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More Characterizations of Tangential Quadrilaterals

Martin Josefsson

Abstract. In this paper we will prove several not so well known conditions for
a quadrilateral to have an incircle. Four of these are different excircle versions
of the characterizations due to Wu and Vaynshtejn.

1. Introduction

In the wonderful paper [13] Nicuşor Minculete gave a surveyof some known
characterizations of tangential quadrilaterals and also proved a few new ones. This
paper can to some extent be considered a continuation to [13].

A tangential quadrilateral is a convex quadrilaterals withan incircle, that is a
circle tangent to all four sides. Other names for these quadrilaterals are1 tangent
quadrilateral, circumscribed quadrilateral, circumscribable quadrilateral, circum-
scribing quadrilateral, inscriptable quadrilateral and circumscriptible quadrilateral.
The names inscriptible quadrilateral and inscribable quadrilateral have also been
used, but sometimes they refer to a quadrilateral with a circumcircle (a cyclic
quadrilateral) and are not good choices because of this ambiguity. To avoid confu-
sion with so many names we suggest that only the namestangential quadrilateral
(or tangent quadrilateral) and circumscribed quadrilateral be used. This is sup-
ported from the number of hits on Google2 and the fact that both MathWorld and
Wikipedia uses the name tangential quadrilateral in their encyclopedias.

Not all quadrilaterals are tangential,3 hence they must satisfy some condition.
The most important and perhaps oldest such condition is thePitot theorem, that a
quadrilateralABCD with consecutive sidesa, b, c andd is tangential if and only
if the sums of opposite sides are equal:AB + CD = BC + DA, that is

a + c = b + d. (1)

It is named after the French engineer Henri Pitot (1695-1771) who proved that this
is a necessary condition in 1725; that it is also a sufficient condition was proved by
the Swiss mathematician Jakob Steiner (1796-1863) in 1846 according to F. G.-M.
[7, p.319].

Publication Date: March 18, 2011. Communicating Editor: Paul Yiu.
1In decreasing order of the number of hits on Google.
2Tangential, tangent and circumscribed quadrilateral represent about 80 % of the number of hits

on Google, so the other six names are rarely used.
3For example, a rectangle has no incircle.
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The proof of the direct theorem is an easy application of thetwo tangent theo-
rem, that two tangents to a circle from an external point are of equal length. We
know of four different proofs of the converse to this important theorem, all beauti-
ful in their own way. The first is a classic that uses a propertyof the perpendicular
bisectors to the sides of a triangle [2, pp.135-136], the second is a proof by con-
tradiction [10, pp.62-64], the third uses an excircle to a triangle [12, p.69] and the
fourth is an exquisite application of the Pythagorean theorem [1, pp.56-57]. The
first two of these can also be found in [3, pp.65-67].

Two similar characterizations are the following ones. IfABCD is a convex
quadrilateral where opposite sidesAB andCD intersect atE, and the sidesAD

andBC intersect atF (see Figure 1), thenABCD is a tangential quadrilateral if
and only if either of

BE + BF = DE + DF,

AE − AF = CE − CF.

These are given as problems in [3] and [14], where the first condition is proved
using contradiction in [14, p.147]; the second is proved in the same way4.
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Figure 1. The extensions of the sides

2. Incircles in a quadrilateral and its subtriangles

One way of proving a new characterization is to show that it isequivalent to a
previously proved one. This method will be used several times henceforth. In this
section we prove three characterizations of tangential quadrilaterals by showing
that they are equivalent to (1). The first was proved in another way in [19].

Theorem 1. A convex quadrilateral is tangential if and only if the incircles in the
two triangles formed by a diagonal are tangent to each other.

4In [3, pp.186-187] only the direct theorems (not the converses) are proved.



More characterizations of tangential quadrilaterals 67

Proof. In a convex quadrilateralABCD, let the incircles in trianglesABC, CDA,
BCD andDAB be tangent to the diagonalsAC andBD at the pointsX, Y , Z

andW respectively (see Figure 2). First we prove that

ZW = 1
2

∣

∣a − b + c − d
∣

∣ = XY.

Using the two tangent theorem, we haveBW = a − w andBZ = b − z, so

ZW = BW − BZ = a − w − b + z.

In the same wayDW = d − w andDZ = c − z, so

ZW = DZ − DW = c − z − d + w.

Adding these yields

2ZW = a − w − b + z + c − z − d + w = a − b + c − d.

Hence
ZW = 1

2

∣

∣a − b + c − d
∣

∣

where we put an absolute value sinceZ andW can “change places” in some quadri-
laterals; that is, it is possible forW to be closer toB thanZ is. Then we would
haveZW = 1

2(−a + b − c + d).
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Figure 2. Incircles on both sides of one diagonal

The formula forXY is derived in the same way.
Now two incircles on different sides of a diagonal are tangent to each other if

and only ifXY = 0 or ZW = 0. These are equivalent toa + c = b + d, which
proves the theorem according to the Pitot theorem. �

Another way of formulating this result is that the incirclesin the two triangles
formed by one diagonal in a convex quadrilateral are tangentto each other if and
only if the incircles in the two triangles formed by the otherdiagonal are tangent
to each other. These two tangency points are in general not the same point, see
Figure 3, where the notations are different from those in Figure 2.
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Theorem 2. The incircles in the four overlapping triangles formed by the diago-
nals of a convex quadrilateral are tangent to the sides in eight points, two per side,
making one distance between tangency points per side. It is atangential quadri-
lateral if and only if the sums of those distances at oppositesides are equal.

Proof. According to the two tangent theorem,AZ = AY , BS = BT , CU = CV

andDW = DX, see Figure 3. Using the Pitot theorem, we get

AB + CD = BC + DA

⇔ AZ + ZS + BS + CV + V W + DW = BT + TU + CU + DX + XY + AY

⇔ ZS + V W = TU + XY

after cancelling eight terms. This is what we wanted to prove. �
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Figure 3. Incircles on both sides of both diagonals

The configuration with the four incircles in the last two theorems has other in-
teresting properties. If the quadrilateralABCD is cyclic, then the four incenters
are the vertices of a rectangle, see [2, p.133] or [3, pp.44-46].

A third example where the Pitot theorem is used to prove another characteri-
zation of tangential quadrilaterals is the following one, which is more or less the
same as one given as a part of a Russian solution (see [18]) to aproblem we will
discuss in more detail in Section 4.

Theorem 3. A convex quadrilateral is subdivided into four nonoverlapping trian-
gles by its diagonals. Consider the four tangency points of the incircles in these
triangles on one of the diagonals. It is a tangential quadrilateral if and only if the
distance between two tangency points on one side of the second diagonal is equal
to the distance between the two tangency points on the other side of that diagonal.

Proof. Here we cite the Russian proof given in [18]. We use notationsas in Fig-
ure 4 and shall prove that the quadrilateral has an incircle if and only if T

′

1T
′

2 =

T
′

3T
′

4.
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By the two tangent theorem we have

AT1 = AT
′′

1 = AP − PT
′′

1 ,

BT1 = BT
′

1 = BP − PT
′

1,

so that
AB = AT1 + BT1 = AP + BP − PT

′′

1 − PT
′

1.

SincePT
′′

1 = PT
′

1,

AB = AP + BP − 2PT
′

1.

In the same way

CD = CP + DP − 2PT
′

3.

Adding the last two equalities yields

AB + CD = AC + BD − 2T
′

1T
′

3.
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Figure 4. Tangency points of the four incircles

In the same way we get

BC + DA = AC + BD − 2T
′

2T
′

4.

Thus

AB + CD − BC − DA = −2
(

T
′

1T
′

3 − T
′

2T
′

4

)

.

The quadrilateral has an incircle if and only ifAB + CD = BC + DA. Hence it
is a tangential quadrilateral if and only if

T
′

1T
′

3 = T
′

2T
′

4 ⇔ T
′

1T
′

2+T
′

2T
′

3 = T
′

2T
′

3+T
′

3T
′

4 ⇔ T
′

1T
′

2 = T
′

3T
′

4.

Note that bothT
′

1T
′

3 = T
′

2T
′

4 andT
′

1T
′

2 = T
′

3T
′

4 are characterizations of tangential
quadrilaterals. It was the first of these two that was proved in [18]. �
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3. Characterizations with inradii, altitudes and exradii

According to Wu Wei Chao (see [20]), a convex quadrilateralABCD is tangen-
tial if and only if

1

r1
+

1

r3
=

1

r2
+

1

r4
,

wherer1, r2, r3 andr4 are the inradii in trianglesABP , BCP , CDP andDAP

respectively, andP is the intersection of the diagonals, see Figure 5.
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Figure 5. The inradii and altitudes

In [13] Nicuşor Minculete proved in two different ways thatanother characteri-
zation of tangential quadrilaterals is5

1

h1
+

1

h3
=

1

h2
+

1

h4
, (2)

whereh1, h2, h3 and h4 are the altitudes in trianglesABP , BCP , CDP and
DAP from P to the sidesAB, BC, CD andDA respectively, see Figure 5. These
two characterizations are closely related to the followingone.

Theorem 4. A convex quadrilateralABCD is tangential if and only if

1

R1
+

1

R3
=

1

R2
+

1

R4

whereR1, R2, R3 and R4 are the exradii to trianglesABP , BCP , CDP and
DAP opposite the vertexP , the intersection of the diagonalsAC andBD.

Proof. In a triangle, an exradiusRa is related to the altitudes by the well known
relation

1

Ra

= −
1

ha

+
1

hb

+
1

hc

. (3)

5Although he used different notations.
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If we denote the altitudes fromA andC to the diagonalBD by hA andhC respec-
tively and similar for the altitudes toAC, see Figure 6, then we have

1

R1
= −

1

h1
+

1

hA
+

1

hB
,

1

R2
= −

1

h2
+

1

hB
+

1

hC
,

1

R3
= −

1

h3
+

1

hC

+
1

hD

,

1

R4
= −

1

h4
+

1

hD

+
1

hA

.

Using these, we get

1

R1
+

1

R3
−

1

R2
−

1

R4
= −

(

1

h1
+

1

h3
−

1

h2
−

1

h4

)

.

Hence
1

R1
+

1

R3
=

1

R2
+

1

R4
⇔

1

h1
+

1

h3
=

1

h2
+

1

h4
.

Since the equality to the right is a characterization of tangential quadrilaterals ac-
cording to (2), so is the equality to the left. �
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Figure 6. Excircles to four subtriangles
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4. Christopher Bradley’s conjecture and its generalizations

Consider the following problem:
In a tangential quadrilateralABCD, let P be the intersection of the diagonals

AC andBD. Prove that the incenters of trianglesABP , BCP , CDP andDAP

form a cyclic quadrilateral.See Figure 7.
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Figure 7. Christopher Bradley’s conjecture

This problem appeared at the CTK Exchange6 on September 17, 2003 [17],
where it was debated for a month. On Januari 2, 2004, it migrated to theHy-
acinthosproblem solving group at Yahoo [15], and after a week a full synthetic
solution with many extra properties of the configuration wasgiven by Darij Grin-
berg [8] with the help of many others.

So why was this problem calledChristopher Bradley’s conjecture? In November
2004 a paper about cyclic quadrilaterals by the British mathematician Christopher
Bradley was published, where the above problem was stated asa conjecture (see
[4, p.430]). Our guess is that the conjecture was also published elsewhere more
than a year earlier, which explains how it appeared at the CTKExchange.

A similar problem, that is almost the converse, was given in 1998 by Toshio
Seimiya in the Canadian problem solving journal Crux Mathematicorum [16]:

SupposeABCD is a convex cyclic quadrilateral andP is the intersection of
the diagonalsAC and BD. Let I1, I2, I3 and I4 be the incenters of triangles
PAB,PBC,PCD andPDA respectively. Suppose thatI1, I2, I3 andI4 are con-
cyclic. Prove thatABCD has an incircle.

The next year a beautiful solution by Peter Y. Woo was published in [16]. He
generalized the problem to the following very nice characterization of tangential
quadrilaterals:

When a convex quadrilateral is subdivided into four nonoverlapping triangles
by its two diagonals, then the incenters of the four triangles are concyclic if and
only if the quadrilateral has an incircle.

6It was formulated slightly different, where the use of the word inscriptable led to a
misunderstanding.
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There was however an even earlier publication of Woo’s generalization. Accord-
ing to [8], the Russian magazineKvantpublished in 1996 (see [18]) a solution by
I. Vaynshtejn to the problem we have called Christopher Bradley’s conjecture and
its converse (see the formulation by Woo). [18] is written inRussian, so neither we
nor many of the readers of Forum Geometricorum will be able toread that proof.
But anyone interested in geometry can with the help of the figures understand the
equations there, since they are written in the Latin alphabet.

Earlier we saw that Minculete’s characterization with incircles was also true for
excircles (Theorem 4). Then we might wonder if Vaynshtejn’scharacterization is
also true for excircles? The answer is yes and it was proved byNikolaos Dergiades
at [6], even though he did not state it as a characterization of tangential quadrilat-
erals. The proof given here is a small expansion of his.

Theorem 5 (Dergiades). A convex quadrilateralABCD with diagonals intersect-
ing at P is tangential if and only if the four excenters to trianglesABP , BCP ,
CDP andDAP opposite the vertexP are concyclic.

Proof. In a triangleABC with sidesa, b, c and semiperimeters, whereI andJ1 are
the incenter and excenter oppositeA respectively, and wherer andRa are the radii
in the incircle and excircle respectively, we haveAI = r

sin A

2

andAJ1 = Ra

sin A

2

.

Using Heron’s formulaT 2 = s(s−a)(s−b)(s−c) and other well known formulas7,
we have

AI · AJ1 = r · Ra ·
1

sin2 A
2

=
T

s
·

T

s − a
·

bc

(s − b)(s − c)
= bc. (4)

Similar formulas hold for the other excenters.
Returning to the quadrilateral, letI1, I2, I3 andI4 be the incentes andJ1, J2, J3

andJ4 the excenters oppositeP in trianglesABP,BCP,CDP andDAP respec-
tively. Using (4) we get (see Figure 8)

PI1 · PJ1 = PA · PB,

PI2 · PJ2 = PB · PC,

PI3 · PJ3 = PC · PD,

PI4 · PJ4 = PD · PA.

From these we get

PI1 · PI3 · PJ1 · PJ3 = PA · PB · PC · PD = PI2 · PI4 · PJ2 · PJ4.

Thus

PI1 · PI3 = PI2 · PI4 ⇔ PJ1 · PJ3 = PJ2 · PJ4.

In his proof [16], Woo showed that the quadrilateral has an incircle if and only if
the equality to the left is true. Hence the quadrilateral hasan incircle if and only if
the equality to the right is true. Both of these equalities are conditions for the four
pointsI1, I2, I3, I4 andJ1, J2, J3, J4 to be concyclic according to the converse of
the intersecting chords theorem. �

7Here and a few times later on we use the half angle theorems. For a derivation, see [9, p.158].
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Figure 8. An excircle version of Vaynshtejn’s characterization

Figure 8 suggests thatJ1J3⊥J2J4 andI1I3⊥I2I4. These are true in all convex
quadrilaterals, and the proof is very simple. The incentersand excenters lies on the
angle bisectors to the angles between the diagonals. Hence we have∠J4PJ1 =
∠I4PI1 = 1

2∠DPB = π
2 .

Another characterization related to the configuration of Christopher Bradley’s
conjecture is the following one. This is perhaps not one of the nicest characteriza-
tions, but the connection between opposite sides is presenthere as well as in many
others. That the equality in the theorem is true in a tangential quadrilateral was
established at [5].

Theorem 6. A convex quadrilateralABCD with diagonals intersecting atP is
tangential if and only if

(AP + BP − AB)(CP + DP − CD)

(AP + BP + AB)(CP + DP + CD)
=

(BP + CP − BC)(DP + AP − DA)

(BP + CP + BC)(DP + AP + DA)
.

Proof. In a triangleABC with sidesa, b andc, the distance from vertexA to the
incenterI is given by

AI =
r

sin A
2

=

√

(s−a)(s−b)(s−c)
s

√

(s−b)(s−c)
bc

=

√

bc(s − a)

s
=

√

bc(−a + b + c)

a + b + c
. (5)
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In a quadrilateralABCD, let the incenters in trianglesABP , BCP , CDP and
DAP beI1, I2, I3 andI4 respectively. Using (5), we get

PI1 =

√

PA · PB(AP + BP − AB)

AP + BP + AB
,

PI3 =

√

PC · PD(CP + DP − CD)

CP + DP + CD
.

Thus in all convex quadrilaterals

(PI1 · PI3)
2 =

AP · BP · CP · DP (AP + BP − AB)(CP + DP − CD)

(AP + BP + AB)(CP + DP + CD)

and in the same way we have

(PI2 · PI4)
2 =

AP · BP · CP · DP (BP + CP − BC)(DP + AP − DA)

(BP + CP + BC)(DP + AP + DA)
.

In [16], Woo proved thatPI1 · PI3 = PI2 · PI4 if and only if ABCD has an
incircle. Hence it is a tangential quadrilateral if and onlyif

AP · BP · CP · DP (AP + BP − AB)(CP + DP − CD)

(AP + BP + AB)(CP + DP + CD)

=
AP · BP · CP · DP (BP + CP − BC)(DP + AP − DA)

(BP + CP + BC)(DP + AP + DA)

from which the theorem follows. �

5. Iosifescu’s characterization

In [13] Nicuşor Minculete cites a trigonometric characterization of tangential
quadrilaterals due to Marius Iosifescu from the old Romanian journal [11]. We had
never seen this nice characterization before and suspect noproof has been given in
English, so here we give one. Since we have had no access to theRomanian journal
we don’t know if this is the same proof as the original one.

Theorem 7 (Iosifescu). A convex quadrilateralABCD is tangential if and only if

tan
x

2
· tan

z

2
= tan

y

2
· tan

w

2
wherex = ∠ABD, y = ∠ADB, z = ∠BDC andw = ∠DBC.

Proof. Using the trigonometric formula

tan2 u

2
=

1 − cos u

1 + cos u
,

we get that the equality in the theorem is equivalent to
1 − cos x

1 + cos x
·
1 − cos z

1 + cos z
=

1 − cos y

1 + cos y
·
1 − cos w

1 + cos w
.

This in turn is equivalent to

(1 − cos x)(1 − cos z)(1 + cos y)(1 + cos w)

= (1 − cos y)(1 − cos w)(1 + cos x)(1 + cos z). (6)
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Figure 9. Angles in Iosifescu’s characterization

Let a = AB, b = BC, c = CD, d = DA andq = BD. From the law of
cosines we have (see Figure 9)

cos x =
a2 + q2

− d2

2aq
,

so that

1 − cos x =
d2

− (a − q)2

2aq
=

(d + a − q)(d − a + q)

2aq

and

1 + cos x =
(a + q)2 − d2

2aq
=

(a + q + d)(a + q − d)

2aq
.

In the same way

1 − cos y =
(a + d − q)(a − d + q)

2dq
, 1 + cos y =

(d + q + a)(d + q − a)

2dq
,

1 − cos z =
(b + c − q)(b − c + q)

2cq
, 1 + cos z =

(c + q + b)(c + q − b)

2cq
,

1 − cos w =
(c + b − q)(c − b + q)

2bq
, 1 + cos w =

(b + q + c)(b + q − c)

2bq
.

Thus (6) is equivalent to

(d + a − q)(d − a + q)2

2aq
·
(b + c − q)(b − c + q)2

2cq
·
(d + q + a)

2dq
·
(b + q + c)

2bq

=
(a + d − q)(a − d + q)2

2dq
·
(c + b − q)(c − b + q)2

2bq
·
(a + q + d)

2aq
·
(c + q + b)

2cq
.

This is equivalent to

P
(

(d − a + q)2(b − c + q)2 − (a − d + q)2(c − b + q)2
)

= 0 (7)

where

P =
(d + a − q)(b + c − q)(d + q + a)(b + q + c)

16abcdq4
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is a positive expression according to the triangle inequality applied in triangles
ABD andBCD. Factoring (7), we get

P
(

(d − a + q)(b − c + q) + (a − d + q)(c − b + q)
)

·
(

(d − a + q)(b − c + q) − (a − d + q)(c − b + q)
)

= 0.

Expanding the inner parentheses and cancelling some terms,this is equivalent to

4qP (b + d − a − c)
(

(d − a)(b − c) + q2
)

= 0. (8)

The expression in the second parenthesis can never be equal to zero. Using the
triangle inequality, we haveq > a − d andq > b − c. Thusq2 ≷ (a − d)(b − c).

Hence, looking back at the derivation leading to (8), we haveproved that

tan
x

2
· tan

z

2
= tan

y

2
· tan

w

2
⇔ b + d = a + c

and Iosifescu’s characterization is proved according to the Pitot theorem. �

6. Characterizations with other excircles

We have already seen two characterizations concerning the four excircles op-
posite the intersection of the diagonals. In this section wewill study some other
excircles. We begin by deriving a characterization similarto the one in Theorem 6,
not for its own purpose, but because we will need it to prove the next theorem.

Theorem 8. A convex quadrilateralABCD with diagonals intersecting atP is
tangential if and only if

(AB + AP − BP )(CD + CP − DP )

(AB − AP + BP )(CD − CP + DP )
=

(BC − BP + CP )(DA − DP + AP )

(BC + BP − CP )(DA + DP − AP )
.

Proof. It is well known that in a triangleABC with sidesa, b andc,

tan
A

2
=

√

(s − b)(s − c)

s(s − a)
=

√

(a − b + c)(a + b − c)

(a + b + c)(−a + b + c)

wheres is the semiperimeter [9, p.158]. Now, ifP is the intersection of the diago-
nals in a quadrilateralABCD andx, y, z, w are the angles defined in Theorem 7,
we have

tan
x

2
=

√

(AB + AP − BP )(BP + AP − AB)

(AB + AP + BP )(BP − AP + AB)
,

tan
z

2
=

√

(CD + CP − DP )(DP + CP − CD)

(CD + CP + DP )(DP − CP + CD)
,

tan
y

2
=

√

(DA + AP − DP )(DP + AP − DA)

(DA + AP + DP )(DP − AP + DA)
,

tan
w

2
=

√

(BC + CP − BP )(BP + CP − BC)

(BC + CP + BP )(BP − CP + BC)
.
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From Theorem 7 we have the equality8

tan2 x

2
· tan2 z

2
= tan2 y

2
· tan2 w

2

and putting in the expressions above we get

(AB + AP − BP )(BP + AP − AB)(CD + CP − DP )(DP + CP − CD)

(AB + AP + BP )(BP − AP + AB)(CD + CP + DP )(DP − CP + CD)

=
(DA + AP − DP )(DP + AP − DA)(BC + CP − BP )(BP + CP − BC)

(DA + AP + DP )(DP − AP + DA)(BC + CP + BP )(BP − CP + BC)
.

Now using Theorem 6, the conclusion follows.9 �

Lemma 9. If J1 is the excenter oppositeA in a triangleABC with sidesa, b and
c, then

(BJ1)
2

ac
=

s − c

s − a
wheres is the semiperimeter.

Proof. If Ra is the radius in the excircle oppositeA, we have (see Figure 10)

sin
π − B

2
=

Ra

BJ1
,

BJ1 cos
B

2
=

T

s − a
,

(BJ1)
2
·
s(s − b)

ac
=

s(s − a)(s − b)(s − c)

(s − a)2
,

and the equation follows. HereT is the area of triangleABC and we used Heron’s
formula. �

b

A
b

B

b

C

a

b

J1

Ra

c

b

Figure 10. Distance from an excenter to an adjacant vertex

8This is a characterization of tangential quadrilaterals, but that’s not important for the proof of
this theorem.

9Here it is important that Theorem 6 is a characterization of tangential quadrilaterals.
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Theorem 10. A convex quadrilateralABCD with diagonals intersecting atP is
tangential if and only if the four excenters to trianglesABP , BCP , CDP and
DAP opposite the verticesB andD are concyclic.

b

A

b

B

b

C

b

D

b

P

bJAP |B

b

JAP |D

b

JCP |B

b
JCP |D

Figure 11. Excircles to subtriangles opposite the verticesB andD

Proof. We use the notationJAP |B for the excenter in the excircle tangent to side
AP oppositeB in triangle ABP . Using the Lemma in trianglesABP , BCP ,
CDP andDAP yields (see Figure 11)

(PJAP |B)2

AP · BP
=

AB + AP − BP

AB − AP + BP
,

(PJCP |D)2

CP · DP
=

CD + CP − DP

CD − CP + DP
,

(PJCP |B)2

CP · BP
=

BC + CP − BP

BC − CP + BP
,

(PJAP |D)2

AP · DP
=

DA + AP − DP

DA − AP + DP
.

From Theorem 8 we get thatABCD is a tangential quadrilateral if and only if

(PJAP |B)2

AP · BP
·
(PJCP |D)2

CP · DP
=

(PJCP |B)2

CP · BP
·
(PJAP |D)2

AP · DP
,
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which is equivalent to

PJAP |B · PJCP |D = PJCP |B · PJAP |D. (9)

Now JAP |BJCP |D andJCP |BJAP |D are straight lines throughP since they are
angle bisectors to the angles between the diagonals inABCD. According to the
intersecting chords theorem and its converse, (9) is a condition for the excenters to
be concyclic. �

There is of course a similar characterization where the excircles are opposite the
verticesA andC.

We conclude with a theorem that resembles Theorem 4, but withthe excircles
in Theorem 10.

Theorem 11. A convex quadrilateralABCD with diagonals intersecting atP is
tangential if and only if

1

Ra

+
1

Rc

=
1

Rb

+
1

Rd

,

whereRa, Rb, Rc andRd are the radii in the excircles to trianglesABP , BCP ,
CDP andDAP respectively opposite the verticesB andD.

Proof. We use notations on the altitudes as in Figure 12, which are the same as in
the proof of Theorem 4. From (3) we have

1

Ra
= −

1

hB
+

1

hA
+

1

h1
,

1

Rb

= −
1

hB
+

1

hC
+

1

h2
,

1

Rc

= −
1

hD

+
1

hC

+
1

h3
,

1

Rd

= −
1

hD

+
1

hA

+
1

h4
.

These yield

1

Ra
+

1

Rc
−

1

Rb

−
1

Rd

=
1

h1
+

1

h3
−

1

h2
−

1

h4
.

Hence
1

Ra
+

1

Rc
=

1

Rb

+
1

Rd

⇔
1

h1
+

1

h3
=

1

h2
+

1

h4
.

Since the equality to the right is a characterization of tangential quadrilaterals ac-
cording to (2), so is the equality to the left. �

Even here there is a similar characterization where the excircles are opposite the
verticesA andC.
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b

A

b

B

b

C

b

D

b

P

b

b

b

b

hA

hC

hB

hD

h1

h2
h3

h4

Ra

Rd

Rc

Rb

Figure 12. The exradii and altitudes
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Martin Josefsson: Västergatan 25d, 285 37 Markaryd, Sweden
E-mail address: martin.markaryd@hotmail.com


