SUGAR CANE YIELD MONITORING SYSTEM

A Thesis

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Biological and Agricultural Engineering In The Department of Biological and Agricultural Engineering

> By Caryn Elizabeth Benjamin B.S. B.E., Louisiana State University, 1998 December, 2002

ACKNOWLEDGEMENTS

I would like to give my sincere thanks and gratitude to the following individuals:

Dr. Michael P. Mailander, for his support, help, guidance, and on-going commitment on this project.

Dr. Randy R. Price, the chairman of my graduate committee for his support and guidance on this project.

The members of my graduate committee, Dr. Kenneth Gravois and Dr. Steven Hall, for their help and suggestions in the development and testing of this project.

Dr. Kenneth Gravois and his team at St. Gabriel Sugar Cane Research Station, for their patience and tolerance with the field tests.

The people of the Biological and Agricultural Engineering Department; Tom Bride and Don Allen, who helped with the electronics and construction of the project and the office ladies, Angela Singleton, Rhonda Shepard, and Danielle Bayham for their support and help with the paper work.

CAMECO Industries, a John Deere Company, for allowing the use of their facilities and equipment and the engineers' time and efforts, especially Dominick Sciortino and John Scrivner.

Dr. Lynn LaMotte, for his support and guidance with the statistical analysis of the data.

I would like to give my special thanks to my parents without whom I would not be here. Their never-ending support of my endeavors has allowed my to reach this height of achievement.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
ABSTRACT	vii
INTRODUCTION	1
OBJECTIVES	2
LITERATURE REVIEW	3
DESIGN AND DEVELOPMENT Scale Design Weigh Plate Design Load Cell Design and Selection Protective Box Design	6 9 10 12 13
MATERIAL AND METHODS Testing Phase Laboratory Testing Field Testing Analysis Phase	15 15 15 17 20
RESULTS AND DISCUSSION	23
CONCLUSIONS AND RECOMMENDATIONS	27
REFERENCES	29
APPENDIX A: LOAD CELL, DATA-ACQUISITION SYSTEM, AND GLOBAL POSITIONING SYSTEM INFORMATION	32
APPENDIX B: FIELD TEST DATA	36
APPENDIX C: SAS PROGRAMS AND OUTPUT Appendix C1: Regression Analysis Appendix C2: General Linear Model – ANOVA Analysis	41 41 47
APPENDIX D: DESIGN DRAWINGS	55
APPENDIX E: PROJECT PHOTOGRAPHS	58
VITA	62

LIST OF TABLES

Table 1. Plate Vibration Test	16
Table 2. Field Tests	20
Table 3. General Linear Model Results	25
Table B1. 1999-Field Test Data	37
Table B2. 2000-Field Test Data	38

LIST OF FIGURES

Figure 1. Sugar Cane Harvesting Process	7
Figure 3. 1999 Weigh Plate	9
Figure 2. 2000 Weigh Plate	10
Figure 4. Cantilever Beam with a Uniform Load	11
Figure 5. Harvesting Angle	12
Figure 6. Bolt Positioning Design located underneath the protective box	14
Figure 7. Load Cell Calibration	15
Figure 8. Laboratory Plate Size and Material Vibration Test	16
Figure 9. Power Spectral Density Plot	17
Figure 10. Field Tests Layout	19
Figure 11. 20-Point Moving Filter	21
Figure 12. Weigh Yield vs. Scale Yield	23
Figure 13. Weigh Yield vs. Scale Yield (no whole rows)	24
Figure 14. Percent Error vs. Load	25
Figure 15. 1999 GPS Field Track	26
Figure 16. 2000 GPS Field Track	26
Figure C1. Studentized Residuals Plot	45
Figure C2. Wagon vs. Scale Regression Plot	46
Figure C3. Wagon vs. Scale with 95 % Prediction Intervals	46
Figure D1. 1999-Weigh Plate Schematic	56
Figure D2. 2000-Weigh Plate Schematic	56
Figure D3. Scale Schematic	57
Figure E1. Sugar Cane Harvesting	59

Figure E2. Underside of 2000-Scale	59
Figure E3. Data-logger inside the Harvester's Cab	60
Figure E4. 2000-Scale in the Elevator's Floor	60
Figure E5. Load Cell Protective Box	61

ABSTRACT

This project involved the design and testing of a sugar cane yield monitoring system during the 1999 and 2000-harvest seasons. The system was mounted on a CAMECO CH 2500 1997 sugar cane combine. The sugar cane yield monitoring system consisted of a scale, a data acquisition system, and a differential global positioning system (DGPS). The scale consisted of a weigh plate supported by load cell(s). The load cell(s) were supported by a protective box, which mounted to the frame of the harvester. The scale, which was mounted in the floor of the elevator, directly recorded instantaneous measurements of the sugar cane yield (weight). A dump wagon equipped with a weighing system (weigh wagon) was used for each test as the standard. Experiments were run with different levels of cane maturity, variety, row/section length, and flow rate. For each test, the scale readings were totaled and compared to the actual yield, which was measured by the weigh wagon. The yield sensor predicted the sugar cane yield with a slope of 0.900 and a R-squared of 0.966. The scale's average percent error was 11.05 percent. The results also showed that the different cane varieties had an effect on the scale readings, but the maturity of the cane, section length, and the flow rate did not have a significant effect on the scale readings.

INTRODUCTION

Sugar cane is an economically important crop in many countries. It is especially important in south Louisiana, which produces about 43.8 percent of the United States sugar (Sugar and Sweetener Situation & Outlook, Sept. 2001). It is considered a high value and a high input crop (Cox et al., 1998). In farming sugar cane, previous management practices assumed that the soil in a field is homogenous. This is generally not true and within a field large variations can occur in the soil (Karlen et al., 1990). Precision farming allows the farmer to more effectively manage fields, which would optimize farm profit and minimize effects on the environment. Colvin et al. (1991) concluded that resources could be used more efficiently if precision farming practices were used. For these reasons, the adoption of precision farming practices to sugar cane production is desirable.

One important application of precision farming is yield mapping. Yield maps provide site-specific yields that can aid in managing fertilization and pesticide rates. Yield maps consist of two variables, the site-specific crop yield (lb), and the position (longitude, latitude) of that yield in the field. There is currently no commercially available yield monitor for measuring sugar cane billets harvested by a sugar cane combine harvester. Farmers that use mechanical means of harvesting, such as the CAMECO CH2500 harvester, will be able to measure their sugar cane crop yields with this system. The proposed system measures and stores data required to make yield maps. Another important aspect to using a yield monitor is that the farmer can reduce the problem of overloading the tractor-trailers with cane. In Louisiana there is a weight limit (100,000 lbs [45,360 kg] GVW) on tractor-trailers, and fines are given if the limit is exceeded. Also, sugar cane mills lock their scales to weigh up to 100,000 pounds (45,360 kg). Any overload is not paid out to the farmers.

1

OBJECTIVES

The objectives of this study were to:

- Design a scale that measures the yield of sugar cane as it is harvested by a sugar cane combine.
- 2. Install the scale on a sugar cane combine harvester and test the scale's accuracy scale by comparing its yield to a weigh wagon yield.
- 3. Also, tests the effects of sugar cane variety, maturity, flow-rate, and the harvested section/row length on the scale readings.

LITERATURE REVIEW

Even though there is no commercially available sugar cane monitor, there have been studies and even some patents that focus on measuring the yield of sugar cane. According to the Cox et al. (1998), Australia's National Centre for Engineers in Agriculture has been working on a prototype sugar cane yield sensor for the Australian sugar cane combine harvester, the Austoft. This group has used direct and indirect techniques for measuring the cane yield on the harvester. The direct techniques involved mass and volume measurements. The indirect techniques involved measurements of power consumption. Results from field tests done with two indirect sensing techniques (data not given) showed a slope of 0.11 and an R-squared of 0.84 and the other with a slope of 0.05 and an R-squared of 0.84. After field tests, the final technique selected was the direct mass measurement technique. Supporting data was not given for the direct mass sensing technique. The details on how and where the sensor functions were not discussed in the paper due to an acquired provisional patent in Australia. The system was undergoing pre-market tests in 1998. The resulting patent was title, "Mass Flow Rate Sensor for Sugar Cane Harvesters", Australian Patent No. 744047 (Cox et al., 1999). The specific details of the sensor design were published by the Australian patent office on November 4, 1999. A U.S. patent for this sensor has not been acquired. The mass flow sensor consisted of a weigh platform support by a load cell(s) mounted in the upper section of the elevator of the harvester. Numerous variations of the weigh platform and load cell configuration were tested. Additionally, they used an accelerometer and an inclinometer for error correction means. Supporting test results were not given in the patent.

3

A similar yield sensor developed by Pagnano et al. (2001), in Brazil was discussed in the paper "Sugarcane Yield Measurement", which was presented at the 3rd European Conference on Precision Agriculture. The weight sensor consisted of a weighing frame, load cells, conveyor speed sensor, and a data acquisition apparatus. The weight sensor was mounted in the upper section of the harvester's elevator. Accelerometers were used to determine the frequencies produced by the harvester. A Butterworth low-pass filter was used to filter out certain frequencies. An instrumented trailer was used to check the accuracy of the developed system by measuring the harvested cane. Their data showed percent errors for measuring sugar cane yield ranging from 8.74 to -26.65 percent.

US Patent No. 6,272,819 (Wendte et al., 2001) described a sugar cane yield monitor that used an elevator pressure sensor, or a deflection plate to measure the quantity of the harvested sugar cane. They also used a low pass filter to smooth the peaks in the elevator pressure signal. To account for the effects of dynamic forces they pre-loaded the deflection plate load cell to always read positive even in the worst field conditions.

There are numerous sources for the application of precision agriculture to other crops such as grains. Yield monitors are most common on grain combines. For instance, Borgelt et al. (1992) described several grain flow rate sensors. These sensors included techniques such as gamma ray absorption, impact plate, capacitive, pivoted auger with a loadcell(s), and photodetection. These sensors are only adaptive to grain flow requirements.

Other crop yield measurement techniques included the following: Both potato and sugarbeet mass-flow-rate have been measured by using load measuring idler wheels or supports under the crop conveyor on harvesters (Campbell et al. 1994; Schneider et al., 1996; Walter et al., 1996). Cotton yield has been measured by optical methods, where the blockage of light

4

between a light emitting diode and a photodiode is measured in the delivery ducts of the picker as bolls of cotton are transported to the basket (Durrence et al., 1998). Thomas et al. (1997) and Perry et al. (1998) measured the peanut yield by weighing the basket on the peanut harvester. Auernhammer et al. (1995) measured the yield on a self-propelled forage harvester with a radiometric measurement device. Kromer et al. (1999) measured the crop yield on forage harvesters by using both volumetric- and mass-flow-rate measurement techniques. The volumetric-flow-rate variables considered were compression roller displacement, crop layer thickness, and crop-stream contour in the harvester's spout. Crop impact force in the spout was considered the mass-flow-rate variable. A dynamic weighing system using a load cell and paired with accelerometer was used to measure the citrus yield (Crews et al., 2001).

DESIGN AND DEVELOPMENT

To develop a yield monitor for the sugar cane harvester, the harvesting process needed to be examined (see Figure 1). The sugar cane was cut at the ground by the harvester's base blades and topped by the topper as it enters the harvester. Once inside, the cane is cleaned and chopped into 8-12 inch (20-30 cm) pieces called billets. Seventyfive percent of the trash is blown out through the primary extractor fan as the billets are dumped onto the elevator (Sciortino, 1999). The billets are conveyed up the elevator by a chain driven slat system. Slats were approximately 24 inches (61 cm) apart and moved at a maximum speed of 88 in/s (223.52 cm/s), which can vary at the operator's control. Also, there was 0.125 inch (0.3175 cm) clearance between the slats and the floor. The elevator floor was about 31.5 inches (80 cm) wide. The elevator is divided into two sections. When the elevator was raised to its highest position during harvesting, the first section made a 50-degree angle with the horizontal and the second section made a 25degree angle (see Figure 1). The first section floor was constructed of expanded metal to allow dirt to fall through. The second section floor was a solid 0.125 inch (0.3175 cm) thick steel plate. Before the billets are dumped into a wagon (see Figure E1) a secondary extractor fan removed about 10-15 percent of leftover trash (Sciortino, 1999). Burning the cane before it is harvested affects how much trash went into the wagon. If the cane was not burned, there was more trash harvested and weighed with the sugar cane billets. After an examination of the harvester, researching other crop yield monitors, and speaking with the manufacturer of the machine, the only practical place for a yield measurement device would be on the elevator.

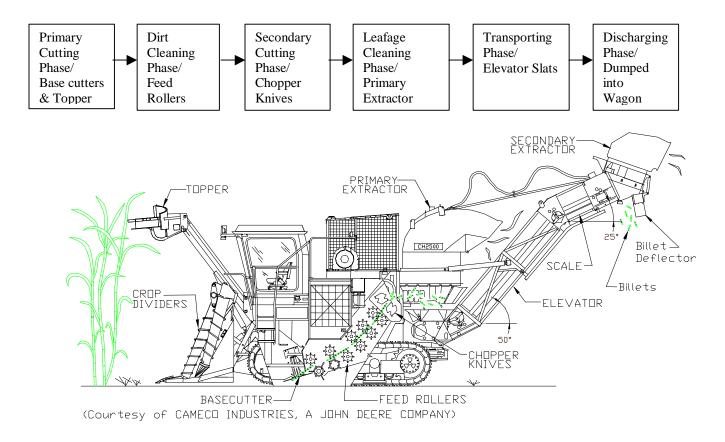


Figure 1. Sugar Cane Harvesting Process

Fundamental techniques considered for measuring the sugar cane yield were direct mass and volume measurements and indirect measurements. These measurement techniques that were considered, but ruled out, included volume measurement using an optical means, power consumption of the chopper knives that cut the cane into billets, force impact measurement on a deflector plate, and measuring the elevator hydraulic pressure of the elevator support cylinders. Each had disadvantages and advantages. The operating environment of a sugar cane combine harvester is harsh. The sugar cane combine harvester produces a significant amount of mechanical noise and vibration, which can interfere with sensors' ability to measure yield accurately. Dirt, mud and leaves accumulate as the cane is harvested. Furthermore, the sugar cane leaves are abrasive and the juice is sticky. For these reasons and others listed below direct weight measurement was used to determine the sugar cane yield. Direct weight measurement seemed to be a simple technique and feasible because trash weight (dirt and leaves) is small in comparison to the weight of the sugar cane.

Volume measurement was ruled out due to the fact that leaves have just as much surface area as sugar cane, if not more. Also, harvested sugar cane is not homogenous, and crop contamination by trash (Sciortino, 1999) can create additional problems with volume measurement. Power consumption measurement from the chopper knives would be impractical because of the correlation problems with the different varieties of cane having more leaves and having higher yields than other cane. The farmers would have to calibrate the device every time the cane variety changed or weather conditions changed. Force impact measurement (deflector plate) placed at the billet deflector (see Figure 1) was ruled out because not all of the cane hits the billet deflector as it is delivered into the wagon. Positioning the deflection plate to catch all of the cane would create the problem of getting all of the cane into the wagon. Another technique considered was tapping into the hydraulic pressure of the supporting cylinders of the elevator. This was also ruled out because the cylinders did not support the entire elevator; thus, the pressure would not represent the total load of the elevator and cane. Also, ground level variations in the field cause the elevator to bounce creating pressure fluctuations, which could give false yield readings.

Direct mass measurement or weighing the cane as it traveled along the elevator was decided to be the best way to measure the sugar cane yield. Noticing that the floor of the elevator was stationary, it seemed plausible to place a weighing device in the elevator floor. A scale was then developed and placed co-planar with the floor of the upper

8

section of the harvester's elevator (see Figure 1). The elevator's upper section has the least inclination and would create less error than the lower section, which has a steeper slope. Also, the upper section would require less modification than the lower section.

Scale Design

The design of the scale consisted of a weigh plate supported by load cell(s), which would be supported by a protective box that mounted to the frame of the harvester. The 1999-scale design used only one load cell supporting the weigh plate (see Figure 2). Figure 2 shows the 1999-scale being mounted on the harvester's elevator.

Figure 2. 1999 Weigh Plate

After the 1999-field tests, this design proved to be unstable without extra support (Benjamin et al., 2000). The vibration and noise interference created both negative and positive signals that were beyond the maximum weight of the cane. The 2000-scale design used two load cells to support the weigh plate. The 2000-scale design also

reduced the weigh plate's length in half (see Figure 3). Figure 3 shows the 2000-scale after a long day of harvesting. Half of the scale is caked with mud.

Figure 3. 2000 Weigh Plate

Weigh Plate Design

The weigh plate's dimensions played a critical role in the system's ability to measure the sugar cane billets accurately. The billets are moved up the elevator via slats, which were spaced 24 inches (61 cm) apart. To ensure that all of cane was measured, the platform was given the length of the distance between two slats and the width of the elevator floor (24 in x 30 in [61 cm x 76 cm]). See APPENDIX D for weigh plate drawings. The weigh plate's thickness was also critical because extreme deflections disrupt or prevent sugar cane flow and cause errors in the scale readings. The weigh plate's thickness (0.1875 in [0.5 cm]) was designed to have a maximum deflection of 0.125 inches (0.3175 cm), which was the elevator floor's thickness. Because the plate

was rigidly supported at its center, it was assumed that the weigh plate could be represented as a cantilever beam having a uniform load (see Figure 4). Figure 4 also shows the equations that were used to calculate the deflection through an iterative process. Plate thickness (t) was selected until the maximum deflection was less than 0.125 inches (0.3175 cm).

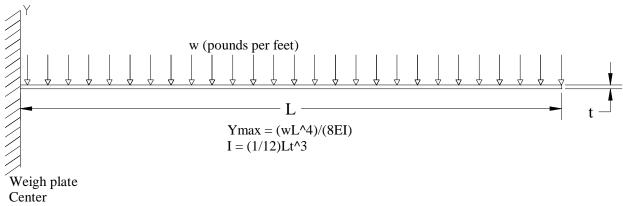


Figure 4. Cantilever Beam with a Uniform Load

Where:

Ymax = Maximum beam deflection in the Y direction

w = weight per length

L = length

- E = Young's Modulus of Elasticity (30.0 Mpsi for steel)
- I = Section moment of area about the x axis
- t = thickness of the plate

The weigh plate's dimensions were changed after the 1999-field tests to reduce the amount of error created from the vibration of the weigh plate. To reduce the vibrations, the weigh plate's length was changed from 24 inches (61 cm) to 12 inches (30.5 cm). This meant that the sampling frequency would need to be doubled to make sure a whole slat of cane is measured. Also, two load cells were used to support the weigh plate to further reduce the vibrations.

Load Cell Design and Selection

Since the slats that pushed the cane up the elevator traveled along both top and bottom of the elevator, the amount of room needed to place a scale in the floor was limited. Thus, the load cell was designed with a low profile design. The load cell's maximum capacity was based on the maximum sugar cane load and the weight of the weigh plate. Using the maximum density of sugar cane (22 lb/ft³ [353 kg/m³]) and the maximum volume of cane between two slats (3.33 ft³ [0.0944 m³]); the maximum weight of cane that filled up between two slats was approximately 73 pounds (33 kg). Since the load cell location was at an angle (25 degrees), the scale read less than the actual weight of the sugar cane billets (see Figures 1 & 5).

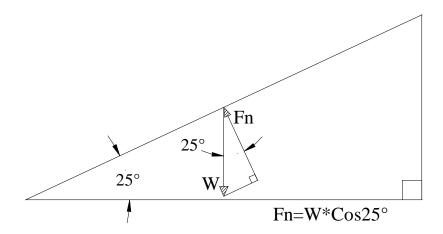


Figure 5. Harvesting Angle

Where:

Fn = normal force that the load cells exert

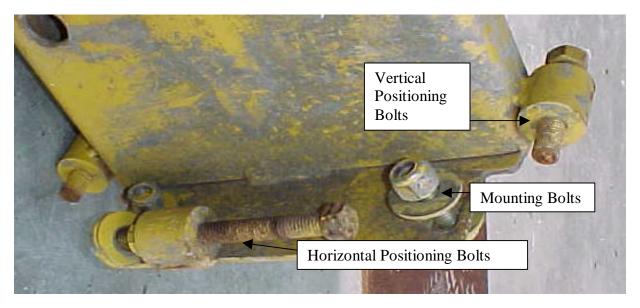
W = sugar cane weight due to gravity

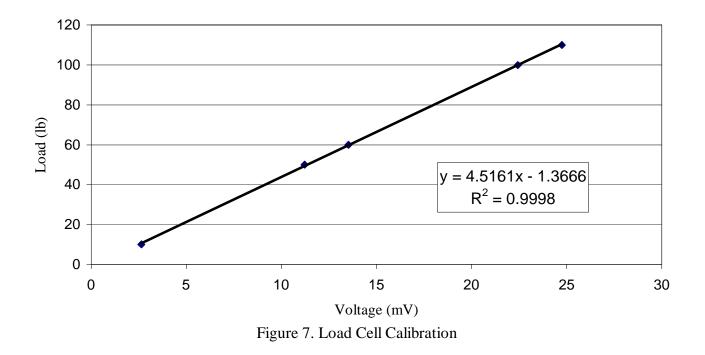
The load cell(s) would have to withstand 66 pounds (30 kg) of cane plus the weight of the weigh plate (20.26 lb [9.2 kg]). The chosen capacity was 110 pounds (50 kg). Since the weigh plate would be 30 inches (76 cm) wide and 24 inches (61 cm) long, the load cell had to compensate for offset loading. Numerous load cells were evaluated, but only a few fitted the criteria. After speaking with the load cell manufacturers, a single-point low-profile load cell (Sensortronics, California) was selected. This particular one was made for a 36 in x 36 in (91 cm x 91 cm) plate and compensate for offset loading. See APPENDIX A for more load cell information.

Protective Box Design

As its name implies, the protective box was designed to protect the load cell from being damaged by the weather, billets, and trash such as leaves, and dirt; however, the main purpose of the box was to support and rigidly mount the load cell to the elevator. The tolerance between the elevator floor and the scale's weigh plate had to be as small as possible to prevent trash and dirt from becoming wedged and cause the scale to read incorrectly. The small tolerance (0.0625 in [0.15875 cm]) made it difficult to align the weigh plate with the elevator floor. The protective box was designed with bolts to eliminate this alignment problem. The bolts allowed the scale to move both horizontally and vertically (see Figure 6). Figure 6 shows the underside of the box where the two mounting bolts attach the box to the frame of the elevator. The other four bolts (in Figure 6) are used to help position the scale after it is mounted. After fine-tuning the position of the scale and making sure that no sides of the weigh plate touched the floor, a tack weld was added to make the mount rigid. See APPENDIX D for protective box drawing.

13




Figure 6. Bolt Positioning Design located underneath the protective box

MATERIALS AND METHODS

Testing Phase

Laboratory Testing

A scale was setup in the research laboratory to run various tests. The laboratory scale was an exact replication of the scale that was mounted on the harvester. The load cells' linearity was tested in the laboratory by applying weight to the scale at increments of ten pounds (4.5 kg). The voltage was recorded and a regression was run on the data. The load cells' linearity was found to have a slope of 4.5 and an R-squared of 0.9998 (See Figure 7).

A laboratory test was done to determine the appropriate size and material of the weigh plate since 1999-field tests showed that vibration problems exist with using a large steel plate and only one support (Benjamin et al. 2000). For this reason, four plates (see Table 1) were tested to determine which one would have the smallest vibrational amplitude. Vibrations were induced in the weigh

plates by setting an air pump (model # 2545B-01, Welch Vacuum Pumps) on top of the weigh plates (when mounted on the same load cell). The data was sampled at 10 hertz (see Figure 8). Figure 8 shows the results of the amplitude test done on four different plates. The results showed that the small steel plate was dampened the most with only a 0.37 mV amplitude. The small aluminum, big aluminum, and the large steel plate exhibited a 1.3 mV, 1.1 mV, and 1.0 mV amplitude respectively. For this reason, the small steel plate was assumed to have the best dampening qualities and was selected for the 2000-field tests.

Table 1. Plate Vibration Test			
Plate #Dimensions in (m)		Material	
Plate 1	12 x 30 x 0.1875 (30.5 x 76 x 0.476)	Aluminum (2014)	
Plate 2	24 x 30 x 0.1875 (61 x 76 x 0.476)	Aluminum (2014)	
Plate 3	12 x 30 x 0.1875 (30.5 x 76 x 0.476)	Steel (Exten 50)	
Plate 4	24 x 30 x 0.1875 (61 x 76 x 0.476)	Steel (Exten 50)	

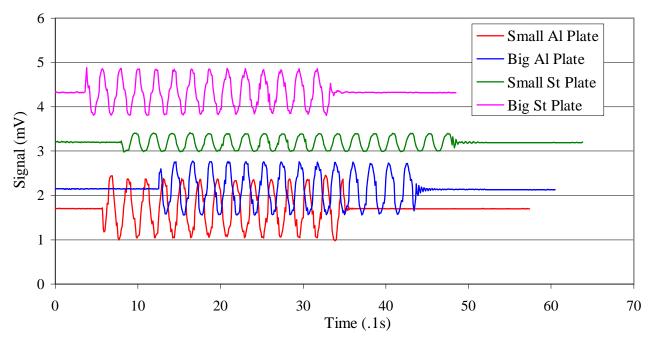


Figure 8. Laboratory Plate Size and Material Vibration Test

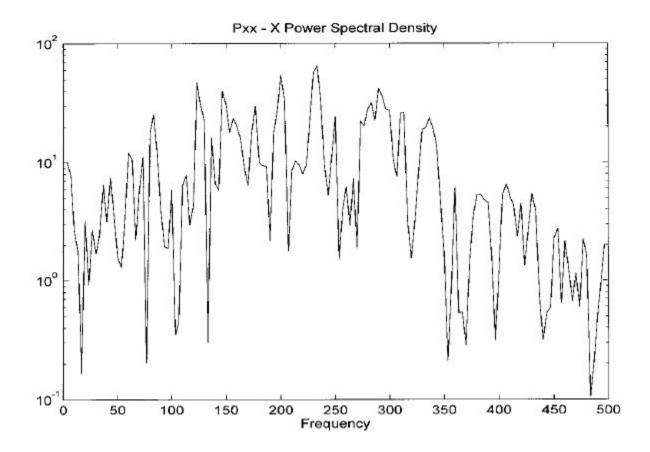


Figure 9. Power Spectral Density Plot

Also, a power spectral density test was done to determine the dominating frequencies. The test consisted of taking data at 10 hertz while the harvester went down a previously harvested row with everything running, but not cutting cane. These frequencies included 20, 75, 100, 130, 350, 370, 400, 440, and 480 hertz (see Figure 9).

Field Testing

The scale was mounted to the harvester at CAMECO. The following procedure was used to calibrate the scale at the harvesting angle. First, several 10-lb weights and a person were loaded on the elevator. Once the elevator was at the highest position (harvesting angle), the weights were placed on the scale (10 pounds at a time) and a voltage was recorded. The GPS and data-logger were mounted

in the harvester's cab for protection. A small capacity weigh wagon (3-Ton Weigh Wagon, CAMECO) was used as a standard for testing the scale's accuracy. The weigh wagon was instrumented with three load cells; two load cells on the axles at each wheel and one load cell on the tongue (Bischoff et al., 2001).

Field tests were conducted in the fall of 1999 and in the fall of 2000. The 1999-field tests were considered preliminary because of the considerable loss of data due to the extreme vibrations of the harvester (Benjamin et al., 2000). The 1999-field tests were performed at the Sugar Research Station in St. Gabriel, LA on one variety of sugar cane (LCP 85-454). Twenty-four 50-foot (16 m) sections were marked off. Three harvester speed levels were tested to produce different flow rates. The levels were approximately 1.8 mi/h (2.9 km/h), 2.8 mi/h (4.5 km/h), and greater than 3.2 mi/h (5.1 km/h). Each level was tested on eight sections. The harvester would start before it entered the cane to achieve the appropriate speed and stopped at the end of the section. At the end of each section the weight of the weigh wagon was recorded. The GPS and data-logger ran continuously during the tests. A slat of cane passes over the scale every 0.27 seconds, which was based on the elevator speed (88 in/s [223.52 cm/s]) and the weigh plate's length (24 in [61cm]). So, to ensure that every load was measured only once, the scale's sample rate was set to 3.7 hertz.

The 2000-field tests were also performed at the St. Gabriel Research Station on two varieties of sugar cane (LCP 85-384 and CP 70-321). Four tests were performed, numbered one through four. Tests 1, 2, and 3 consisted of rows that were divided into four different lengths (see Figure 10 and Table 2). Test 4 consisted of whole rows that were 375 feet (114 m) long. Two harvester speed levels, slow (0 km/h – 2.8 mi/h [4.5 km/h]) and fast (2.9 mi/h [4.7 km/h]- 4.5 mi/h [7.2km/h]), were tested to produce different flow rates. Test 1 was done on October 27, 2000, and the other three tests were done on December 5, 2000. The cane harvested on December 5 was about 1.5 months older

18

than the test 1 cane. The process of each sub-test (section) started with the harvester entering the cane to achieve the appropriate speed and stopped at the end of the section. At the end of each section the weight of the weigh wagon was recorded manually. See APPENDIX B for the field tests data. The GPS logged readings continuously during the tests. A slat of cane passed over the scale every 0.14 seconds (7.14 hertz), that was based on the elevator speed (88 in/s [223.52 cm/s]) and the weigh plate's length (12 in [30.5 cm]). This rate would ensure that every load was measured only once.

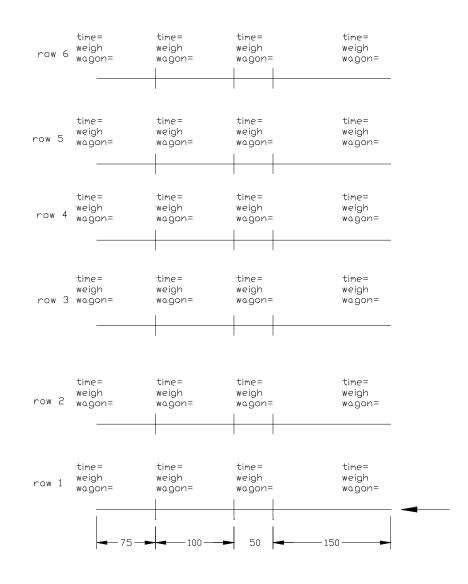


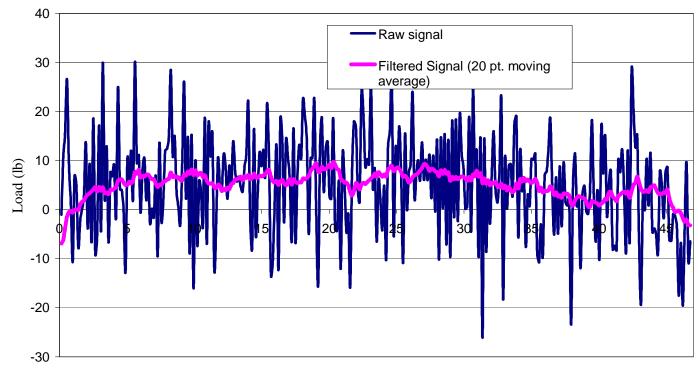
Figure 10. 2000-Field Tests Layout

	Table 2. Field Tests					
Tests	Rows	Sections	Variety	Maturity	Speed	Section lengths ft(m)
1	10	40	LCP 85-384	10 months	Slow &	50(15.2), 75(22.9),
					fast	100(30.5), 150(45.7)
2	12	48	LCP 85-384	12 months	Slow &	50(15.2), 75(22.9),
					fast	100(30.5), 150(45.7)
3	6	24	CP 70-321	12 months	Slow &	50(15.2), 75(22.9),
					fast	100(30.5), 150(45.7)
4	6	6	CP 70-321	12 months	Slow &	375 (114.3) whole rows
					fast	

Analysis Phase

The following analysis was performed to determine the scale's accuracy and establish what factors affected the scale's ability to measure the yield.

Definitions:


Spot yield- the instantaneous weight measurement of cane taken by the scale.

Scale yield- is the summation of spot yields for a given section.

Wagon yield-is the weight of the cane measured by the weigh wagon for a given section.

The spot yields were smoothed with a twenty point moving average (see Figure 11) to reduce error. The spot yields were totaled for each section to get a total yield (scale yield) for each section. The weigh wagon yield for each section was considered the actual yield for that section of harvested sugar cane. The weigh wagon's accuracy was established through previous testing.

Figure 11 showed the result of using 20-point moving average to filter out the spikes in the scale's raw signal. Figure 11 is constructed from the scale's readings (load) versus time for a harvested row of cane.

Time (sec) Figure 11. Raw and Filtered Signal for One Row

To determine correlation, statistical tests were conducted comparing the scale yield with the weigh wagon yield. In this analysis the weigh wagon was considered the standard or the independent variable. So, the weigh wagon yield was determined by the scale yield. To establish how well the scale predicted the weigh wagon yield, a regression was done (along with calculating residuals and 95 percentile prediction intervals). The regression was based on the following equation:

Wagon Yield =
$$\mathbf{a}_{0}$$
 + Scale Yield * \mathbf{a}_{1}

Where:

a $_0$ = intercept

 $\mathbf{a}_1 = \text{slope}$

Also, statistical tests were conducted comparing the scale yield and wagon yield for the different treatments. A general linear model was constructed to test the possible effects of variety (Var), maturity (Mat), flow-rate (Sp), and section length (Len) on the scale readings. The general linear model was based on the following equation:

Scale Yield =
$$\mathbf{b}_0$$
 + Wagon Yield* \mathbf{b}_1 + Var* \mathbf{b}_2 + Mat* \mathbf{b}_3 + Sp* \mathbf{b}_4 + Len* \mathbf{b}_5

Where:

 $\mathbf{b}_0 = intercept$

 $\mathbf{b}_1 - \mathbf{b}_5 = \text{slopes}$

Var, Mat, Sp, & Len are variables equaling 1 or 0

Percent (%) error was calculated for each test using the following equation:

Percent Error = (Absolute Value (Scale Yield – Wagon Yield)) / Wagon Yield *100

RESULTS AND DISCUSSION

The residuals (see Appendix C2 – Figure C1) were equally spaced about zero; thus there were no visible trends. The results of the scale yield compared to the weigh wagon yield are shown in Figure 12 and 13. Figure 12 indicated that the yield monitor predicted the wagon yield with a slope of 0.9 and an R-squared of 0.966. This figure is constructed from the regression and 95 percent prediction data of the weigh wagon yield versus the scale yield across all row/sections lengths (50 ft [15.2 m], 75 ft [22.9 m], 100 ft [30.5 m], and 150 ft [45.7 m]). Figure 12 includes sections and whole rows.

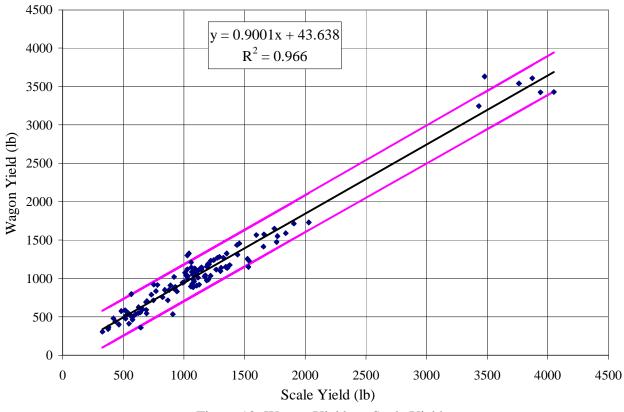


Figure 12. Wagon Yield vs. Scale Yield

Figure 13 is constructed from the regression and 95 percent prediction interval data of the wagon yield versus the scale yield on just the sections, not the whole rows (375 ft [114.3 m]). This figure indicated that the yield monitor predicted the wagon yield with a slope of 0.857 and an R-squared of 0.896. The purpose of plotting both was to show that the short sections were indicative of the spot yield accuracy, and the whole rows showed the expected accuracy for loading a wagon.

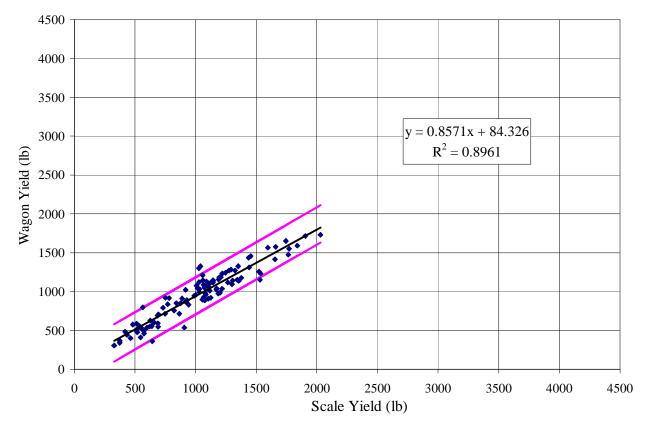


Figure 13. Wagon Yield vs. Scale Yield (no whole rows)

Table 3 shows the effect of the different parameters on the scale readings (See also APPENDIX C). Maturity, speed, and section lengths had very low F-values; thus each had the least effect on the scale readings. This indicates that the scale readings were not affected by the age of cane, the flow-rate of the cane through the harvester, or even the harvested row length. Wagon yield had the greatest effect, which was to be expected, since that is the value that the scale readings are being compared. According to the Table 3, variety also had an effect. Variety had an affect on the scale readings because one of the cane varieties (LCP 85-384) was higher yielding and had more trash content. The total tonnage was greater for the tests that were done on the higher yielding variety. Therefore, it is reasonable that the scale readings were affected by a change in the variety.

Table 3. General Linear Model Results				
Parameters	F-Value	Probability		
Wagon	187.81	0.0001		
Variety	5.81	0.0176		
Maturity (age)	1.08	0.3003		
Speed (flow-rate)	0.29	0.5928		
Section Lengths	0.73	0.5702		

The percent error ranged from 0 to 33 percent (see Figure 14), and only 14 of the 118 tests were above 20 percent error. The average error was 11.05 percent. Thus on average, the yield monitor predicted the wagon yield with 89 percent accuracy.

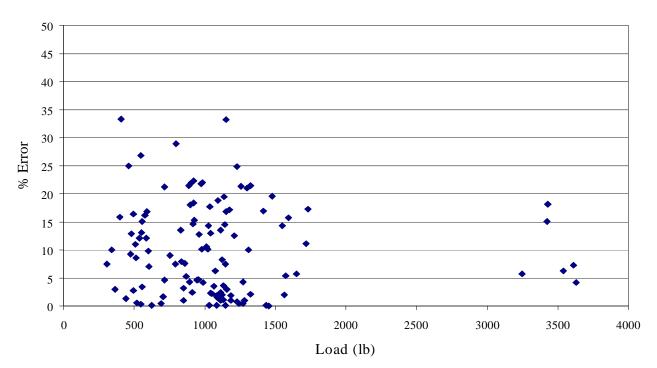


Figure 14. Persent Error vs. Load

One source of error is likely du to the large amount of vibrations induced by the ground and all the moving parts of the harvester. Another source of error is that the scale weighs more trash than the weigh wagon. The secondary extractor fan (see Figure 1) removes about 10 percent of trash as the cane goes into the wagon.

Figures 15 and 16 are the results of the Global Positioning System (GPS) for the 1999and 2000-field tests. Both figures show the path of the harvester as it harvested the sugar cane during the field tests. The 1999-field tests had 400-foot (122 m) rows and the 2000-field tests had 375-foot (114.3 m) rows.

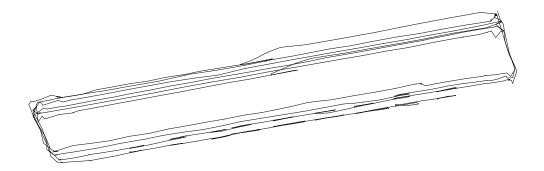


Figure 15. 1999 GPS Field Track

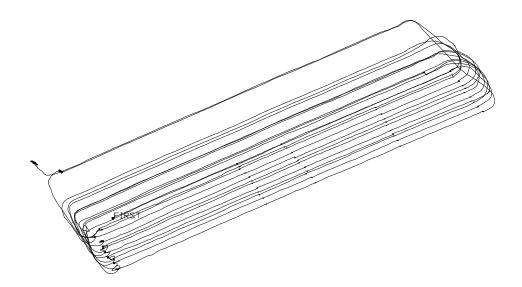


Figure 16. 2000 GPS Field Track

CONCLUSIONS AND RECOMMENDATIONS

The goal of the project was to design a system that would accurately measure the yield of sugar cane as it's harvested by a sugar cane combine. Even though US Sugar (a large sugar producing company that owns their own sugar cane fields) and sugar cane farmers would accept errors ranging from zero to twenty percent, the system is not ready for production/market. This system needs to be improved for it to be deemed reliable. The error needs to be consistent so that it can be filtered out. The system's error was not consistent and ranged from zero to 33 percent, but averaged 11.05 percent. However, the scale yield correlated well with the weigh wagon yield, which indicates a good potential with further improvements for measuring sugar cane yield accurately. The recommended improvements include the following:

- Use the original weigh plate size of 24 in x 30 in [61 cm x 76.2 cm] and support it with four load cells at each corner to reduce plate vibrations.
- Use a magnetic device to determine when the slats pass the scale. This device will signal the data-logger to record the instantaneous weight of each slat of cane.
- Use a data-logging system that samples 3 times faster than the sampling frequency (3.7 hertz) and then average the readings for each slat of cane. This will reduce signal error.
- Run preliminary vibration tests using an accelerometer on the harvester to establish dominating frequencies and the forces that act on the weigh plate. Use pre-filter techniques such as a digital filter to eliminate those dominating frequencies.
- Use an inclinometer to compensate for the scale being at an angle, which will cut out the extensive field calibration described in the material and methods section.

With these improvements and more field tests, this device should prove to be a reliable and accurate yield monitoring system. Since yield maps may be used for the determination of crop

management zones, the management of inputs, and the evaluation of results of these strategies, it is important that the accuracy of the yield maps be considered (Birrell et al., 1995). In order for site-specific management to succeed, it is important to have a reliable continuous yield monitor (Perez-Munoz et al. and Colvin et al., 1996).

REFERENCES

- Auernhammer, H., M. Demmel, and P.J.M. Pirro. 1995. <u>Yield Measurement On Self Propelled</u> <u>Forage Harvester</u>. ASAE Paper No. 951757. ASAE, St. Joseph, MI.
- Benjamin, C.E., R.R. Price and M. P. Mailander, 2001. <u>Sugar Cane Yield Monitoring System</u>. ASAE Paper No. 011189. ASAE, St. Joseph MI.
- Benjamin, C.E., and M. P. Mailander, 2000. <u>Sugar Cane Yield Monitoring System</u>. Paper No. 001125. ASAE, St. Joseph MI.
- Birrell, S.J. and S.C. Borgelt. 1995. <u>Crop Yield Mapping: Comparison Of Yield Monitors And</u> <u>Mapping Techniques</u>. Site-Specific Management for Agriculture Systems. Pp. 15-31. ASA-CSSA-SSSA. Madison, WI
- Bischoff, K.P., K.A. Gravois, H.P.Schexnayder, and G.L. Hawkins. 2001. <u>The Effect of Harvest</u> <u>Method and Plot Size on Sugarcane Yield</u>. The American Society of Sugar Cane Technology Journal, vol. 21, pp.3.
- Borgelt, S.C. and K.A. Sudduth. 1992. <u>Grain Flow Monitoring For In-Field Mapping</u>. ASAE Paper No.921022. ASAE, St. Joseph, MI
- Campbell, R.H., S.L. Rawlins and S. Han. 1994. <u>Monitoring Methods For Potato Harvesting</u>. ASAE Paper No. 941584. ASAE, St. Joseph, MI.
- Colvin, T.S., K.L. Karlen, and N. Tischer. 1991. <u>Yield Variability Within Fields In Central</u> <u>Iowa</u>. Automated Agriculture for the 21st Century, Proceedings of the 1991 Symposium, pp. 366-372. ASAE, St. Joseph, MI.
- Cox, G. J., H.D. Harris, and D.R. Cox. 1998. <u>Application of Precision Agriculture to Sugar</u> <u>Cane</u>. Proceedings of the Fourth International Conference on Precision Agriculture. ASA-CSSA-SSSA, St. Paul, MN.
- Cox, G. J., H.D. Harris, D.R. Cox, D.M. Bakker, R.A. Pax, and S.R. Zillman. November 4, 1999. <u>Mass Flow Rate For Sugar Cane Harvesters</u>. Australian Patent No. 744047.

- Crews, D.H., J.D. Whitney, M. Salyani, and J.K. Schueller. 2001. <u>Dynamic Weighing to</u> <u>Improve Citrus Yield Mapping.</u> ASAE Paper No. 01-1184. ASAE, St. Joseph, MI.
- Durrence, J.S., C.D. Perry, G. Vellidis, D.L. Thomasa, and C.K. Kvien. 1998. <u>Evaluation Of</u> <u>Commercially-Available Cotton Yield Monitors In Georgia Field Conditions</u>. ASAE Paper 98-3106. ASAE, St. Joseph, MI.
- Karlen, D.L., E.J. Sadler, and W.J. Busscher. 1990. <u>Crop Yield Variation Associated With</u> <u>Coastal Plain Soil Map Units</u>. Soil Science Society American Journal, vol. 54, pp. 859-865.
- Kromer, K.H., O. Schmittmann, and A.M. Osman. 1999. Crop Yield Monitoring on Forage Harvesters. ASAE Paper No. 991051. St. Josepth, MI.
- Pagnano, N.B., and P.S. G.Magalhaes. 2001. <u>Sugarcane Yield Measurement</u>. Faculdade de Engenharia Agricola – Unicamp – Campinas – SP, Brasil 13083-970. 3rd European Conference on Precision Agriculture Proceedings, pp. 839-844. Montpellier, France.
- Perez-Munoz, F., and T.S. Colvin. 1996. <u>Continuous Grain Yield Monitoring</u>. ASAE Paper No. 94-1053. St. Joseph, MI.
- Perry, C.D., J.S. Durrence, G. Vellidis, D.L. Thomas, R.W. Hill, C.S. Kvien. 1998. <u>Field</u> <u>Experiences With A Prototype Peanut Yield Monitor</u>. ASAE Paper No. 983095. ASAE, St. Joseph, MI.
- Sciortino, Dominick Jr., personal communication with the sugar cane combine production engineer, CAMECO, A John Deere Company, 1999-2000.
- Schneider, S.M., S.L. Rawlins, S. Han, R.G. Evans, and R.H. Campbell. 1996. <u>Precision</u> <u>Agriculture For Potatoes In The Pacific Northwest.</u> Proceedings of the Third International Conference on Precision Agriculture. ASA-CSSA-SSSA, Madison, WI.
- Thomas, D.L., C.D. Perry, G. Vellidis, J.S. Durrence, L.J. Kutz, C.K. Kvien, B. Boydell, and T.K. Hamrita. 1997. <u>Development And Implementation Of A Load Cell Yield Monitor</u> <u>For Peanut.</u> ASAE Paper No. 971059. ASAE, St. Joseph, MI.

- Walter, J.D., V.L. Hofman, and L.F. Backer. 1996. <u>Site-Specific Sugarbeet Yield Monitoring</u>. Proceedings of the Third International Conference on Precision Agricultural. ASA-CSSA-SSSA, Madison, WI.
- Wendte, K.W., A. Skotnikov, and K.K. Thomas. August 14, 2001. <u>Sugar Cane Yield Monitor</u>. United States Patent No. 6272819.

APPENDIX A: LOAD CELL, DATA ACQUISITION SYSTEM, AND GLOBAL POSITIONING SYSTEM INFORMATION

LOAD CELL

Sensortronics 677 Arrow Grand Circle Covina, California 91722 USA 1-800-722-0820

Model 61250 - The model number has changed since the project began in 1999. It is now Model 60060.

Load Cell Performance Specifications:

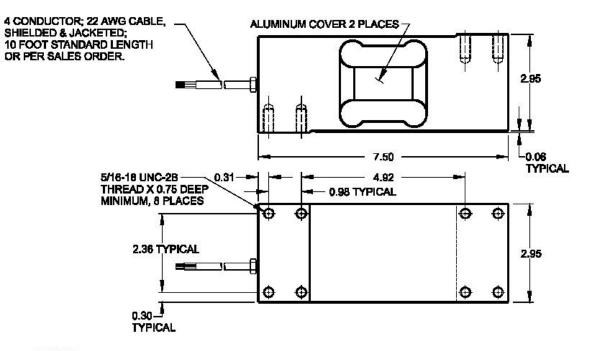
Rated Capacities (lbs): 100, 250, 500, 750, 1K, 2K Full Scale Output (FSO): 2.0 mV/V ±10% Accuracy Class: Standard NTEP III NTEP IIIL OIML R60 Max. No. Verification Intervals -- 5,000 10,000 3,000 Multiple Multiple Combined Error % FSO < 0.03 -- --Non-Linearity % FSO < 0.03 -- --Hysteresis % FSO < 0.02 -- --Creep Error % FSO < 0.03 in 20 minutes -- --Temperature Effect on: • Zero % FSO/oF < 0.0015 -- -- --• Output % of Load/oF < 0.0008 -- -- --Non-Repeatability % FSO < .01 Zero Balance % FSO < 1.0Insulation Resistance > 1000 Mohms at 50VDC Compensated Temperature Range 14o to 104oF / -10o to 40oC Operating Temperature Range 0o to 150oF / -18o to 65oC Storage Temperature Range -600 to 1850F / -500 to 850C Input Resistance 400 Ohms Nominal Output Resistance 349-355 Ohms Recommended Excitation Voltage 10 Volts DC Maximum Excitation Voltage 15 Volts DC Sideload Rejection Ratio 500:1

Safe Sideload 100% of Rated Capacity

Safe Overload 150% of Rated Capacity

Ultimate Overload 300% of Rated Capacity

Material Aluminum


Moment Compensation: 250 - 1,000 lbs. 2,000 lbs.

•Moment Sensitivity (lbs - inch) < 0.005% of applied load < 0.005% of applied load

•Maximum Moment (lbs - inch) 10 x Capacity 10,000

•Platform Size (inch) 30 x 30 30 x 30

(1) Note: 250 to 2K Capacities Only

WIRING						
FUNCTION	COLOR					
+ Excitation	Red					
- Excitation	Black					
+ Output	Green					
- Output	White					

CAPACITY	Deflection	Weight
100 - 250	0.010	6.0
500 - 2K	0.006	6.0

Dimensions are in inches. Capacities are in pounds. Deflection is ±10%. Specifications are subject to change. Certified drawings are available.

Data Acquisition System

Campbell Scientific, Inc. 815 W. 1800 N. Logan, Utah 84321-1784 USA 435-753-2342

Model: CR 23X Micrologger

Data-Logger Program using PC208W software (Campbell Scientific, Inc.):

```
;{CR23X}
;
*Table 1 Program
 01: .14 Execution Interval (seconds)
1: Volt (Diff) (P2)
1: 2 Reps
2: 13
          200 mV, Fast Range
3: 1
          DIFF Channel
4: 1
          Loc [ lc1
                         ]
5: 1
          Mult
6: 0
           Offset
2: Z=X+Y (P33)
1: 1 X Loc [ lc1
                           ]
2: 2
          Y Loc [ lc2
                           ]
3: 3
          Z LOC [ sum
                           1
3: Do (P86)
1: 10
      Set Output Flag High (Flag 0)
4: Real Time (P77)
1: 21
           Hour/Minute, Seconds (midnight = 2400)
5: Sample (P70)
      Reps
1: 1
2: 3
           Loc [ sum
                         ]
```

End Program

Differential Global Positioning System (DGPS)

Trimble Navigation Limited Surveying and Mapping Division 645 North Mary Avenue P.O. BOX 3642 Sunnyvale, CA 94086 USA 1-800-827-8000

Model: Trimble TDC1

APPENDIX B: FIELD TEST DATA

Table B1. Legend
Speed
1=1.8 mph
2=2.8 mph
3=3.2 mph

	Table B1. 1999-Field Test Data							
Section	Test	Scale (lbs)	Wagon (lbs)	Speed	Missing Values			
1	1	1024	735	1	10			
2	1	1005	785	1	16			
3	1	978	705	1	11			
4	1	915	720	1	8			
5	1	1071	765	1	12			
6	1	851	710	1	7			
7	1	921	765	1	3			
8	1	846	750	1	9			
9	2	889	745	2	22			
10	2	957	820	2	30			
11	2	837	880	2	34			
12	2	886	770	2	19			
13	2	939	765	2	13			
14	2	842	760	2	20			
15	2	837	850	2	34			
16	2	878	865	2	32			
17	3	769	680	3	23			
18	3	581	640	3	21			
19	3	808	710	3	19			
20	3	871	755	3	28			
21	3	825	700	3	21			
22	3	729	710	3	11			
23	3	762	715	3	22			
24	3	0	0	3	lost data			

Т	able B2. Le	gend						
Variety	Maturity	Speed						
1=85-384	0=Younger	0=slow	1					
2=70-321	1=Older	1=Fast	t					
			Table B	2. 2000-Fie	ld Test Dat	a		
Section	Test	Row	Scale	WW	Variety	Maturity	Speed	Sec Length
1	1	1	1455	1455	1	0	0	150
2	1	1	543	545	1	0	1	50
3	1	1	1356	1135	1	0	1	100
4	1	1	928	890	1	0	0	75
5	1	2	1536	1230	1	0	1	150
6	1	2	622	550	1	0	1	50
7	1	2	1031	990	1	0	1	100
8	1	2	687	690	1	0	1	75
9	1	3	1839	1590	1	0	1	150
10	1	3	536	555	1	0	1	50
11	1	3	1325	1270	1	0	1	100
12	1	3	1066	925	1	0	1	75
13	1	4	1660	1575	1	0	1	150
14	1	4	566	510	1	0	1	50
15	1	4	1065	1085	1	0	1	100
16	1	4	925	860	1	0	1	75
17	1	5	1596	1565	1	0	1	150
18	1	5	691	545	1	0	1	50
19	1	5	1107	1090	1	0	1	100
20	1	5	1125	920	1	0	0	75
21	1	6	2029	1730	1	0	1	150
22	1	6	514	585	1	0	1	50
23	1	6	1089	1130	1	0	1	100
24	1	6	942	830	1	0	0	75
25	1	7	1745	1650	1	0	1	150
26	1	7	689	590	1	0	0	50
27	1	7	1207	1185	1	0	1	100
28	1	7	781	915	1	0	1	75
29	1	8	1771	1550	1	0	1	150
30	1	8	626	625	1	0	1	50
31	1	8	1126	1115	1	0	1	100
32	1	8	877	850	1	0	1	75
33	1	9	1437	1435	1	0	1	150
34	1	9	523	520	1	0	1	50
35	1	9	1079	980	1	0	1	100
36	1	9	693	705	1	0	1	75
37	1	10	1906	1715	1	0	1	150

	Table B2. 2000-Field Test Data								
Section	Test	Row	Scale	WW	Variety	Maturity	Speed	Sec Length	
38	1	10	659	600	1	0	0	50	
39	1	10	1016	1040	1	0	1	100	
40	1	10	823	755	1	0	0	75	
41	2	1	1074.5	885	1	2	0	150	
42	2	1	373.9	340	1	2	0	50	
43	2	1	730.8	790	1	2	0	100	
44	2	1	866.4	715	1	2	0	75	
45	2	2	1144.2	1145	1	2	1	150	
46	2	2	546.6	410	1	2	0	50	
47	2	2	565.2	795	1	2	0	100	
48	2	2	748	715	1	2	0	75	
49	2	3	1040.6	1325	1	2	0	150	
50	2	3	508.8	495	1	2	0	50	
51	2	3	750.8	920	1	2	0	100	
52	2	3	769	835	1	2	0	75	
53	2	4	1292.6	1280	1	2	1	150	
54	2	4	434.3	440	1	2	0	50	
55	2	4	1343.7	1150	1	2	0	100	
56	2	4	1082.7	960	1	2	0	75	
57	2	5	1440.7	1310	1	2	1	150	
58	2	5	418.2	480	1	2	0	50	
59	2	5	1116.3	1010	1	2	0	100	
60	2	5	916.1	870	1	2	0	75	
61	2	6	1142.3	1120	1	2	1	150	
62	2	6	647.4	605	1	2	0	50	
63	2	6	1143	1130	1	2	0	100	
64	2	6	1103	1085	1	2	0	75	
65	2	7	1245.5	1240	1	2	1	150	
66	2	7	638.3	555	1	2	0	50	
67	2	7	1058.7	1210	1	2	0	100	
68	2	7	888.02	910	1	2	0	75	
69	2	8	1220.7	1230	1	2	1	150	
70	2	8	599.8	535	1	2	0	50	
71	2	8	1142.4	1115	1	2	0	100	
72	2	8	1218.3	1035	1	2	0	75	
73	2	9	1763.8	1475	1	2	1	150	
74	2	9	481.9	575	1	2	0	50	
75	2	9	1027.9	1120	1	2	0	100	
76	2	9	1059.9	1145	1	2	0	75	
77	2	10	1027.6	1300	1	2	1	150	
78	2	10	559.3	515	1	2	0	50	

	Table B2. 2000-Field Test Data								
Section	Test	Row	Scale	WW	Variety	Maturity	Speed	Sec Length	
79	2	10	1031.6	1030	1	2	0	100	
80	2	10	1007.2	1075	1	2	0	75	
81	2	11	1655.2	1415	1	2	1	150	
82	2	11	518.99	475	1	2	0	50	
83	2	11	1523.2	1255	1	2	0	100	
84	2	11	1265.3	1115	1	2	0	75	
85	2	12	1274.9	1270	1	2	1	150	
86	2	12	907.3	535	1	2	0	50	
87	2	12	1189.1	1155	1	2	0	100	
88	2	12	1376.3	1175	1	2	0	75	
89	3	1	1300.9	1095	2	2	0	150	
90	3	1	463.5	400	2	2	0	50	
91	3	1	1000.6	955	2	2	0	100	
92	3	1	1174.4	1040	2	2	0	75	
93	3	2	1056	895	2	2	1	150	
94	3	2	643	360	2	2	0	50	
95	3	2	1531.1	1150	2	2	0	100	
96	3	2	1201.3	985	2	2	0	75	
97	3	3	1072.9	1050	2	2	1	150	
98	3	3	327.85	305	2	2	0	50	
99	3	3	917.4	1020	2	2	0	100	
100	3	3	988.8	945	2	2	0	75	
101	3	4	841.2	850	2	2	1	150	
102	3	4	375.8	365	2	2	0	50	
103	3	4	1186.9	975	2	2	1	100	
104	3	4	1171	1025	2	2	0	75	
105	3	5	1352	1325	2	2	1	150	
106	3	5	574.5	460	2	2	0	50	
107	3	5	1086	1085	2	2	1	100	
108	3	5	1103	1065	2	2	0	75	
109	3	6	1305.6	1140	2	2	1	150	
110	3	6	576	495	2	2	0	50	
111	3	6	1104.3	905	2	2	1	100	
112	3	6	1196.1	1185	2	2	0	75	
113	4	1	4050.6	3430	2	2	1	375	
114	4	2	3939.4	3425	2	2	1	375	
115	4	3	3478.5	3630	2	2	1	375	
116	4	4	3761.6	3540	2	2	1	375	
117	4	5	3871.6	3610	2	2	1	375	
118	4	6	3431.6	3245	2	2	1	375	

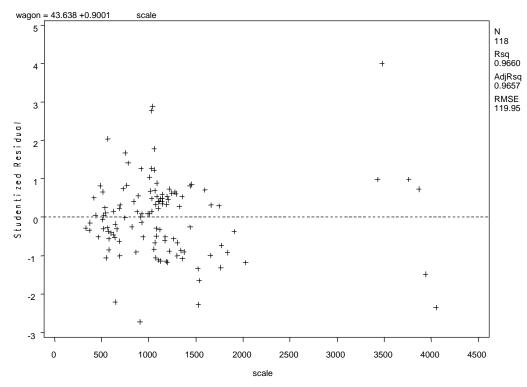
APPENDIX C: SAS PROGRAMS AND OUTPUT

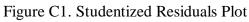
Appendix C1: Regression Analysis

```
*Caryn E. Benjamin*
*2000-Field test Data Analysis*
*Regression Analysis of Scale versus Weigh Wagon*
*SAS Program*
dm"log;clear;output;clear";
data one;
        infile 'A:Scale-WW.dat';
        input scale wagon;
run;
proc reg data=one;
        model wagon=scale /clm cli;
        id scale;
        plot wagon*scale student.*scale;
run;
symbol interpol=rlcli95 ci=blue cv=red value=star height=1;
proc gplot data=one;
        plot wagon*scale / haxis=0 to 4500 by 500
                            vaxis=0 to 4500 by 500;
                                        hminor=100
                                        frame
                                        des='Scale vs. Weigh Wagon';
run;
quit;
*SAS Regression Output*
            The SAS System
                                   10:30 Monday, May 14, 2001
Model: MODEL1
Dependent Variable: WAGON
                           Analysis of Variance
                       Sum of
                                        Mean
Source
           \mathsf{DF}
                     Squares
                                      Square
                                                   F Value
                                                                  Prob>F
Model
            1
                 47347717.072
                                 47347717.072
                                                   3290.769
                                                                  0.0001
          116
                1669012.8012
                                  14388.04139
Error
C Total
          117
                49016729.873
         Root MSE
                       119.95016
                                     R-square
                                                     0.9660
                      1082.24576
                                                     0.9657
         Dep Mean
                                     Adj R-sq
```

11.08345

C.V.


Parameter Estimates


Variable DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP 1 SCALE 1	43.638498 0.900120	21.20683463 0.01569104	2.058 57.365	0.0419 0.0001
Dep Var Obs SCALE WAGON		Std Lower Err 95% ict Mean	Upper Lower 95% 95% Mean Predict	Upper 95% Resid - Predict ual
Obs SCALE WAGON 1 1455 1455.0 2 543 545.0 3 1356 1135.0 4 928 890.0 5 1536 1230.0 6 622 550.0 7 1031 990.0 8 687 690.0 9 1839 1590.0 10 536 555.0 11 1325 1270.0 12 1066 925.0 13 1660 1575.0 14 566 510.0 15 1065 1085.0 16 925 860.0 17 1596 1565.0 18 691 545.0 19 107 1090.0 20 1125 920.0 21 2029 1730.0 22 514 585.0 23 1089 1130.0 24	Value Pred: 1353.3 12.0 532.4 14.0 1264.2 11.4 879.0 11.9 1426.2 12.4 603.5 13.8 971.7 11.2 662.0 13.2 1699.0 15.4 526.1 14.0 1236.3 11.2 1003.2 11. 1537.8 13.0 553.1 14.2 1002.3 11.2 876.2 11.0 1480.2 13.0 665.6 13.2 1040.1 11.0 1056.3 11.0 1870.0 17.0 506.3 14.0 1023.9 11.0 891.6 11.9 1614.3 14.4 663.8 13.2 1130.1 11.0 746.6 12.4 1637.8 14.0 607.1 13.3 1057.2 11.0 833.0 11.8 137.1 11.0 514.4 14.8 1014.9 11.2 636.8 13.4 958.2 11.2	ictMean0111329.5622503.44891241.4597856.05651401.3841576.1209949.5251635.84111668.4694497.03641213.8128981.16021510.9388524.6130980.2612853.30411454.4217639.40671018.20521034.46211835.1924476.70891001.9532868.74211585.8234637.60741108.2496721.96871608.7803579.80511035.3866809.59031313.5830485.0105992.9199641.31621727.3499610.1252935.9	Mean Predict 1377.1 1114.5 561.4 293.1 1287.0 1025.5 901.9 640.3 1451.1 1187.3 630.9 364.4 993.9 733.1 688.3 423.0 1729.5 1459.4 555.2 286.8 1258.8 997.7 1025.2 764.6 1564.8 1298.7 581.6 313.8 1024.3 763.7 899.2 637.6 1506.1 1241.3 691.8 426.6 1062.0 801.5 1078.2 817.7 1904.9 1629.9 535.9 266.9 1045.8 785.3 914.4 652.9 1642.9 1375.1 690.0 424.8 1152.0 891.5 771.4 507.8 1666.8 1398.4 634.5 368.0 1079.1 818.6 856.5 594.3 1360.7 1098.4 543.8 275.0 1036.9 776.3 693.6 428.4 1791.3 1519.5 663.6 397.7 980.4 719.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
40 823 755.0 41 1074.5 885.0 42 373.9 340.0 43 730.8 790.0 44 866.4 715.0	701.4 12.8	112988.8484347.5884675.9	808.6545.61032.8772.2412.8140.4727.0462.5847.1584.8	10 23.2 -29.438 1249.4 -125.8 620.0 -40.194 940.4 88.5536 1062.3 -108.5

Dep	Std Lower	Upper Lower	
Var Predict Obs SCALE WAGON Value	Err 95% Predict Mean	95% 95% Mean Predict	
ODS SCALE WAGON VALUE	Predict Mean	Mean Predict	Predict uar
45 1144.2 1145.0 1073.6	11.043 1051.7	1095.4 835.0	1312.1 71.4439
46 546.6 410.0 535.6		564.5 296.3	
47 565.2 795.0 552.4		580.9 313.1	
48 748 715.0 716.9		742.2 478.0	
49 1040.6 1325.0 980.3		1002.5 741.7	
50 508.8 495.0 501.6	14.979 472.0	531.3 262.2	741.0 -6.6197
51 750.8 920.0 719.4	12.725 694.2	744.7 480.5	958.4 200.6
52 769 835.0 735.8	12.586 710.9	760.8 497.0	974.7 99.1690
53 1292.6 1280.0 1207.1	11.255 1184.8	1229.4 968.5	1445.8 72.8661
54 434.3 440.0 434.6		465.8 194.9	
55 1343.7 1150.0 1253.1		1275.8 1014.5	
56 1082.7 960.0 1018.2		1040.2 779.6	
57 1440.7 1310.0 1340.4		1364.1 1101.7	
58 418.2 480.0 420.1		451.7 180.4	
59 1116.3 1010.0 1048.4		1070.3 809.9	
60 916.1 870.0 868.2		891.3 629.5	
61 1142.3 1120.0 1071.8		1093.7 833.3	
62 647.4 605.0 626.4		653.3 387.3	
63 1143 1130.0 1072.5		1094.3 833.9	
64 1103 1085.0 1036.5		1058.4 797.9	
65 1245.5 1240.0 1164.7		1186.8 926.1	
66 638.3 555.0 618.2		645.3 379.1	
67 1058.7 1210.0 996.6 68 888.02 910.0 843.0		1018.7 758.0	
68 888.02 910.0 843.0 69 1220.7 1230.0 1142.4		866.3 604.2 1164.4 903.8	
70 599.8 535.0 583.5		611.4 344.3	
71 1142.4 1115.0 1071.9		1093.8 833.4	
72 1218.3 1035.0 1140.3		1162.2 901.7	
73 1763.8 1475.0 1631.3		1660.2 1391.9	
74 481.9 575.0 477.4		507.6 237.9	
75 1027.9 1120.0 968.9		991.1 730.3	
76 1059.9 1145.0 997.7		1019.7 759.1	
77 1027.6 1300.0 968			1207.2 331.4
78 559.3 515.0 547		575.7 307.8	786.4 -32.0758
79 1031.6 1030.0 972		994.4 733.6	1210.8 57.7974
80 1007.2 1075.0 950	.2 11.280 927.9	972.6 711.6	1188.9 124.8
81 1655.2 1415.0 1533	.5 13.558 1506.7	1560.4 1294.4	1772.6 -118.5
82 518.99 475.0 510			750.2 -35.7919
83 1523.2 1255.0 1414	.7 12.471 1390.0	1439.4 1175.8	1653.6 -159.7
84 1265.3 1115.0 1182		1204.7 944.0	1421.2 -67.5607
85 1274.9 1270.0 1191			1429.8 78.7982
86 907.3 535.0 860			1099.0 -325.3
87 1189.1 1155.0 1114		1135.9 875.4	1352.6 41.0285
88 1376.3 1175.0 1282		1305.4 1043.8	1521.2 -107.5
89 1300.9 1095.0 1214			1453.2 -119.6
90 463.5 400.0 460		491.5 221.3	700.4 -60.8442
91 1000.6 955.0 944		966.7 705.7	1182.9 10.7012
92 1174.4 1040.0 1100			1339.3 -60.7397
93 1056 895.0 994		1016.2 755.6	1232.8 -99.1655
94643360.0622951531.11150.01421		649.4 383.3 1446.6 1182.9	861.5 -262.4 1660.7 -271.8
96 1201.3 985.0 1125		1146.9 886.4	1363.5 -140.0
97 1072.9 1050.0 1009			1248.0 40.6225
, <u>10,2.</u> , <u>1000.0</u> 1000		100.0	10.0225

	Dep Var Predict	Std Lowe Err 95	er Upper 5% 95%	Lower 95%	Uppe 95	er % Resid -
Obs SCALE W	NAGON Value Pr			Predict	Predic	
98 327.85	305.0 338.7	17.027 305	.0 372.5	98.7849	578.7	-33.7429
99 917.4	1020.0 869.4	11.649 846	.3 892.5	630.7	1108.1	150.6
100 988.8	945.0 933.7	11.342 911	.2 956.1	695.0	1172.3	11.3226
101 841.2	850.0 800.8	12.083 776	.9 824.8	562.0	1039.6	49.1803
102 375.8	365.0 381.9	16.461 349	.3 414.5	142.1	621.7	-16.9037
103 1186.9	975.0 1112.0	11.054 1090).1 1133.9	873.4	1350.6	-137.0
104 1171	1025.0 1097.7	11.046 1075	5.8 1119.6	859.1	1336.3	-72.6793
105 1352	1325.0 1260.6	11.472 123	7.9 1283.3	1021.9	1499.3	64.3989
106 574.5	460.0 560.8	14.303 53	2.4 589.1	321.5	800.0	-100.8
107 1086	1085.0 1021.2	11.094 999	9.2 1043.1	782.6	1259.8	63.8309
108 1103	1065.0 1036.5	11.071 1014	4.5 1058.4	797.9	1275.1	28.5289
109 1305.6	1140.0 1218.8	11.296 1190	5.5 1241.2	980.2	1457.5	-78.8355
110 576	495.0 562.1	14.288 533	3.8 590.4	322.9	801.4	-67.1078
111 1104.3	905.0 1037.6	11.070 1015	5.7 1059.6	799.1	1276.2	-132.6
112 1196.1	1185.0 1120.3	11.062 1098	3.4 1142.2	881.7	1358.9	64.7277
113 4050.6	3430.0 3689.7	46.775 359	7.0 3782.3	3434.7	3944.7	-259.7
114 3939.4	3425.0 3589.6	45.081 3500).3 3678.9	3335.8	3843.4	-164.6
115 3478.5	3630.0 3174.7	38.111 3099	9.2 3250.2	2925.4	3424.0	455.3
116 3761.6	3540.0 3429.5	42.382 334	5.6 3513.5	3177.6	3681.5	110.5
117 3871.6	3610.0 3528.5	44.051 3443	1.3 3615.8	3275.5	3781.6	81.4559
118 3431.6	3245.0 3132.5	37.4073058	.4 3206.6	2883.6	3381.4	112.5

Sum of Residuals 0 Sum of Squared Residuals 1669012.8012 Predicted Resid SS (Press) 1791709.4967

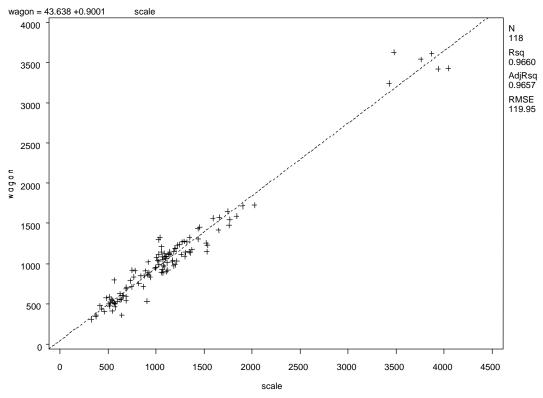


Figure C2. Wagon vs. Scale Regression Plot

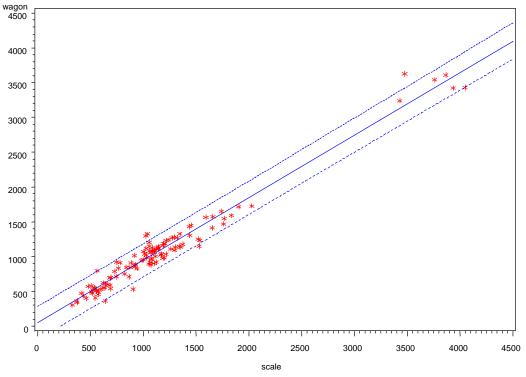


Figure C3. Wagon vs. Scale with 95 % Prediction Intervals

Appendix C2: General Linear Model – ANOVA Analysis

Caryn E. Benjamin *2000-Field Test Data Analysis* *General Linear Model for testing the effects of Variety, Age, Speed, and Section Length on the scale readings*

SAS Program

dm"log;clear;output;clear";

data one; infile 'A:RegData.dat'; input scale wagon var mat sp len; run;

proc glm data=one; class var mat sp len; model scale=wagon var mat sp len/clm cli solution; id wagon; run; quit;

RegData.dat

Scale	WW	Variety	Age	Speed	Section Length
1455	1455	1	0	0	150
543	545	1	0	1	50
1356	1135	1	0	1	100
928	890	1	0	0	75
1536	1230	1	0	1	150
622	550	1	0	1	50
1031	990	1	0	1	100
687	690	1	0	1	75
1839	1590	1	0	1	150
536	555	1	0	1	50
132	1270	1	0	1	100
1066	925	1	0	1	75
1660	1575	1	0	1	150
566	510	1	0	1	50
1065	1085	1	0	1	100
925	860	1	0	1	75
1596	1565	1	0	1	150
691	545	1	0	1	50
1107	1090	1	0	1	100
1125	920	1	0	0	75
2029	1730	1	0	1	150
514	585	1	0	1	50
1089	1130	1	0	1	100
942	830	1	0	0	75
1745	1650	1	0	1	150
689	590	1	0	0	50
1207	1185	1	0	1	100
781	915	1	0	1	75
1771	1550	1	0	1	150
626	625	1	0	1	50
1126	1115	1	0	1	100
877	850	1	0	1	75
1437	1435	1	0	1	150
523	520	1	0	1	50

Scale	WW	Variety	Age	Speed	Section Length
1079	980	1	0	1	100
693	705	1	0	1	75
1906	1715	1	0	1	150
659	600	1	0	0	50
1016	1040	1	0	1	100
823	755	1	0	0	75
1074.5	885	1	2	0	150
373.9	340	1	2	0	50
730.8	790	1 1	2 2	0	100
866.4 1144.2	715 1145	1	2 2	0 1	75 150
546.6	410	1	2	0	50
565.2	795	1	2	0	100
748	715	1	2	0	75
1040.6	1325	1	2	0	150
508.8	495	1	2	0	50
750.8	920	1	2	0	100
769	835	1	2	0	75
1292.6	1280	1	2	1	150
434.3 1343.7	440	1 1	2	0	50
1343.7 1082.7	1150 960	1	2 2	0 0	100 75
1440.7	1310	1	2	1	150
418.2	480	1	2	0	50
1116.3	1010	1	2	0	100
916.1	870	1	2	0	75
1142.3	1120	1	2	1	150
647.4	605	1	2	0	50
1143	1130	1	2	0	100
1103 1245.5	1085	1 1	2 2	0 1	75
638.3	1240 555	1	2	0	150 50
1058.7	1210	1	2	0	100
888.02	910	1	2	0	75
1220.7	1230	1	2	1	150
599.8	535	1	2	0	50
1142.4	1115	1	2	0	100
1218.3	1035	1	2	0	75
1763.8	1475	1	2	1	150
481.9 1027.9	575 1120	1 1	2 2	0 0	50 100
1059.9	1145	1	2	0	75
1027.6	1300	1	2	1	150
559.3	515	1	2	0	50
1031.6	1030	1	2	0	100
1007.2	1075	1	2	0	75
1655.2	1415	1	2	1	150
518.99	475 1255	1	2	0	50
1523.2 1265.3	1255 1115	1 1	2 2	0 0	100 75
1205.5	1270	1	2	1	150
907.3	535	1	2	0	50
1189.1	1155	1	2	0	100
1376.3	1175	1	2	0	75
1300.9	1095	2	2	0	150
463.5	400	2	2	0	50

Scale 1000.6 1174.4 1056 643 1531.1 1201.3 1072.9 327.85 917.4 988.8 841.2 375.8 1186.9 1171 1352 574.5 1086 1103 1305.6 576 1104.3 1196.1 4050.6 3939.4 3478.5	WW 955 1040 895 360 1150 985 1050 305 1020 945 850 365 975 1025 1325 460 1085 1065 1140 495 905 1185 3430 3425 3630	Variety 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Age 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Speed 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Section Length 100 75 150 50 100 75 150 50 100 75 150 50 100 75 150 50 100 75 150 50 100 75 150 50 100 75 375 375 375
3939.4	3425	2	2	1	375
3761.6 3871.6 3431.6	3540 3610 3245	2 2 2	2 2 2	1 1 1	375 375 375

*SAS General Linear Model Output *

The SAS System	15:11 Wednesday	7, April 4 , 2001
----------------	-----------------	---------------------------------

General Linear Models Procedure

Class Level Information

Class	Levels	Values
VAR	2	1 2
MAT	2	0 2
SP	2	0 1
LEN	5	50 75 100 150 375

Number of observations in **data** set = **118**

General Linear Models Procedure

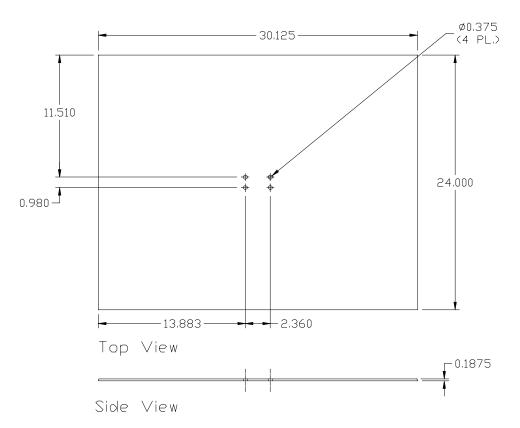
Dependent Variable: SCALE						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	8	56605454.06242230	7075681.75780279	420.78	0.0001	
Error	109	1832899.99178441	16815.59625490			
Corrected Total	117	58438354.05420670				
		R-Square	C.V. Root MS	E SC	ALE Mean	
		0.968635 11.2	3842 129.6749638	7 1153.	85389831	
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
WAGON VAR MAT SP LEN	1 1 1 4	56448536.26647850 80571.39162756 19714.14466759 7211.04989682 49421.20975185	56448536.26647850 80571.39162756 19714.14466759 7211.04989682 12355.30243796	4.79 1.17 0.43	0.0001 0.0307 0.2813 0.5139 0.5702	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
WAGON VAR MAT SP LEN	1 1 1 4	3158123.71026145 97626.83495529 18210.09746852 4836.36923346 49421.20975185	3158123.71026145 97626.83495529 18210.09746852 4836.36923346 12355.30243796	5.81 1.08 0.29	0.0001 0.0176 0.3003 0.5928 0.5702	

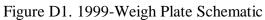
Parame	eter	Estimate	T for HO: Parameter= 0	Pr > T	Std Error of Estimate
INTERC	CEPT	- 131.0829313 B	-0.45	0.6505	288.5044945
WAGON		1.1168485	13.70	0.0001	0.0814959
VAR	1	- 79.7053464 B	-2.41	0.0176	33.0795036
	2	0.0000000 B	•	•	•
MAT	0	38.6457907 B	1.04	0.3003	37.1366050
	2	0.0000000 B	•	•	•
SP	0	20.2165283 B	0.54	0.5928	37.6966701
	1	0.0000000 B	•	•	•
LEN	50	164.1113239 B	0.62	0.5340	263.0631260
	75	117.5239056 B	0.51	0.6098	229.6363368
	100	82.6148483 B	0.38	0.7045	217.2869496
	150	108.2653961 B	0.56	0.5792	194.6320170
	375	0.0000000 B	•	•	•

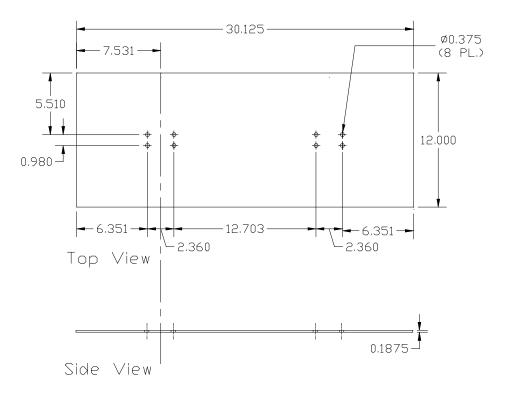
NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

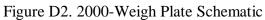
	- Observ		Residual	Lower 95% CL	Upper 95% CL
valion	n Value	Value		for Mean	for Mean
1	1455	1581.35406825	-126.35406825	1473.38477875	689.32335776
2	543	600.65129318	-57.65129318	536.82765535	664.47493101
3	1356	1178.09545825	177.90454175	1118.21064597	1237.98027054
4	928	959.59315064	-31.59315064	883.33020322	1035.85609806
5	1536	1309.84661765	226.15338235	1243.81708568	1375.87614962
6	622	606.23553590	15.76446410	542.38600029	670.08507151
7	1031	1016.15241945	14.84758055	953.25528409	1079.049 55481
8	687	716.00691362	-29.00691362	636.13123365	795.88259359
9	1839	1711.91209330	127.08790670	1642.92980318	1780.89438341
10	536	611.81977861	-75.81977861	547.93414548	675.70541175
11	1325	1328.87001162	-3.87001162	1263.84678366	1393.89323958
12	1066	978.46632133	87.53367867	912.01553400	1044.91710866
13	1660	1695.15936514	-35.15936514	1627.28497542	1763.03375487
14	566	561.56159416	4.43840584	497.63322175	625.48996657
15	1065	1122.25303108	-57.25303108	1062.33806255	1182.16799961
16	925	905.87116601	19.12883399	837.52814703	974.21418499
17	1596	1683.99087971	-87.99087971	1616.81668257	1751.16507685
18	691	600.65129318	90.34870682	536.82765535	664.47493101
19	1107	1127.83727380	-20.83727380	1067.97432984	1187.70021775
20	1125	993.09860694	131.90139306	918.15487233	1068.04234156
21	2029	1868.27088938	160.72911062	1786.17429689	1950.36748187
22	514	645.32523492	-131.32523492	581.01012336	709.64034648
23	1089	1172.51121553	-83.51121553	1112.67241634	1232.35001473
24	942	892.58223803	49.41776197	812.85854203	972.30593403
25	1745	1778.92300590	-33.92300590	1704.87941669	1852.96659512
26	689	671.12600596	17.87399404	595.14166801	747.11034391
27	1207	1233.93788543	-26.93788543	1173.00328747	1294.87248339
28	781 1771	967.29783590	-186.29783590	900.66002295	1033.93564885
29		1667.23815156	103.76184844	1601.05419374	1733.42210937
30 21	626	689.99917666	-63.99917666	624.55533347	755.44301984
31 32	1126 877	1155.75848738 894.70268057	-29.75848738 -17.70268057	1095.99242541 825.93077138	1215.52454935 963.47458977
32 33	1437	1538.80056906	-101.80056906	1477.49869054	1600.10244758
34	523	572.73007959	-49.73007959	508.88267113	636.57748805
35	1079	1004.98393401	74.01606599	941.56472732	1068.40314071
36	693	732.75964177	-39.75964177	654.2189467	811.30033679
37	1906	1851.51816123	54.48183877	1771.02809176	1932.00823070
38	659	682.29449140	-23.29449140	606.32578711	758.26319569
39	1016	1071.99484662	-55.99484662	1011.12952605	1132.860 16720
40	823	808.81859727	14.18140273	723.40892877	894.22826577
41	1074.5	906.10460777	168.39539223	802.68137341	1009.52784214
42	373.9	353.26807939	20.63192061	292.05805390	414.47810488
43	730.8	774.35344838	-43.55344838	700.79890176	847.90799500
44	866.4	725.49886483	140.90113517	660.02346128	790.97426838
45	144.2	1176.26870075	-32.06870075	1109.53959193	1242.99780957
46	546.6	431.44747743	115.15252257	373.79472757	489.10022730
47	565.2	779.93769110	-214.73769110	706.87215926	853.00322293
48	748	725.49886483	22.50113517	660.02346128	790.97426838

	- Observe n Value	ed Predicted Value	Residual	Lower 95% CL for Mean	Upper 95% CL for Mean
49	1040.6	1397.51796690	-356.91796690	1325.45658378	1469.57935002
50	508.8	526.37960363	-17.57960363	470.21792315	582.54128411
51	750.8	919.54375903	-168.74375903	856.53550006	982.55201800
52	769	859.52069005	-90.52069005	801.58689350	917.45448659
53	1292.6	1327.04325412	-34.44325412	1263.97677485	1390.10973338
54	434.3	464.95293374	-30.65293374	408.19999519	521.70587229
55	1343.7	1176.41892403	167.28107597	1116.56789270	1236.26995535
56	1082.7	999.12675798	83.57324202	942.68359311	1055.56992285
57	1440.7	1360.54871042	80.15128958	1297.29619577	1423.80122507
58	418.2	509.62687548	-91.42687548	453.44246108	565.81128987
59	1116.3	1020.06012794	96.23987206	960.98789370	1079.13236218
60	916.1	898.61038907	17.48961093	841.80893883	955.41183931
61	1142.3	1148.34748716	-6.04748716	1080.19202156	1216.50295277
62 63	647.4 1143	649.23294341 1154.08195316	-1.83294341 -11.08195316	590.12174039 1094.86793216	708.34414643 1213.29597415
63 64	1143	1134.08195316	-35.73282591	1076.84072684	1200.62492498
65	1245.5	1282.36931238	-36.86931238	1218.97295469	1345.76567007
66	638.3	593.39051624	44.90948376	536.28254338	650.49848909
67	1058.7	1243.42983664	-184.72983664	1180.70095760	1306.15871567
68	888.02	943.28433081	-55.26433081	887.10432519	999.46433642
69	1220.7	1271.20082694	-50.50082694	1207.61960150	1334.78205238
70	599.8	571.05354537	28.74645463	514.44329651	627.66379422
71	1142.4	1137.32922501	5.07077499	1078.48100509	1196.17744492
72	1218.3	1082.89039874	135.40960126	1023.94231902	1141.83847845
73	1763.8	1544.82872009	218.97127991	1474.33363345	1615.32380674
74	481.9	615.72748711	-133.82748711	557.94520259	673.50977162
75	1027.9	1142.91346772	-115.01346772	1083.95412343	1201.87281202
76	1059.9	1205.74373852	-145.84373852	1139.18752755	1272.29994949
77	1027.6	1349.38022499	-321.78022499	1286.23096170	1412.52948828
78	559.3	548.71657450	10.58342550	492.42277787	605.01037113
79	1031.6	1042.39709881	-10.79709881	983.74434767	1101.04984995
80	1007.2	1127.56434048	-120.36434048	1066.33489506	1188.79378590
81 82	1655.2 518.99	1477.81780749 504.04263276	177.38219251 14.94736724	1411.08739670 447.82743267	1544.54821827 560.25783285
82 83		1293.68802109	229.51197891	1227.94032453	1359.43571765
84		1172.23828222	93.06171778	1108.15474239	1236.32182205
85		1315.87476868	-40.97476868	1252.78765973	1378.96187763
86	907.3	571.05354537	336.24645463	514.44329651	627.66379422
87		1182.00316675	7.09683325	1121.9 6677322	1242.03956027
88		1239.24919483	137.05080517	1169.96918796	1308.52920169
89	1300.9	1220.34814827	80.55185173	1128.42987709	1312.26641945
90	463.5	499.98433837	-36.48433837	431.44120692	568.52746981
91	1000.6	1038.33880442	-37.73880442	965.93141795	1110.74619088
92	1174.4	1168.17998782	6.22001218	1095.02626017	1241.33371547
93	1056	976.76191125	79.23808875	888.93395107	1064.58987143
94	643	455.31039663	187.68960337	385.95217768	524.66861557
95		1256.12427039	274.97572961	1180.81778159	1331.43075920
96		1106.75331793	94.54668207	1036.51704853	1176.98958733
97 09		1149.87343549	-76.97343549	1074.46030232	1225.28656865
98 99	327.85	393.88372674 1110.93395974	-66.03372674 -193.53395974	322.45941610 1039.06519232	465.30803737 1182.80272716
99 100		1062.07937619	-73.27937619	993.31870240	1130.84004999
101	841.2	926.50372679	-85.30372679	834.10823896	1018.89921463
101	375.8	460.89463934	-85.09463934	391.67075130	530.11852738


	Observe		Residual	Lower 95% CL	Upper 95% CL		
vation	value	Value		for Mean	for Mean		
103	1186.9	1040.45924696	146.44075304	957.32270984	1123.59578408		
104	1171	1151.42725967	19.57274033	1079.16576907	1223.68875028		
105	1352	1457.00678494	-105.00678494	1385.05806283	1528.95550705		
106	574.5	566.99525097	7.50474903	498.54019268	635.45030927		
107	1086	1163.31258674	-77.31258674	1077.31480181	1249.31037168		
108	1103	1196.10120141	-93.10120141	1121.30949922	1270.89290360		
109	1305.6	1250.38980440	55.21019560	1179.07590993	1321.70369887		
110	576	606.08494999	-30.08494999	537.05014737	675.11975262		
111	1104.3	962.27984892	142.02015108	879.01850150	1045.54119633		
112	1196.1	1330.12302663	-134.02302663	1245.20575494	1415.04029832		
113	4050.6	3699.70757283	350.89242717	3594.47268878	3804.94245687		
114	3939.4	3694.12333011	245.27666989	3588.82338816	3799.42327206		
115	3478.5	3923.07728152	-444.57728152	3815.39176898	4030.76279406		
116	3761.6	3822.56091261	-60.96091261	3717.18976284	3927.93206237		
117	3871.6	3900.74031065	-29.14031065	3793.73531661	4007.74530469		
118	3431.6	3493.09059228	-61.49059228	3381.51126391	3604.66992066		
Sum	Sum of Residuals 0.0000000						
Sum of Squared Residuals			1832899.99178435				
Sum of Squared Residuals - Error SS				-0.0000006			
Press Statistic				2250716.91086564			
First Order Autocorrelation				0.032			


1.92421729


Durbin-Watson D


54

APPENDIX D: SCALE DRAWINGS

Note: all dimensions are in inches.

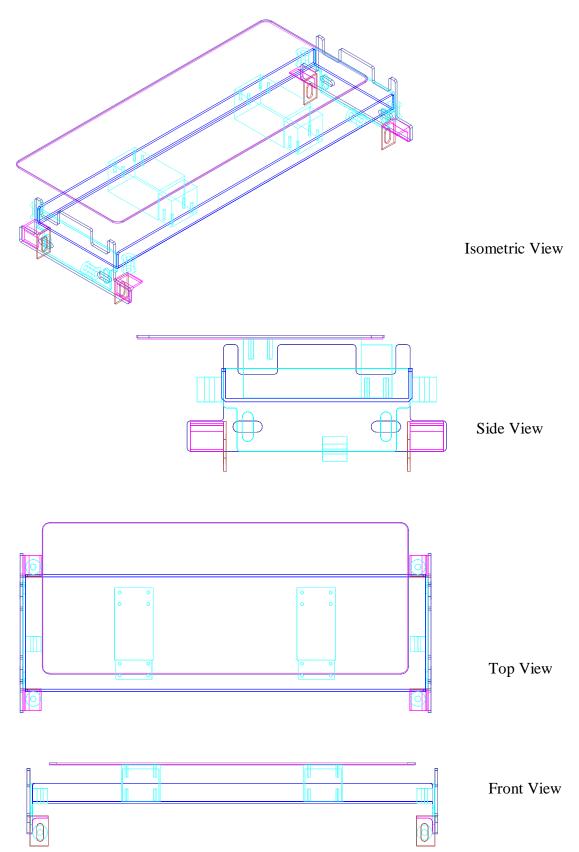


Figure D3. Scale Schematic

APPENDIX E: PROJECT PHOTOGRAPHS

Figure E1. Sugar Cane Harvesting

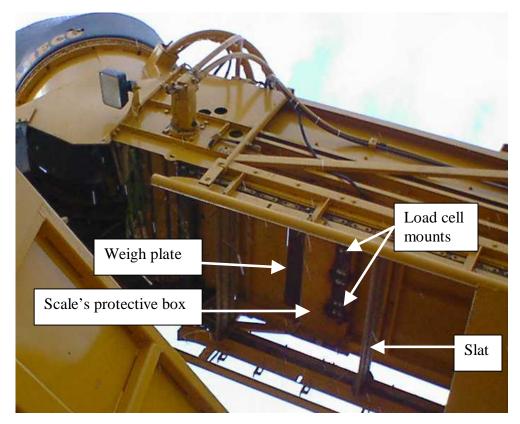


Figure E2. Underside of 2000-Scale

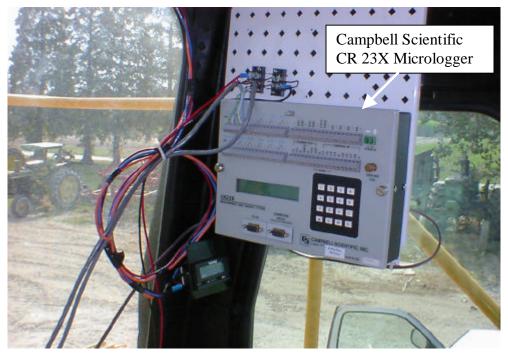


Figure E3. Data-logger inside the Harvester's Cab

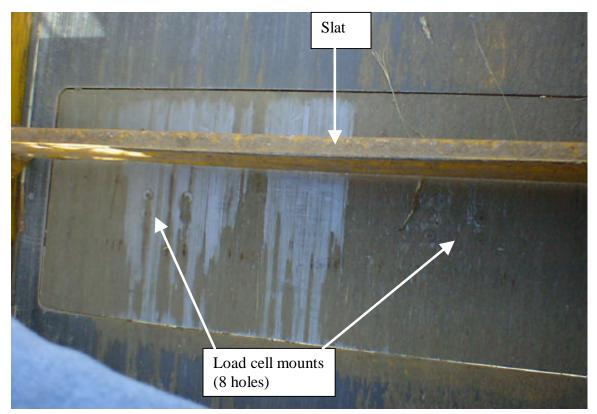


Figure E4. 2000-Scale in the Elevator's Floor

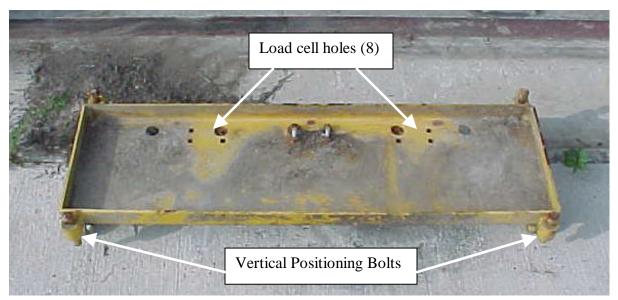


Figure E5. Load Cell Protective Box

VITA

Caryn Elizabeth Benjamin was born in Baton Rouge, Louisiana, in 1975. She graduated from Edward Douglas White Catholic High School in Thibodaux in 1994. She attended Louisiana State University (LSU) in Baton Rouge, Louisiana, where she received a Bachelor of Science degree in biological engineering in 1998. During her undergraduate career she worked for the Department of Biological & Agriculture Engineering (BAE) as a Teaching Assistant for the Introductory Biological Engineering class, BAE 1250 – AutoCAD. After receiving her bachelor degree she accepted a graduate assistantship with the Department of BAE. Eight months later, she accepted a full time position as a Teaching Associate with the Department of BAE. During her employment with LSU she continued to do research and take classes to fulfill the BAE's master's degree program. Caryn completed her class work and took a job with Engineering Services of Center for Environmental Sciences-Office of Public Health. Caryn received her Master of Science Biological and Agriculture Engineering degree in 2002.