslash(A \cup B)$ is mixed on A, it is enough to show that no vertex of $(A \cup B) \backslash\left(Z_{i} \cup S_{i} \cup B_{i} \cup C_{i} \cup X_{i}\right)$ is mixed on $Z_{i} \cup S_{i}$. Since K is strongly complete to $Z_{i} \cup S_{i}$, and $(Z \cup S) \backslash\left(Z_{i} \cup S_{i}\right)$ is strongly anticomplete to $\left(Z_{i} \cup S_{i}\right)$, it follows that no vertex of $A \backslash\left(Z_{i} \cup S_{i}\right)$ is mixed on $Z_{i} \cup S_{i}$. By (8) and symmetry, and since $Z_{i} \cup S_{i}$ is strongly complete to B_{j}, we deduce that $Z_{i} \cup S_{i}$ is strongly complete to $B_{j} \cup C_{j} \cup X_{j}$. We claim that no vertex of X_{0} is mixed on $Z_{i} \cup S_{i}$. If $S_{i}=\emptyset$, then no vertex of $B \backslash B_{i}$ is mixed on $Z_{i} \cup S_{i}$, and the claim follows. So we may assume that $S_{i} \neq \emptyset$. Suppose $b \in X_{0}$ has an antineighbor $s \in Z_{i} \cup S_{i}$. Since b is strongly anticomplete to $B_{i} \cup C_{i} \cup X_{i}$, (7) implies that there do not exist adjacent vertices $p, q \in B_{i} \cup C_{i} \cup X_{i}$, such that s is mixed on $\{p, q\}$. Since every vertex of C_{i} has a neighbor in B_{i}, and every vertex of X_{i} has a neighbor in C_{i}, it follows that either s is mixed on B_{i}, or s is strongly complete to $B_{i} \cup C_{i} \cup X_{i}$, or s is strongly anticomplete to $B_{i} \cup C_{i} \cup X_{i}$. Since every vertex of S_{i} is strongly complete to B_{i} and has an antineighbor in $B_{i} \cup C_{i} \cup X_{i}$, it follows that $s \notin S_{i}$. Therefore $s \in Z_{i}$, and hence b is strongly anticomplete to Z_{i}. Consequently, there do not exist adjacent vertices $p, q \in B_{i} \cup C_{i} \cup X_{i}$, and $z \in Z_{i}$ such that z is mixed on $\{p, q\}$. By (3), C_{i} is strongly anticomplete to Z_{i}. Let $c_{i} \in C_{i}$ and let $b_{i} \in B_{i}$ be a neighbor of c_{i}. Then b_{i} has a neighbor $z \in Z_{i}$. But now z is adjacent to b_{i} and antiadjacent to c_{i}, a contradiction. This proves that $Z_{i} \cup S_{i}$ is strongly complete to X_{0}, and the claim follows.

By (3), Y is strongly anticomplete to Z_{i}. Suppose some vertex $y \in Y$ has a neighbor $s \in S_{i}$. Let $b_{j} \in B_{j}$, and let $b \in C_{i} \cup X_{i}$ be an antineighbor of s. Since $s \notin Z_{j}$, it follows that b_{j} is strongly adjacent to s. Since Y is
strongly complete to B_{i}, (8) implies that y is strongly adjacent to b. Now $\left\{u, s, b_{j}, y, b\right\}$ is a bull, a contradiction. So Y is strongly anticomplete to S_{i}, and therefore to $Z_{i} \cup S_{i}$. Therefore, no vertex of $B \backslash\left(B_{i} \cup C_{i} \cup X_{i}\right)$ is mixed on $Z_{i} \cup X_{i}$. This proves (9).

Now, it follows from (8) and (9) that $\left(Z_{i} \cup S_{i}, B_{i} \cup C_{i} \cup X_{i}\right)$ is a homogeneous pair in G, contrary to the fact that G is unfriendly. This proves 5.5.
5.6 Let G be an unfriendly bull-free trigraph with no prism. Then there do not exist six vertices $a, b, c, d, x, y \in V(G)$ such that

- the pairs ab, cd, xy are adjacent,
- $\{a, b\}$ is anticomplete to $\{c, d\}$, and
- $\{x, y\}$ is complete to $\{a, b, c, d\}$.

Proof. Since $b-a-y-c$ is not a path with center x, it follows that y is strongly adjacent to b, and from the symmetry, $\{x, y\}$ is strongly adjacent to $\{a, b, c, d\}$.

Let $k \geq 2$ be an integer, and let Y_{0}, \ldots, Y_{k} be pairwise disjoint anticonnected sets, such that

- Y_{0} is strongly complete to $\bigcup_{i=1}^{k} Y_{i}$,
- for $i, j \in\{1, \ldots, k\}, Y_{i}$ is complete to Y_{j}, and
- $\{a, b, c, d\} \subseteq Y_{0}$.

We may assume that Y_{0}, \ldots, Y_{k} are chosen with $W=\bigcup_{i=0}^{k} Y_{i}$ maximal.
(1) Let $v \in V(G) \backslash W$ and assume that v has a neighbor in Y_{0}. Then v is strongly anticomplete to $W \backslash Y_{0}$.

We may assume that v has a neighbor in $W \backslash Y_{0}$. Suppose first that v is mixed on Y_{0}. By 5.1, it follows that v strongly complete to $W \backslash Y_{0}$, and therefore $Y_{0} \cup\{v\}, Y_{1}, \ldots, Y_{k}$ contradict the maximality of W. This proves that v is strongly complete to Y_{0}.

Next suppose that v has a neighbor in Y_{1}, and v is not complete to Y_{1}. Then $\left|Y_{1}\right|>1$, and 5.1 implies that v is strongly complete to $W \backslash Y_{1}$. But then replacing Y_{1} with $Y_{1} \cup\{v\}$ contradicts the maximality of W. Using the symmetry, this proves that if v has a neighbor in Y_{i} with $1 \leq i \leq k$, then v is complete to Y_{i}.

Let I be the set of all $i \in\{1, \ldots, k\}$, such that v is complete to Y_{i}, and let $J=\{1, \ldots, k\} \backslash I$. Then v is strongly anticomplete to $\bigcup_{j \in J} Y_{j}$. From the symmetry we may assume that $I=\{1, \ldots, t\}$ for some $t \in\{1, \ldots, k\}$. Let
$Z_{t+1}=\{v\} \cup \bigcup_{j \in J} Y_{j}$. Then $Y_{0}, Y_{1}, \ldots, Y_{t}, Z_{t+1}$ contradict the maximality of W. This proves (1).

Since $W \backslash Y_{0}$ is strongly complete to Y_{0}, and since Y_{0} is not a homogeneous set in G, it follows that some vertex of $V(G) \backslash Y_{0}$ has a neighbor in Y_{0}. Let Z_{0} be the set of all vertices of $V(G) \backslash W$ with a neighbor in Y_{0}. Then $Z_{0} \neq \emptyset$, and by (1), Z_{0} is strongly anticomplete to $W \backslash Y_{0}$. Moreover, no vertex of $V(G) \backslash\left(Y_{0} \cup Z_{0}\right)$ is mixed on Y_{0}.

Since Y_{0} is strongly complete to $W \backslash Y_{0}$, and Z_{0} is strongly anticomplete to $W \backslash Y_{0}$, and since $W \backslash Y_{0}$ is not a homogeneous set in G, it follows that some vertex $z_{1} \in V(G) \backslash\left(W \cup Z_{0}\right)$ is mixed on $W \backslash Y_{0}$. Then z_{1} is strongly anticomplete to Y_{0}. We may assume that z_{1} has a neighbor $y_{1} \in Y_{1}$ and antineighbor $y_{2} \in Y_{2}$.
(2) z_{1} is strongly complete to Z_{0}.

Suppose $z_{0} \in Z_{0}$ is antiadjacent to z_{1}. Let $y_{0} \in Y_{0}$ be a neighbor of z_{0}. Then $\left\{z_{0}, y_{0}, y_{2}, y_{1}, z_{1}\right\}$ is a bull, a contradiction. This proves (2).
(3) Let $s, t \in Z_{0}$ be adjacent, and let $v \in V(G) \backslash\left(Y_{0} \cup Z_{0}\right)$. Then v is not mixed on $\{s, t\}$.

Suppose that v is adjacent to s and antiadjacent to t. Let $y_{s} \in Y_{0}$ be adjacent to s, and y_{t} to t, choosing $y_{s}=y_{t}$ if possible. Since v is mixed on Z_{0}, it follows that $v \notin\left(W \backslash Y_{0}\right)$. Since $v \notin Z_{0}$, it follows that v is strongly antiadjacent to y_{s}, y_{t}.

Assume first that $y_{s}=y_{t}$. Since $\left\{v, s, t, y_{t}, w\right\}$ is not a bull for any $w \in W \backslash Y_{0}$, it follows that v is strongly complete to $W \backslash Y_{0}$. But now $Y_{0} \cup\{v\}, Y_{1}, \ldots, Y_{k}$ contradict the maximality of W. This proves that $y_{s} \neq y_{t}$, and therefore s is antiadjacent to y_{t}, and t to y_{s}. Since $\left\{y_{s}, s, z_{1}, t, y_{t}\right\}$ is not a bull, it follows that y_{s} is strongly adjacent to y_{t}. But now $G \mid\left\{s, t, z_{1}, y_{s}, y_{t}, y_{1}\right\}$ is a prism, a contradiction. This proves (3).

Now y_{1}, z_{1} are adjacent, and Y_{0}, Z_{0} are subsets of $V(G)$ such that

- y_{1} is strongly complete to Y_{0} and strongly anticomplete to Z_{0},
- z_{1} is strongly complete to Z_{0} and strongly anticomplete to Y_{0},
- No vertex of $V(G) \backslash\left(Y_{0} \cup Z_{0}\right)$ is mixed on Y_{0}, and
- if $s, t \in Z_{0}$ are adjacent, then no vertex of $V(G) \backslash\left(Y_{0} \cup Z_{0}\right)$ is mixed on $\{s, t\}$.

By 5.5 , we deduce that $Y_{0}=K \cup S$, where K is a strong clique and S is a strongly stable set. But then at least one of a, b is in K, and at least one
of c, d is in K, contrary to the fact that $\{a, b\}$ is strongly anticomplete to $\{c, d\}$. This proves 5.6.

Let G be a trigraph, let $N \subseteq V(G)$ with $|N|=k$. We say that N, or $G \mid N$, is a matching of size k in G if $N=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$ and for distinct $i, j \in\{1, \ldots, k\}$ the pairs $a_{i} b_{i}$ are adjacent, and the pairs $a_{i} b_{j}$ are antiadjacent.
5.7 Let G be a bull-free trigraph, let v be a vertex of G and let N be the set of neighbors of v. Let $H=G \mid N$. Let $a_{1}, a_{2}, b_{1}, b_{2} \in N$ such that $H \mid\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ is a matching of size two in G, where the pairs $a_{1} b_{1}$ and $a_{2} b_{2}$ are adjacent. For $i=1,2$ let C_{i} be the component of H containing $\left\{a_{i}, b_{i}\right\}$, and let D_{i} be the set of vertices of $V(G) \backslash(N \cup\{v\})$ that are mixed on C_{i}. Then

1. $C_{1} \cap C_{2}=\emptyset$,
2. D_{i} is strongly complete to $N \backslash C_{i}$, and consequently $D_{1} \cap D_{2}=\emptyset$,
3. Let $i \in\{1,2\}$ and let $x \in V(G) \backslash\left(N \cup D_{i}\right)$ have a neighbor $d_{i} \in D_{i}$. Then x is strongly anticomplete to C_{i},
4. D_{1} is strongly anticomplete to D_{2}.

Proof. First we prove the first assertion of 5.7. It is enough to show that there is no path from $\left\{a_{1}, b_{1}\right\}$ to $\left\{a_{2}, b_{2}\right\}$ in H. First we claim that $\left\{a_{1}, b_{1}\right\}$ is strongly anticomplete to $\left\{a_{2}, b_{2}\right\}$. For suppose not, from the symmetry we may assume that a_{1} is adjacent to a_{2}. Then $b_{1}-a_{1}-a_{2}-b_{2}$ is a path, an v is a center for it, contrary to the fact that G is unfriendly. This proves that $\left\{a_{1}, b_{1}\right\}$ is strongly anticomplete to $\left\{a_{2}, b_{2}\right\}$.

Next suppose that there is a path P from $\left\{a_{1}, b_{1}\right\}$ to $\left\{a_{2}, b_{2}\right\}$ in H. Since v is a weak center for P, it follows that P has length less than three, and so some vertex $p \in N$ has a neighbor in $\left\{a_{1}, b_{1}\right\}$ and a neighbor in $\left\{a_{2}, b_{2}\right\}$. From the symmetry we may assume that p is adjacent to a_{1} and to a_{2}. Since $b_{1}-a_{1}-p-a_{2}$ is not a path with center v, it follows that p is adjacent to b_{1}, and similarly to b_{2}. But now the vertices $a_{1}, b_{1}, a_{2}, b_{2}, v, p$ contradict 5.6. This proves the first assertion of 5.7.

To prove the second assertion of 5.7 , let $d \in D_{i}$ and suppose that d has an antineighbor $n \in N \backslash C_{i}$. By 2.2 , there exist $c_{i}, c_{i}^{\prime} \in C_{i}$ such that c_{i} is adjacent to c_{i}^{\prime}, and d is adjacent to c_{i} and antiadjacent to c_{i}^{\prime}. But now $\left\{d, c_{i}, c_{i}^{\prime}, v, n\right\}$ is a bull, a contradiction. This proves the second assertion of 5.7.

To prove the third assertion, suppose that x has a neighbor in C_{i}. Since $x \notin D_{i} \cup C_{i}$, it follows that x is strongly complete to C_{i}. Since $x \notin N$, it follows that x is strongly antiadjacent to v. By 2.2 , there exist $c_{i}, c_{i}^{\prime} \in C_{i}$ such that c_{i} is adjacent to c_{i}^{\prime}, and d_{i} is adjacent to c_{i} and antiadjacent to
c_{i}^{\prime}. Now $v-c_{i}^{\prime}-x-d_{i}$ is a path, and c_{i} is a center for it, a contradiction. This proves the third assertion of 5.7.

Finally, the last assertion of 5.7 follows from the second and the third assertion.
5.8 Let G be an unfriendly bull-free trigraph with no prism, let $v \in V(G)$ and let N be the set of neighbors of v in G. Then no induced subtrigraph of $G \mid N$ is a matching of size three.

Proof. Suppose not, and let $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\} \subseteq N$ be as in the definition of a matching, and let $H=G \mid N$. For $i \in\{1,2,3\}$ let C_{i} be the component of H containing $\left\{a_{i}, b_{i}\right\}$. By $5.7 C_{1}, C_{2}, C_{3}$ are all distinct components of H. For $i \in\{1,2,3\}$ let D_{i} be the set of vertices of $V(G) \backslash C_{i}$ that are mixed on C_{i}. Since G is unfriendly, it follows that C_{i} is not a homogeneous set, and ($C_{i},\{v\}$) is not a homogeneous pair, and therefore $D_{i} \neq \emptyset$. Since C_{i} is a component of N, it follows that v is strongly anticomplete to D_{i}. By 5.7, D_{i} is strongly complete to $N \backslash C_{i}$, the sets D_{1}, D_{2}, D_{3} are pairwise disjoint, and D_{i} is strongly anticomplete to D_{j}.
(1) Let $i \in\{1,2,3\}$. No vertex of $V(G) \backslash\left(N \cup D_{i}\right)$ is mixed on D_{i}.

From the symmetry, may assume $i=1$. Suppose $x \in V(G) \backslash\left(N \cup D_{1}\right)$ is mixed on D_{1}. Then $x \neq v$, and by $5.7, x \notin D_{2} \cup D_{3}$. Let $d_{1} \in D_{1}$ be adjacent to x. By 5.7, d_{1} is strongly complete to $C_{2} \cup C_{3}$. By 5.6, $\left\{x, d_{1}\right\}$ is not complete to $a_{2}, b_{2}, a_{3}, b_{3}$, and, since $x \notin D_{2} \cup D_{3}$, we may assume, from the symmetry, that x is strongly anticomplete to C_{2}. Let $d_{2} \in D_{2}$. By 2.2, there exist $c_{2}, c_{2}^{\prime} \in C_{2}$ such that c_{2} is adjacent to c_{2}^{\prime}, and d_{2} is adjacent to c_{2} and antiadjacent to c_{2}^{\prime}. Since $\left\{x, d_{1}, c_{2}^{\prime}, c_{2}, d_{2}\right\}$ is not a bull, it follows that x is adjacent to d_{2}, and therefore x is strongly complete to D_{2}. By 5.7, x is strongly anticomplete to C_{1}. But now, applying the previous argument with the roles of D_{1} and D_{2} exchanged, we deduce that x is strongly complete to D_{1}, a contradiction. This proves (1).

Now, since v is semi-adjacent to at most one vertex of G, we may assume that v is strongly complete to C_{1}. But then, by $(1),\left(C_{1}, D_{1}\right)$ is a homogeneous pair in G, contrary to the fact that G is unfriendly. This proves 5.8.
5.9 Let G be an unfriendly bull-free trigraph, let $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ be a matching of size two in G (with the usual notation), and let $c \in V(G) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ be complete to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Then the following statements hold:

1. For $i=1,2$ let $d_{i} \in V(G) \backslash(N(c) \cup\{c\})$ be mixed on $\left\{a_{i}, b_{i}\right\}$, and let $y \in V(G) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, c\right\}$ be adjacent to both d_{1} and d_{2}, Then y is strongly adjacent to c.
2. Let $x \in V(G)$ be a neighbor of c, such that there is no path in $G \mid N(c)$ from x to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Then x is strongly adjacent to c. Let $c^{\prime} \in$ $V(G)$ be an antineighbor of c, such that c^{\prime} has a neighbor in $\left\{a_{1}, b_{1}\right\}$ and in $\left\{a_{2}, b_{2}\right\}$. Then x is strongly adjacent to c^{\prime}.

Proof. Let X be the set of neighbors of c. Let $\{i, j\}=\{1,2\}$. For $i=1,2$ let X_{i} be the component of X containing a_{i}, b_{i}. By 5.7, $X_{1} \cap X_{2}=\emptyset$. Let $X^{\prime}=X \backslash\left(X_{1} \cup X_{2}\right)$. By 5.8, X^{\prime} is strongly stable. If c is not strongly complete to X_{i}, let $C_{i}=\{c\}$, and otherwise let $C_{i}=\emptyset$. Let Y_{i} be the set of vertices of $V(G) \backslash(X \cup\{c\})$ that are mixed on X_{i}. Let C be the set of vertices of $V(G) \backslash\{c\}$ that are strongly complete to $X_{1} \cup X_{2}$. By 5.6 $C \cup\{c\}$ is a strongly stable set. By $5.7 Y_{i}$ is strongly complete to $X \backslash X_{i}$, and Y_{1} is strongly anticomplete to Y_{2}. Let Z_{i} be the set of vertices of $V(G) \backslash\left(C \cup\{c\} \cup X \cup Y_{1} \cup Y_{2}\right)$ with a neighbor in Y_{i} and an antineighbor in Y_{j}.

We claim that $Z_{i} \neq \emptyset$. Suppose not. Since $\left(X_{i}, C_{i} \cup Y_{i}\right)$ is not a homogeneous pair in G, it follows that some vertex $v \in V(G) \backslash\left(X_{i} \cup C_{i} \cup Y_{i}\right)$ is mixed on $C_{i} \cup Y_{i}$. By 5.7, $v \notin X$. So v has a neighbor in Y_{i} and v is strongly antiadjacent to c. Since $Z_{i}=\emptyset$, it follows that v is strongly complete to Y_{j}. By 5.7, it follows that v is strongly anticomplete to $X_{1} \cup X_{2}$. Let $y \in Y_{i} \cup C_{i}$ be antiadjacent to v. By 2.2, there exist $x, x^{\prime} \in X_{i}$ such that y is adjacent to x and antiadjacent to x^{\prime}, and x is adjacent to x^{\prime}. Let $y_{2} \in Y_{2}$. Now $\left\{v, y_{2}, x^{\prime}, x, y\right\}$ is a bull, a contradiction. This proves that $Z_{i} \neq \emptyset$.

By $5.7, Z_{i}$ is strongly anticomplete to X_{i}. Let W_{i} be the set of vertices of $V(G) \backslash\left(C \cup\{c\} \cup X \cup Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2}\right)$ with a neighbor in Z_{i} and an antineighbor in Y_{j}.
(1) Z_{i} is strongly complete to X_{j} and strongly anticomplete to Y_{j}.

Suppose some $z_{i} \in Z_{i}$ has an antineighbor in X_{j}. Since $Z_{i} \cap\left(C \cup X \cup Y_{j}\right)=\emptyset$, it follows that z_{i} is strongly anticomplete to X_{j}. Let $y_{j} \in Y_{j}$ be antiadjacent to z_{i}. By 2.2 , there exist $x_{j}, x_{j}^{\prime} \in X_{j}$ such that x_{j} is adjacent to x_{j}^{\prime}, and y_{j} is adjacent to x_{j} and antiadjacent to x_{j}^{\prime}. Let $y_{i} \in Y_{i}$ be adjacent to z_{i}. Then, by 5.7, $\left\{z_{i}, y_{i}, x_{j}^{\prime}, x_{j}, y_{j}\right\}$ is a bull, a contradiction. This proves that Z_{i} is strongly complete to X_{j}. Now it follows from 5.7 that Z_{i} is strongly anticomplete to Y_{j}. This proves (1).
(2) W_{i} is strongly complete to X_{j} and anticomplete to Y_{j}.

Suppose not, and let $w_{i} \in W_{i}$ and $x_{j} \in X_{j}$ be antiadjacent. Let $z_{i} \in Z_{i}$ be adjacent to w_{i}, and let $y_{i} \in Y_{i}$ be adjacent to z_{i}. Then y_{i} is strongly antiadjacent to w_{i}. But now, by (1), $\left\{w_{i}, z_{i}, y_{i}, x_{j}, c\right\}$ is a bull, a contradiction. Now it follows from 5.7 that W_{i} is strongly anticomplete to Y_{j}. This proves (2).

Since $W_{i} \cap\left(C \cup\{c\} \cup Y_{i}\right)=\emptyset$, it follows that W_{i} is strongly anticomplete to X_{i}.
(3) $Z_{i} \cup W_{i}$ is strongly anticomplete to Z_{j}.

Suppose $z_{j} \in Z_{j}$ has a neighbor $w \in Z_{i} \cup W_{i}$. Let $y_{j} \in Y_{j}$ be adjacent to z_{j}. Let $x_{i} \in X_{i}$. Then x_{i} is antiadjacent to w, by (1) x_{i} is adjacent to z_{j}, and by (2) w is antiadjacent to y_{j}. But now $\left\{c, x_{i}, y_{j}, z_{j}, w\right\}$ is a bull, a contradiction. This proves (3).
(4) W_{1} is strongly anticomplete to W_{2}.

Suppose $w_{1} \in W_{1}$ is adjacent to $w_{2} \in W_{2}$. Let $z_{2} \in Z_{2}$ be adjacent to w_{2}. Let $x_{1} \in X_{1}$. Then x_{1} is antiadjacent to w_{1}. By (2), x_{1} is adjacent to w_{2} and to z_{2}. But now $\left\{w_{1}, w_{2}, z_{2}, x_{1}, c\right\}$ is a bull, a contradiction. This proves (4).
(5) C is strongly anticomplete to Y_{i}. Every vertex of $V(G) \backslash X$ that has both a neighbor in X_{1} and a neighbor in X_{2} belongs to $Y_{1} \cup Y_{2} \cup C \cup\{c\}$.

Let $v \in C$. By 5.7, C is strongly anticomplete to Y_{i}. Now let v be a vertex with both a neighbor in X_{1} and a neighbor in X_{2}. If v is mixed on one of X_{1}, X_{2}, then $v \in Y_{1} \cup Y_{2} \cup\{c\}$; and if v is strongly complete to $X_{1} \cup X_{2}$, then $v \in C \cup\{c\}$. This proves (5).

Let $M=X_{1} \cup X_{2} \cup Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$.
(6) Suppose $a \in V(G) \backslash M$ is strongly complete to $Y_{1} \cup Y_{2}$, and is antiadjacent to $\{c\}$. Then c is strongly complete to $X_{1} \cup X_{2}$, and a is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1} \cup Y_{2} \cup Z_{2} \cup W_{2}$.

By 5.7, a is strongly anticomplete to $X_{1} \cup X_{2}$. Suppose that c is not strongly complete to X_{i}. By 2.2, there exist $x_{i}, x_{i}^{\prime} \in X_{i}$, such that x_{i} is adjacent to x_{i}^{\prime}, and c is adjacent to x_{i} and antiadjacent to x_{i}^{\prime}. Let $y_{j} \in Y_{j}$. Now $\left\{a, y_{j}, x_{i}^{\prime}, x_{i}, c_{i}\right\}$ is a bull, a contradiction. This proves that c is strongly complete to $X_{1} \cup X_{2}$.

Suppose a has an antineighbor $z_{i} \in Z_{i}$. Let $y_{i} \in Y_{i}$ be adjacent to z_{i}, and let $x_{j} \in X_{j}$. Then $\left\{a, y_{i}, z_{i}, x_{j}, c\right\}$ is a bull, a contradiction. This proves that a is strongly complete to $Z_{1} \cup Z_{2}$. Next suppose that a has an antineighbor $w_{i} \in W_{i}$. Let $z_{i} \in Z_{i}$ be adjacent to w_{i}, and let $x_{j} \in X_{j}$. Then $\left\{a, z_{i}, w_{i}, x_{j}, c\right\}$ is a bull, a contradiction. This proves that a is strongly complete to $W_{1} \cup W_{2}$, and completes the proof of (6).
(7) Suppose $a \in V(G) \backslash(M \cup C)$ has a neighbor in $Y_{i} \cup Z_{i} \cup W_{i}$ and is antiadjacent to $\{c\}$. Then a is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1} \cup Y_{2} \cup Z_{2} \cup W_{2}$.

Suppose first that a is strongly anticomplete to $Y_{i} \cup Z_{i}$. Then it follows from 5.7 that $a \notin X^{\prime}$, and therefore a is antiadjacent to c. Let $w_{i} \in Y_{i} \cup Z_{i} \cup W_{i}$ be a neighbor of a. Then $w_{i} \in W_{i}$. Let $z_{i} \in Z_{i}$ be adjacent to w_{i} and let $x_{j} \in X_{j}$. Since $\left\{c, x_{j}, z_{i}, w_{i}, a\right\}$ is not a bull, it follows that x_{j} is adjacent to a. Let $y_{i} \in Y_{i}$ be adjacent to z_{i}. Now $y_{i^{-}} z_{i^{-}} w_{i^{-}} a$ is a path, and x_{j} is a center for it, a contradiction. This proves that a has a neighbor in $Y_{i} \cup Z_{i}$. We claim that a is strongly complete to Y_{j}. If $a \in X^{\prime}$, the claim follows from 5.7, and if $a \notin X^{\prime}$, the claim follows from the fact that $a \notin Z_{i} \cup W_{i}$. Similarly, a is strongly complete to Y_{i}. Now (7) follows from (6).
(8) Suppose that there exists $a \in V(G) \backslash(M \cup C)$ with a neighbor in $Y_{1} \cup$ $Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$ and antiadjacent to c. Then every vertex of X^{\prime} is strongly complete to one of $Y_{1} \cup Z_{1} \cup W_{1}$ and $Y_{2} \cup Z_{2} \cup Y_{2}$.
$\mathrm{By}(7), a$ is strongly complete to $Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$. Suppose $x^{\prime} \in X^{\prime}$ has an antineighbor $b_{1} \in Y_{1} \cup Z_{1} \cup W_{1}$ an an antineighbor $b_{2} \in Y_{2} \cup Z_{2} \cup W_{2}$. Then $b_{1} \in Z_{1} \cup W_{1}$, and $b_{2} \in Z_{2} \cup W_{2}$.

First we claim that x^{\prime} is strongly antiadjacent to a. Suppose not. Let P be a path from b_{1} to x^{\prime} with interior in $Z_{1} \cup Y_{1}$. Let $y_{2} \in Y_{2}$. Then $b_{1}-P-x^{\prime}-y_{2}$ is a path of length at least three, and a is a center for it, a contradiction. This proves that x^{\prime} is strongly antiadjacent to a.

Since x^{\prime} is strongly complete to Y_{1}, it follows that there exist $b, b^{\prime} \in$ $Y_{1} \cup Z_{1} \cup W_{1}$ such that b is adjacent to b^{\prime}, and x^{\prime} is adjacent to b and antiadjacent to b^{\prime}. But now $\left\{x^{\prime}, b, b^{\prime}, a, b_{2}\right\}$ is a bull, a contradiction. This proves (8).

(9) Suppose that there exist

- $a \in V(G) \backslash(M \cup C)$ with a neighbor in $Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$ and antiadjacent to c, and
- $b \in V(G) \backslash\left(X_{i} \cup Y_{i} \cup Z_{i} \cup W_{i} \cup C \cup\{c\}\right)$ with a neighbor in X_{i}.

Then b is strongly complete to X.

Since $b \notin Y_{i}$, it follows that b is strongly complete to X_{i}. We may assume that b has an antineighbor $x^{\prime} \in X \backslash X_{i}$. Since $b \notin C$, it follows that b is not strongly complete to X_{j}. Since $b \notin Y_{j}$, it follows that b is strongly anticomplete to X_{j}. Since $b \notin X_{i}$, it follows that b is strongly antiadjacent to c. By $5.7, b$ is strongly anticomplete to Y_{i}, and so by (7) b is strongly anticomplete to $Y_{j} \cup Z_{j}$. Let $z_{j} \in Z_{j}$ and $y_{j} \in Y_{j}$ be adjacent. Let $x_{j} \in X_{j}$ be adjacent to y_{j}. Let $x_{i} \in X_{i}$. Then $\left\{b, x_{i}, z_{j}, y_{j}, x_{j}\right\}$ is a bull, a contradiction. This proves (9).
(10) Suppose that there exists $a \in V(G) \backslash(M \cup C)$ with a neighbor in $Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$ and antiadjacent to c. Then

- if $v \in C$ is antiadjacent to a, then v is strongly anticomplete to $Y_{1} \cup$ $Z_{1} \cup W_{1} \cup Y_{2} \cup Z_{2} \cup W_{2}$, and
- every vertex of C is strongly anticomplete to either $Y_{1} \cup Z_{1} \cup W_{1}$ or $Y_{2} \cup Z_{2} \cup W_{2}$. Moreover, if $v \in C$ has a neighbor in $Y_{i} \cup Z_{i} \cup W_{i}$, then v has a neighbor in Z_{i}.

By (5), C is strongly anticomplete to $Y_{1} \cup Y_{2}$. By (7), a is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1} \cup Y_{2} \cup Z_{2} \cup W_{2}$.

Suppose first that v is antiadjacent to a. If v has a neighbor $z_{i} \in Z_{i}$, then, choosing $y_{i} \in Y_{i}$ adjacent to z_{i}, and $y_{j} \in Y_{j}$, we observe that $\left\{v, z_{i}, y_{i}, a, y_{j}\right\}$ is a bull, a contradiction. This proves that v is strongly anticomplete to Z_{i}. Next assume that v has a neighbor $w_{i} \in W_{i}$. Let $z_{i} \in Z_{i}$ be adjacent to w_{i}, and let $y_{i} \in Y_{i}$ be adjacent to z_{i}. Then $v-w_{i}-z_{i}-y_{i}$ is a path, and every $x_{j} \in X_{j}$ is a center for it, contrary to the fact that G is unfriendly. This proves the first assertion of (10).

Now suppose that $v \in C$ has a neighbor $u_{i} \in Z_{i} \cup W_{i}$. Then v is strongly adjacent to a. Let P_{i} be a path from $u_{i} \in Z_{i} \cup W_{i}$ adjacent to v to some vertex $y_{i} \in Y_{i}$, with interior in $Y_{i} \cup Z_{i} \cup W_{i}$, and such that u_{i} is the only neighbor of v in P_{i}.

If v is strongly anticomplete to Z_{i}, then $u_{i} \in W_{i}, y_{i}-P_{i}-u_{i}-v$ is a path, and every vertex of X_{2} is a center for it, a contradiction. This proves that if v has a neighbor in $Z_{i} \cup W_{i}$, then v has a neighbor in Z_{i}.

Finally, if v has both a neighbor in $Z_{1} \cup W_{1}$ and a neighbor in $Z_{2} \cup W_{2}$, then $y_{1}-P_{1}-u_{1}-v-u_{2}-P_{2}-y_{2}$ is a path of length at least three (in fact, at least four), and a is a center for it, contrary to the fact that G is unfriendly. This proves (10).
(11) Every vertex of $V(G) \backslash(M \cup C)$ with a neighbor in $Y_{1} \cup Y_{2} \cup Z_{1} \cup$ $Z_{2} \cup W_{1} \cup W_{2}$ is strongly adjacent to c.

Suppose there exists $a \in V(G) \backslash M$ with a neighbor in $Y_{1} \cup Y_{2} \cup Z_{1} \cup$ $Z_{2} \cup W_{1} \cup W_{2}$ and antiadjacent to c. By (7), a is strongly complete to $Y_{1} \cup Y_{2} \cup Z_{1} \cup Z_{2} \cup W_{1} \cup W_{2}$. By (6), $C_{1} \cup C_{2}=\emptyset$. Let X_{i}^{\prime} be the the set of vertices of X^{\prime} that are not strongly complete to $Y_{i} \cup Z_{i} \cup W_{i}$. By (8), $X_{1}^{\prime} \cap X_{2}^{\prime}=\emptyset$. Let C_{i}^{\prime} be the vertices of C with a neighbor in $Y_{i} \cup Z_{i} \cup W_{i}$.

Then ($X_{i} \cup X_{i}^{\prime}, Y_{i} \cup Z_{i} \cup Y_{i} \cup C_{i}^{\prime}$) is not a homogeneous pair in G. Since $X_{2} \cup\left(X^{\prime} \backslash X_{1}^{\prime}\right)$ is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1}$, and by (7), it follows that no vertex of $V(G) \backslash\left(X_{1} \cup X_{1}^{\prime} \cup Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}\right)$ is mixed on $Y_{1} \cup Z_{1} \cup W_{1}$.

Suppose that some vertex v of $V(G) \backslash\left(X_{1} \cup X_{1}^{\prime} \cup Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}\right)$ is mixed on $Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}$. Assume first that v has a neighbor in $Y_{1} \cup Z_{1} \cup W_{1}$. Then $v \notin C$. Then v is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1}$, and has an antineighbor $c^{\prime} \in C_{1}^{\prime}$. By (10), c^{\prime} has a neighbor $z_{1} \in Z_{1}$, and
c^{\prime} is strongly anticomplete to $Y_{2} \cup Z_{2} \cup W_{2}$. Let $y_{1} \in Y_{1}$ be adjacent to z_{1}. Since $\left\{c^{\prime}, z_{1}, y_{1}, v, u\right\}$ is not a bull for any $u \in Y_{2} \cup Z_{2} \cup W_{2} \cup\{c\}$, it follows that v is strongly anticomplete to $Y_{2} \cup Z_{2} \cup W_{2} \cup\{c\}$ (we remind the reader that $C \cap\{c\}$ is a strongly stable set). Then $v \notin X$, and, since $v \notin Y_{1} \cup Z_{1} \cup W_{1}$, it follows that $v \notin M$, contrary to (7). This proves that v is strongly anticomplete to $Y_{1} \cup Z_{1} \cup W_{1}$, and has a neighbor $c^{\prime} \in C_{1}^{\prime}$. By (10), c^{\prime} has a neighbor $z_{1} \in Z_{1}$, and, again by (10), c^{\prime} is strongly anticomplete to $Y_{2} \cup Z_{2} \cup W_{2}$. Let $y_{1} \in Y_{1}$ be adjacent to z_{1}. Then $v-c^{\prime}-z_{1}-y_{1}$ is a path, and since vertices of X_{2} are not centers for it, it follows that v is strongly anticomplete to X_{2}. Since $\left\{v, c^{\prime}, z_{1}, x_{2}, c\right\}$ is not a bull for any $x_{2} \in X_{2}$, it follows that v is strongly adjacent to c, and therefore $v \in X$. Since v is strongly anticomplete to Y_{1}, it follows that $v \in X_{1}$, a contradiction. This proves that no vertex of $V(G) \backslash\left(X_{1} \cup X_{1}^{\prime} \cup Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}\right)$ is mixed on $Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}$.

Therefore, some vertex $v \in V(G) \backslash\left(X_{1} \cup X_{1}^{\prime} \cup Y_{1} \cup Z_{1} \cup W_{1} \cup C_{1}^{\prime}\right)$ is mixed on $X_{1} \cup X_{1}^{\prime}$. By (6) and (7), c is strongly complete to $X_{1} \cup X_{1}^{\prime}$, and so $v \neq c$. Suppose first that v has a neighbor in X_{1}. Since $v \notin Y_{1}$, it follows that v is strongly complete to X_{1}, and has an antineighbor $x_{1}^{\prime} \in X_{1}^{\prime}$. By (9), $v \in C$. Since $v \notin C_{1}^{\prime}$, it follows that v is strongly anticomplete to $Y_{1} \cup Z_{1} \cup W_{1}$. Since $x_{1}^{\prime} \in X_{1}^{\prime}$, it follows that there exist $p, q \in Y_{1} \cup Z_{1} \cup W_{1}$ such that p is adjacent to q, and x_{1}^{\prime} is adjacent to p and antiadjacent to q. But now $\left\{v, x_{2}, q, p, x_{1}^{\prime}\right\}$ is a bull for every $x_{2} \in X_{2}$, a contradiction. This proves that v is strongly anticomplete to X_{1}. Then $v \notin C$; and since $v \notin Y_{1} \cup Z_{1} \cup W_{1}$, it follows that $v \notin M$. We deduce from (9) that v is strongly anticomplete to $X_{1} \cup X_{2}$. Since v is mixed on $X_{1} \cup X_{1}^{\prime}$, it follows that v has a neighbor $x_{1}^{\prime} \in X_{1}^{\prime}$. Let $z_{2} \in Z_{2}, y_{2} \in Y_{2}$ adjacent to z_{2}, and $x_{2} \in X_{2}$ adjacent to y_{2}. Since $\left\{v, x_{1}^{\prime}, z_{2}, y_{2}, x_{2}\right\}$ is not a bull, it follows that v is strongly adjacent to one of y_{2}, z_{2}. By 5.8 applies to $\left\{v, x_{1}^{\prime}\right\},\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\}$ and c, it follows that v is strongly anticomplete to c, and so, by (7), v is strongly complete to $Y_{1} \cup Z_{1} \cup W_{1} \cup Y_{2} \cup Z_{2} \cup W_{2}$. Let $y_{2} \in Y_{2}$. Since $x_{1}^{\prime} \in X_{1}^{\prime}$, it follows that there exist $p, q \in Y_{1} \cup Z_{1} \cup W_{1}$ such that p is adjacent to q, and x_{1}^{\prime} is adjacent to p and antiadjacent to q. Now $q-p-x_{1}^{\prime}-y_{2}$ is a path of length three, and v is a center for it, a contradiction. This proves (11).

We can now prove the first assertion of the theorem. For $i=1,2$ let $d_{i} \in$ $V(G) \backslash(N(c) \cup\{c\})$ be mixed on $\left\{a_{i}, b_{i}\right\}$, and let $y \in V(G) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, c\right\}$ be adjacent to both d_{1} and d_{2}. We may assume that d_{i} is adjacent to a_{i} and antiadjacent to b_{i}. Suppose y is antiadjacent to c. Since $d_{i} \in Y_{i}$, it follows that y has a neighbor in Y_{1}, and a neighbor in Y_{2}. By (5), $y \notin C$, and so, by (11), $y \in M$. Since y has a neighbor in Y_{1}, it follows that $y \notin Y_{2} \cup Z_{2} \cup W_{2}$, and since y has a neighbor in Y_{2}, it follows that $y \notin Y_{1} \cup Z_{1} \cup W_{1}$. Therefore $y \in X_{1} \cup X_{2}$, and, in particular, y is adjacent, and therefore semi-adjacent to c. From the symmetry, we may assume that $y \in X_{1}$. Since $d_{1}-y-b_{1}-c$ is not a path with center a_{1}, it follows that y is not complete to $\left\{a_{1}, b_{1}\right\}$. Let
$p, q \in X_{1} \backslash\{y\}$ be adjacent. Since $\left\{a_{2}, c, p, q, y\right\}$ is not a bull, it follows that v is either strongly complete or strongly anticomplete to $\{p, q\}$. But this implies that y is strongly anticomplete to $\left\{a_{1}, b_{1}\right\}$, and there is no path in $G \mid X_{1}$ from y to $\left\{a_{1}, b_{1}\right\}$, contrary to the fact that X_{1} is connected. This proves the first assertion of the theorem.

To prove the second assertion, let $x \in V(G)$ be a neighbor of c, such that there is no path in $G \mid N(c)$ from x to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Then $x \in X^{\prime}$. By 5.7, x is strongly complete to $Y_{1} \cup Y_{2}$, and therefore, by the first assertion of the theorem, x is strongly adjacent to c. Let $c^{\prime} \in V(G)$ be an antineighbor of c, such that c^{\prime} has a neighbor in $\left\{a_{1}, b_{1}\right\}$ and in $\left\{a_{2}, b_{2}\right\}$. Suppose that c^{\prime} is antiadjacent to x. Then 5.7 implies that c^{\prime} is not mixed on $\left\{a_{1}, b_{1}\right\}$, and so c^{\prime} is strongly complete to $\left\{a_{1}, b_{1}\right\}$. Similarly, c^{\prime} is strongly complete to $\left\{a_{2}, b_{2}\right\}$. By $5.6, c^{\prime}$ is strongly anticomplete to c, and therefore, $c^{\prime} \notin X_{1} \cup X_{2}$. Now, since c^{\prime} is strongly anticomplete to $x^{\prime}, 5.7$ implies that c^{\prime} is strongly complete to $X_{1} \cup X_{2}$, and therefore $c^{\prime} \in C$. Choose $d_{i} \in Y_{i}$, and let $a_{i}^{\prime}, b_{i}^{\prime} \in X_{i}$ be such that a_{i}^{\prime} is adjacent to b_{i}^{\prime}, and y_{i} is adjacent to a_{i}^{\prime} and antiadjacent to b_{i}^{\prime}. By (5), c^{\prime} is strongly antiadjacent to d_{i}. By $5.7, x^{\prime}$ is adjacent to d_{1}, d_{2}. But now, applying the first assertion of the theorem to $\left\{a_{1}^{\prime}, b_{1}^{\prime}, a_{2}^{\prime}, b_{2}^{\prime}, c^{\prime}, x\right\}$ we deduce that c^{\prime} is strongly adjacent to x, a contradiction. This proves 5.9.

6 Frames

In this section we study unfriendly trigraphs that contain a three edge path and do not contain a prism. Let G be such a trigraph. We choose a maximal subtrigraph H of G such that there is no triangle in H, and analyze how the vertices of $V(G) \backslash V(H)$ attach to H. It turns out that each component of $V(G) \backslash V(H)$ is a strong clique, no vertex of H has neighbors in more than two components of $V(G) \backslash V(H)$, and we can describe how each of the cliques "connects" to H, thus proving that $G \in \mathcal{T}_{1}$.

We start with a lemma.
6.1 Let G be an unfriendly trigraph with no prism, and let $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}-h_{1}$ be a hole of length five in G, say H. Then no vertex of $V(G) \backslash V(H)$ is adjacent to h_{1}, h_{2}, h_{5}.

Proof. Suppose some $v \in V(G) \backslash V(H)$ is adjacent to h_{1}, h_{2}, h_{5}. Since $\left\{h_{2}, v, h_{1}, h_{5}, h_{4}\right\}$ and $\left\{h_{2}, h_{1}, v, h_{5}, h_{4}\right\}$ are not bulls, it follows that h_{2} is strongly complete to $\left\{v, h_{1}\right\}$, and from the symmetry, h_{5} is strongly complete to $\left\{v, h_{1}\right\}$. Since $h_{5}-v-h_{2}-h_{3}$ is not a path with center h_{1}, it follows that h_{3} is strongly antiadjacent to h_{1}, and therefore h_{3} is strongly anticomplete to $\left\{v, h_{1}\right\}$. From the symmetry h_{4} is strongly anticomplete to $\left\{v, h_{1}\right\}$.

Let X the set of vertices of $V(G) \backslash\left\{h_{2}, h_{3}, h_{4}, h_{5}\right\}$ that are strongly complete to $\left\{h_{2}, h_{5}\right\}$ and strongly anticomplete to $\left\{h_{3}, h_{4}\right\}$ and let C be a
component of X such that $v, h_{1} \in C$. Since G is unfriendly, it follows that C is not a homogeneous set in G, and therefore some vertex $w \in V(G) \backslash C$ is mixed on C. Then $w \notin V(H)$. By 2.2 , there exists $c, c^{\prime} \in C$ such that c is adjacent to c^{\prime}, and w is adjacent to c and antiadjacent to c^{\prime}.

Assume first that w is antiadjacent to h_{5}. Since $\left\{w, c, c^{\prime}, h_{5}, h_{4}\right\}$ is not a bull, it follows that w is strongly adjacent to h_{4}. If w is antiadjacent to h_{2}, then, form the symmetry, w is strongly adjacent to h_{3}, and $\left\{h_{2}, h_{3}, w, h_{4}, h_{5}\right\}$ is a bull, a contradiction; thus w is strongly adjacent to h_{2}. Since $c-h_{2}-h_{3}-h_{4}$ is not a path with center w, it follows that w is strongly antiadjacent to h_{3}. But now, $\left\{h_{5}, c, w, h_{2}, h_{3}\right\}$ is a bull, a contradiction. This proves that w is strongly adjacent to h_{5}, and so, from the symmetry, w is strongly adjacent to h_{2}. Since $h_{5}-c-h_{2}-h_{3}$ is not a path with center w, it follows that w is strongly antiadjacent to h_{3}, and from the symmetry, w is strongly antiadjacent to h_{4}. But then $w \in C$, a contradiction. This proves 6.1.

A frame is a trigraph T such that

- T is connected, and
- there is no triangle in T, and
- T has an induced subtrigraph which is a path of length three.

A trigraph is called framed if some induced subtrigraph of it is a frame. We prove the following:
6.2 Every unfriendly framed trigraph with no prism is in \mathcal{T}_{1}.

Proof. Let G be an unfriendly framed trigraph, and let F be an induced subtrigraph of G that is a frame. We may assume that there is a triangle in G, for otherwise G admits an H-structure where H is the empty graph. Since G is unfriendly, it follows that G is connected. Assume that F is chosen with $|V(F)|$ maximum, subject to that with $|\eta(F)|+|\sigma(F)|$ maximum (we remind the reader that $\eta(F)$ is the number of strongly adjacent pairs of vertices in F, and $\sigma(F)$ is the number of semi-adjacent pairs).
(1) Every vertex of $V(G) \backslash V(F)$ has a neighbor in $V(F)$.

Suppose some vertex of $V(G) \backslash V(F)$ is strongly anticomplete to $V(F)$. Since G is connected, there exist vertices $u, v \in V(G) \backslash V(F)$ such that u has a neighbor in $V(F)$, and v is strongly anticomplete to $V(F)$. Let N be the set of neighbors of u in $V(F)$, and let $M=V(F) \backslash N$. By the maximality of $|V(F)|$, there are two adjacent vertices in N. Let C be a component of N with $|C|>1$. Since G is unfriendly, F contains a path of length three and u is complete to C, it follows that $C \neq V(F)$. Since F is connected, some vertex $f \in V(F)$ has a neighbor in C, and since C is a component of N, it follows that f belongs to M. Let $c \in C$ be adjacent to f. Since C is
connected, it follows that c has a neighbor, say c^{\prime}, in C. Since F is trianglefree, we deduce that f is strongly antiadjacent to c^{\prime}. But now $\left\{v, u, c^{\prime}, c, f\right\}$ is a bull, a contradiction. This proves (1).

For a vertex $v \in V(G) \backslash V(F)$, let $N_{F}(v)$ be the set of neighbors of v in $V(F)$, and let $M(v)=V(F) \backslash N_{F}(v)$.
(2) Let H be a triangle free trigraph, no induced subtrigraph of which is a path of length three, and assume that H is connected. Then $V(H)=S_{1} \cup S_{2}$, where S_{1} and S_{2} are disjoint strongly stable sets, complete to each other. Moreover, if both $\left|S_{2}\right|>1$ and $\left|S_{2}\right|>1$, then S_{1} is strongly complete to S_{2}.

By 5.4, and since H is connected, one of the following holds:

- H is not anticonnected, or
- there exist two vertices $v_{1}, v_{2} \in V(H)$ such that v_{1} is semi-adjacent to v_{2}, and $V(H) \backslash\left\{v_{1}, v_{2}\right\}$ is strongly complete to v_{1} and strongly anticomplete to v_{2}.

Assume first that H is not anticonnected. Since H is triangle free, H has exactly two anti-components, and each of them is a strongly stable set, and (2) holds.

Next assume that there exist two vertices $v_{1}, v_{2} \in V(H)$ such that v_{1} is semi-adjacent to v_{2}, and $V(H) \backslash\left\{v_{1}, v_{2}\right\}$ is strongly complete to v_{1} and strongly anticomplete to v_{2}. Since H is triangle free, it follows that $V(H) \backslash\left\{v_{1}\right\}$ is strongly stable, and again (2) holds. This proves (2).
(3) Let $v \in V(G) \backslash V(F)$. Then there exist non-empty strongly stable sets $S_{1}(v)$ and $S_{2}(v)$ in F, such that $N_{F}(v)=S_{1}(v) \cup S_{2}(v), S_{1}(v)$ is complete to $S_{2}(v)$, and if both $\left|S_{1}(v)\right|>1$ and $\left|S_{2}(v)\right|>1$, then $S_{1}(v)$ is strongly complete to $S_{2}(v)$.

Let $H=F \mid N_{F}(v)$. Since G is unfriendly, it follows that no induced subtrigraph of H is a path of length tree. If H is connected, (3) follows from (2), so we may assume not. It follows from the maximality of $|V(F)|$ that some two vertices of $N_{F}(v)$ are adjacent. Let C be component of $N_{F}(v)$ with $|C|>1$. Since H is not connected, it follows that $N_{F}(v) \neq C$. Since F is connected, some vertex $m \in V(F) \backslash C$ has a neighbor in C, and since C is a component of $N_{F}(v)$, we deduce that $m \in M(v)$. Let $c \in C$ be a neighbor of m. Since C is connected and F is triangle free, there exists $c^{\prime} \in C$ such that c^{\prime} is adjacent to c and antiadjacent to m. Since $\left\{m, c, c^{\prime}, v, n\right\}$ is not a bull for any $n \in N_{F}(v) \backslash C$, it follows that m is strongly complete to $N_{F}(v) \backslash C$. Since F is triangle-free, it follows that the set $N_{F}(v) \backslash C$ is strongly stable.

By (2), $C=C_{1} \cup C_{2}$, such that C_{1} and C_{2} are disjoint non-empty strongly stable sets, and C_{1} is complete to C_{2}. Let $n \in N_{F}(v) \backslash C$. If both
$\left|C_{1}\right|>1$ and $\left|C_{2}\right|>1$, then $G \mid C$ contains a hole of length four, with center v and anticenter n, contrary to 5.3 . So we may assume that $\left|C_{1}\right|=1$, say $C_{1}=\left\{c_{1}\right\}$. Let $F^{\prime}=G \mid\left(\left(V(F) \backslash\left\{c_{1}\right\}\right) \cup\{v\}\right)$. By the choice of F, $\left|\eta\left(F^{\prime}\right)\right|+\left|\sigma(F)^{\prime}\right| \leq|\eta(F)|+|\sigma(F)|$, and therefore some vertex $m_{1} \in M(v)$ is adjacent to c_{1}. By the argument in the previous paragraph with m replaced by m_{1}, we deduce that m_{1} is strongly complete to $N_{F}(v) \backslash C$. Now $c_{1}-m_{1}-n-v-c_{1}$ is a hole of length four, and, since F is triangle-free, it follows that every vertex of C_{2} is complete to $\left\{c_{1}, v\right\}$ and anticomplete to $\left\{m_{1}, n\right\}$. By 5.2, it follows that C_{2} is a strong clique, and therefore $\left|C_{2}\right|=1$, say $C_{2}=\left\{c_{2}\right\}$. Exchanging the roles of c_{1} and c_{2}, we deduce that some vertex $m_{2} \in M(v)$ is adjacent to c_{2} and to n. Since F is triangle-free, it follows that $m_{1} \neq m_{2}$, and since $\left\{m_{1}, c_{1}, v, c_{2}, m_{2}\right\}$ is not a bull, it follows that m_{2} is strongly adjacent to m_{1}. But now $\left\{m_{1}, m_{2}, n\right\}$ is a triangle in F, a contradiction. This proves (3).
(4) Let $u, v \in V(G) \backslash V(F)$ be adjacent. Then there exist $s_{1}, s_{2} \in N_{F}(u) \cap$ $N_{F}(v)$ such that s_{1} is adjacent to s_{2}.

Let $S_{1}(u), S_{1}(v), S_{2}(u), S_{2}(v)$ be as in (3). Since $S_{1}(u), S_{1}(v), S_{2}(u), S_{2}(v)$ are non-empty strongly stable sets, and since $S_{1}(u)$ is complete to $S_{2}(u)$, and $S_{1}(v)$ to $S_{2}(v)$, we may assume that $S_{1}(u) \cap S_{2}(v)=S_{2}(u) \cap S_{1}(v)=\emptyset$.

If both $S_{1}(u) \cap S_{1}(v)$ and $S_{2}(u) \cap S_{2}(v)$ are non-empty then (3) holds, so we may assume that $S_{2}(u) \cap S_{2}(v)=\emptyset$. From the maximality of $|V(F)|$, there exist $t_{u} \in S_{2}(u)$ and $t_{v} \in S_{2}(v)$.

Suppose $S_{1}(u) \cap S_{1}(v) \neq \emptyset$, and choose $s \in S_{1}(u) \cap S_{1}(v)$. Since F is triangle free and s is adjacent to both t_{u} and t_{v}, it follows that t_{u} is antiadjacent to t_{v}. But now $t_{u}-u-v-t_{v}$ is a path, and s is a center for it, contrary to the fact that G is unfriendly. This proves that $S_{1}(u) \cap S_{1}(v)=\emptyset$.

If $\left|S_{1}(u)\right|>1$ and $\left|S_{2}(u)\right|>1$, then $G \mid\left(S_{1}(u) \cup S_{2}(u)\right)$ contains a hole of length four, say H; and u is a center for H and v is an anticenter for H, contrary to 5.3 , since u is adjacent to v. So we may assume that $S_{1}(u)=$ $\left\{s_{u}\right\}$, say. Similarly, we may assume that $S_{1}(v)=\left\{s_{v}\right\}$.

Suppose s_{u} is strongly antiadjacent to s_{v}. Let $F^{\prime}=\left(F \backslash\left\{s_{u}, s_{v}\right\}\right)+\{u, v\}$. Then F^{\prime} is triangle-free, and therefore $\left|\eta\left(F^{\prime}\right)\right|+\left|\sigma\left(F^{\prime}\right)\right| \leq|\eta(F)|+|\sigma(F)|$. Consequently, we may assume from the symmetry, that s_{u} has a neighbor $m \in M(u)$. Then m is strongly anticomplete to $S_{2}(u)$. Since $\left\{m, s_{u}, t_{u}, u, v\right\}$ is not a bull, it follows that $m \in N_{F}(v)$; and since s_{u} is strongly antiadjacent to s_{v}, we deduce that $m \in S_{2}(v)$. Now $u-s_{u}-m-v-u$ is a hole of length four, and, since F is triangle free, $S_{2}(u)$ is complete to $\left\{u, s_{u}\right\}$ and anticomplete to $\{m, v\}$. Therefore, 5.2 implies that $S_{2}(u)$ is a strong clique, and therefore $\left|S_{2}(u)\right|=1$, namely $S_{2}(u)=\left\{t_{u}\right\}$. Since F is triangle free, it follows that t_{u} is strongly antiadjacent to m. Since $G \mid\left\{u, s_{u}, t_{u}, v, m, s_{v}\right\}$ is not a prism, it follows that s_{v} is strongly antiadjacent to t_{u}. Let $F^{\prime \prime}=\left(F \backslash\left\{t_{u}, s_{v}\right\}\right)+\{u, v\}$. Then $F^{\prime \prime}$ is triangle-free, and therefore $\left|\eta\left(F^{\prime \prime}\right)\right|+\left|\sigma\left(F^{\prime \prime}\right)\right| \leq|\eta(F)|+|\sigma(F)|$.

Consequently, either t_{u} has a neighbor in $M(u)$, or s_{v} has a neighbor in $M(v)$. If s_{v} has a neighbor $x \in M(v)$, then $x \neq s_{u}, t_{u}$, and so $\left\{x, s_{v}, m, v, u\right\}$ is a bull, a contradiction. Thus t_{u} has a neighbor $y \in M(u)$. Since $\left\{y, t_{u}, s_{u}, u, v\right\}$ is not a bull, it follows that $y \in S_{2}(v)$. Then $y \neq m$, and since F is triangle free, we deduce that y is strongly antiadjacent to s_{u}. But then $\left\{m, s_{u}, u, t_{u}, y\right\}$ is a bull, a contradiction. This proves that s_{u} is adjacent to s_{v}.

Now $u-s_{u}-s_{v}-v-u$ is a hole of length four, $S_{2}(u)$ is complete to $\left\{u, s_{u}\right\}$ and anticomplete to $\left\{v, s_{v}\right\}$, and $S_{2}(v)$ complete to $\left\{v, s_{v}\right\}$ and anticomplete to $\left\{u, s_{u}\right\}$. Thus, 5.2 implies that $\left|S_{2}(u)\right|=\left|S_{2}(v)\right|=1$, and therefore $S_{2}(u)=\left\{t_{u}\right\}$, and $S_{2}(v)=\left\{t_{v}\right\}$. Now, reversing the roles of $S_{1}(u)$ and $S_{2}(u)$, and of $S_{1}(v)$ and $S_{2}(v)$, we deduce that t_{u} is adjacent to t_{v}. But then, since F is triangle free, it follows that $G \mid\left\{u, s_{u}, t_{u}, v, s_{v}, t_{v}\right\}$ is a prism, a contradiction. This proves (4).
(5) Let $u, v \in V(G) \backslash V(F)$ be antiadjacent. Then $N_{F}(u) \cap N_{F}(v)$ is a strongly stable set.

Let $S_{1}(u), S_{2}(u), S_{1}(v), S_{2}(v)$ be as in (3). Suppose $s_{1}, s_{2} \in N_{F}(u) \cap N_{F}(v)$ are adjacent. We may assume that $s_{1} \in S_{1}(u) \cap S_{1}(v)$, and $s_{2} \in S_{2}(u) \cap S_{2}(v)$. Then $S_{2}(u) \cap S_{1}(v)=S_{1}(u) \cap S_{2}(v)=\emptyset$.

First we claim that $N_{F}(u)=N_{F}(v)$. Suppose $S_{2}(u) \backslash S_{2}(v) \neq \emptyset$, and let $t \in S_{2}(u) \backslash S_{2}(v)$. Then $t-u-s_{2}-v$ is a path, and s_{1} is a center for it, contrary to the fact that G is unfriendly. Therefore, $S_{2}(u) \backslash S_{2}(v)=\emptyset$, and, form the symmetry, this implies that $N_{F}(u)=N_{F}(v)$, and the claim follows. Let $S_{1}(u)=S_{1}(v)=S_{1}$, and $S_{2}(u)=S_{2}(v)=S_{2}$.

Let C_{0} be the set of all vertices of $V(G) \backslash V(F)$ that are complete to $S_{1} \cup S_{2}$ and strongly anticomplete to $V(F) \backslash\left(S_{1} \cup S_{2}\right)$. Let C be an anticomponent of C_{0} with $u, v \in C$. Since C is not a homogeneous set in G, it follows from 2.2 that there exist $c_{1}, c_{2} \in C$ and $x \in V(G) \backslash C$, such that c_{1} is antiadjacent to c_{2}, and x is adjacent to c_{1} and antiadjacent to c_{2}.

Suppose first that $x \notin S_{1} \cup S_{2}$. By 5.1, it follows that x is either strongly complete or strongly anticomplete to $S_{1} \cup S_{2}$. If x is strongly complete to $S_{1} \cup S_{2}$, then, $x \in V(G) \backslash V(F)$, and since x is antiadjacent to c_{2}, the claim above implies that $N_{F}(x)=N_{F}\left(c_{2}\right)=S_{1} \cup S_{2}$, contrary to the fact that $x \notin C$. Therefore x is strongly anticomplete to $S_{1} \cup S_{2}$. Since $x \notin S_{1} \cup S_{2}$, and since x is adjacent to c_{1}, it follows that $x \in V(G) \backslash V(F)$. But now (4) implies that $N_{F}(x) \cap N_{F}\left(c_{1}\right) \neq \emptyset$, contrary to the fact that x is strongly anticomplete to $S_{1} \cup S_{2}$. This proves that $x \in S_{1} \cup S_{2}$, say $x \in S_{1}$. Since for any $s \in S_{1} \backslash\{x\}, x-c_{1}-s-c_{2}$ is not a path with center s_{2}, it follows that $S_{1}=\{x\}$. Since $(C,\{x\})$ is not a homogeneous pair in G, it follows that some vertex $y \in S_{2}$ is mixed on C, and therefore $S_{2}=\{y\}$ and y is semiadjacent to some vertex $c_{3} \in C$. Since x is semi-adjacent to c_{2}, it follows that $c_{2} \neq c_{3}$. Suppose that there exist $x^{\prime}, y^{\prime} \in V(F) \backslash\{x, y\}$ such that x^{\prime}
is adjacent to x, and y^{\prime} to y. Since F us triangle free, it follows that x^{\prime} is strongly antiadjacent to y, and y^{\prime} to x. Since $\left\{x^{\prime}, x, u, y, y^{\prime}\right\}$ is not a bull, we deduce that x^{\prime} is adjacent to y^{\prime}. But now $x-y-y^{\prime}-x^{\prime}-x$ is a hole of length four, and $\{u, v\}$ is complete to $\{x, y\}$ and anticomplete to $\left\{x^{\prime}, y^{\prime}\right\}$, contrary to 5.2. So we may assume from the symmetry that y is strongly anticomplete to $V(F) \backslash\{x, y\}$. Since F is connected and since there is a three-edge path in F, it follows that there exists a vertex $x^{\prime} \in V(F) \backslash\{x, y\}$ adjacent to x. Since $\left\{x^{\prime}, x, c_{3}, y, c_{2}\right\}$ is not a bull, it follows that c_{2} is strongly adjacent to c_{3}. Since C is anticonnected, there is an antipath Q from c_{2} to c_{3} with $V(Q) \subseteq C$. Since x is complete to C and G is unfriendly, it follows that Q has a unique internal vertex, say q. Then q is complete to $\{x, y\}$ and strongly antiadjacent to x^{\prime}. But now $\left\{x^{\prime}, x, q, y, c_{2}\right\}$ is a bull, a contradiction. This proves (5).
(6) Let C be a component of $V(G) \backslash V(F)$. Then C is a strong clique.

Suppose C is not a strong clique. Then, since C is connected, there exist vertices $x, y, z \in C$, such that y is adjacent to both x and z; and x is antiadjacent to z. By (4), there exist $a, b, c, d \in V(F)$ such that a is adjacent to b, c is adjacent to $d,\{x, y\}$ is complete to $\{a, b\}$ and $\{y, z\}$ is complete to $\{c, d\}$. By (5), z is not complete to $\{a, b\}$, and x is not complete to $\{c, d\}$; and therefore $\{a, b\} \neq\{c, d\}$. Suppose b is complete to $\{z, d\}$. Since F is triangle-free, it follows that a is strongly antiadjacent to d. By (5), x is strongly antiadjacent to d, and z to a. But now $\{x, a\}$ is anticomplete to $\{z, d\}$, and $\{y, b\}$ is complete to $\{x, a, z, d\}$, contrary to 5.6. This proves that b is not complete to $\{z, d\}$, and, in particular, $b \neq c$. From the symmetry, this implies that a is not complete to $\{z, c\}$, and that $\{a, b\} \cap\{c, d\}=\emptyset$. Since $a, b, c, d, \in N_{F}(y)$, by (3) and the symmetry we may assume that a is adjacent to c and b to d. Since F is triangle-free, it follows that b is strongly antiadjacent to c. Since b is adjacent to d, it follows that b is antiadjacent to z, and, since a is adjacent to c, it follows that a is antiadjacent to z. But now $z-c-a-b$ is a path, and y is a center for it, contrary to the fact that G is unfriendly. This proves (6).

Let C be a component of $V(G) \backslash V(F)$, and let $f \in V(F)$. We denote by $C(f)$ the set of vertices of C that are adjacent to f, and by $N_{F}(C)$ the set of vertices of F with a neighbor in C.
(7) Let C be a component of $V(G) \backslash V(F)$, and let $c \in C$. For $i=1,2$ let $S_{i}(c)$ be defined as in (3). Then, for $i=1,2$ there exists $s_{i} \in S_{i}(c)$ such that s_{i} is complete to C.

Choose $s_{1} \in S_{1}(c)$ with $C\left(s_{1}\right)$ maximal. We may assume that $C\left(s_{1}\right) \neq C$, for otherwise (7) holds. Let $c^{\prime} \in C \backslash C\left(s_{1}\right)$. By (4), c^{\prime} has a neighbor $s_{1}^{\prime} \in S_{1}(c)$.

It follows from the maximality of $C\left(s_{1}\right)$, there exists $c_{1} \in C\left(s_{1}\right)$ such that s_{1}^{\prime} is strongly antiadjacent to c_{1}. But now $s_{1}-c_{1}-c^{\prime}-s_{1}^{\prime}$ is a path with center c, a contradiction. This proves (7).
(8) Let C be a component of $V(G) \backslash V(F)$. Then $N_{F}(C)=S_{1}(C) \cup S_{2}(C)$ where each of $S_{1}(C), S_{2}(C)$ is a non-empty strongly stable set.

Let $c \in C$, and let $S_{1}(c), S_{2}(c)$ be as in (3). By (7), for $i=1,2$ there exists $s_{i} \in S_{i}(c)$ such that C is complete to s_{i}. Now, by (3), we may assume that for every $c^{\prime} \in C, S_{1}\left(c^{\prime}\right)$ is complete to s_{2}, and $S_{2}\left(c^{\prime}\right)$ is complete to s_{1}. For $i=1,2$, let $S_{i}(C)=\bigcup_{c^{\prime} \in C} S_{i}\left(c^{\prime}\right)$. Then $N_{F}(C)=S_{1}(C) \cup S_{2}(C)$. But $S_{1}(C)$ is complete to s_{2}, and $S_{2}(C)$ is complete to s_{1}, and therefore, since F is triangle free, it follows that each of $S_{1}(C)$ and $S_{2}(C)$ is strongly stable. This proves (8).

For a component C of $V(G) \backslash V(F)$ we call the sets $S_{1}(C), S_{2}(C)$ defined in (8) the anchors of C.
(9) Let C be a component of $V(G) \backslash V(F)$. Let $S_{1}(C), S_{2}(C)$ be the anchors of C, for $i=1,2$ let $T_{i}(C)$ be the set of vertices of $V(F) \backslash\left(S_{1}(C) \cup S_{2}(C)\right)$ with a neighbor in $S_{i}(C)$; and for $s_{i} \in S_{i}(C)$, let $T_{i}\left(s_{i}\right)$ be the set of neighbors of s_{i} in $V(F) \backslash\left(S_{1}(C) \cup S_{2}(C)\right)$. Then

- for every $s, s^{\prime} \in S_{1}(C)$ either s is strongly complete to $C\left(s^{\prime}\right)$, or s^{\prime} is strongly complete to $C(s)$,
- Let $s_{1} \in S_{1}(C)$ be antiadjacent to $s_{2} \in S_{2}(C)$. Then every vertex of C is strongly adjacent to one of s_{1}, s_{2}. If some $c \in C$ is adjacent to both s_{1} and s_{2}, then $C=\{c\}, N_{F}(C)=\left\{s_{1}, s_{2}\right\}$ and s_{1} is semi-adjacent to s_{2}.
- for every $s, s^{\prime} \in S_{1}(C)$, if some vertex of $C\left(s^{\prime}\right)$ is antiadjacent to s, then s is strongly complete to $T\left(s^{\prime}\right)$.
- $T_{1}\left(s_{1}\right)$ is disjoint from and strongly complete to $T_{2}\left(s_{2}\right)$ for every $s_{1} \in$ $S_{1}(c), s_{2} \in S_{2}(c)$ and $c \in C$.
- let $c \in C, s_{1} \in S_{1}(C)$ and $s_{2} \in S_{2}(C)$ such that c is adjacent to both s_{1} and s_{2}. Then every vertex of C is strongly adjacent to at least one of s_{1}, s_{2}.

Let $s, s^{\prime} \in S_{1}(C)$, and suppose there exist $c \in C$ adjacent to s and antiadjacent to s^{\prime}, and $c^{\prime} \in C$ adjacent to s^{\prime} and antiadjacent to s. By (4), there is $s_{2} \in S_{2}(C)$ adjacent to both c, c^{\prime}. By (3), s_{2} is adjacent to both s and s^{\prime}. But now $s-c-c^{\prime}-s^{\prime}$ is a path, and s_{2} is a center for it, contrary to the fact that G is unfriendly. This proves the first assertion of (9).

Next assume that $s_{1} \in S_{1}(C)$ is antiadjacent to $s_{2} \in S_{2}(C)$. Suppose first that some $c \in C$ is adjacent to both s_{1} and s_{2}. By (3), it follows that $S_{1}(c)=\left\{s_{1}\right\}, S_{2}(c)=\left\{s_{2}\right\}$, and s_{1} is semi-adjacent to s_{2}. Suppose there exists $c^{\prime} \in C \backslash\{c\}$. By (4), c^{\prime} is complete to $\left\{s_{1}, s_{2}\right\}$. Suppose c^{\prime} has a neighbor $f \in V(F) \backslash\left\{s_{1}, s_{2}\right\}$. By (3), we may assume that f is adjacent to s_{1} and antiadjacent to s_{2}. But now $f-s_{1}-c-s_{2}$ is a path, and c^{\prime} is a center for it, a contradiction. Therefore, $N_{F}(C)=\left\{s_{1}, s_{2}\right\}$. Since s_{1} is semi-adjacent to s_{2}, it follows that C is strongly complete to $N_{F}(C)$, and C is a homogeneous set in G, contrary to the fact that G is unfriendly. Thus $C=\{c\}$, and the second assertion of (9) holds. So we may assume that $C\left(s_{1}\right) \cap C\left(s_{2}\right)=\emptyset$. Suppose there exists a vertex $c \in C$ anticomplete to $\left\{s_{1}, s_{2}\right\}$. For $i=1,2$, let $c_{i} \in C$ be adjacent to s_{i}. If c, c_{1}, c_{2} are all distinct, then $\left\{s_{1}, c_{1}, c, c_{2}, s_{2}\right\}$ is a bull, a contradiction. Thus we may assume that $c=c_{1}$. $\mathrm{By}(7)$, there exists a vertex $s \in S_{2}(C)$ adjacent to both c_{1} and c_{2}. Since c_{1} is semi-adjacent to s_{1}, it follows that c_{1} is strongly antiadjacent to s_{2}, and so $s \neq s_{2}$. By (3), s is adjacent to s_{1}. But now $\left\{s_{1}, s, c_{1}, c_{2}, s_{2}\right\}$ is a bull, a contradiction. This proves the second assertion of (9).

Next let $s, s^{\prime} \in S_{1}(C)$, and assume that some vertex $c^{\prime} \in C\left(s^{\prime}\right)$ is antiadjacent to s, and some vertex $t^{\prime} \in T_{1}\left(s^{\prime}\right)$ is antiadjacent to s. Let $s_{2} \in S_{2}(C)$ be complete to C (such a vertex s_{2} exists by (7)). By the second assertion of (9), and since both s, s^{\prime} have neighbors in C, it follows that s_{2} is adjacent to both s, s^{\prime}. But now, since F is triangle-free, $\left\{t^{\prime}, s^{\prime}, c^{\prime}, s_{2}, s\right\}$ is a bull, a contradiction. This proves the third assertion of (9).

Next, let $c \in C$, and for $i=1,2$, let $s_{i} \in S_{i}(c)$, and let $t_{i} \in T_{i}\left(s_{i}\right)$. By (3), s_{1} is adjacent to s_{2}. Since F is triangle free, s_{1} is strongly antiadjacent to t_{2}, and s_{2} to t_{1}, and therefore $t_{1} \neq t_{2}$. Now since $\left\{t_{1}, s_{1}, c, s_{2}, t_{2}\right\}$ is not a bull, it follows that t_{1} is strongly adjacent to t_{2}, and the fourth assertions of (9) follows.

Finally, suppose that there exist $c, c^{\prime} \in C, s_{1} \in S_{1}(C)$ and $s_{2} \in S_{2}(C)$ such that c is adjacent to both s_{1} and s_{2}, and c^{\prime} is antiadjacent to both s_{1}, s_{2}. Since c is semi-adjacent to at most one of s_{1}, s_{2}, it follows that c is strongly adjacent to at least one of s_{1}, s_{2}, and so $c \neq c^{\prime}$. By the second assertion of (9), s_{1} is adjacent to s_{2}. Since c^{\prime} is semi-adjacent to at most one of s_{1}, s_{2}, we may assume that s_{1} is strongly antiadjacent to c^{\prime}. By (7), there exists $s \in S_{1}(C)$ complete to C. Then $s \neq s_{1}$. By the second assertion of (9), since s_{2} has a neighbor in C, it follows that s is adjacent to s_{2}. But now $s_{1}-s_{2}-s-c^{\prime}$ is a path, and c is a center for it, contrary to the fact that G is unfriendly. This proves the fifth assertion of (9), and completes the proof of (9).
(10) Let C be a component of $V(G) \backslash(F)$, with anchors S_{1}, S_{2}. For $i=1,2$, let T_{i} be the set of vertices of $V(F) \backslash\left(S_{1} \cup S_{2}\right)$ with a neighbor in S_{i}. Then $G \mid\left(C \cup S_{1} \cup S_{2} \cup T_{1} \cup T_{2}\right)$ is a ($\left.C, S_{1}, S_{2}, T_{1}, T_{2}\right)$-clique connector.

Let $|C|=t$. By (9), we can number the vertices of C as $\left\{c_{1}, \ldots, c_{t}\right\}$ such
that for every $s \in S_{1}, N(s) \cap C=\left\{c_{1}, \ldots, c_{i}\right\}$ for some $i \in\{1, \ldots, t\}$, and s is strongly complete to $\left\{c_{1}, \ldots, c_{i-1}\right\}$, and for every $s \in S_{2}, N(s) \cap$ $C=\left\{c_{t-i+1}, \ldots, c_{t}\right\}$ for some $i \in\{1, \ldots, t\}$, and s is strongly complete to $\left\{c_{t-i+2}, \ldots, c_{t}\right\}$. Let $i \in\{1, \ldots, t\}$. Let A_{i} be the set of vertices of S_{1} that are strongly complete to $\left\{c_{1}, \ldots, c_{i-1}\right\}$, adjacent to c_{i} and strongly anticomplete to $\left\{c_{i+1}, \ldots, c_{t}\right\}$. Let A_{i}^{\prime} be the set of vertices of A_{i} that are semi-adjacent to c_{i}. Let B_{i} be the set of vertices of S_{2} that are strongly complete to $\left\{c_{t-i+2}, \ldots, c_{t}\right\}$, adjacent to c_{t-i+1} and strongly anticomplete to $\left\{c_{1}, \ldots, c_{t-i}\right\}$. Let B_{i}^{\prime} be the set of vertices of B_{i} that are semi-adjacent to c_{t-i+1}. Then $S_{1}=\bigcup_{i=1}^{t} A_{i}$, and $S_{2}=\bigcup_{i=1}^{t} B_{i}$. Let $i \in\{1, \ldots, t\}$. Let C_{i} be the set of vertices of T_{1} with a neighbor in A_{i}, and that are strongly anticomplete to $\bigcup_{j>i} A_{j}$, and let D_{i} be the set of vertices of T_{2} with a neighbor in B_{i}, and that are strongly anticomplete to $\bigcup_{j>i} B_{j}$. Then $T_{1}=\bigcup_{i=1}^{t} C_{i}$, and $T_{2}=$ $\bigcup_{i=1}^{t} D_{i}$. We show that the sets $C, A_{1}, \ldots, A_{t}, B_{1}, \ldots, B_{t}, C_{1}, \ldots, C_{t}, D_{1} \ldots, D_{t}$ satisfy the axioms of a clique connector.

If $i+j \neq t$, then either some vertex of C is complete to $A_{i} \cup B_{j}$, or some vertex of C is anticomplete to $A_{i} \cup B_{j}$. Therefore, (9) implies, that if $i+j \neq t$, and A_{i} is not strongly complete to A_{j}, then $|C|=\left|S_{1}\right|=\left|S_{2}\right|=1$, and S_{1} is complete to S_{2}. Since for every i, c_{i} is anticomplete to $A_{i}^{\prime} \cup B_{t-i}$, it follows from (9) that A_{i}^{\prime} is strongly complete to B_{t-i}, and from the symmetry B_{t-i}^{\prime} is strongly complete to A_{i}.

Next we show that S_{1} is strongly anticomplete to T_{2}. Suppose $s_{1} \in S_{1}$ has a neighbor $t \in T_{2}$. Let $s_{2} \in S_{2}$ be a neighbor of t. Then, since F is triangle-free, it follows that s is strongly antiadjacent to t, and so $s_{1} \in A_{i} \backslash A_{i}^{\prime}$ and $s_{2} \in B_{t-i} \backslash B_{t-i}^{\prime}$ for some $i \in\{1, \ldots, t\}$. Now $c_{i}-c_{i+1}-s_{2}-t-s_{1}-c_{i}$ is a hole of length five. By (7), there exists $s_{1}^{\prime} \in S_{1}$ complete to C. Then $s_{1}^{\prime} \neq s_{1}$, and s_{1}^{\prime} is adjacent to c_{i}, c_{i+1}, and, by (9), s_{2}, contrary to 6.1 . This proves that S_{1} is strongly anticomplete to T_{2}. Similarly, S_{2} is strongly anticomplete to T_{1}.

By (9), for $i \in\{1, \ldots, t\}, C_{i}$ is strongly complete to $\bigcup_{j<i} A_{j}$, and D_{i} is strongly complete to $\bigcup_{j<i} B_{j}$.

We claim that for $i \in\{1, \ldots, t\}, C_{i}$ is strongly complete to A_{i}^{\prime}. Suppose $c \in C_{i}$ is antiadjacent to $a^{\prime} \in A_{i}^{\prime}$. Since a^{\prime} is semi-adjacent to c_{i}, it follows that a^{\prime} is strongly antiadjacent to c. Since $c \in C_{i}$, there is a vertex $a \in$ $A_{i} \backslash\left\{a^{\prime}\right\}$ that is adjacent to c. But then a is adjacent to both c_{i} and c, and a^{\prime} is antiadjacent to both c_{i} and c, contrary to (9). This proves that C_{i} is strongly complete to A_{i}^{\prime}. Similarly, for $i \in\{1, \ldots, t\}, D_{i}$ is strongly complete to B_{i}^{\prime}.

Finally, let $i, j \in\{1, \ldots, t\}$, such that $i+j>t$. We claim that C_{i} is strongly complete to D_{j}. Suppose $c \in C_{i}$ is antiadjacent to $d \in D_{j}$. Let $a_{i} \in A_{i}$ be adjacent to c, and let $b_{j} \in B_{j}$ be adjacent to d. Since $j>t-i$, it follows that b_{j} is adjacent to c_{i}. But now $\left\{c, a_{i}, c_{i}, b_{j}, d\right\}$ is a bull, a contradiction.

Finally, by (7), $A_{t} \neq \emptyset$ and $B_{t} \neq \emptyset$. Thus, all the axioms of a clique
connector are satisfied. This proves (10).
Now, if $N_{F}\left(C_{1}\right) \cap N_{F}\left(C_{2}\right)=\emptyset$ for every two components C_{1}, C_{2} of $V(G) \backslash$ $V(F)$, then taking H to be the graph whose vertices are the components of $V(G) \backslash V(F)$, and with $E(H)=\emptyset$, we observe, using (10), that G admits an H-structure and thus $G \in \mathcal{T}_{1}$. Consequently, we may assume that there exist components C_{1}, C_{2} of $V(G) \backslash V(F)$ with $N_{F}\left(C_{1}\right) \cap N_{F}\left(C_{2}\right) \neq \emptyset$ For $i, j \in\{1,2\}$ let $S_{i}\left(C_{j}\right)$ be the anchors of C_{1}, C_{2}.
(11) Renumbering the anchors if necessary, we may assume that $S_{1}\left(C_{1}\right) \cap$ $S_{2}\left(C_{2}\right)=S_{2}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)=\emptyset$.

From the symmetry, it is enough to show that at most one of the sets $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$ and $S_{1}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$ is non-empty. Suppose there exist $s_{1} \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$ and $s_{2} \in S_{1}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$. Since, by (8), $S_{1}\left(C_{1}\right)$ is a strongly stable set, it follows that s_{1} is strongly antiadjacent to s_{2}. By (9), $C_{2}\left(s_{1}\right) \cap C_{2}\left(s_{2}\right)=\emptyset$. Let $c_{1} \in C_{2}\left(s_{1}\right), c_{2} \in C_{2}\left(s_{2}\right)$. Also by (9), there exists $c \in C_{1}\left(s_{1}\right) \cap C_{1}\left(s_{2}\right)$. Now $s_{1}-c-s_{2}-c_{2}-c_{1}-s_{1}$ is a hole of length five. By (7), there exists $s_{2}^{\prime} \in S_{2}\left(C_{2}\right)$ complete to C_{2}. But now by (9), s_{1} is adjacent to s_{2}^{\prime}, contrary to 6.1. This proves (11).

In view of (11), we may henceforth assume that $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right) \neq \emptyset$, and $S_{1}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)=S_{2}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)=\emptyset$
(12) Let $s \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$, and $s^{\prime} \in S_{1}\left(C_{1}\right) \backslash S_{1}\left(C_{2}\right)$. Then s^{\prime} is strongly complete to $C_{1}(s)$.

Suppose not, and let $c \in C_{1}(s)$ be antiadjacent to s^{\prime}. Let $c_{2} \in C_{2}(s)$. By (7), there exists $s_{2} \in S_{2}\left(C_{1}\right)$ complete to C_{1}. By (9), s_{2} is strongly adjacent to both s, s^{\prime}. Since $\left\{c_{2}, s, c, s_{2}, s^{\prime}\right\}$ is not a bull, it follows that s_{2} is strongly adjacent to c_{2}. But now $s_{1}, s_{2} \in N_{F}(c) \cap N_{F}\left(c_{2}\right)$, contrary to (5). This proves (12).
(13) No vertex of F has a neighbor in three different components of $V(G) \backslash$ $V(F)$.

Let $f \in V(F)$, and let C_{1}, C_{2}, C_{3} be three distinct components of $V(G) \backslash$ $V(F)$, such that f has a neighbor in each of C_{1}, C_{2}, C_{3}. For $i \in\{1,2,3\}$, let $c_{i} \in C_{i}$ be adjacent to f. We may assume that $f \in S_{1}\left(C_{i}\right)$. By (7), there exists a vertex $x_{i} \in S_{2}\left(C_{i}\right)$, that is strongly complete to C_{i}. By (9), f is adjacent to each of x_{1}, x_{2}, x_{3}, and therefore, by (5), x_{i} is strongly antiadjacent to c_{j} for $1 \leq i \neq j \leq 3$. Since F is triangle-free, it follows that $\left\{c_{1}, c_{2}, c_{3}, x_{1}, x_{2}, x_{3}\right\}$ is a matching of size three in $G \mid\left(N_{F}(c)\right.$, contrary to 5.8. This proves (13).
(14) Every vertex of $V(G) \backslash\left(C_{1} \cup C_{2} \cup N_{F}\left(C_{1}\right) \cup N_{F}\left(C_{2}\right)\right)$ with a neighbor in $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$ is strongly complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$.

Suppose $x \in V(G) \backslash\left(C_{1} \cup C_{2} \cup N_{F}\left(C_{1}\right) \cup N_{F}\left(C_{2}\right)\right)$ has a neighbor $s_{1} \in$ $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. For $i=1,2$ let $a_{i} \in C_{i}$ be complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$ (such a vertex exists by (9)), and let $b_{i} \in S_{2}\left(C_{i}\right)$ be complete to C_{i} (such a vertex exists by (7)). By (9), for $i=1,2, b_{i}$ is complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$.

We claim that there is no path in $G \mid\left(N\left(s_{1}\right)\right.$ from x to $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$. Suppose there is, and let p be a neighbor of x in the path. Since $\left\{s_{1}, x, p\right\}$ is a triangle, and $s_{1} \in V(F)$, it follows that at least one of $p, x \in V(G) \backslash V(F)$. Since $x \notin C_{1} \cup C_{2} \cup N_{F}\left(C_{1}\right) \cup N_{F}\left(C_{2}\right)$, it follows that $p \notin C_{1} \cup C_{2}$, and so there exist a component C_{3} of $V(G) \backslash V(F)$, different from C_{1}, C_{2}, such that one of $p, x \in C_{3}$. But now s_{1} has a neighbor in three different components of $V(G) \backslash V(F)$, contrary to (13). This proves the claim.

Now, since every vertex of $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$, has a neighbor in $\left\{a_{1}, b_{1}\right\}$ (namely a_{1}) and a neighbor in $\left\{a_{2}, b_{2}\right\}$ (namely a_{2}), the second assertion of 5.9 implies that x is strongly complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. This proves (14).
(15) There exists $s_{2} \in S_{2}\left(C_{1}\right)$, complete to C_{1} and with a neighbor in $S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right)$.

The first assertion of (9) implies that there exists $c_{1} \in C_{1}$ complete to $S_{1}\left(C_{1}\right)$. Let S be the set of neighbors of c_{1} in $S_{2}\left(C_{1}\right)$. We may assume that c_{1} is chosen with S minimal, and subject to that with the minimum number of strong neighbors in $S_{2}\left(C_{1}\right)$.

First we claim that every vertex of S is strongly complete to $C_{1} \backslash\left\{c_{1}\right\}$. Suppose some $s \in S$ has an antineighbor $c \in C_{1} \backslash\left\{c_{1}\right\}$. Since c_{1} is adjacent to s and complete to $S_{1}\left(C_{1}\right)$, the last assertion of (9) implies that c is strongly complete to $S_{1}\left(C_{1}\right)$.

We claim that c has a neighbor in $S_{2}\left(C_{1}\right) \backslash S$. Suppose not. It follows from the choice of c_{1} that c is complete to S and semi-adjacent to s, and so the first assertion of (9) implies that c_{1} is strongly complete to S, contrary to the choice of c_{1}. This proves the claim. Let $s_{2} \in S_{2}\left(C_{1}\right) \backslash S$ be a neighbor of c. But now s is adjacent to c_{1} and antiadjacent to c, and s_{2} is adjacent to c and strongly antiadjacent to c_{1}, contrary to (9). This proves that S is strongly complete to $C_{1} \backslash\left\{c_{1}\right\}$.

Let X be the set of vertices of $S_{1}\left(C_{1}\right)$ that are semi-adjacent to a vertex of $S \cup\left\{c_{1}\right\}$. Since c_{1} is complete to $S_{1}\left(C_{1}\right)$, (9) implies that either $X=$ \emptyset, or X consists of the unique vertex semi-adjacent to c_{1}, or $\left|S_{1}\left(C_{1}\right)\right|=$ $\left|S_{2}\left(C_{1}\right)\right|=\left|C_{1}\right|=1$, and X consists of the unique vertex of $S_{1}\left(C_{1}\right)$ that is semi-adjacent to the unique vertex of $S_{2}\left(C_{1}\right)=S$. In all cases, $|X| \leq 1$. Since G is unfriendly, it follows that $S \cup\left\{c_{1}\right\}$ is not a homogeneous set in G, and $\left(S \cup\left\{c_{1}\right\}, X\right)$ is not homogeneous pair in G. Therefore, some vertex
$v \in V(G) \backslash\left(S \cup X \cup\left\{c_{1}\right\}\right)$ is mixed on $S \cup\left\{c_{1}\right\}$.
Suppose first that v is strongly antiadjacent to c_{1}. Then v has a neighbor $s \in S$. Let $s_{1} \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. Since both s, s_{1} are adjacent to c_{1}, (9) implies that s is adjacent to s_{1}. Let $c_{2} \in C_{2}$ be adjacent to s_{1}. By (5), c_{2} is antiadjacent to s. By (5), and since v is strongly antiadjacent to c_{1}, it follows that v is strongly antiadjacent to s_{1}. Since $\left\{c_{2}, s_{1}, c_{1}, s, v\right\}$ is not a bull, it follows that v is strongly adjacent to c_{2}. Consequently, $v \in C_{2} \cup N_{F}\left(C_{2}\right)$. If $v \in S_{2}\left(C_{2}\right)$, then, by (9), v is strongly adjacent to s_{1}, a contradiction. If $v \in S_{1}\left(C_{2}\right)$, then , since v is strongly antiadjacent to c_{1}, it follows that $v \in S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right)$, and s is a vertex complete to C_{1} and adjacent to v; and thus (15) holds. So we may assume that $v \in C_{2}$. Then $s \in S_{2}\left(C_{2}\right)$. By the maximality of F, v has a neighbor $s_{2} \in S_{1}\left(C_{2}\right)$. By (9), s_{2} is adjacent to s. If $s_{2} \in S_{1}\left(C_{1}\right)$, then c_{1}, v are both adjacent to s, s_{2}, contrary to (5). Consequently, $s_{2} \in S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right), s$ is adjacent to s_{2} and s is complete to C_{1}; and therefore again (15) holds.

This proves that we may assume that v is adjacent to c_{1}. Since $v \notin X$, v is strongly adjacent to c_{1}, and has a strong antineighbor in S. Since v is adjacent to c_{1}, it follows that $v \in C_{1} \cup N_{F}\left(C_{1}\right)$. Since S is strongly complete to $C_{1} \backslash\left\{c_{1}\right\}$, it follows that $v \in N_{F}\left(C_{1}\right)$. Since v is adjacent to c_{1} and $v \notin S$, it follows that $v \notin S_{2}\left(C_{1}\right)$. Consequently, $v \in S_{1}\left(C_{1}\right)$. But by (9), since c_{1} is complete to $S \cup S_{1}\left(C_{1}\right)$, it follows that S is complete to $S_{1}\left(C_{1}\right)$, a contradiction. This proves (15).
(16) Let T_{1} be the set of vertices of $V(G) \backslash\left(C_{1} \cup C_{2} \cup N_{F}\left(C_{1}\right) \cup N_{F}\left(C_{2}\right)\right)$ that are strongly complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. Then $S_{1}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right)$ is strongly anticomplete to $V(F) \backslash\left(N_{F}\left(C_{1}\right) \cup N_{F}\left(C_{2}\right) \cup T_{1}\right)$.

Suppose some vertex $s_{1} \in S_{1}\left(C_{1}\right)$ has a neighbor $f_{1} \in V(F) \backslash\left(N_{F}\left(C_{1}\right) \cup\right.$ $\left.N_{F}\left(C_{2}\right) \cup T_{1}\right)$. By $(14), s_{1} \notin S_{1}\left(C_{2}\right)$ and f_{1} is strongly anticomplete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$.

By (15), there exist vertices $p_{1} \in S_{2}\left(C_{1}\right), q_{1} \in S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right), p_{2} \in$ $S_{2}\left(C_{2}\right), q_{2} \in S_{1}\left(C_{1}\right) \backslash S_{1}\left(C_{2}\right)$, such that for $i=1,2 p_{i}$ is complete to C_{i} and adjacent to q_{i}. Let $c \in C_{2}$ be adjacent to q_{1}. By (9), p_{2} is adjacent to q_{1}.

Let $c^{\prime} \in C_{1}$ be adjacent to s_{1}. By (9), s_{1} is adjacent to p_{1}. Since $\left\{f_{1}, s_{1}, c^{\prime}, p_{1}, q_{1}\right\}$ is not a bull and F is triangle-free, it follows that f_{1} is adjacent to q_{1}. Now, since $\left\{f_{1}, q_{1}, c, p_{2}, q_{2}\right\}$ is not a bull and F is trianglefree, it follows that f_{1} is adjacent to q_{2}.

Let $s \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. For $i=1,2$, let $c_{i} \in C_{i}$ be adjacent to s. Then $\left\{c_{1}, c_{2}, p_{1}, p_{2}\right\}$ is a matching of size two in G, s is complete to $\left\{c_{1}, c_{2}, p_{1}, p_{2}\right\}$, q_{1} is adjacent to p_{1} and antiadjacent to c_{1}, q_{2} is adjacent to p_{2} and antiadjacent to c_{2}, and f_{1} is adjacent to q_{1}, q_{2} and antiadjacent to s, contrary to the first assertion of 5.9. This proves (16).
$S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)$ is strongly complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$; and con-
sequently if $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right) \neq \emptyset$, then $S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)$ is a strongly stable set.

Suppose not. We may assume that there exist vertices $a \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$ and $v \in S_{2}\left(C_{1}\right)$ that are antiadjacent. For $i=1,2$, let V_{i} be the set of neighbors of a in C_{i}. Since $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right) \neq \emptyset$ and, by (15), we deduce that $S_{1}\left(C_{1}\right) \backslash S_{1}\left(C_{2}\right) \neq \emptyset$ and $S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right) \neq \emptyset$. Now it follows from (9) that v is strongly anticomplete to $V_{1} \cup V_{2}$.

Let $p_{1} \in S_{2}\left(C_{1}\right)$ be a vertex complete to C_{1}, and let $q_{1} \in S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right)$ be adjacent to p_{1}. Let $p_{2} \in S_{2}\left(C_{2}\right)$ be a vertex complete to C_{2}, and let $q_{2} \in S_{1}\left(C_{1}\right) \backslash S_{1}\left(C_{2}\right)$ be adjacent to p_{2} (such $p_{1}, q_{1}, p_{2}, q_{2}$ exist by (15)). Then $v \neq p_{1}, p_{2}$. By (9), p_{1} is strongly adjacent to both q_{2} and a, and p_{2} is strongly adjacent to both q_{1} and a. For $i=1,2$, let $v_{i} \in V_{i}$. Since v is antiadjacent to $a, 5.9$, applied to the matching $\left\{p_{1}, p_{2}, v_{1}, v_{2}\right\}$ implies that v is antiadjacent to at least one of q_{1}, q_{2}. Suppose first that v is antiadjacent to q_{1}. Let $c_{1} \in C_{1}$ be adjacent to v. Then $\left\{v, c_{1}, v_{1}, p_{1}, q_{1}\right\}$ is a bull, a contradiction. So v is strongly adjacent to q_{1}, and therefore v is antiadjacent to q_{2}. From the symmetry, it follows that $v \notin S_{2}\left(C_{2}\right)$. Since p_{2} is adjacent to q_{1}, and since $\left\{p_{2}, q_{1}, v\right\}$ and $\left\{q_{1}, p_{2}, q_{2}\right\}$ are not triangles in $G \mid F$, it follows that q_{1} is strongly antiadjacent to q_{2}, and p_{2} is strongly antiadjacent to v. Let $c_{2} \in C_{2}$ be adjacent to q_{1}. Now $\left\{q_{2}, p_{2}, c_{2}, q_{1}, v\right\}$ is a bull, a contradiction. This proves the first assertion of (17). The second assertion now follows, since F is triangle-free. This proves (17).

Let $Q_{0}=R_{0}=T_{0}=U_{0}=\emptyset$, and let $P_{0}=S_{0}=S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$. For $i \geq 1$, let us define the sets $P_{i}, Q_{i}, R_{i}, S_{i}, T_{i}, U_{i}$ recursively as follows:

- Let Q_{i} be the set of vertices of $C_{1} \backslash\left(\bigcup_{j<i} Q_{j}\right)$ with a neighbor in P_{i-1}.
- Let R_{i} be the set of vertices of $S_{2}\left(C_{1}\right) \backslash\left(\bigcup_{j<i} R_{j}\right)$ with a neighbor in Q_{i}.
- Let S_{i} be the set of vertices of $S_{1}\left(C_{2}\right) \backslash\left(\bigcup_{j<i} S_{j}\right)$ with a neighbor in R_{i}.
- Let T_{i} be the set of vertices of $C_{2} \backslash\left(\bigcup_{j<i} T_{j}\right)$ with a neighbor in S_{i-1}.
- Let U_{i} be the set of vertices of $S_{2}\left(C_{2}\right) \backslash\left(\bigcup_{j<i} U_{j}\right)$ with a neighbor in T_{i}.
- Let P_{i} be the set of vertices of $S_{1}\left(C_{1}\right) \backslash\left(\bigcup_{j<i} P_{j}\right)$ with a neighbor in U_{i}.

We observe that the definition above is symmetric under exchanging C_{1} and C_{2}. Let $P=\bigcup_{i \geq 0} P_{i}$, and let Q, R, S, T, U be defined similarly. Let $W=P \cup Q \cup R \cup S \cup T \cup U$. The maximality of $|V(F)|$ implies that $Q_{1}, R_{1}, T_{1}, U_{1}$ are all non-empty, and, by (15), S_{1} and P_{1} are non-empty.
(18) Let $i \geq 1$. If $c \in C_{1}$ has a neighbor in U_{i}, then $c \in \bigcup_{j \leq i+1} Q_{j}$. If $c \in C_{2}$ has a neighbor in R_{i}, then $c \in \bigcup_{j \leq i+1} T_{j}$.

From the symmetry, it is enough to prove the first assertion of (18). Let $u \in U_{i}$ be adjacent to $c \in C_{1}$. Let $s \in S_{1}\left(C_{1}\right)$ be adjacent to c. By (9), u is adjacent to s, and therefore $s \in \bigcup_{j \leq i} P_{j}$. But then, since c is adjacent to s, it follows that $c \in \bigcup_{j \leq i+1} Q_{j}$. This proves (18).
(19) No vertex of $V(G) \backslash W$ is mixed on $P \cup S$.

Suppose some $v \in V(G) \backslash W$ is mixed on $P \cup S$. Let i be minimum such that v is mixed on $\bigcup_{j \leq i}\left(P_{j} \cup S_{j}\right)$. By (14), $i>0$.

We claim that v is strongly complete to $\bigcup_{j<i}\left(P_{j} \cup S_{j}\right)$ and has an antineighbor in $P_{i} \cup S_{i}$. If v is strongly anticomplete to $P_{i} \cup S_{i}$, then, since v is mixed on $\bigcup_{j \leq i}\left(P_{j} \cup S_{j}\right)$, the claim follows from the minimality of i, and so we may assume that v has a neighbor in $P_{i} \cup S_{i}$. Now it follows from (16) that v is strongly complete to $P_{0}=S_{0}$, and again, by the minimality of i, it follows that v is strongly complete to $\bigcup_{j<i}\left(P_{j} \cup S_{j}\right)$. This proves the claim.

From the symmetry, we may assume that v has an antineighbor $p \in P_{i}$. By the claim in the first paragraph, it follows that v is strongly complete to $\bigcup_{j<i}\left(P_{j} \cup S_{j}\right)$. Since $p \in P_{i}$, there exist $u \in U_{i}, t \in T_{i}$, and $s \in S_{i-1}$ such that $\{u, t, s\}$ is a triangle, and p is adjacent to u. Then v is strongly adjacent to s. Since $p \notin P_{0}$, it follows that p is strongly antiadjacent to t. Since F is triangle-free, p is strongly antiadjacent to s. If v is adjacent to t, then $v \in N_{F}\left(C_{2}\right)$, which, since v is adjacent to s, implies that $v \in S_{2}\left(C_{2}\right)$, and so $v \in U \subseteq W$, a contradiction. So v is strongly antiadjacent to t. If v is adjacent to u, then $\{s, u, v\}$ is a triangle, and so $v \notin V(F)$, but $\{t, v\}$ is complete to $\{s, u\}$, contrary to (5). So v is strongly antiadjacent to u. But now $\{v, s, t, u, p\}$ is a bull, a contradiction. This proves (19).
(20) No vertex of $V(G) \backslash W$ is mixed on $Q_{1} \cup R_{1}$.

Suppose $v \in V(G) \backslash W$ is mixed on $Q_{1} \cup R_{1}$. The last assertion of (9) implies that $C_{1} \backslash Q_{1}$ is strongly complete to $Q_{1} \cup R_{1}$; by the definition of R_{1}, $S_{2}\left(C_{1}\right) \backslash R_{1}$ is strongly anticomplete to $Q_{1} \cup R_{1}$; and by (12), $S_{1}\left(C_{1}\right) \backslash P_{0}$ is strongly complete to Q_{1}. Now, by (15), $\left|S_{1}\left(C_{1}\right)\right| \neq 1$, and so, by (9), since every vertex of R_{1} has a neighbor in Q_{1}, it follows that $S_{1}\left(C_{1}\right) \backslash P_{0}$ is strongly complete to R_{1}. This proves that no vertex in $\left(C_{1} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)\right) \backslash W$ is mixed on $S_{1} \cup R_{1}$, and so $v \notin C_{1} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right)$. Therefore, v is strongly anticomplete to Q_{1}. Since v is mixed on $Q_{1} \cup R_{1}$, it follows that v has a neighbor $r \in R_{1}$. Then there exist $q \in Q_{1}$ and $p \in P_{0}$ such that $\{r, q, p\}$ is a triangle. Let $c_{2} \in C_{2}$ be adjacent to p. By (5), c_{2} is strongly antiadjacent to r. Since F is triangle-free and by (5), v is strongly antiadjacent to p. Since
$\left\{v, r, q, p, c_{2}\right\}$ is not a bull, it follows that v is strongly adjacent to c_{2}, and therefore $v \in C_{2} \cup S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right)$. Since $v \notin S_{2}$, it follows that $v \notin S_{1}\left(C_{2}\right)$. Since v is antiadjacent to p, (17) implies that $v \notin S_{2}\left(C_{2}\right)$. Therefore $v \in C_{2}$. But now, by (18), $v \in T$, contrary to the fact that $v \notin W$. This proves (20).
(21) No vertex of $V(G) \backslash W$ is mixed on $Q \cup R$ and no vertex of $V(G) \backslash W$ is mixed on $T \cup U$.

Suppose some $v \in V(G) \backslash W$ is mixed on $Q \cup R$ or on $T \cup U$. Let i be minimum such that v is mixed on $\bigcup_{j \leq i}\left(Q_{j} \cup R_{j}\right)$ or on $\bigcup_{j \leq i}\left(T_{j} \cup U_{j}\right)$. From the symmetry, we may assume that v is mixed on $\bigcup_{j \leq i}\left(Q_{j} \cup R_{j}\right)$. By (20), $i>1$

From the minimality of i, it follows that either v is strongly anticomplete to $\bigcup_{j<i}\left(Q_{j} \cup R_{j}\right)$ and has a neighbor in $Q_{i} \cup R_{i}$, or v is strongly complete to $\bigcup_{j<i}\left(Q_{j} \cup R_{j}\right)$ and has an antineighbor in $Q_{i} \cup R_{i}$.

Suppose v is strongly anticomplete to $\bigcup_{j<i}\left(Q_{j} \cup R_{j}\right)$ and has a neighbor in $Q_{i} \cup R_{i}$. Assume first that v has a neighbor in Q_{i}. Then, since v is strongly anticomplete to Q_{1}, it follows that $v \notin C_{1}$, and by (12), $v \notin S_{1}\left(C_{1}\right)$. So $v \in S_{2}\left(C_{1}\right)$, but then $v \in R_{i}$, a contradiction. So v is strongly anticomplete to Q_{i}, and therefore v has a neighbor $r_{i} \in R_{i}$. Then that there exist $q_{i} \in Q_{i}$ and $p_{i-1} \in P_{i-1}$ such that $\left\{r_{i}, q_{i}, p_{i-1}\right\}$ is a triangle. Since $i>1$, there exists $u_{i-1} \in U_{i-1}$, adjacent to p_{i-1}. We claim that v is adjacent to u_{i-1}. Suppose not. Since F it triangle-free and by (5), it follows that u_{i-1} is strongly antiadjacent to r_{i}, and v is strongly antiadjacent to p_{i-1}. Since $\left\{u_{i-1}, p_{i-1}, q_{i}, r_{i}, v\right\}$ is not a bull, it follows that u_{i-1} is adjacent to q_{i}, and therefore $u_{i-1} \in S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$. But v is adjacent to r_{i} and antiadjacent to u_{i-1}, contrary to (16). This proves the claim that v is adjacent to u_{i-1}. It follows from the definition of U_{i-1} that there exist $t_{i-1} \in T_{i-1}$ and $s_{i-2} \in S_{i-2}$ such that $\left\{u_{i-1}, t_{i-1}, s_{i-2}\right\}$ is a triangle. From the minimality of i and since v is adjacent to u_{i-1}, we deduce that v is adjacent to t_{i-1}. Consequently, $v \in C_{2} \cup S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right)$. Since v is adjacent to u_{i-1}, it follows that $v \notin S_{2}\left(C_{2}\right)$. Since v is adjacent to r_{i}, and $v \notin T$, (18) implies that $v \notin C_{2}$. Therefore, $v \in S_{1}\left(C_{1}\right)$, and so, since v is adjacent to r_{i}, it follows that $v \in S_{i}$, contrary to the fact that $v \notin W$. This proves that v is strongly complete to $\bigcup_{j<i}\left(Q_{j} \cup R_{j}\right)$ and has an antineighbor in $Q_{i} \cup R_{i}$.

In particular, v has a neighbor in C_{1}, and so $v \in C_{1} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right)$. Since v is strongly complete to R_{1}, it follows that $v \notin S_{2}\left(C_{1}\right)$. Suppose $v \in C_{1}$. Then v is strongly complete to Q, and so v has an antineighbor $r \in R_{i}$. Since $v \notin Q_{i}$, it follows that v is strongly anticomplete to P_{i-1}. But some vertex of Q_{i} is adjacent adjacent to r and has a neighbor in P_{i-1}, contrary to the last assertion of (9). This proves that $v \notin C_{1}$, and so $v \in S_{1}\left(C_{1}\right)$. Since $v \notin P_{0}$, it follows that v is strongly anticomplete to C_{2}. By (9), and since $\left|S_{1}\left(C_{1}\right)\right|>1$, we deduce that if v is strongly complete to Q_{i}, then v is strongly complete to R_{i}, and hence v has an antineighbor $q_{i} \in Q_{i}$. Since
$q_{i} \in Q_{i}$, there exist $p \in P_{i-1}$ adjacent to q_{i}. Since $i>1$, there exists $u \in U_{i-1}$ adjacent to p. Since v is strongly anticomplete to C_{2}, it follows from the minimality of i that v is strongly antiadjacent to u. Let $q_{1} \in Q_{1}$. Since $i>1$, both p and v are adjacent to q_{1}. Since u is antiadjacent to v, (17) implies that $u \notin S_{2}\left(C_{1}\right)$. But now $\left\{u, p, q_{i}, q_{1}, v\right\}$ is a bull, a contradiction. This proves (21).
(22) For every $i>0, P_{i}$ is strongly complete to $\bigcup_{j \leq i}\left(Q_{j} \cup R_{j}\right)$.

Suppose $p_{i} \in P_{i}$ is antiadjacent to $q \in Q_{j}$ with $j \leq i$. By (12), $j>1$. Let $p_{j-1} \in P_{j-1}$ be adjacent to q. Since $j>1$, there exists $u \in U_{j-1}$ adjacent to p_{j-1}. But now, since $p_{i} \in P_{i}$, it follows that p_{i} is strongly antiadjacent to u, and therefore $u \notin N_{F}\left(C_{1}\right)$, contrary to the third assertion of (9). Now, since, by (15), $\left|S_{1}\left(C_{1}\right)\right|>1, P_{i}$ is strongly complete to $\bigcup_{j \leq i} Q_{j}$, and every vertex of $\bigcup_{j \leq i} R_{j}$ has a neighbor in $\bigcup_{j \leq i} Q_{j}$, (9) implies that P_{i} is strongly complete to $\bigcup_{j \leq i} R_{j}$. This proves (22).
(23) For every $i>0, R_{i}$ is strongly complete to $C_{1} \backslash\left(\bigcup_{j \leq i} Q_{j}\right)$.

Suppose $r \in R_{i}$ has an antineighbor $c \in C_{1} \backslash\left(\bigcup_{j \leq i} Q_{j}\right)$. Choose $q \in Q_{i}$ and $p \in P_{i-1}$ such that $\{p, q, r\}$ is a triangle (this is possible by the definition of Q_{i} and R_{i}, and by the maximality of $\left.|V(F)|\right)$. Since $c \notin \bigcup_{j \leq i} Q_{j}$, it follows that c is antiadjacent to both p and r, contrary to (9). This proves (23).
(24) For $i>0, R_{i}$ is strongly complete to $\bigcup_{j<i} S_{j}$.

Suppose $r_{i} \in R_{i}$ has an antineighbor $s \in S_{j}$ with $j<i$. By (17), $j>0$, and so there exists $r_{j} \in R_{j}$ adjacent to s_{j}. Let $q \in Q_{j}$ be adjacent to r_{j}. Then, since $r_{i} \notin R_{j}$, it follows that q is strongly antiadjacent to r_{i}, contrary to the third assertion of (9). This proves (24).
(25) $P \cup S$ is strongly complete to $\left(S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)\right) \backslash W$, and strongly anticomplete to $\left(C_{1} \cup C_{2} \cup S_{1}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right)\right) \backslash W$.

By (17), $S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)$ is strongly complete to P_{0}, and so by (19) $P \cup S$ is strongly complete to $\left(S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)\right) \backslash W$. Since each of $S_{1}\left(C_{1}\right), S_{1}\left(C_{2}\right)$ is a strongly stable set, it follows that $\left(S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)\right) \backslash P_{0}$ is strongly anticomplete to P_{0}. Now (19) implies that $\left(S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)\right) \backslash W$ is strongly anticomplete to $P \cup S$. Finally, it follows from the definition of Q and T, that $\left(C_{1} \cup C_{2}\right) \backslash W$ is strongly anticomplete to $P \cup S$. This proves (25).
(26) $Q \cup R$ is strongly complete to $\left(C_{1} \cup S_{1}\left(C_{1}\right)\right) \backslash W$ and strongly anticomplete to $\left(S_{2}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right) \cup C_{2}\right) \backslash W$.

Since $Q \subseteq C_{1}$ and C_{1} is a strong clique, it follows from (21) that $Q \cup R$ is strongly complete to $C_{1} \backslash W$. By (12), $S_{1}\left(C_{1}\right) \backslash P_{0}$ is strongly complete to Q_{1}, and so by (21), $Q \cup R$ is strongly complete to $S_{1}\left(C_{1}\right) \backslash W$.

In order to show that $Q \cup R$ is strongly anticomplete to $\left(S_{2}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right) \cup\right.$ $\left.S_{2}\left(C_{2}\right) \cup C_{2}\right) \backslash W$, it is enough, by (21), to prove that every vertex of $\left(S_{2}\left(C_{1}\right) \cup\right.$ $\left.S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right) \cup C_{2}\right) \backslash W$ has an antineighbor in $Q \cup R$.

Since $C_{2} \cup\left(S_{2}\left(C_{2}\right) \backslash S_{2}\left(C_{1}\right)\right)$ is strongly anticomplete to C_{1} and $Q \subseteq C_{1}$, it follows that every vertex of $C_{2} \cup\left(S_{2}\left(C_{2}\right) \backslash S_{2}\left(C_{1}\right)\right)$ is strongly anticomplete to Q. Since $S_{2}\left(C_{1}\right)$ is a strongly stable set and $R \subseteq S_{2}\left(C_{1}\right)$ it follows that every vertex of $S_{2}\left(C_{1}\right) \backslash W$ is a strongly anticomplete to R. Finally, by the definition of $S, S_{1}\left(C_{2}\right) \backslash W$ is strongly anticomplete to R. This proves (26).
(27) P is strongly complete to R.

Suppose $p \in P$ is antiadjacent to $r \in R$. Let i, j be integers such that $p \in P_{i}$ and $r \in R_{j}$. By (22) $i<j$. By (17), $i>0$, and so there exists $u \in U_{i}$ adjacent to p. By (3), there exist $t \in T_{i}$ and $s \in S_{i-1}$ such that $\{s, t, u\}$ is a triangle. By (24), since $i<j$, it follows that r is strongly adjacent to s. But now, since F is triangle-free, and since, by (17), both p and r are strongly antiadjacent to t, it follows that $\{r, s, t, u, p\}$ is a bull, a contradiction. This proves (27).

It follows from (27) and the symmetry that S is strongly complete to U.
(28) If $W \cap S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \neq \emptyset$, then $P=S_{1}\left(C_{1}\right), Q=C_{1}, R=S_{2}\left(C_{1}\right)$, $S=S_{1}\left(C_{2}\right), T=C_{2}$ and $U=S_{2}\left(C_{2}\right)$.

From the symmetry, we may assume that there exist $w \in R \cap S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$. By (17), w is strongly complete to $S_{1}\left(C_{2}\right)$, therefore $S_{1}\left(C_{2}\right) \backslash S_{1}\left(C_{1}\right) \subseteq S$, and so $S=S_{1}\left(C_{2}\right)$. It follows that $T=C_{2}$, and, consequently $U=S_{2}\left(C_{2}\right)$; in particular, $w \in U$. But now, for, the symmetry, $P=S_{1}\left(C_{1}\right), Q=C_{1}$ and $R=S_{2}\left(C_{1}\right)$. This proves (28).
(29) If $W \cap S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \neq \emptyset$, then $V(G)=C_{1} \cup C_{2} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right) \cup$ $S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right)$.

Suppose not. Then there exists $v \in V(G) \backslash\left(C_{1} \cup C_{2} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right) \cup\right.$ $\left.S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right)\right)$ with a neighbor in $C_{1} \cup C_{2} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right) \cup$ $S_{2}\left(C_{2}\right)$. By (28), $P=S_{1}\left(C_{1}\right), Q=C_{1}, R=S_{2}\left(C_{1}\right), S=S_{1}\left(C_{2}\right), T=C_{2}$ and $U=S_{2}\left(C_{2}\right)$. Since $v \in V(G) \backslash\left(C_{1} \cup C_{2} \cup S_{1}\left(C_{1}\right) \cup S_{2}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right) \cup S_{2}\left(C_{2}\right)\right)$, it follows that v is strongly anticomplete to $C_{1} \cup C_{2}$, and so (21) implies that v is strongly anticomplete to $C_{1} \cup C_{2} \cup S_{2}\left(C_{1}\right) \cup S_{2}\left(C_{2}\right)$. So v has a neighbor in $S_{1}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right)$, and therefore, by (20), v is strongly complete to $S_{1}\left(C_{1}\right) \cup S_{1}\left(C_{2}\right)$. Let $s_{2} \in S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$. For $i=1,2$ let $c_{i} \in C_{i}$ be
adjacent to s_{2}, and let $s_{1} \in S_{1}\left(C_{1}\right)$ be adjacent to c_{1}. Then, by (9), s_{1} is adjacent to s_{2}, and so by (5), s_{1} is strongly antiadjacent to c_{2}. But now $\left\{v, s_{1}, c_{1}, s_{2}, c_{2}\right\}$ is a bull, a contradiction. This proves (29).
(30) $P \cup S$ and $R \cup U$ are strongly stable sets.

Since P_{0} is strongly complete to $R \cup U$ and F is triangle-free, it follows that $R \cup U$ is a strongly stable set. Since $P \subseteq S_{1}\left(C_{1}\right)$ and $S \subseteq S_{1}\left(C_{2}\right)$, it follows that each of P, S is a strongly stable set. So it is enough to prove that $P \backslash S$ is strongly anticomplete to $S \backslash P$. Suppose $p \in P$ is adjacent to $s \in S$. Let i, j be integers such that $p \in P_{i}$ and $s \in S_{j}$. Then $i, j>0$, and so there exists $r \in R_{j}$ adjacent to s. By (27), p is adjacent to r. But now $\{p, r, s\}$ is a triangle in F, a contradiction. This proves (30).

Let $Z=P \cup S$ and $L=R \cup U$.
(31) If $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W=\emptyset$, then $G \mid(Q \cup T \cup Z \cup L)$ is a Z-melt, and if $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W \neq \emptyset$, than $G \mid(Q \cup T \cup Z \cup L)$ is a double melt.

First we observe that Q, T are strong cliques, and, by (30), Z, L are strongly stable sets. By (15), $|Z|>1$ and $|L|>1$. Let $|Q|=m$ and $|T|=n$. By (9), we can number the vertices of Q as $\left\{q_{1}, \ldots, q_{m}\right\}$ such that for every $p \in P$, $N(p) \cap Q=\left\{q_{1}, \ldots, q_{i}\right\}$ for some $i \in\{1, \ldots, m\}$, and p is strongly complete to $\left\{q_{1}, \ldots, q_{i-1}\right\}$; and for every $r \in R, N(r) \cap Q=\left\{q_{m-i+1}, \ldots, q_{m}\right\}$ for some $i \in\{1, \ldots, m\}$, and r is strongly complete to $\left\{q_{m-i+2}, \ldots, q_{m}\right\}$. Similarly, we can number the vertices of T as $\left\{t_{1}, \ldots, t_{n}\right\}$ such that for every $s \in S, N(s) \cap T=\left\{t_{n+1-j}, \ldots, t_{n}\right\}$ for some $j \in\{1, \ldots, n\}$, and s is strongly complete to $\left\{t_{n+2-j}, \ldots, t_{n}\right\}$, and for every $u \in U, N(u) \cap T=\left\{t_{1}, \ldots, t_{j}\right\}$ for some $j \in\{1, \ldots, n\}$, and u is strongly complete to $\left\{t_{1}, \ldots, t_{j-1}\right\}$.

Let $A_{0,0}=B_{0,0}=\emptyset$. For $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ let $A_{i, j}$ be the set of vertices of Z that are strongly complete to $\left\{q_{1}, \ldots, q_{i-1}\right\} \cup$ $\left\{t_{n-j+2}, \ldots, t_{n}\right\}$, complete to $\left\{q_{i}\right\} \cup\left\{t_{n-j+1}\right\}$, and strongly anticomplete to $\left\{q_{i+1}, \ldots, q_{m}\right\} \cup\left\{t_{1}, \ldots, t_{n-j}\right\}$; and let $B_{i, j}$ be the set of vertices of L that are strongly complete to $\left\{q_{m-i+2}, \ldots, q_{m}\right\} \cup\left\{t_{1}, \ldots, t_{j-1}\right\}$, complete to $\left\{q_{m-i+1}\right\} \cup\left\{t_{j}\right\}$, and strongly anticomplete to $\left\{q_{1}, \ldots, q_{m-i}\right\} \cup\left\{t_{j+1}, \ldots, t_{n}\right\}$. For $i \in\{1, \ldots, m\}$, let $A_{i, 0}$ be the set of vertices of Z that are strongly complete to $\left\{q_{1}, \ldots, q_{i-1}\right\}$, complete to $\left\{q_{i}\right\}$, and strongly anticomplete to $\left\{q_{i+1}, \ldots, q_{m}\right\} \cup T$. For $j \in\{1, \ldots, n\}, A_{0, j}$ be the set of vertices of Z that are strongly complete to $\left\{t_{n-j+2}, \ldots, t_{n}\right\}$, complete to $\left\{t_{n-j+1}\right\}$, and strongly anticomplete to $Q \cup\left\{t_{1}, \ldots, t_{n-j}\right\}$. For $i \in\{1, \ldots, m\}$, let $B_{i, 0}$ be the set of vertices of L that are strongly complete to $\left\{q_{m-i+2}, \ldots, q_{m}\right\}$, complete to $\left\{q_{m-i+1}\right\}$, and strongly anticomplete to $\left\{q_{1}, \ldots, q_{m-i}\right\} \cup T$. Finally, for $j \in\{1, \ldots, n\}$, let $B_{0, j}$ be the set of vertices of L that are strongly complete to $\left\{t_{1}, \ldots, t_{j-1}\right\}$, complete to $\left\{t_{j}\right\}$, and strongly anti-
complete to $Q \cup\left\{t_{j+1}, \ldots, t_{n}\right\}$. Then $Z=\bigcup_{0 \leq i \leq m} \bigcup_{0 \leq j \leq n} A_{i, j}$ and $L=$ $\bigcup_{0 \leq i \leq m} \bigcup_{0 \leq j \leq n} B_{i, j}$.

Since every vertex of $Q \cup T$ has a neighbor in both Z and L, (9) implies that the sets $\bigcup_{0 \leq j \leq n} A_{m, j}, \bigcup_{0 \leq j \leq n} B_{m, j}, \bigcup_{0 \leq i \leq m} A_{i, n}$ and $\bigcup_{0 \leq i \leq m} B_{i, n}$ are all non-empty.

Let $i, i^{\prime} \in\{0, \ldots, m\}$ and $j, j^{\prime} \in\{0, \ldots, n\}$, such that $i^{\prime}>i$ and $j^{\prime}>j$, and let $a \in A_{i, j}$ and $a^{\prime} \in A_{i^{\prime}, j^{\prime}}$. Since $A_{0,0}=\emptyset$, we may assume that $i>0$. Then a^{\prime} is complete $\left\{q_{i}, q_{i^{\prime}}, t_{n-j^{\prime}+1}\right\}$, and a is anticomplete to $\left\{q_{i^{\prime}}, t_{n-j^{\prime}+1}\right\}$ and adjacent to q_{i}, and so $\left\{a, q_{i}, q_{i^{\prime}}, a^{\prime}, t_{n-j^{\prime}+1}\right\}$ is a bull, a contradiction. This proves that one of $A_{i, j}$ and $A_{i^{\prime}, j^{\prime}}$ is empty. Similarly, one of the sets $B_{i, j}$ and $B_{i^{\prime}, j^{\prime}}$ is empty.

By (17), for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}, A_{i, j}$ is strongly complete to L, and $B_{i, j}$ is strongly complete to Z. By (27), for every $i, i^{\prime} \in\{1, \ldots, m\}$ and $j, j^{\prime} \in\{1, \ldots, n\}, A_{i, 0}$ is strongly complete to $B_{i^{\prime}, 0}$, and $A_{0, j}$ is strongly complete to $B_{0, j^{\prime}}$.

Let $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots n\}$. Let $A_{i, 0}^{j}$ be the set of vertices of $A_{i, 0}$ with that have a neighbor in $B_{0, j}$ are strongly anticomplete to $\bigcup_{j<k \leq n} B_{0, k}$. Let $A_{i, 0}^{0}$ be the set of vertices of $A_{i, 0}$ that are strongly anticomplete to $\bigcup_{1 \leq k \leq n} B_{0, k}$. Let $A_{0, j}^{i}$ be the set of vertices of $A_{0, j}$ that have a neighbor in $B_{i, 0}$ and are strongly anticomplete to $\bigcup_{i<k \leq m} B_{k, 0}$. Let $A_{0, j}^{0}$ be the set of vertices of $A_{0, j}$ that are strongly anticomplete to $\bigcup_{1 \leq k \leq m} B_{k, 0}$. Let $B_{i, 0}^{j}$ be the set of vertices of $B_{i, 0}$ that have a neighbor in $A_{0, j}^{\leq}$and are strongly anticomplete to $\bigcup_{j<k \leq n} A_{0, k}$. Let $B_{i, 0}^{0}$ be the set of vertices of $B_{i, 0}$ that are strongly anticomplete to $\bigcup_{1 \leq k \leq n} A_{0, k}$. Let $B_{0, j}^{i}$ be the set of vertices of $B_{0, j}$ with a neighbor in $A_{i, 0}$ that are strongly anticomplete to $\bigcup_{i<k \leq m} A_{k, 0}$. Finally, let $B_{0, j}^{0}$ be the set of vertices of $B_{0, j}$ that are strongly anticomplete to $\bigcup_{1 \leq k \leq m} A_{k, 0}$. Then

$$
\begin{aligned}
& A_{i, 0}=\bigcup_{0 \leq k \leq n} A_{i, 0}^{k}, \\
& A_{0, j}=\bigcup_{0 \leq k \leq m} A_{0, j}^{k}, \\
& B_{i, 0}=\bigcup_{0 \leq k \leq n} B_{i, 0}^{k},
\end{aligned}
$$

and

$$
B_{0, j}=\bigcup_{0 \leq k \leq m} B_{0, j}^{k} .
$$

We observe that for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}, A_{i, 0} \subseteq P \backslash$ $P_{0}, A_{0, j} \subseteq S \backslash S_{0}, B_{i, 0} \subseteq R$ and $B_{0, j} \subseteq U$. Therefore every vertex of $A_{i, 0}^{0}$ has a neighbor in $\bigcup_{1 \leq p \leq m} \bigcup_{1 \leq q \leq n} B_{p, q}$, every vertex of $B_{i, 0}^{0}$ has a neighbor in $\bigcup_{1 \leq p \leq m} \bigcup_{1 \leq q \leq n} A_{p, q}$, every vertex of $A_{0, j}^{0}$ has a neighbor in $\bigcup_{1 \leq p \leq m} \bigcup_{1 \leq q \leq n} B_{p, q}$, and every vertex of $B_{0, j}^{0}$ has a neighbor in $\bigcup_{1 \leq p \leq m}^{\leq} \bigcup_{1 \leq q \leq n} A_{p, q}$.

By (9), $A_{0, j}^{i}$ is strongly complete to $\bigcup_{1 \leq s<i} B_{s, 0}, A_{i, 0}^{j}$ is strongly complete to $\bigcup_{1 \leq s<j} B_{0, s}, B_{i, 0}^{j}$ is strongly complete to $\bigcup_{1 \leq s<j} A_{0, s}$ and $B_{0, j}^{i}$ is strongly complete to $\bigcup_{1 \leq s<i} A_{s, 0}$. For $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ let $A_{i, 0}^{\prime}$ be the set of vertices of $A_{i, 0}$ that are semi-adjacent to q_{i}, let $A_{0, j}^{\prime}$ be the set of vertices of $A_{0, j}$ that are semi-adjacent to t_{n-j+1}, let $B_{i, 0}^{\prime}$ be the set of vertices of $B_{i, 0}$ that are semi-adjacent to q_{m-i+1}, and let $B_{0, j}^{\prime}$ be the set of vertices of $B_{0, j}$ that are semi-adjacent to t_{j}. Then, by (9), $A_{i, 0}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq n} B_{0, s}^{i}, A_{0, j}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq m} B_{s, 0}^{j}$, $B_{i, 0}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq n} A_{0, s}^{i}$, and $B_{0, j}^{\prime}$ is strongly complete to $\bigcup_{1 \leq s \leq m} A_{s, 0}^{j}$. Since $P_{0} \neq \emptyset$, it follows that there exist $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ such that either $A_{i, j} \neq \emptyset$. Finally, let $i, s, s^{\prime} \in\{1, \ldots, m\}$ and $j, t, t^{\prime} \in\{1, \ldots, n\}$ such that $t^{\prime} \geq j \geq n+1-t$ and $s \geq i \geq m+1-s^{\prime}$, and let $a \in A_{s, t}$ and $b \in B_{s^{\prime}, t^{\prime}}$. Then $\{a, b\}$ is complete to $\left\{q_{i}, t_{j}\right\}$, and a is adjacent to b, contrary to (5). This proves that at least one of $A_{s, t}, B_{s^{\prime}, t^{\prime}}$ is empty.

Thus all the conditions of the definition of a melt are satisfied, and so $G \mid(Q \cup T \cup Z \cup L)$ is a melt. Moreover, if $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W=\emptyset$, then R is strongly anticomplete to T and U is strongly anticomplete to Q, and so $G \mid(Q \cup T \cup Z \cup L)$ is a Z-melt. If $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W \neq \emptyset$, then, by (28), $R \cap U \neq \emptyset$, and so $G \mid(Q \cup T \cup Z \cup L)$ is a double melt. This proves (31).

Now, if $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W \neq \emptyset$, (29) and (31) imply that G is a double melt, and so $G \in \mathcal{T}_{1}$. So we may assume that $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right) \cap W=\emptyset$.

If $S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)=\emptyset$, let $Q^{\prime}=T^{\prime}=Z^{\prime}=L^{\prime}=\emptyset$. Assume $S_{2}\left(C_{1}\right) \cap$ $S_{2}\left(C_{2}\right) \neq \emptyset$. Let $P_{0}^{\prime}=S_{0}^{\prime}=S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)$, let $Q_{0}^{\prime}=R_{0}^{\prime}=T_{0}^{\prime}=U_{0}^{\prime}=\emptyset$, and for $i \geq 1$, define $P_{i}^{\prime}, Q_{i}^{\prime}, R_{i}^{\prime}, S_{i}^{\prime}, T_{i}^{\prime}, U_{i}^{\prime}$ similarly to $P_{i}, Q_{i}, R_{i}, S_{i}, T_{i}, U_{i}$. Let $P^{\prime}=\bigcup_{i>1} P_{i}^{\prime}$, and let $Q^{\prime}, R^{\prime}, S^{\prime}, T^{\prime}, U^{\prime}$ be defined similarly. Let $W^{\prime}=$ $P^{\prime} \cup Q^{\prime} \cup R^{\prime} \cup S^{\prime} \cup T^{\prime} \cup U^{\prime}$. Let $Z^{\prime}=P^{\prime} \cup S^{\prime}$ and $L^{\prime}=R^{\prime} \cup U^{\prime}$. By the remark following (31), we may assume that $W^{\prime} \cap S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)=\emptyset$. Now, by (31), $G \mid\left(Q^{\prime} \cup T^{\prime} \cup Z^{\prime} \cup L^{\prime}\right)$ is a Z^{\prime}-melt.
(32) $W \cap W^{\prime}=\emptyset$.

Suppose $W \cap W^{\prime} \neq \emptyset$, let $i \geq 0$ be minimum such that $\left(P_{i} \cup Q_{i} \cup R_{i} \cup\right.$ $\left.S_{i} \cup T_{i} \cup U_{i}\right) \cap W^{\prime} \neq \emptyset$, and let $v \in\left(P_{i} \cup Q_{i} \cup R_{i} \cup S_{i} \cup T_{i} \cup U_{i}\right) \cap W^{\prime}$. Since $P_{0} \cap W^{\prime}=\emptyset$, it follows that $i>0$.

Assume first that $v \in Q_{i}$. Then there there exists $p_{i-1} \in P_{i-1}$ adjacent to v. Since $Q \subseteq C_{1}$ and $W^{\prime} \cap C_{1} \subseteq Q^{\prime}$, we deduce that $v \in Q^{\prime}$, and so $p_{i-1} \in R^{\prime}$, contrary to the minimality of i. This proves that $Q_{i} \cap W^{\prime}=\emptyset$, and, from the symmetry, that $T_{i} \cap W^{\prime}=\emptyset$.

Next assume that $v \in R_{i}$. Then there there exists $q \in Q_{i}$ adjacent to v. Since $v \in R_{i}$, and since $W \cap S_{2}\left(C_{1}\right) \cap S_{2}\left(C_{2}\right)=\emptyset$, it follows that $v \in S_{2}\left(C_{1}\right) \backslash S_{2}\left(C_{2}\right)$, and so $v \in P^{\prime}$. But now $q \in Q^{\prime}$, contrary to the fact that $Q_{i} \cap W^{\prime}=\emptyset$. This proves that $R_{i} \cap W^{\prime}=\emptyset$, and, from the symmetry,
$U_{i} \cap W^{\prime}=\emptyset$.
Consequently, $v \in P_{i} \cup S_{i}$, and form the symmetry we may assume that $v \in P_{i}$. Since $i>0$, it follows that there exists $u \in U_{i}$, adjacent to v. Also since $i>0$, we deduce that $v \in S_{1}\left(C_{1}\right) \backslash S_{1}\left(C_{2}\right)$, and so $v \in R^{\prime}$. But then $u \in S^{\prime}$, contrary to the fact that $U_{i} \cap W^{\prime}=\emptyset$. This proves (32).

Let $Z\left(C_{1}, C_{2}\right)=Z, Q\left(C_{1}, C_{2}\right)=Q, T\left(C_{1}, C_{2}\right)=T, R\left(C_{1}, C_{2}\right)=R$ and $U\left(C_{1}, C_{2}\right)=U$. Let $Z^{\prime}\left(C_{1}, C_{2}\right)=Z^{\prime}, Q^{\prime}\left(C_{1}, C_{2}\right)=Q^{\prime}, T^{\prime}\left(C_{1}, C_{2}\right)=T^{\prime}$, $R^{\prime}\left(C_{1}, C_{2}\right)=R^{\prime}$ and $U^{\prime}\left(C_{1}, C_{2}\right)=U^{\prime}$. For every pair of distinct components $C_{1}^{\prime}, C_{2}^{\prime}$ of $V(G) \backslash V(F)$ with $N_{F}\left(C_{1}^{\prime}\right) \cap N_{F}\left(C_{2}^{\prime}\right) \neq \emptyset$, we define $Z\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$, $Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right), T\left(C_{1}^{\prime}, C_{2}^{\prime}\right), R\left(C_{1}^{\prime}, C_{2}^{\prime}\right) U\left(C_{1}^{\prime}, C_{2}^{\prime}\right), Z^{\prime}\left(C_{1}^{\prime}, C_{2}^{\prime}\right), Q^{\prime}\left(C_{1}^{\prime}, C_{2}^{\prime}\right), T^{\prime}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$, $R^{\prime}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$ and $U^{\prime}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$ similarly.

Let $C_{1}^{\prime}, C_{2}^{\prime}$ be two distinct components of $V(G) \backslash V(F)$. For $i, j \in\{1,2\}$ let $S_{i}\left(C_{j}^{\prime}\right)$ be their anchors. We may assume that $S_{1}\left(C_{1}^{\prime}\right) \cap S_{2}\left(C_{2}^{\prime}\right)=S_{2}\left(C_{1}^{\prime}\right) \cap$ $S_{1}\left(C_{2}^{\prime}\right)=\emptyset$. Let $i\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$ be the number of non-empty sets among $S_{1}\left(C_{1}^{\prime}\right) \cap$ $S_{1}\left(C_{2}^{\prime}\right)$ and $S_{2}\left(C_{1}^{\prime}\right) \cap S_{2}\left(C_{2}^{\prime}\right)$.

Let H be the graph whose vertices are the components of $V(G) \backslash V(F)$, and such that if $C_{1}^{\prime}, C_{2}^{\prime} \in V(H)$, then there are $i\left(C_{1}^{\prime} C_{2}^{\prime}\right)$ edges with ends $C_{1}^{\prime}, C_{2}^{\prime}$. Then H is a loopless graph.
(33) H is triangle-free and $\operatorname{maxdeg}(H) \leq 2$.

Let C_{1}, C_{2}, C_{3} be components of $V(G) \backslash V(F)$. Suppose $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right) \neq \emptyset$. We claim that for $i \in\{1,2\} S_{1}\left(C_{1}\right) \cap S_{i}\left(C_{3}\right)=S_{1}\left(C_{2}\right) \cap S_{i}\left(C_{3}\right)=\emptyset$. For suppose there is a vertex $x \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{3}\right)$. Let c be a vertex of C_{3} adjacent to x. Then, by (16), c is strongly complete to $S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$, contrary to (13). This proves the claim. It follows from the claim that $\operatorname{maxdeg}(H) \leq 2$.

Suppose there is a triangle in H. That means that there exist component C_{1}, C_{2}, C_{3}, and, in view of the claim in the previous paragraph, renumbering the anchors, we may assume that there exist $u \in S_{1}\left(C_{1}\right) \cap S_{1}\left(C_{2}\right)$, $v \in S_{2}\left(C_{2}\right) \cap S_{2}\left(C_{3}\right)$, and $w \in S_{1}\left(C_{3}\right) \cap S_{2}\left(C_{1}\right)$. But now, by (17), $\{u, v, w\}$ is a triangle in F, a contradiction. This proves (33).

We show that G admits an H-structure. Let us define a map

$$
h: V(H) \cup E(H) \cup(E(H) \times V(H)) \rightarrow 2^{V(G)}
$$

Let C_{1}, C_{2} be distinct components of $V(G) \backslash V(F)$. If there is a unique edge e with ends C_{1}, C_{2} let $h(e)=Z\left(C_{1}, C_{2}\right), h\left(e, C_{1}\right)=Q\left(C_{1}, C_{2}\right) \cup$ $R\left(C_{1}, C_{2}\right)$ and $h\left(e, C_{2}\right)=T\left(C_{1}, C_{2}\right) \cup U\left(C_{1}, C_{2}\right)$. Let C_{3} be a component of $V(G) \backslash V(F)$, distinct from C_{1}, C_{2}, and assume that f is an edge of H with ends C_{1}, C_{3}. We observe that by (13) and (16), if $S_{1}\left(C_{1}\right)$ and $S_{2}\left(C_{1}\right)$ are the anchors of C_{1}, then, up to symmetry, $Z\left(C_{1}, C_{2}\right) \cap N_{F}\left(C_{1}\right) \subseteq$ $S_{1}\left(C_{1}\right)$, and $Z\left(C_{1}, C_{3}\right) \cap N_{F}\left(C_{1}\right) \subseteq S_{2}\left(C_{1}\right)$. If there are two edges e, e^{\prime}
with ends C_{1}, C_{2} let $h(e)=Z\left(C_{1}, C_{2}\right), h\left(e, C_{1}\right)=Q\left(C_{1}, C_{2}\right) \cup R\left(C_{1}, C_{2}\right)$ and $h\left(e, C_{2}\right)=T\left(C_{1}, C_{2}\right) \cup U\left(C_{1}, C_{2}\right)$; and $h\left(e^{\prime}\right)=Z^{\prime}\left(C_{1}, C_{2}\right), h\left(e^{\prime}, C_{1}\right)=$ $Q^{\prime}\left(C_{1}, C_{2}\right) \cup R^{\prime}\left(C_{1}, C_{2}\right)$ and $h\left(e^{\prime}, C_{2}\right)=T^{\prime}\left(C_{1}, C_{2}\right) \cup U^{\prime}\left(C_{1}, C_{2}\right)$. For every component C of $V(G) \backslash V(F)$, let $h(C)=C \backslash\left(\bigcup_{e \in E(H)} \bigcup_{C \sim e} h(e, C)\right)$. Let $L=V(G) \backslash h(V(H) \cup E(H) \cup(E(H) \times V(H)))$.

It follows from the definition of h that

- every vertex of $V(G) \backslash L$ is in $h(x)$ for exactly one element x of $V(H) \cup$ $E(H) \cup(E(H) \times V(H))$, and
- $h(v) \neq \emptyset$ for every $v \in V(H)$ of degree zero, and
- $h(e) \neq \emptyset$ for every $e \in E(H)$, and
- $h(e, v) \neq \emptyset$ if e is incident with v, and
- $h(e, v)=\emptyset$ if e is not incident with v, and
- for $u, v \in V(H), h(u)$ is strongly anticomplete to $h(v)$.

Since $L \cup\left(\bigcup_{e \in E(H)} h(e)\right) \subseteq V(F)$, it follows that $G \mid\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right)$ has no triangle. Since $h(C) \subseteq C$ for every component C of $V(G) \backslash V(F)$, it follows that $h(v)$ is a strong clique for every $v \in V(H)$. Since $h(e)=Z\left(C_{1}, C_{2}\right)$ for every edge $C_{1} C_{2}$ of H, it follows that every vertex of L has a neighbor in at most one of the sets $h(v)$ where $v \in V(H)$. By (19), for every $e \in E(H)$, every vertex of L is either strongly complete or strongly anticomplete to $h(e)$, and for every $e, f \in E(H), h(e)$ is either strongly complete or strongly anticomplete to $h(f)$. By (25) and (32), if $e, f \in E(H)$, and e and f share an end, then $h(e)$ is strongly complete to $h(f)$. By (25), for every $e \in E(H)$ and $v \in V(H), h(e)$ is strongly anticomplete to $h(v)$.

Let $v \in V(H)$, let S_{v} be the vertices of L with a neighbor in $h(v)$, and let T_{v} be the vertices of $\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right) \backslash S_{v}$ with a neighbor in S_{v}. Then S_{v} contains every every vertex of F with a neighbor in $h(v)$, and T_{v} contains every vertex of $V(F) \backslash S_{v}$ with a neighbor in S_{v}. Now, by (10) applied to the graph $G \mid(V(F) \cup h(v))$, it follows that there is a partition of S_{v} into two sets A_{v}, B_{v}, and a partition of T_{v} into two sets C_{v}, D_{v} such that $G \mid\left(h(v) \cup S_{v} \cup T_{v}\right)$ is an $\left(h(v), A_{v}, B_{v}, C_{v}, D_{v}\right)$-clique connector. By (9) and (15), for $v \in V(H)$, if there exist $a \in A_{v}$ and $b \in B_{v}$ antiadjacent with a common neighbor in $h(v)$, then v has degree zero in H.

Let e be an edge of H with ends u, v. Then (26) and (32) imply that if $f \in E(H) \backslash\{e\}$ is incident with v then $h(e, v)$ is strongly complete to $h(f, v)$. By (31), $G \mid(h(e) \cup h(e, v) \cup h(e, f))$ is an $h(e)$-melt, such that if (K, M, A, B) are as in the definition of a melt, then $K \subseteq h(e, v), M \subseteq h(e, u), A=h(e)$, $B \subseteq h(e, v) \cup h(e, u)$, every vertex of $h(e, v) \cap B$ has a neighbor in K, and every vertex of $h(e, u) \cap B$ has a neighbor in M (and, in particular, $h(e, v)$ is strongly anticomplete to $h(e, u))$. It follows from (21) and (26) that $h(e, v)$ is strongly complete to $h(v)$, and $h(e, v)$ is strongly anticomplete to $h(w)$
for every $w \in V(H) \backslash\{v\}$; and $h(e, v)$ is strongly anticomplete to $h(f, w)$ for every $f \in E(H) \backslash\{e\}$ and $w \in V(H) \backslash\{v\}$; and $h(e, v)$ is strongly anticomplete to $h(f)$ for every $f \in E(H) \backslash\{e\}$.

We may assume that $A_{v}=S_{1}(v) \cap L, A_{u}=S_{1}(u) \cap L, B_{v}=S_{2}(v) \cap$ $L, B_{u}=S_{2}(u) \cap L$, and $S_{1}(u) \cap S_{2}(v)=S_{2}(v) \cap S_{1}(u)=\emptyset$. Switching the roles of $A_{u} \cup A_{v}$ an $B_{u} \cup B_{v}$ if necessary, we may assume that $h(e) \subseteq S_{1}(v) \cup S_{1}(u)$.

- (25) implies that $h(e)$ is strongly complete to $B_{u} \cup B_{v}$,
- (26) implies that $h(e, v)$ is strongly complete to A_{v}, and strongly anticomplete to $L \backslash A_{v}$,
- By (16), (19) and (25), every vertex of $\left(L \cup\left(\bigcup_{e \in E(H)} h(e)\right)\right) \backslash\left(A_{u} \cup A_{v}\right)$ with a neighbor in $A_{u} \cup A_{v}$ is strongly complete to $h(e)$.

Thus, in view of (33), all the conditions of the definition of an H-structure are satisfied, and so G admits an H-structure, and therefore $G \in \mathcal{T}_{1}$. This completes the proof of 6.2.

We can now prove 3.4 , which we restate.
6.3 Let G be an elementary bull-free trigraph. Then either

- one of G, \bar{G} belongs to \mathcal{T}_{1}, or
- Gadmits a homogeneous set decomposition, or
- G admits a homogeneous pair decomposition.

Let us first remind the reader the main result of [1].
6.4 Let G be a bull-free trigraph. Let P and Q be paths of length three, and assume that there is a center for P and an anticenter for Q in G. Then either

- G admits a homogeneous set decomposition, or
- G admits a homogeneous pair decomposition, or
- G or \bar{G} belongs to \mathcal{T}_{0}.

Proof of 6.3. We may assume that G does not admit a homogeneous set decomposition or a homogeneous pair decomposition. Assume first that there are paths P and Q, each of length three, in G, and that there is a center for P and an anticenter for Q in G. By 6.4, either

- G admits a homogeneous set decomposition, or
- G admits a homogeneous pair decomposition, or
- G or \bar{G} belongs to \mathcal{T}_{0}.

So one of G, \bar{G} belongs to \mathcal{T}_{0}. But then G is not elementary, a contradiction. Consequently, no such paths P, Q exist in G, and therefore we may assume that either G or \bar{G} is unfriendly. Since one of the outcomes of 6.3 holds for G if and only if one of the outcomes of 6.3 holds for \bar{G}, we may assume that G is unfriendly. Since if G is a prism, then \bar{G} has no triangle, and therefore admits and H-structure with H being the empty graph, 4.2 implies that no induced subtrigraph of G is a prism.

If G is framed, then by $6.2, G \in \mathcal{T}_{1}$, so we may assume that G is not framed. It follows that no induced subtrigraph of G is a path of length three. So by 5.4, one of the following holds:

- G is not connected, or
- G is not anticonnected, or
- there exist two vertices $v_{1}, v_{2} \in V(G)$ such that v_{1} is semi-adjacent to v_{2}, and $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is strongly complete to v_{1} and strongly anticomplete to v_{2}.

Since G does not admit a homogeneous set decomposition, if G is not connected or G is not anticonnected, then $|V(G)|=2$ and $G \in \mathcal{T}_{1}$. Thus we may assume that there exist two vertices $v_{1}, v_{2} \in V(G)$ such that v_{1} is semi-adjacent to v_{2}, and $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is strongly complete to v_{1} and strongly anticomplete to v_{2}. Since G does not admit a homogeneous set decomposition, it follows that $\left|V(G) \backslash\left\{v_{1}, v_{2}\right\}\right|=1$. But then $G \in \mathcal{T}_{1}$. This proves 6.3.

References

[1] M. Chudnovsky, The Structure of bull-free graphs I- three-edge-paths with centers and anticenters, submitted for publication

[^0]: ${ }^{*}$ Most of this research was conducted during the period the author served as a Clay Mathematics Institute Research Fellow. Partially supported by NSF grant DMS-0758364.

