
On Steiner's Problem with Rectilinear Distance
Author(s): M. Hanan
Source: SIAM Journal on Applied Mathematics, Vol. 14, No. 2 (Mar., 1966), pp. 255-265
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2946265
Accessed: 30/09/2010 18:02

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Journal on Applied Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2946265?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=siam


J. SIAM APPL. MATH. 

Vol. 14, No. 2, March, 1966 
Printed in U.S.A. 

ON STEINER'S PROBLEM WITH RECTILINEAR 
DISTANCE* 

M. HANANt 

1. Introduction. This paper is concerned with the following type of 
problem. Given n cities, construct a network of roads of minimum total 
length so that a traveler can get from one city to any other. Roads may cross 
each other outside of the city limits and these points are called junction 
points. (Roads which cross within the cities, however, will not be referred 
to as junctions.) It is assumed that junction points add no extra cost to the 
construction of the network so that there may be as many as necessary to 
minimize the total length. Usually, the roads are straight-line connections 
and the distance between two points is the Euclidean distance. In this paper, 
however, the rectilinear distance is used. The rectilinear distance d(pi, P2) 

between two points pi and p2 is defined as 

d(pi, p2)= Xl -X2 + I yl-y2|, 

where (xi, yi) are the coordinates of pi . 
Rectilinear distance has application in printed circuit technology where n 

electrically common points must be connected with the shortest possible 
length of wire and the wires must run in the horizontal and vertical di- 
rections. The junction points of the wires are analogous to the above- 
mentioned road junctions. 

Actually this is a well-known problem due to Steiner (cf. [2] and [6]) and 
is now formally stated. 

STEINER'S PROBLEM. Given n points in the plane find the shortest tree(s) 
whose vertices contain these n points. 

A tree with m vertices is a connected graph with m - 1 edges. (For graph- 
theoretic terminology see Berge [1].) Several necessary conditions about 
the solution of this problem are known when the distance between two 
points is taken to be the Euclidean distance. In this paper several necessary 
conditions are given for any n, using rectilinear distance. Some of these 
conditions are analogous to the problem with Euclidean distance, some hold 
only for rectilinear distance, and some are invariant with respect to the 
metric. Exact solutions are constructed for n < 5. 

Since rectilinear distance is not invariant with respect to rotations in the 
plane, the statement of Steiner's problem must be properly interpreted. 
Hence it is assumed throughout this paper that when n points in the plane 
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are given, a Cartesian coordinate system is also given and the rectilinear 
distance is defined with respect to this coordinate system. 

We now state two problems which are related to Steiner's problem and 
whose solutions we will have occasion to use in this paper. To distinguish 
these we refer to Steiner's problem as S. and we now define Pn and Tn . 

Pn: Given n points (pi, * , pn) in the plane, find a point q such that the 
sum of the distances from q to pi , i = 1, * * , n, is a minimum. 

Tn Given n points in the plane, find the shortest tree whose vertices are these 
n points. 

(We have departed slightly from the notation used by Melzak [6].) The 
Pn problem has been solved for both Euclidean distance (cf. [7]) and 
rectilinear distance (cf. [3]). The Tn problem has also been solved (cf. [5] 
and [8]) and the method of solution is independent of the metric used. 

2. Steiner's problem with three points. 
2a. Euclidean distance. Given three points in the plane, let T be the tri- 

angle whose vertices are these three points. If every angle of T is less than 
1200, then the point q of P3 lies inside T and the lines from pi to q, i = 1, 2, 
3, meet at 1200 at q. If an angle of T is greater than or equal to 1200, then 
q coincides with that vertex. (See [4] for a proof and a construction of the 
solution.)' It is not difficult to see that P3 yields the same solution as S3 . 
Also, if an angle of T is greater or equal to 1200, then the solution of S3 is 
identical to the solution of T3 . See Fig. 1. 

2b. Rectilinear distance. Using rectilinear distance, the solution to S3 (or 
equivalently P3) is simpler to construct than the corresponding problem 
using Euclidean distance. In place of the triangle T, we consider the en- 
closing rectangle R which we now define, in general, for n points. 

DEFINITION 1. Given n points in the plane the enclosing rectangle R 
is the smallest rectangle whose sides are parallel to the x and y axes and 
which includes the n points either within or on its boundary. 

We refer to the solution of the three-point problem throughout this 
paper and therefore state the result as a separate theorem. 

THEOREM 1. Let (xi , yi) be the coordinates of the given points pi , i = 1, 2, 3. 
The q-point of P3 is located at (xm, yin) where Xm. and Ym are the medians of 
{xi} and {y }, respectively. 

As stated earlier, this %pecial case of Pn is solved in 31T The following 
theorem relates P3, S3 and T3 . Let dSn X d,n X and dTn be the total (recti- 
linear) distance in the solutions of Sn , Pn X and Tn , respectively. 

- 1 We would like to thank the referee for suggesting two other references to this 
problem: E. GOURSAT, A Course in Mathematical Analysis, vol. 1, Dover, New York, 
1959, p. 130; H. S. M. COXETER, Introduction to Geometry, John Wiley, New York, 
1961, p. 21. 
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FIG. 1 

THEOREM 2. The solutions of S3 and P3 are identical; in fact, 

(1) d833 = dp3 = 2P(R) < dT3 

where P(R) is the perimeter of the enclosing rectangle R. The equality sign 
holds in (1) only if q is coincident with some pi, i.e., (xm , yin) = (xi , yi) for 
some i = 1, 2, 3. 

The proof of Theorem 2 is straightforward. It follows from Theorem 1 
and the fact (which we prove later for SnXin general) that the minimum 
tree solution to S3 can have either zero or one additional vertex. See Fig. 2. 

3. Necessary conditions on a solution to Sn. We use the following nota- 
tion: pi are the given n points and qi, i = 1, * * , k, are the additional k 
vertices in the solution G of S. . When we are referring to the vertices of G, 
we speak of p-vertices or q-vertices. When we are referring to the location of 
these vertices in the coordinate system we speak of p-points or q-points. We 
use the notation pi (or qi) interchangeably for a vertex of G or the location 
of that vertex. Its meaning should be clear from the context. We let P be 
the set of p-points or p-vertices and Q be the set of q-points or q-vertices. 
When we speak of a vertex a,i-1, * , n + k, we mean either pi or q1 . 
We let w(ai) be the local degree of the vertex a;, that is, the number of 
vertices adjacent to ai and C(ai) be this set of vertices. (Two vertices are 
adjacent if they have an edge in common.) The following essentially sums 
up the present knowledge about the solution to Sn using Euclidean distance 
(cf. [2] and [6]). 

(1) w(qi) = 3, 1 < i < k, 
(2) w(pi) < 3, 1 < i < n, 
(3) 0 ? k <n - 2 
(4) each qi, 1 < i < k, is the q-point of C(qi). 
These conditions are easy to prove. In fact (4) can be replaced by the 

stronger statement that every connected subtree of a solution G of Sn is a 
minimum tree of those m < n points. 
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The analogous necessary conditions on a solution G of Sn using rectilinear 
distance are: 

(1) w(qi) = 3 or 4, 1 _ i < k, 
(2) 1 < w(pi) _ 4, 1 < i_< n, 
(3) 0 ? k < n - 2. 
Conditions (1) and (2) are almost obvious. In fact if w(a,) = 4, then 

two pairs of vertices of C(aj) must be collinear and a, is at the intersection 
of the straight lines connecting those pairs. See Fig. 3. 

To prove the inequality on the right side of (3), assume that there are k 
q-vertices in G and find the least number of p-vertices possible. Assume the 
worst case, that is, w(qi) = 3 and the q-vertices form a subtree with k - 1 
edges. Since each edge counts twice in the total degree of the q-vertices, 

n > 3k - 2(k - 1) = k + 2, 

or 

k < n - 2. 

To show that zero is a true lower bound, we can easily construct an example 
where k = 0. Since 2P(R) is a lower bound for dfC and, in the example 
shown in Fig. 4, d = 'P(R), we have found a minimum tree with k = 0. 

We state condition (4) as a separate lemma for future reference. 
LEMMA 1. Given n points in the plane, let G be a solution of Sn . If G' is a 

connected subgraph of G with m vertices, then G' is a solution to Sm . 
The following theorem has an analog in Euclidean geometry where the 

triangle T replaces the rectangle R. However, we have not seen it stated in 
the literature. 

THEOREM 3. If q is any q-vertex of G with degree three, then q can be the 
only vertex of G inside the enclosing rectangle R of C(q). 
- We note first that there may be vertices (including q itself) on the 
boundary of R. To prove the theorem, assume the contrary, that is, assume 
that there is another vertex am inside R. There must exist some path from 
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am to one of the vertices ai E C(q), say a, . Now consider the problem S3 
consisting of the three points { am, a2, a3} and let R1 be the enclosing rec- 
tangle of these three points. Since am lies inside R, -P(R1) < -P(R), so that 
we can replace the subtree on the vertices (a,, a2, a3, q) with the new sub- 
tree on (am, a2, a3, ql), where q, is the new q-point. This subtree is con- 
nected to the rest of the graph by the path from am to a1. Hence we have 
found a new graph G1 with a smaller total distance than G, contradicting 
the hypothesis that G is a solution of Sn m 

In general, a solution G to Sn is not unique, that is, there is more than one 
set Q which yields a minimum tree. Let N(n, k) be the number of sets Q. 
The main result of Melzak [6] is that N(n, k) is finite for all n and k in 
Euclidean geometry and there exists a finite sequence of Euclidean con- 
structions yielding all minimizing trees of the problem S,n . In rectilinear 
geometry this is not true. (We will give an example in ?4 where N(4, 2) is 
infinite.) Hence we cannot guarantee that we can find (by construction) 
all solutions G to Sn . However, we now prove a theorem which does guaran- 
tee finding a finite subset of solutions. The theorem proves, in effect, that 
there always exists a solution G such that all the vertices in the set Q are 
located at a predetermined finite set of possible locations. 

THEOREM 4. Let {x,} and {yp} be the sets of x and y coordinates of the given 
n p-points. If (xqj, yqj) are the coordinates of any vertex qj E Q, then there 
exists a solution G to the problem Sn such that xqj E {xp} and Yqj E {yp} for all 
j= 1,2,** k<n-2. 

If straight lines are drawn parallel to the x and y axes through all the 
given points, a grid is imposed on the plane. Theorem 4 states that there 
exists a solution G such that all the q-vertices are on the intersections of 
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these grid lines. Let I be the set of intersection points or, when referring to 
the vertices, the set of vertices of G which are located at these intersections. 
By definition, P c I. For any q E Q, if C(q) contains only p-vertices then 
q E I. This last statement is an immediate consequence of Theorem 1 and 
Lemma 1 when w(q) = 3 and is obvious when w(q) = 4. 

To facilitate the proof of Theorem 4, we first prove two lemmas. 
LEMMA 2. Let G be any solution of S. and let qj be any vertex in Q such 

that C(qj) contains two vertices in the set I, say ii and i2 . If qj f I, then a 
solution G' can be obtained from G such that there is no vertex of G' located at 
the point qj and if a vertex qj' of G' is connected to both ii and i2 then qj E I' . 

Lemma 2 states, in effect, that given a tree U, certain of the q-vertices 
can always be "moved" to new locations which are at the intersections of 
the grid. We first note that if w(qj) = 4 then clearly qj E I, so we assume 
that w(qj) = 3. Let i1, i2, and a be the three vertices of C(qj). If a E I 
then qj E I (Theorem 2 and Lemma 1) so that a E Q. Hence let us call 
this vertex q, . The locations of these vertices with respect to qj must be 
essentially as shown in Fig. 5. (We have drawn the connection from qj 
to i2 in the way shown for future use.) 

By Lemma 1 and Theorem 1, at least one of the vertices ii or i2 must be 
on the horizontal line through the point qj. (Clearly the figure can be 
rotated through an angle of mir/2, m = 1, 2, 3. There is, of course, no 
loss of generality in assuming this configuration.) Assuming that ii is 
the vertex on this horizontal line, then i2 can be anywhere in the quadrant 
x > xqj and y > yqj. Again, by Lemma 1 and Theorem 1, at least one 
vertex of C(q 1), say ai, must lie on the line y = yq1 . Without loss of 
generality, assume that a, is to the right of qi. There are now two pos- 
sibilities which must be considered: (i) a, is to the right of i2 , and (ii) 
a, is in the interval between qj and i2 - 

Considering (i) first, the line joining qj to q1 can be moved parallel to 
itself to the line x = xi2 as indicated in Fig. 6. By making this move, the 
new graph G' is also a connected tree and its length is the same as G. 
Hence G' is also a solution to Sn . Clearly qj' E I and there is no vertex of 

X< 

i I~~~~qj 

q1 
FIG. 5 
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G' located at the point qj. The graph G' may have more, fewer, or the 
same number of vertices as the original graph G. For example, if i2 were 
on the line y = y,j = yi, , then no q-vertex of G' would be generated at 
the point designated qj' since this point would be occupied by i2 . Also if 
w(qi) = 3 then G' has no vertex at q1 and if w(ql) = 4 then G' has vertices 
both at q, and ql'. This completes the proof of Lemma 2 for the case (i). 

We now examine case (ii). First, if al E I, we move the line joining qj 
to q, parallel to itself to the line x = Xal so that qj' E I and there is no 
vertex of G' at the point qj . Now assume al E Q and a, E I. It is not dif- 
ficult to see that no vertex in C(ai) can be in the region y > Yal . For, 
referring to Fig. 7, this implies that the subtree connecting this vertex to 
I qj, q., a,} is not minimum, contradicting Lemma 1. Hence one vertex of 
C(ai), say a2, must be on the line y = Yal and to the right of a,. We can 
now use the same arguments as above, with a2 replacing al, to find another 
vertex a3 on the line y = Yal = Ya2 and to the right of a2 . Continuing this 
argument, the process must eventually end. Either az E P or al is to the 
right of i2 . In either case we can move the line joining qj to q, such that a 
tree G' is generated with a vertex qj' E I and no vertex at the point qj. 
(Actually we can prove a stronger result, that is, 1 < 2, but this is not 
essential to the proof of the Lemma.) This completes the proof of Lemma 2. 

LEMMA 3. If Q, is the set of vertices, which are not in I, of a minimum 
tree G then either Q, is empty or it contains at least one vertex adjacent to two 
vertices in I. 

Assume Qi is nonempty and let ki be the number of vertices in Qi. 
To prove the lemma, assume the contrary, that is, assume all vertices in 
Q, are adjacent to at most one vertex in I. Let E(Q1) be the number of 
edges in the subgraph with the Qi vertices. Since w(qi) > 3 for all qi E Qi, 

E(Q1) > E w(q) -1 > k. 
i1 2 

This implies that there exists a cycle in the subgraph with the Q, vertices, 
which is absurd. 



262 M. HANAN 

X 
'2 

y 

x~~~~ 

q,~~~a 
FIG. 7 

The proof of Theorem 4 now follows immediately by successively apply- 
ing Lemmas 2 and 3. Given a solution G1, partition the vertices into two 
disjoint sets Q, and 11 . If Q, is not empty, then, by Lemma 3, at least one 
vertex in Q, has two adjacent vertices in h1 . By Lemma 2 this vertex can 
be moved to a new position which is in A1. Partition the vertices of this 
new solution tree G2, generated by this move, into two disjoint sets Q2 
and 12. If Q2 is empty, the theorem is proved. If Q2 is nonempty, apply 
Lemma 3. By continuing this process, Q, must be empty for some finite 1 
since the set of points I is certainly finite. 

4. The cases n = 4 and n = 5. In this section we concentrate on the 
solutions implied by Theorem 4, that is, those solutions which have all 
their vertices in I, although many of the statements made here are applicable 
to all solutions of S4 and S5 . 

We begin the study of S4 by first solving the special case where the given 
four points are located on the corners of the enclosing rectangle R. By 
Theorem 4, there exists a solution G with no q-vertices since the four 
intersection points are occupied by p-vertices. Hence, in this case, there 
exists a solution to Steiner's problem which is the same as the solution to 
the minimum spanning tree problem. We state this as a separate lemma for 
future reference. 

LEMMA 4. If the four points of S4 are located at the corners of the enclosing 
rectangle R, then 

dS4 = dT4 = 1 + 2w, 

where 1 and w are the length and width2 of R. 
This is the simplest example where the number of sets Q is infinite. For, 

referring to Fig. 8, the line joining q1 to q2 can be moved parallel to itself 
anywhere in the interval y1p < y < yp2 which implies an infinite number 
of possible locations for q1 and q2. 

2 We assume throughout this paper that w < 1, i.e., we say the width, by definition, 
is the smaller of the two numbers. 
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We now show that when the four points of S4 are located anywhere in 
the plane, the problem can always be reduced either to the above case or to 
a Steiner problem with less than four points. We first note that there cannot 
be any q-vertices on any side of R unless there are two p-points on this 
same side. (This can be deduced easily by Theorem 1 and Lemma 1.) 
Therefore, if there is a side si of R with only one vertex on it, that vertex 
can be "moved" perpendicularly to sj to the closest intersection point. 
It is not difficult to see that, in doing this, we have reduced the general 
four-point Steiner problem to one where Lemma 4 is applicable (see Fig. 
9a) or to a Steiner problem with less than four points (see Fig. 9b). In 
order to state these results more succinctly, some new terminology is 
introduced. 

First order both (separately) the x- and y-coordinates of the given 
p-points in increasing order. (In doing this (xi, yi) no longer corresponds 
to the point pi .) Then by drawing lines parallel to the y-axis through x2 and 
X3 and lines parallel to the x-axis through Y2 and Y3, this defines, in general, 
four points in I which we call cl, ''' , C4 . The rectangle which has these 
four points at its corners is called the inner rectangle R1 . Consider the four 
quadrants Uj , exterior to R1, formed by the extended lines of R1 and each 
of the ci If there is a point pj in a quadrant U,j then we say that pj is 
transferred to the point ci. By construction, the p-vertex may, of course, 
be at the point ci. The inner rectangle R1 may degenerate to a straight 
line. There may or may not be vertices of G located at the points ci . 

A solution to S4 can be found by applying Lemma 4 and the following 
theorem. 

THEOREM 5. Given four points in the plane, let 1 and w be the length and 
width of the enclosing rectangle R and let w1 be the width of the inner rectangle 
R1. If the p-vertices are transferred to four distinct points in { ci}, then 

dS4 = 1 + w + wl, 
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and if they are transferred to less than four distinct points in { ci, then 

d4= + w. 

It is not difficult to see that, in general, ds. has a lower bound of 2 the 
perimeter of the enclosing rectangle R, that is, 

dSn P (R)= + w. 

In fact, the following can easily be deduced from Theorem 5 and Lemma 4. 
COROLLARY 1. If dS4 = 1 + w then the solution to S4 is unique; and if 

dS4 > 1 + w then there exists an infinity of solutions. 
The five-point Steiner problem can be treated in essentially the same 

way as the four-point problem. In this case, lines are drawn parallel to 
the y-axis through X2, X3, and X4 and parallel to the x-axis through Y2, 

Y3, and Y4, so that there are in general nine c-points. The inner rectangle 
R1 is the largest rectangle defined by these nine lines. The p-vertices are 
transferred to the c-points in a manner similar to the above, except that 
the concept of quadrants must be generalized to include the points ci 
which are not at the corners of R1 . Hence, by transferring the p-points, 
we can always reduce the problem S5 to the case where at least two p-vertices 
are on each side of the enclosing rectangle. The following theorem (the 
proof of which we omit) can then be used to find a solution to S5 when the 
points are located anywhere in the plane. 

THEOREM 6. Given five points in the plane with at least two points on each 
side of the enclosing rectangle R. If four of the five points are at the corners of 
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R, then 

ds5 = dS4 = 1 + 2w < dT5, 

where S4 is the Steiner problem with these four corner points. If all five points 
are on the boundary of R, then 

ds5 = dT5 ? 1 + 2w, 

where 1 and w are the length and width of R. 

5. General comments. An algorithm which incorporates several of the 
necessary conditions stated in ?3 has been developed. It yields "good" 
approximate solutions to the n-point problem and exact solutions for 
n < 4. The algorithm is easy and fast to do both by hand and on a com- 
puter. 

The algorithm is rather elementary in concept and it is anticipated that 
a more sophisticated algorithm can be devised which incorporates almost 
all the results presented in this paper. For example, Theorem 4 states 
that there always exists a solution to Steiner's problem where the q-vertices 
are located at a predetermined finite set of points. Therefore, if the num- 
ber of points n is not too large, we can find an exact solution by an exhaus- 
tive search procedure. These ideas will be investigated in the future. 

Acknowledgment. The author wishes to thank P. H. Oden for many 
interesting discussions relating to this problem. 
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