On Steiner's Problem with Rectilinear Distance Author(s): M. Hanan
Source: SIAM Journal on Applied Mathematics, Vol. 14, No. 2 (Mar., 1966), pp. 255-265
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2946265
Accessed: 30/09/2010 18:02

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Journal on Applied Mathematics.

ON STEINER'S PROBLEM WITH RECTILINEAR DISTANCE*

M. HANAN \dagger

1. Introduction. This paper is concerned with the following type of problem. Given n cities, construct a network of roads of minimum total length so that a traveler can get from one city to any other. Roads may cross each other outside of the city limits and these points are called junction points. (Roads which cross within the cities, however, will not be referred to as junctions.) It is assumed that junction points add no extra cost to the construction of the network so that there may be as many as necessary to minimize the total length. Usually, the roads are straight-line connections and the distance between two points is the Euclidean distance. In this paper, however, the rectilinear distance is used. The rectilinear distance $d\left(p_{1}, p_{2}\right)$ between two points p_{1} and p_{2} is defined as

$$
d\left(p_{1}, p_{2}\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

where (x_{i}, y_{i}) are the coordinates of p_{i}.
Rectilinear distance has application in printed circuit technology where n electrically common points must be connected with the shortest possible length of wire and the wires must run in the horizontal and vertical directions. The junction points of the wires are analogous to the abovementioned road junctions.

Actually this is a well-known problem due to Steiner (cf. [2] and [6]) and is now formally stated.

Steiner's Problem. Given n points in the plane find the shortest tree(s) whose vertices contain these n points.

A tree with m vertices is a connected graph with $m-1$ edges. (For graphtheoretic terminology see Berge [1].) Several necessary conditions about the solution of this problem are known when the distance between two points is taken to be the Euclidean distance. In this paper several necessary conditions are given for any n, using rectilinear distance. Some of these conditions are analogous to the problem with Euclidean distance, some hold only for rectilinear distance, and some are invariant with respect to the metric. Exact solutions are constructed for $n \leqq 5$.

Since rectilinear distance is not invariant with respect to rotations in the plane, the statement of Steiner's problem must be properly interpreted. Hence it is assumed throughout this paper that when n points in the plane

[^0]are given, a Cartesian coordinate system is also given and the rectilinear distance is defined with respect to this coordinate system.

We now state two problems which are related to Steiner's problem and whose solutions we will have occasion to use in this paper. To distinguish these we refer to Steiner's problem as S_{n} and we now define P_{n} and T_{n}.
P_{n} : Given n points $\left(p_{1}, \cdots, p_{n}\right)$ in the plane, find a point q such that the sum of the distances from q to $p_{i}, i=1, \cdots, n$, is a minimum.
$T_{n}:$ Given n points in the plane, find the shortest tree whose vertices are these n points.
(We have departed slightly from the notation used by Melzak [6].) The P_{n} problem has been solved for both Euclidean distance (cf. [7]) and rectilinear distance (cf. [3]). The T_{n} problem has also been solved (cf. [5] and [8]) and the method of solution is independent of the metric used.

2. Steiner's problem with three points.

2a. Euclidean distance. Given three points in the plane, let T be the triangle whose vertices are these three points. If every angle of T is less than 120°, then the point q of P_{3} lies inside T and the lines from p_{i} to $q, i=1,2$, 3 , meet at 120° at q. If an angle of T is greater than or equal to 120°, then q coincides with that vertex. (See [4] for a proof and a construction of the solution.) ${ }^{1}$ It is not difficult to see that P_{3} yields the same solution as S_{3}. Also, if an angle of T is greater or equal to 120°, then the solution of S_{3} is identical to the solution of T_{3}. See Fig. 1.

2b. Rectilinear distance. Using rectilinear distance, the solution to S_{3} (or equivalently P_{3}) is simpler to construct than the corresponding problem using Euclidean distance. In place of the triangle T, we consider the enclosing rectangle R which we now define, in general, for n points.

Definition 1. Given n points in the plane the enclosing rectangle R is the smallest rectangle whose sides are parallel to the x and y axes and which includes the n points either within or on its boundary.

We refer to the solution of the three-point problem throughout this paper and therefore state the result as a separate theorem.

Theorem 1. Let (x_{i}, y_{i}) be the coordinates of the given points $p_{i}, i=1,2,3$. The q-point of P_{3} is located at $\left(x_{m}, y_{m}\right)$ where x_{m} and y_{m} are the medians of $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, respectively.

As stated earlier, this special case of P_{n} is solved in [3]. The following theorem relates P_{3}, S_{3} and T_{3}. Let $d_{S_{n}}, d_{P_{n}}$, and $d_{T_{n}}$ be the total (rectilinear) distance in the solutions of S_{n}, P_{n}, and T_{n}, respectively.

[^1]

Fig. 1
Theorem 2. The solutions of S_{3} and P_{3} are identical; in fact,

$$
\begin{equation*}
d_{s_{3}}=d_{P_{3}}=\frac{1}{2} P(R) \leqq d_{r_{3}}, \tag{1}
\end{equation*}
$$

where $P(R)$ is the perimeter of the enclosing rectangle R. The equality sign holds in (1) only if q is coincident with some p_{i}, i.e., $\left(x_{m}, y_{m}\right)=\left(x_{i}, y_{i}\right)$ for some $i=1,2,3$.

The proof of Theorem 2 is straightforward. It follows from Theorem 1 and the fact (which we prove later for S_{n}, in general) that the minimum tree solution to S_{3} can have either zero or one additional vertex. See Fig. 2.
3. Necessary conditions on a solution to S_{n}. We use the following notation: p_{i} are the given n points and $q_{i}, i=1, \cdots, k$, are the additional k vertices in the solution G of S_{n}. When we are referring to the vertices of G, we speak of p-vertices or q-vertices. When we are referring to the location of these vertices in the coordinate system we speak of p-points or q-points. We use the notation p_{i} (or q_{i}) interchangeably for a vertex of G or the location of that vertex. Its meaning should be clear from the context. We let P be the set of p-points or p-vertices and Q be the set of q-points or q-vertices. When we speak of a vertex $a_{i}, i=1, \cdots, n+k$, we mean either p_{i} or q_{i}. We let $w\left(a_{i}\right)$ be the local degree of the vertex a_{i}, that is, the number of vertices adjacent to a_{i} and $C\left(a_{i}\right)$ be this set of vertices. (Two vertices are adjacent if they have an edge in common.) The following essentially sums up the present knowledge about the solution to S_{n} using Euclidean distance (cf. [2] and [6]).
(1) $w\left(q_{i}\right)=3, \quad 1 \leqq i \leqq k$,
(2) $w\left(p_{i}\right) \leqq 3, \quad 1 \leqq i \leqq n$,
(3) $0 \leqq k \leqq n-2$,
(4) each $q_{i}, 1 \leqq i \leqq k$, is the q-point of $C\left(q_{i}\right)$.

These conditions are easy to prove. In fact (4) can be replaced by the stronger statement that every connected subtree of a solution G of S_{n} is a minimum tree of those $m \leqq n$ points.

Fig. 2
The analogous necessary conditions on a solution G of S_{n} using rectilinear distance are:
(1) $w\left(q_{i}\right)=3$ or $4, \quad 1 \leqq i \leqq k$,
(2) $1 \leqq w\left(p_{i}\right) \leqq 4, \quad 1 \leqq i \leqq n$,
(3) $0 \leqq k \leqq n-2$.

Conditions (1) and (2) are almost obvious. In fact if $w\left(a_{i}\right)=4$, then two pairs of vertices of $C\left(a_{i}\right)$ must be collinear and a_{i} is at the intersection of the straight lines connecting those pairs. See Fig. 3.

To prove the inequality on the right side of (3), assume that there are k q-vertices in G and find the least number of p-vertices possible. Assume the worst case, that is, $w\left(q_{i}\right)=3$ and the q-vertices form a subtree with $k-1$ edges. Since each edge counts twice in the total degree of the q-vertices,

$$
n \geqq 3 k-2(k-1)=k+2,
$$

or

$$
k \leqq n-2
$$

To show that zero is a true lower bound, we can easily construct an example where $k=0$. Since $\frac{1}{2} P(R)$ is a lower bound for $d_{s_{n}}$ and, in the example shown in Fig. 4, $d_{s_{n}}=\frac{1}{2} P(R)$, we have found a minimum tree with $k=0$.

We state condition (4) as a separate lemma for future reference.
Lemma 1. Given n points in the plane, let G be a solution of S_{n}. If G^{\prime} is a connected subgraph of G with m vertices, then G^{\prime} is a solution to S_{m}.

The following theorem has an analog in Euclidean geometry where the triangle T replaces the rectangle R. However, we have not seen it stated in the literature.

Theorem 3. If q is any q-vertex of G with degree three, then q can be the only vertex of G inside the enclosing rectangle R of $C(q)$.

We note first that there may be vertices (including q itself) on the boundary of R. To prove the theorem, assume the contrary, that is, assume that there is another vertex a_{m} inside R. There must exist some path from

Fig. 3

Fig. 4
a_{m} to one of the vertices $a_{i} \in C(q)$, say a_{1}. Now consider the problem S_{3} consisting of the three points $\left\{a_{m}, a_{2}, a_{3}\right\}$ and let R_{1} be the enclosing rectangle of these three points. Since a_{m} lies inside $R, \frac{1}{2} P\left(R_{1}\right)<\frac{1}{2} P(R)$, so that we can replace the subtree on the vertices (a_{1}, a_{2}, a_{3}, q) with the new subtree on ($a_{m}, a_{2}, a_{3}, q_{1}$), where q_{1} is the new q-point. This subtree is connected to the rest of the graph by the path from a_{m} to a_{1}. Hence we have found a new graph G_{1} with a smaller total distance than G, contradicting the hypothesis that G is a solution of S_{n}.

In general, a solution G to S_{n} is not unique, that is, there is more than one set Q which yields a minimum tree. Let $N(n, k)$ be the number of sets Q. The main result of Melzak [6] is that $N(n, k)$ is finite for all n and k in Euclidean geometry and there exists a finite sequence of Euclidean constructions yielding all minimizing trees of the problem S_{n}. In rectilinear geometry this is not true. (We will give an example in $\S 4$ where $N(4,2)$ is infinite.) Hence we cannot guarantee that we can find (by construction) all solutions G to S_{n}. However, we now prove a theorem which does guarantee finding a finite subset of solutions. The theorem proves, in effect, that there always exists a solution G such that all the vertices in the set Q are located at a predetermined finite set of possible locations.

Theorem 4. Let $\left\{x_{p}\right\}$ and $\left\{y_{p}\right\}$ be the sets of x and y coordinates of the given n p-points. If $\left(x_{q_{j}}, y_{q_{j}}\right)$ are the coordinates of any vertex $q_{j} \in Q$, then there exists a solution G to the problem S_{n} such that $x_{q_{j}} \in\left\{x_{p}\right\}$ and $y_{q_{j}} \in\left\{y_{p}\right\}$ for all $j=1,2, \cdots, k \leqq n-2$.

If straight lines are drawn parallel to the x and y axes through all the given points, a grid is imposed on the plane. Theorem 4 states that there exists a solution G such that all the q-vertices are on the intersections of
these grid lines. Let I be the set of intersection points or, when referring to the vertices, the set of vertices of G which are located at these intersections. By definition, $P \subset I$. For any $q \in Q$, if $C(q)$ contains only p-vertices then $q \in I$. This last statement is an immediate consequence of Theorem 1 and Lemma 1 when $w(q)=3$ and is obvious when $w(q)=4$.

To facilitate the proof of Theorem 4, we first prove two lemmas.
Lemma 2. Let G be any solution of S_{n} and let q_{j} be any vertex in Q such that $C\left(q_{j}\right)$ contains two vertices in the set I, say i_{1} and i_{2}. If $q_{j} \notin I$, then a solution G^{\prime} can be obtained from G such that there is no vertex of G^{\prime} located at the point q_{j} and if a vertex q_{j}^{\prime} of G^{\prime} is connected to both i_{1} and i_{2} then $q_{j} \in I^{\prime}$.

Lemma 2 states, in effect, that given a tree G, certain of the q-vertices can always be "moved" to new locations which are at the intersections of the grid. We first note that if $w\left(q_{j}\right)=4$ then clearly $q_{j} \in I$, so we assume that $w\left(q_{j}\right)=3$. Let i_{1}, i_{2}, and a be the three vertices of $C\left(q_{j}\right)$. If $a \in I$ then $q_{j} \in I$ (Theorem 2 and Lemma 1) so that $a \in Q$. Hence let us call this vertex q_{1}. The locations of these vertices with respect to q_{j} must be essentially as shown in Fig. 5. (We have drawn the connection from q_{j} to i_{2} in the way shown for future use.)

By Lemma 1 and Theorem 1, at least one of the vertices i_{1} or i_{2} must be on the horizontal line through the point q_{j}. (Clearly the figure can be rotated through an angle of $m \pi / 2, m=1,2,3$. There is, of course, no loss of generality in assuming this configuration.) Assuming that i_{1} is the vertex on this horizontal line, then i_{2} can be anywhere in the quadrant $x>x_{q_{j}}$ and $y \geqq y_{q_{j}}$. Again, by Lemma 1 and Theorem 1, at least one vertex of $C\left(q_{1}\right)$, say a_{1}, must lie on the line $y=y_{q_{1}}$. Without loss of generality, assume that a_{1} is to the right of q_{1}. There are now two possibilities which must be considered: (i) a_{1} is to the right of i_{2}, and (ii) a_{1} is in the interval between q_{j} and i_{2}.

Considering (i) first, the line joining q_{j} to q_{1} can be moved parallel to itself to the line $x=x_{i_{2}}$ as indicated in Fig. 6. By making this move, the new graph G^{\prime} is also a connected tree and its length is the same as G. Hence G^{\prime} is also a solution to S_{n}. Clearly $q_{j}^{\prime} \in I$ and there is no vertex of

Fig. 5

Fig. 6
G^{\prime} located at the point q_{j}. The graph G^{\prime} may have more, fewer, or the same number of vertices as the original graph G. For example, if i_{2} were on the line $y=y_{q_{j}}=y_{i_{1}}$, then no q-vertex of G^{\prime} would be generated at the point designated q_{j}^{\prime} since this point would be occupied by i_{2}. Also if $w\left(q_{i}\right)=3$ then G^{\prime} has no vertex at q_{1} and if $w\left(q_{1}\right)=4$ then G^{\prime} has vertices both at q_{1} and q_{1}^{\prime}. This completes the proof of Lemma 2 for the case (i).

We now examine case (ii). First, if $a_{1} \in I$, we move the line joining q_{j} to q_{1} parallel to itself to the line $x=x_{a_{1}}$ so that $q_{j}^{\prime} \in I$ and there is no vertex of G^{\prime} at the point q_{j}. Now assume $a_{1} \in Q$ and $a_{1} \notin I$. It is not difficult to see that no vertex in $C\left(a_{1}\right)$ can be in the region $y>y_{a_{1}}$. For, referring to Fig. 7, this implies that the subtree connecting this vertex to $\left\{q_{j}, q_{1}, a_{1}\right\}$ is not minimum, contradicting Lemma 1. Hence one vertex of $C\left(a_{1}\right)$, say a_{2}, must be on the line $y=y_{a_{1}}$ and to the right of a_{1}. We can now use the same arguments as above, with a_{2} replacing a_{1}, to find another vertex a_{3} on the line $y=y_{a_{1}}=y_{a_{2}}$ and to the right of a_{2}. Continuing this argument, the process must eventually end. Either $a_{l} \in P$ or a_{l} is to the right of i_{2}. In either case we can move the line joining q_{j} to q_{1} such that a tree G^{\prime} is generated with a vertex $q_{j}^{\prime} \in I$ and no vertex at the point q_{j}. (Actually we can prove a stronger result, that is, $l \leqq 2$, but this is not essential to the proof of the Lemma.) This completes the proof of Lemma 2.

Lemma 3. If Q_{1} is the set of vertices, which are not in I, of a minimum tree G then either Q_{1} is empty or it contains at least one vertex adjacent to two vertices in I.

Assume Q_{1} is nonempty and let k_{1} be the number of vertices in Q_{1}. To prove the lemma, assume the contrary, that is, assume all vertices in Q_{1} are adjacent to at most one vertex in I. Let $E\left(Q_{1}\right)$ be the number of edges in the subgraph with the Q_{1} vertices. Since $w\left(q_{i}\right) \geqq 3$ for all $q_{i} \in Q_{1}$,

$$
E\left(Q_{1}\right) \geqq \sum_{i=1}^{k_{1}} \frac{w\left(q_{1}\right)-1}{2} \geqq k_{1}
$$

This implies that there exists a cycle in the subgraph with the Q_{1} vertices, which is absurd.

Fig. 7
The proof of Theorem 4 now follows immediately by successively applying Lemmas 2 and 3 . Given a solution G_{1}, partition the vertices into two disjoint sets Q_{1} and I_{1}. If Q_{1} is not empty, then, by Lemma 3 , at least one vertex in Q_{1} has two adjacent vertices in I_{1}. By Lemma 2 this vertex can be moved to a new position which is in I_{1}. Partition the vertices of this new solution tree G_{2}, generated by this move, into two disjoint sets Q_{2} and I_{2}. If Q_{2} is empty, the theorem is proved. If Q_{2} is nonempty, apply Lemma 3. By continuing this process, Q_{l} must be empty for some finite l since the set of points I is certainly finite.
4. The cases $n=4$ and $n=5$. In this section we concentrate on the solutions implied by Theorem 4, that is, those solutions which have all their vertices in I, although many of the statements made here are applicable to all solutions of S_{4} and S_{5}.

We begin the study of S_{4} by first solving the special case where the given four points are located on the corners of the enclosing rectangle R. By Theorem 4, there exists a solution G with no q-vertices since the four intersection points are occupied by p-vertices. Hence, in this case, there exists a solution to Steiner's problem which is the same as the solution to the minimum spanning tree problem. We state this as a separate lemma for future reference.

Lemma 4. If the four points of S_{4} are located at the corners of the enclosing rectangle R, then

$$
d_{s_{4}}=d_{T_{4}}=l+2 w,
$$

where l and w are the length and width ${ }^{2}$ of R.
This is the simplest example where the number of sets Q is infinite. For, referring to Fig. 8, the line joining q_{1} to q_{2} can be moved parallel to itself anywhere in the interval $y_{p_{1}} \leqq y \leqq y_{p_{2}}$ which implies an infinite number of possible locations for q_{1} and q_{2}.

[^2]

Fig. 8

We now show that when the four points of S_{4} are located anywhere in the plane, the problem can always be reduced either to the above case or to a Steiner problem with less than four points. We first note that there cannot be any q-vertices on any side of R unless there are two p-points on this same side. (This can be deduced easily by Theorem 1 and Lemma 1.) Therefore, if there is a side s_{1} of R with only one vertex on it, that vertex can be "moved" perpendicularly to s_{1} to the closest intersection point. It is not difficult to see that, in doing this, we have reduced the general four-point Steiner problem to one where Lemma 4 is applicable (see Fig. 9a) or to a Steiner problem with less than four points (see Fig. 9b). In order to state these results more succinctly, some new terminology is introduced.

First order both (separately) the x - and y-coordinates of the given p-points in increasing order. (In doing this (x_{i}, y_{i}) no longer corresponds to the point p_{i}.) Then by drawing lines parallel to the y-axis through x_{2} and x_{3} and lines parallel to the x-axis through y_{2} and y_{3}, this defines, in general, four points in I which we call c_{1}, \cdots, c_{4}. The rectangle which has these four points at its corners is called the inner rectangle R_{1}. Consider the four quadrants $U_{c_{i}}$, exterior to R_{1}, formed by the extended lines of R_{1} and each of the c_{i} If there is a point p_{j} in a quadrant $U_{c_{i}}$, then we say that p_{j} is transferred to the point c_{i}. By construction, the p-vertex may, of course, be at the point c_{i}. The inner rectangle R_{1} may degenerate to a straight line. There may or may not be vertices of G located at the points c_{i}.

A solution to S_{4} can be found by applying Lemma 4 and the following theorem.

Theorem 5. Given four points in the plane, let l and w be the length and width of the enclosing rectangle R and let w_{1} be the width of the inner rectangle R_{1}. If the p-vertices are transferred to four distinct points in $\left\{c_{i}\right\}$, then

$$
d_{S_{4}}=l+w+w_{1}
$$

Fig. 9
and if they are transferred to less than four distinct points in $\left\{c_{i}\right\}$, then

$$
d_{s_{4}}=l+w .
$$

It is not difficult to see that, in general, $d_{s_{n}}$ has a lower bound of $\frac{1}{2}$ the perimeter of the enclosing rectangle R, that is,

$$
d_{s_{n}} \geqq \frac{1}{2} P(R)=l+w .
$$

In fact, the following can easily be deduced from Theorem 5 and Lemma 4.
Corollary 1. If $d_{s_{4}}=l+w$ then the solution to S_{4} is unique; and if $d_{s_{4}}>l+w$ then there exists an infinity of solutions.

The five-point Steiner problem can be treated in essentially the same way as the four-point problem. In this case, lines are drawn parallel to the y-axis through x_{2}, x_{3}, and x_{4} and parallel to the x-axis through y_{2}, y_{3}, and y_{4}, so that there are in general nine c-points. The inner rectangle R_{1} is the largest rectangle defined by these nine lines. The p-vertices are transferred to the c-points in a manner similar to the above, except that the concept of quadrants must be generalized to include the points c_{i} which are not at the corners of R_{1}. Hence, by transferring the p-points, we can always reduce the problem S_{5} to the case where at least two p-vertices are on each side of the enclosing rectangle. The following theorem (the proof of which we omit) can then be used to find a solution to S_{5} when the points are located anywhere in the plane.

Theorem 6. Given five points in the plane with at least two points on each side of the enclosing rectangle R. If four of the five points are at the corners of
R, then

$$
d_{s_{5}}=d_{s_{4}}=l+2 w \leqq d_{T_{5}}
$$

where S_{4} is the Steiner problem with these four corner points. If all five points are on the boundary of R, then

$$
d_{s_{5}}=d_{r_{5}} \leqq l+2 w
$$

where l and w are the length and width of R.
5. General comments. An algorithm which incorporates several of the necessary conditions stated in $\S 3$ has been developed. It yields "good" approximate solutions to the n-point problem and exact solutions for $n \leqq 4$. The algorithm is easy and fast to do both by hand and on a computer.

The algorithm is rather elementary in concept and it is anticipated that a more sophisticated algorithm can be devised which incorporates almost all the results presented in this paper. For example, Theorem 4 states that there always exists a solution to Steiner's problem where the q-vertices are located at a predetermined finite set of points. Therefore, if the number of points n is not too large, we can find an exact solution by an exhaustive search procedure. These ideas will be investigated in the future.

Acknowledgment. The author wishes to thank P. H. Oden for many interesting discussions relating to this problem.

REFERENCES

[1] Claude Berge, The Theory of Graphs, John Wiley, New York, 1961.
[2] R. Courant and H. Robbins, What is Mathematics?, Oxford University Press, New York, 1941.
[3] Richard L. Francis, A note on the optimum location of new machines in existing plant layouts, J. Indust. Engrg., 14 (1963), pp. 57-59.
[4] Hua Lo-Keng et al., Application of mathematical methods to wheat harvesting, Chinese Math., 2 (1962), pp. 77-91.
[5] J. B. Kruskal, On the shortest spanning subiree of a graph, Proc. Amer. Math. Soc., 7 (1956), pp. 48-50.
[6] Z. A. Melzak, On the problem of Steiner, Canad. Math. Bull., 4 (1961), pp. 143-148.
[7] F. P. Palermo, A network minimization problem, IBM J. Res. Develop., 5 (1961), pp. 335-337.
[8] R. C. Prim, Shortest connecting networks, Bell System Tech. J., 31 (1952), pp. 13981401.

[^0]: * Received by the editors March 15, 1965.
 \dagger Thomas J. Watson Research Center, International Business Machines Corporation, Yorktown Heights, New York.

[^1]: ${ }^{1}$ We would like to thank the referee for suggesting two other references to this problem: E. Goursat, A Course in Mathematical Analysis, vol. 1, Dover, New York, 1959, p. 130; H. S. M. Coxeter, Introduction to Geometry, John Wiley, New York, 1961, p. 21.

[^2]: ${ }^{2}$ We assume throughout this paper that $w \leqq l$, i.e., we say the width, by definition, is the smaller of the two numbers.

