

Salix Finance Energy Efficient ICT Workshop – Nottingham Trent University

23rd September 2010

Our mission is to work with the public sector to reduce carbon emissions through investment in energy efficiency and renewable technologies.

Salix Finance - agenda

Programme

10.00 10.20	Decistration 9 Coffee
10.00 – 10.30	Registration & Coffee
10.30 – 10.40	Welcome & Energy Efficiency at Nottingham Trent Scott Brooks, Utility Engineer
10.40 – 11.10	Salix funding and ICT Paul Smyth, Head of Technical Services, Salix Finance
11.10 – 11.45	Energy Efficient Improvement Opportunities in ICT - Evidence from the SusteIT Project Peter James, Professor of Environmental Management, University of Bradford and Director, SusteIT
11.50 – 12.20	Case – Energy Efficient ICT at the University of Sheffield Chris Cartledge, Consultant (and former staff member)
12.20 – 12.50	Case – Energy Efficient ICT at Leeds Metropolitan University Roland Cross, Technology Projects Consultant, and Colin Pattinson, Professor of Mobile and Converging Technologies
12.50 – 13.50	Lunch

Salix Finance - agenda

13.50 – 14.20	Cost-Effective Green IT Measures Peter Hopton, representing the British Computer Society Data Centre and Green IT Specialist groups
14.20 – 15.20	Small group discussion, followed by brief plenary feedback Exchange of experience and ideas; How Estates and ICT staff can work together more effectively to identify and implement Salix-funded projects
15.20 – 15.30	Developments at Salix Finance to support client delivery
15.30 (approx)	End

Salix Finance

Introduction

Salix Finance - 09/10 delivery

09/10 Project delivery

77 20						
	Year to 31 March 2010					
	Project	Value	Annual			
	Numbers	committed	CO2	Life ti me CO2	Annual Fin.	Lifetime Fin.
	(No.)	(£)	(tonnes)	(tonnes)	Sa vi ng (£)	Sa vi ng (£)
Recycling Fund	946	18,853,603	31,992	450,146	5,509,503	76,226,621
_						
Loans (SEELS)	1,435	57,380,609	84,220	1,218,974	14,016,728	202,047,250
Loans						
Wales (SEELS)	235	5,280,000	7,435	112,801	1,180,399	17,888,954
			400 000			
Total	2,616	81,514,212	123,647	1,781,921	20,706,630	296,162,825

09/10 Recycling Fund - by client spend

#	Project Type	Number of	Tech Cost
		Projects 🔻	Ţ1
1	Lighting - Upgrades	216	£4,349,858
2	Voltage Reduction	98	£2,789,674
3	Boilers	87	£1,728,454
4	Motor Controls	110	£1,561,205
5	Heating	81	£1,508,620
6	Insulation - Building Fabric	129	£1,408,705
7	Building Management Systems	70	£1,255,643
8	Computers and IT	22	£1,227,076
9	Cooling	21	£1,074,077
10	Lighting - Controls	76	£808,643

09/10 Recycling Fund - by payback

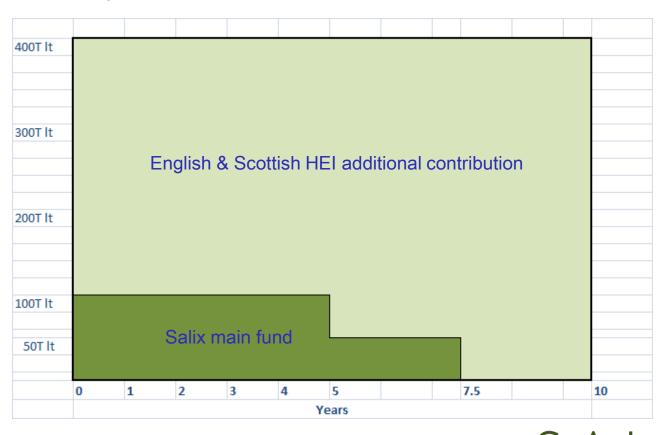
#	Project Type	Number of Projects	Technology Payback (yrs 📢
1	Computers and IT	22	1.71
2	Motor Controls	110	1.75
3	Office Equipment	1	2.11
4	Insulation - Pipework	109	2.19
5	Time Switches	27	2.42
6	Swimming	22	2.42
7	Street lighting	9	2.48
8	Boilers	87	2.79
9	Building Management Systems	70	2.92
10	Heating	81	2.95

09/10 Recycling Fund - by annual carbon saved (tonnes)

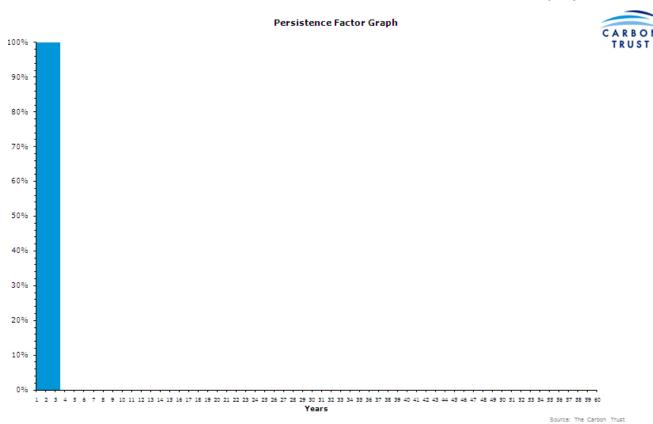
#	Project Type	Number of Projects •	Annual CO₂ Savings (t) ↓↓
1	Lighting - Upgrades	216	6,031.74
2	Voltage Reduction	98	5,225.96
3	Motor Controls	110	4,962.03
4	Computers and IT	22	4,368.92
5	Boilers	87	3,134.91
6	Heating	81	3,080.51
7	Building Management Systems	70	2,550.65
8	Insulation - Pipework	109	2,323.89
9	Insulation - Building Fabric	129	2,274.32
10	Cooling	21	1,597.37

09/10 Recycling Fund - by spend to save 1 Annual Tonne of carbon

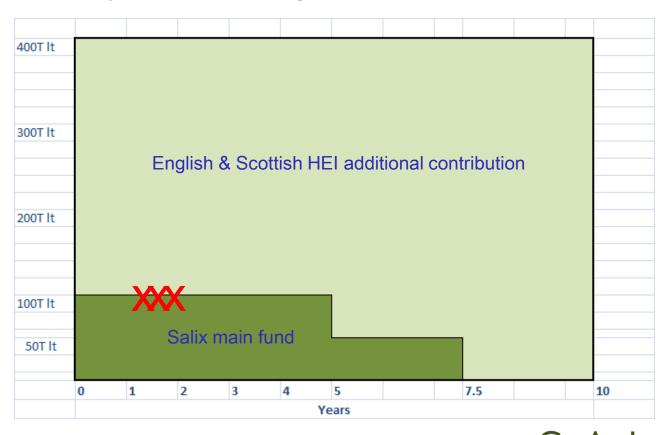
#	Project Type	Number of Projects	£ per Annual TCO2 Saved
1	Computers and IT	22	280.86
2	Motor Controls	110	314.63
3	Insulation - Pipework	109	318.19
4	Office Equipment	1	422.92
5	Time Switches	27	447.22
6	Street lighting	9	452.97
7	Swimming	22	455.25
8	Hot Water	14	458.34
9	Heating	81	489.73
10	Building Management Systems	70	492.28


09/10 Recycling Fund - by lifetime cost of carbon

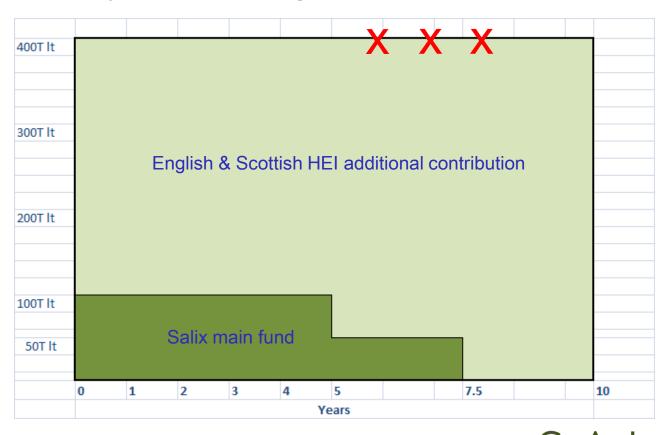
#	Project Type	Number of	Cash per tonne
		Projects	saved life time
8	Street lighting	9	38.44
9	Ventilation	6	39.16
10	Heating	81	42.67
11	Combined Heat and Power	2	43.08
12	Boilers	87	45.15
13	Renewable Energy	2	45.29
14	Lighting - Upgrades	216	45.84
15	Insulation	2	45.92
16	Time Switches	27	48.92
17	Motor Replacement	7	49.73
18	Computers and IT	22	51.85


10/11 Salix compliance rules & Carbon Trust Persistence Factors

Make selections from th	e white boxes			
Technology Group	Building technologies		Maintenance Type	Good Practice Maintenance
Main Technology	Equipment		Max Life, User Field	60
Sub Technology	Computers, printers and	d office equipment	▼ Discount Rate	3.50%
			Financial Persistence	
Persistence Factor	3.00		Factor	2.90
Useful Life	3		Operational Degradation Type	No deterioration
FACTOR 1 Inherent Degradation	100%		FACTOR 2 Operational degradation	100%
Examples of Carbon				
Reduction		Energy Star compu	ters, printers and office eq	uipment
Investments:		•	•	



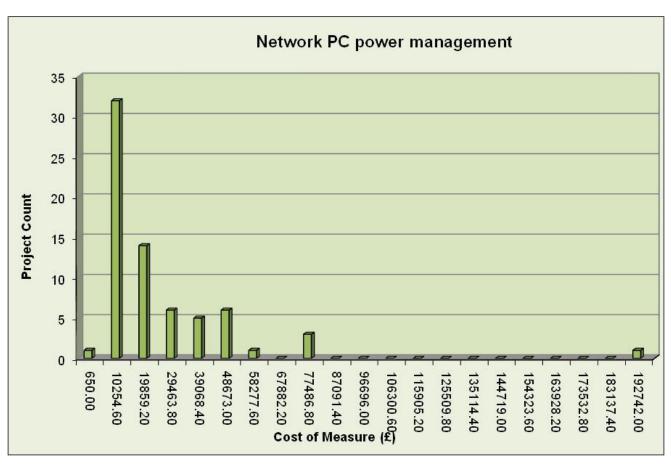
Energy type	p/kWh	Project Type	Technology - Work Type	Payback in years	PF	tCO₂ LT	£/tCO ₂ LT	Compliancy
Gas	2.25	Insulation - building fabric	Cavity wall insulation	4.50	30.00	1,633.92	18.36	Compliant
Energy type	p/kWh	Project Type	Technology - Work Type	Payback in years	PF	tCO ₂ LT	£/tCO ₂ LT	Compliancy
Electricity	12.00	Computers & IT solutions	Virtualisation	1.36	3.00	90.00	100.00	Compliant
Electricity	10.00	Computers & IT solutions	CRT to flat screen LCD	1.63	3.00	90.00	100.00	Compliant
Electricity	8.00	Computers & IT solutions	Thin computers	2.04	3.00	90.00	100.00	Compliant
Electricity	10.00	Computers & IT solutions	Network PC power management	1.63	3.00	90.00	100.00	Compliant
Electricity	8.00	Office equipment	Office equipment improvements	2.04	3.00	90.00	100.00	Compliant

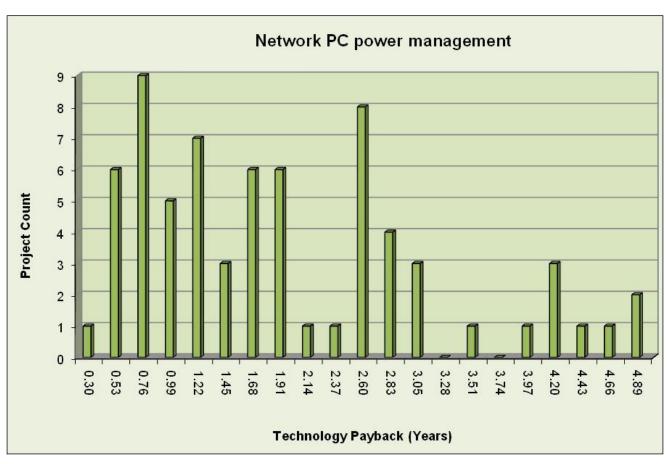

10/11 Salix compliance rules using Carbon Trust Persistence Factors

Energy type	p/kWh	Project Type	Technology - Work Type	Payback in years	PF	tCO₂ LT	£/tCO ₂ LT	Compliancy
Gas	2.25	Insulation - building fabric	Cavity wall insulation	4.50	30.00	1,633.92	18.36	Compliant
Energy type	p/kWh	Project Type	Technology - Work Type	Payback in years	PF	tCO ₂ LT	£/tCO ₂ LT	Compliancy
Electricity	12.00	Computers & IT solutions	Virtualisation	5.44	3.00	22.50	400.00	Additional contribution
Electricity	10.00	Computers & IT solutions	Thin computers	6.53	3.00	22.50	400.00	Additional contribution
Electricity	8.00	Computers & IT solutions	CRT to flat screen LCD	8.16	3.00	22.50	400.00	Additional contribution

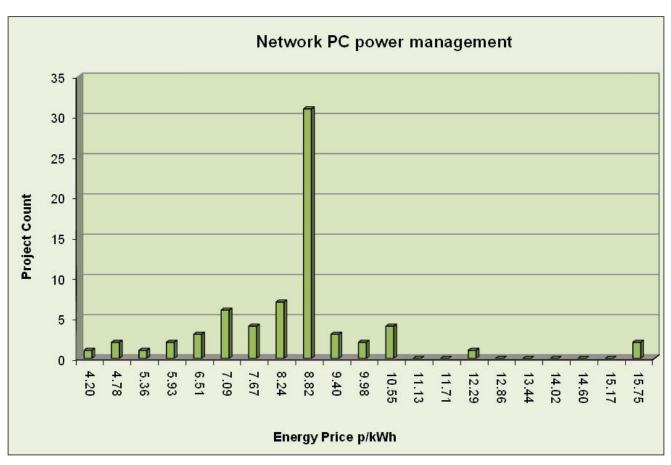
10/11 Salix compliance rules using Carbon Trust Persistence Factors

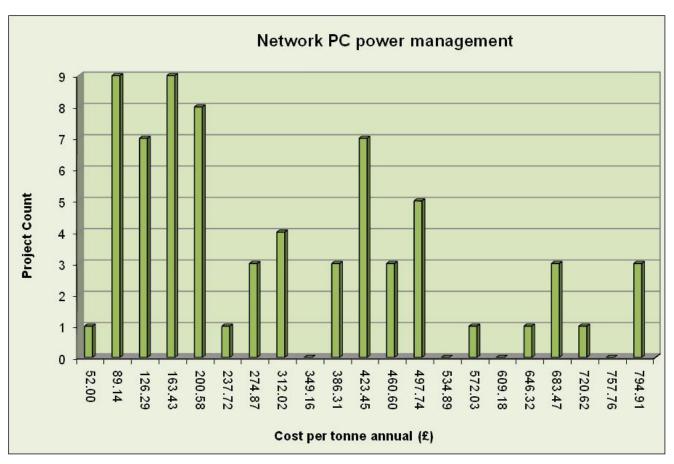
10/11 Recent work type additions with an ICT focus


Project Type	Work Type	New PF (Basic maintenanc(▼	Status/Comments
Computers & IT solutions	Network PC power management	3.00	
	CRT to flat screen LCD	3.00	Technology to be placed 'under watch'
	Virtualisation	3.00	Technology to be placed 'under watch'
	Thin computers	3.00	Technology to be placed 'under watch'
	Uninterruptible Power Supplies	18.00	Added in for V24
	Free Cooling for ICT	13.68	Added in for V24
	Evaporative cooling for ICT	13.68	Added in for V24


Salix Finance

Network PC Power Management





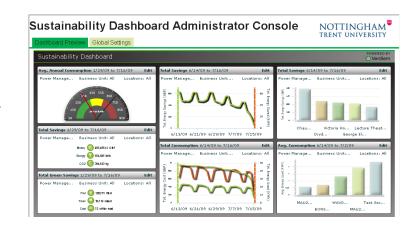
Project knowledge - Remote Switching of Computers at <u>University of Aberdeen</u>

AFTER:

- Remote Switching installed
- Load reduced by 66% for each pc
- DIT still able to apply updates at night
- Project cost £68,558
- £37,000 saving / year
- 1.8 year payback
- 222.7 tCO₂ saved / year

BEFORE:

- 6,000 pc's potentially on overnight and at weekends
- £216,000 / year running costs


Project completion - Aug 2009

Project knowledge - PC Shutdown at Nottingham Trent University

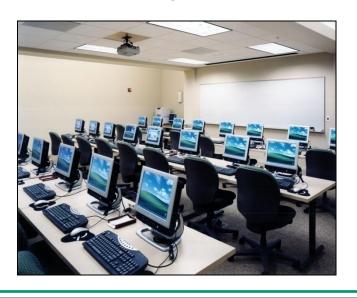
BEFORE:

- Currently have 6500 PC's across the University
- Using in the region of 2,280,000kWh per annum

AFTER:

- Working with Verdiem to install monitoring and shut down software to ensure that all PC's are shut down when not in operation
- •Initial calculations indicate annual energy savings of 1,200,000kWh
- Forecasted monetary savings of £90000/annum
- Forecasted Carbon Savings of 644 tonnes per annum
- Payback 2.73 years

Project completion - October 2009

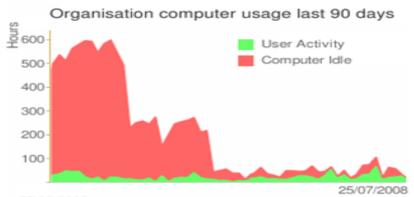


Project knowledge - PC Switch-Off at the University of West England

BEFORE:

- 3,500 staff and student PCs with no power management
- Annual electricity use 700,000 kWh

AFTER (anticipated savings):


- Verdiem Surveyor power management system to be installed, approximate cost £47k (including 5 years maintenance)
- Monitors the activity of all PCs and uses specified sleep and shut down settings to control computers and screens
- Projected annual electricity cut to under 500,000 kWh
- 112 tonnes of CO₂ saved per year
- £20,000 electricity costs saved per year
- 2.5 year payback based on predicted savings

Project knowledge - Data Synergy POWERMAN at the <u>University of Sussex</u>

BEFORE:

- 3,500 PCs, many in general areas
- Poor control over user behaviours
- Non-standard hours
- Difficulty in campaigning with a transient population
- Need for IT to maintain control regarding software updates etc
- · Lack of data
- "Typical" wastage shown below:

AFTER:

- Fully programmable with "intelligent" parameters and data management capabilities
- Fully compatible with OS
- Cost: £14,863 for 3,500 PCs
- £29,726 saving / year projected
- Payback 0.5 years
- 203 tCO₂ saved / year

Microsoft Excel		
<u>V</u> iew <u>I</u> n	nsert F <u>o</u> rmat <u>T</u> ool	ls <u>D</u> ata !
🏊 🗐 🚄	🎎 🗈 选 -	- 7 - 🥯
→ f √ 08/07/2008		
4	В	С
	TotalConsumption	ActiveCons
11/06/2008	33.3	17.475
12/06/2008	33.3	14.9625
13/06/2008	34.8375	17.1375
14/06/2008	21.6	0.0375
15/06/2008	19.5	0
16/06/2008	36.75	15
17/06/2008	40.9125	16.3875
18/06/2008	41.025	18.3
19/06/2008	33.1125	15.375
20/06/2008	32.1375	16.35

Project knowledge - Data Synergy POWERMAN at the University of Sussex

Supporting comments

- Rapid management of power features from a central location
- Configure policies per user, per group and per computer
- Separate policy for when nobody is logged on
- Options to sleep, hibernate, shutdown or logout idle computers
- Schedule wake, sleep, shutdown and hibernate to match user patterns and system updates
- Allow users to wake their own PC for remote access with a simple hyperlink
- Allow approved users to override or opt-out of management policy
- Works with Windows® power management to ensure no accidental loss of user data
- Requires no user intervention or site visit to be effective and is practically invisible to users
- Automatically reports the usage profile of each PC in the organisation

Client - <u>University of Sussex</u> Tel - 01273 678262 Client contact - Pat Pica Email - p.pica@sussex.ac.uk

10/11 Network PC power management experience

10/11 Network PC power management issues

- Careful consideration not to over count savings
- Are the savings being projected by SW accurate / relevant to your kit
- What to include in terms of up keep
- Proprietary packages over that of in-house solutions
- User engagement / satisfaction

Salix clients have plenty of experience, how best should this knowledge this be pooled & shared?

Salix Finance

Evaporative & Free Cooling

<u>10/11 Evaporative & Free Cooling – client experience</u>

Manchester University	
Napier University	
Norwich City Council	
Oxford Brookes University	
Portsmouth University	
The Open University	
Torfaen Council	
University College London	
University of Nottingham	
University of St Andrews	
University of West England	
Warwick University	
Worcester University of	
York University	

Not all for ICT applications + some air com improvements

Project knowledge - Chiller With Free Cooling at <u>University of Aberdeen</u>

AFTER:

- 2 chillers changed out for units with free cooling
- Free cooling capacity in each of the new machines is 50 kW at an ambient temperature of 5 deg C
- Project cost £92,151
- £18,000 saving / year projected
- 88.3 TCO₂ saving / year projected
- Payback 4.9 years

BEFORE:

- 3 x 120kW Cooling Chillers, with no free cooling facility
- £54,000 / year running costs

Project completion - Sep 2009

Project knowledge - Data Centre Free Cooling by <u>Bristol City Council</u>

Salix funded free cooling option at The Council House:

- £120,840 investment (inc. manage. fee);
- Free cooling loop cools via the moat, with efficient dry cooler backup, EC fans, full BMS control & 'hot aisle containment';
- Cooling load reduced by 77% to 7kW;
- £23,992 saving
- Payback 5 years
- 112 tCO₂ saving

Within budget cooling option

- DX chiller plant cheap but inefficient;
- Running costs £31,000/year;
- No free cooling option.

Project commissioned - June 2009

Project knowledge - Data Centre Free Cooling by <u>Bristol City Council</u>

Project knowledge - Server Room Eco Cooling by Warwickshire County Council

AFTER:

- 2 Eco Cooler Units.
- Total Cost £18,966
- Electricity use reduced by 58,824 kWh/year
- £5,000 saving / year @ 8.5p/unit.
- Payback 3.8 years
- Saving 30.8 tonnes CO₂ / year

BEFORE:

- 3 Air Conditioning Units cooling and re-circulating server room air.
- £5,450/ year running costs

Salix Finance

Servers

Project knowledge - High Performance Computing at Dept of Physics and Astronomy

AFTER:

- Servers-110 quad core processor in 55 servers.
- Power requirement of servers 15 kW
- Total power for rooms 35kW)
- Project cost £83,753 .
- £77,231.96 saving/year projected.
- 560.78 tonnes CO2/year saved.
- Payback 12 months.

BEFORE: (HPC servers + auxiliary systems)

- Servers 436 single core processor in 114 servers.
- Power requirement of servers 65 kW. (Total power for rooms 153kW PUE 2.3)
- 1,336,608 kWh £100,139/yr running costs.

Client contact - Chrispal Anand

Tel - 0116 252 2308

Email - cpa4@le.ac.uk

Salix Finance

Uninterruptible Power Supplies & HV transformers

10/11 New work types with an ICT focus – UPS

Material from recent HEEPI event at Cardiff University – 7th Sept10

Uninterruptible Power Supplies (UPS)

- UPS losses vary with load (%load vs %efficiency curve)
- Over provisioning?
- ► Actual efficiency = 80-95%
 - Est. ROI for new installation <1year
 - · Replacement not so good, UPS' life 3-5 yrs only?

UPS Efficiencies

- Big is better (90%, 12kVA, 95%,160kVA)
- Effficiency curve
 - ▶ Full load 95%
 - ► Half load (small UPS 80%, large 92%)
- So, modular design can maximise load %
- Average kW for a cluster when 100% used Not the same as 100% in benchmark
- Need to balance phases, else worse

arcca

With kind thanks to Hugh Beedie, Prof Martyn Guest & Dr Christine Kitchen

Project knowledge - UPS upgrade for main servers - IT Department, Cranfield University

AFTER:

- Riello 160 kVA UPS installed by Keysource
- 92% efficient using IGBT technology
- up to 98% in "Eco" (line interactive) mode
- With partial load 86% efficiency so far
- Project cost £71k
- £28k saving / year projected
- 95 tonnes CO2/year saved
- Payback 2.6 years

BEFORE:

- Chloride UPS, 93 kW load 72% efficient
- With partial load 50% efficient
- £124k /yr running costs

Project completion - June 2010

Project knowledge - UPS upgrade for main servers - IT Department, Cranfield University

Supporting comments

- Energy calculations based on UPS running 8,760 hours per year.
- Electricity price 15.75 p/kWhr

Supplier - Keysource Ltd www.keysource.co.uk

Model No - Riello Multi Dialog 160 kVA

Client - Cranfield University
Tel - 01234 750111

Client contact - Gareth Ellis Email - r.g.ellis@cranfield.ac.uk

10/11 New work types with an ICT focus – HV transformers

Material from recent HEEPI event at Cardiff University – 7th Sept10

HV Transformers

- Power Conversion before it gets to your room, you lose 2-5%
- HV Transformer Efficiency=95% or 98%
- Return On Investment (ROI)?
 - ► New installation, ROI = 1 month
 - ► Replacement, ROI = 1 year
 - ► Lifetime of investment = 20+ yrs !!!

HV Transformer

98% efficiency

arcca

With kind thanks to Hugh Beedie,
Prof Martyn Guest & Dr Christine Kitchen

Project knowledge - 500kVA Transformer replacement by Keele University (Lindsay Hall Sub Station)

BEFORE:

- 1962 transformer to be replaced
- No load loss (iron) 1300W / Load Loss (cu) 6860W
- Annual energy throughput 850,000kWh
- £85,000/year running costs
- Straight replacement @ circa £10K

AFTER:

- New low loss transformer + cables with 30 year life and costing £20,811
- No load loss (iron) 560W / Load Loss (cu) 5000W
- 7.5% Voltage optimisation & 6600KW efficiency savings
- Annual consumption reduced to 780,000kWh
- £ 6,375 annual savings giving a 3.3 year payback
- 35T CO₂ annual savings.

Project completion date - August 2009

Project knowledge - 500kVA Transformer replacement by Keele University (Lindsay Hall Sub Station)

Supporting comments

- Original transformer was installed in 1962 and had typically losses of those manufactured at the time
- Secondary voltage levels were over 245 volts even on the minimum tap setting
- Replacing the transformer with a low loss high efficiency one with a reduced secondary level of **225 volts** approx, has given good transformer efficiency savings as well as those due to voltage reduction

In addition

- We have a new transformer including new oil with a projected 30 year life
- A fully rated solution that is 'future proofed' with variable output voltages, by means of an off load 6 position HV tap change, +7.5%, +5%, +2.5%, 0, -2.5%, -5%.
- No additional space was required as n is a direct replacement
- Full installation and backup service provided by established HV contractor:
 Midlands Power Networks Ltd

Client - Keele University
Tel - 01782 733467

Client contact - <u>Martyn Wilde</u> Email - <u>m.j.wilde@kfm.keele.ac.uk</u>

10/11 New work types with an ICT focus – general issues & opportunities

General issues

- Refresh rates, replacement & economic life
- Salix compliance rules
- How to ensure replaced equipment is retired & energy/carbon is saved
- How to protect the 'freed up' savings

Opportunities

- Purchase equipment above and beyond current practice e.g. energy saving recommended (Salix funding for additional part)
- IT department are aware of energy budgets / sub metering
- Sharing knowledge (expanded Salix website area for clients)

10/11 New work types with an ICT focus

- In addition to Network PC power management & cooling, it is considered that future opportunities may exist for:
 - Energy Efficient Server Replacement
 - Energy Efficient File Storage Replacement
 - Additional cost to upgrade new LCD monitors to LED
 - Incoming transformers to be replaced or have improved specification to become 'low loss' or 'super low loss' solutions
 - What else?

Should clients be interested in any of the above options, the technology can be added to the Salix list in the normal way

Salix Finance

Close and thank you!

SAL

25 Southampton Buildings, London WC2A 1AL t: 020 3043 8800 f: 020 3043 8799 info@salixfinance.co.uk www.salixfinance.co.uk

