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More Characterizations of Tangential Quadrilaterals

Martin Josefsson

Abstract. In this paper we will prove several not so well known coratii for
a quadrilateral to have an incircle. Four of these are diffeexcircle versions
of the characterizations due to Wu and Vaynshtejn.

1. Introduction

In the wonderful paper [13] Nicusor Minculete gave a sureégome known
characterizations of tangential quadrilaterals and alsequ a few new ones. This
paper can to some extent be considered a continuation to [13]

A tangential quadrilateral is a convex quadrilaterals vathincircle, that is a
circle tangent to all four sides. Other names for these diaéehals arétangent
quadrilateral, circumscribed quadrilateral, circumsable quadrilateral, circum-
scribing quadrilateral, inscriptable quadrilateral airdumscriptible quadrilateral.
The names inscriptible quadrilateral and inscribable gladdral have also been
used, but sometimes they refer to a quadrilateral with aumiaircle (a cyclic
guadrilateral) and are not good choices because of thisgarityi To avoid confu-
sion with so many names we suggest that only the naaregential quadrilateral
(or tangent quadrilateral) and circumscribed quadriddtee used. This is sup-
ported from the number of hits on Googknd the fact that both MathWorld and
Wikipedia uses the name tangential quadrilateral in tha&iyelopedias.

Not all quadrilaterals are tangentfahence they must satisfy some condition.
The most important and perhaps oldest such condition iPito¢ theoremthat a
quadrilateralA BC' D with consecutive sides, b, c andd is tangential if and only
if the sums of opposite sides are equal3 + CD = BC + DA, that is

at+c=b+d. (1)

It is named after the French engineer Henri Pitot (1695-1 Wiib proved that this
is a necessary condition in 1725; that it is also a sufficientidion was proved by
the Swiss mathematician Jakob Steiner (1796-1863) in 18d@ding to F. G.-M.
[7, p.319].

Publication Date: March 18, 2011. Communicating EditomulP&u.

1in decreasing order of the number of hits on Google.

Tangential, tangent and circumscribed quadrilateralesgmt about 80 % of the number of hits
on Google, so the other six names are rarely used.

3For example, a rectangle has no incircle.
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The proof of the direct theorem is an easy application oftééwtangent theo-
rem that two tangents to a circle from an external point are ofaétength. We
know of four different proofs of the converse to this impatttheorem, all beauti-
ful in their own way. The first is a classic that uses a propefiye perpendicular
bisectors to the sides of a triangle [2, pp.135-136], themseds a proof by con-
tradiction [10, pp.62-64], the third uses an excircle taagle [12, p.69] and the
fourth is an exquisite application of the Pythagorean theofl, pp.56-57]. The
first two of these can also be found in [3, pp.65-67].

Two similar characterizations are the following ones.AIBC'D is a convex
qguadrilateral where opposite sidds3 andC D intersect atF/, and the sidesi D
and BC intersect atF' (see Figure 1), thed BC D is a tangential quadrilateral if
and only if either of

BE + BF = DE + DF,
AE — AF = CE - CF.

These are given as problems in [3] and [14], where the firstition is proved
using contradiction in [14, p.147]; the second is provedhmngame way

Figure 1. The extensions of the sides

2. Incirclesin aquadrilateral and its subtriangles

One way of proving a new characterization is to show that égaivalent to a
previously proved one. This method will be used severalditenceforth. In this
section we prove three characterizations of tangentiatigjaterals by showing
that they are equivalent to (1). The first was proved in armoilas in [19].

Theorem 1. A convex quadrilateral is tangential if and only if the irg&s in the
two triangles formed by a diagonal are tangent to each other.

Hn [3, pp.186-187] only the direct theorems (not the coregysare proved.
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Proof. In a convex quadrilaterad BC' D, let the incircles in triangled BC', CDA,
BCD and DAB be tangent to the diagonalsC' and BD at the pointsX, Y, Z
andW respectively (see Figure 2). First we prove that

ZW =3la—b+c—d| = XY.
Using the two tangent theorem, we haWél’ = a — w andBZ = b — z, SO
ZW =BW —-BZ=a—w-—b+ z.
Inthe same waypW =d —wandDZ = ¢ — z, SO
IW =DZ—-DW =c—z—d+w.
Adding these yields
2/W=a—w—-b+z+c—z—d+w=a—-b+c—d.

Hence

ZW = %|a—b+c—d‘
where we put an absolute value sii¢andW can “change places” in some quadri-
laterals; that is, it is possible fd# to be closer taB than Z is. Then we would
haveZW = 1(—a+b—c+d).

Figure 2. Incircles on both sides of one diagonal

The formula forXY is derived in the same way.

Now two incircles on different sides of a diagonal are tamdgereach other if
and only if XY = 0 or ZWW = 0. These are equivalent to+ ¢ = b 4 d, which
proves the theorem according to the Pitot theorem. O

Another way of formulating this result is that the incirciasthe two triangles
formed by one diagonal in a convex quadrilateral are tantpeatach other if and
only if the incircles in the two triangles formed by the otligagonal are tangent
to each other. These two tangency points are in general aaame point, see
Figure 3, where the notations are different from those iufa@.
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Theorem 2. The incircles in the four overlapping triangles formed bg thiago-

nals of a convex quadrilateral are tangent to the sides imegpints, two per side,
making one distance between tangency points per side. Itaagential quadri-

lateral if and only if the sums of those distances at oppasies are equal.

Proof. According to the two tangent theoremdZ = AY, BS = BT,CU = CV
andDW = DX, see Figure 3. Using the Pitot theorem, we get

AB+CD = BC + DA
S AZ+ZS+BS+CV+VW+DW =BT+TU+CU+ DX + XY + AY
S ZS+VW =TU + XY

after cancelling eight terms. This is what we wanted to prove O

Figure 3. Incircles on both sides of both diagonals

The configuration with the four incircles in the last two thems has other in-
teresting properties. If the quadrilatetdBC D is cyclic, then the four incenters
are the vertices of a rectangle, see [2, p.133] or [3, pp6}4-4

A third example where the Pitot theorem is used to prove amatharacteri-
zation of tangential quadrilaterals is the following ondhiet is more or less the
same as one given as a part of a Russian solution (see [18Prtabiem we will
discuss in more detail in Section 4.

Theorem 3. A convex quadrilateral is subdivided into four nonoverleqgptrian-

gles by its diagonals. Consider the four tangency pointefincircles in these
triangles on one of the diagonals. It is a tangential quaatteral if and only if the
distance between two tangency points on one side of thedeliagonal is equal
to the distance between the two tangency points on the attepgthat diagonal.

Proof. Here we cite the Russian proof given in [18]. We use notatem Fig-
ure 4 and shall prove that the quadrilateral has an incifcad only if 7,7, =
T5T).
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By the two tangent theorem we have
AT, = AT, = AP — PTY,
BT, = BT, = BP — PT},
so that
AB = AT\ + BT, = AP + BP — PT, — PTj.
SincePT, = PT},
AB = AP + BP — 2PT,.
In the same way
CD =CP + DP — 2PT;.
Adding the last two equalities yields

AB +CD = AC + BD — 2T Tj.

Figure 4. Tangency points of the four incircles

In the same way we get
BC + DA = AC + BD — 2T,T}.
Thus
AB+CD ~ BC - DA = =2 (T|T; - T3Ty)

The quadrilateral has an incircle if and only4AfB + CD = BC' + DA. Hence it
is a tangential quadrilateral if and only if

T\Ty =TT, &  TT+TyTy = TyTu+ToT, <  TiTy=T5T,
Note that botHl’, T = T, T, andT,T, = T3T, are characterizations of tangential
quadrilaterals. It was the first of these two that was prondd8]. O
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3. Characterizations with inradii, altitudes and exr adii

According to Wu Wei Chao (see [20]), a convex quadrilateYBC D is tangen-
tial if and only if
1 1 1 1

1 3 B T2 7‘4’
wherery, r9, r3 andr, are the inradii in trianglestBP, BCP, CDP andDAP
respectively, and is the intersection of the diagonals, see Figure 5.

T3 C

T4

T2

hy
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Figure 5. The inradii and altitudes

In [13] Nicusor Minculete proved in two different ways thaiother characteri-
zation of tangential quadrilaterals is

1 1 1 1

S e T 2

s he e @
wherehq, ho, hg and hy are the altitudes in triangled BP, BCP, CDP and

DAP from P to the sidesAB, BC, C'D and D A respectively, see Figure 5. These
two characterizations are closely related to the follonong.

Theorem 4. A convex quadrilateral BC' D is tangential if and only if

N S U

Ri R3 Ry Ry
where R;, Ry, R3 and R, are the exradii to trianglesABP, BCP, CDP and
D AP opposite the verte®, the intersection of the diagonasC and BD.

Proof. In a triangle, an exradiug,, is related to the altitudes by the well known

relation

1 1 1 1
S 3
R, ha+hb+hc @)

SAlthough he used different notations.
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If we denote the altitudes from andC to the diagonaB D by h 4 andh¢ respec-
tively and similar for the altitudes tdC, see Figure 6, then we have

1 1 1 1
Ry hi  ha hp’
1 1 1 1
F A T e
1111
R Tl ho  hp
1 1 1 1
- = _I_ R R

Using these, we get

NS RS WS DR (8 S S T

Ri Ry Ry Ry  \h1 hy hy hy)’
Hence

LINNS SRS SRS RN S NS I

Ri Ry Ry Ry hi  hy hy hy
Since the equality to the right is a characterization of éemtigl quadrilaterals ac-
cording to (2), so is the equality to the left. O

Figure 6. Excircles to four subtriangles
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4. Christopher Bradley’'s conjecture and its generalizations

Consider the following problem:

In a tangential quadrilateralA BC' D, let P be the intersection of the diagonals
AC and BD. Prove that the incenters of trianglesBP, BCP, CDP and DAP
form a cyclic quadrilateral.See Figure 7.

Figure 7. Christopher Bradley's conjecture

This problem appeared at the CTK Exchahga September 17, 2003 [17],
where it was debated for a month. On Januari 2, 2004, it nedr&d theHy-
acinthosproblem solving group at Yahoo [15], and after a week a fulitbgtic
solution with many extra properties of the configuration wagn by Darij Grin-
berg [8] with the help of many others.

Sowhy was this problem callgghristopher Bradley’s conjectufeln November
2004 a paper about cyclic quadrilaterals by the British mxatician Christopher
Bradley was published, where the above problem was statadcasjecture (see
[4, p.430]). Our guess is that the conjecture was also phdidislsewhere more
than a year earlier, which explains how it appeared at the EX¢hange.

A similar problem, that is almost the converse, was given988lLby Toshio
Seimiya in the Canadian problem solving journal Crux Matagoorum [16]:

SupposeABC' D is a convex cyclic quadrilateral ané is the intersection of
the diagonalsAC and BD. Let I, 1, I3 and I, be the incenters of triangles
PAB, PBC, PCD and PD A respectively. Suppose that I,, Is and i, are con-
cyclic. Prove thatA BC' D has an incircle.

The next year a beautiful solution by Peter Y. Woo was pubtisim [16]. He
generalized the problem to the following very nice chandzation of tangential
guadrilaterals:

When a convex quadrilateral is subdivided into four nonaming triangles
by its two diagonals, then the incenters of the four triasghee concyclic if and
only if the quadrilateral has an incircle.

bt was formulated slightly different, where the use of therevdnscriptable led to a
misunderstanding.
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There was however an even earlier publication of Woo’s gdization. Accord-
ing to [8], the Russian magaziévant published in 1996 (see [18]) a solution by
I. Vaynshtejn to the problem we have called Christopher Bxggl conjecture and
its converse (see the formulation by Woo0). [18] is writteiRinssian, so neither we
nor many of the readers of Forum Geometricorum will be abletal that proof.
But anyone interested in geometry can with the help of thedgunderstand the
equations there, since they are written in the Latin alphabe

Earlier we saw that Minculete’s characterization with inlgs was also true for
excircles (Theorem 4). Then we might wonder if Vaynshteghiaracterization is
also true for excircles? The answer is yes and it was provexiknlaos Dergiades
at [6], even though he did not state it as a characterizatidangential quadrilat-
erals. The proof given here is a small expansion of his.

Theorem 5 (Dergiades) A convex quadrilaterall BC' D with diagonals intersect-
ing at P is tangential if and only if the four excenters to trianglé# P, BC P,
CDP and D AP opposite the verte® are concyclic.

Proof. In atriangleA BC with sidesa, b, c and semiperimetey, wherel and.J; are

the incenter and excenter oppositeespectively, and whereand R, are the radii

in the incircle and excircle respectively, we hat¢ = —— and AJ, = Ra
2

s b}

Using Heron’s formuld™ = s(s—a)(s—b)(s—c) and other well known formulds
we have
1 T T
AT-AJy =7 R, == e = be. (4)

sinzé s s—a (s—b)(s—c)

Similar formulas hold for the other excenters.

Returning to the quadrilateral, 1&t, I, I3 and I, be the incentes andl, Jo, J3
and.J, the excenters opposite in trianglesABP, BCP,CDP andD AP respec-
tively. Using (4) we get (see Figure 8)

PIL-PJ; = PA-PB,
PIl,-PJo= PB- PC,
PI3-PJs= PC-PD,
Pl,-PJy= PD - PA.

From these we get
Pl -Pl3-PJ,-PJ3=PA-PB-PC-PD =PI, -Ply-PJy - PJ,.
Thus
PIl,-PlI3s =PI, - Pl, & PJy-PJs=PJy- PJy.

In his proof [16], Woo showed that the quadrilateral has airate if and only if
the equality to the left is true. Hence the quadrilateraldrascircle if and only if
the equality to the right is true. Both of these equalities@nditions for the four
points Iy, I, I3, I, and.Jy, Jo, J3, J4 10 be concyclic according to the converse of
the intersecting chords theorem. O

"Here and a few times later on we use the half angle theorems @rerivation, see [9, p.158].
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Figure 8. An excircle version of Vaynshtejn’s characteiaa

Figure 8 suggests thd J3 L JyJ, andl; I3 1 1>,14. These are true in all convex
guadrilaterals, and the proof is very simple. The inceraasexcenters lies on the
angle bisectors to the angles between the diagonals. Headwave/J,PJ; =
LI4PIL = %4DPB = 7.

Another characterization related to the configuration ofisEbpher Bradley’s
conjecture is the following one. This is perhaps not one efrticest characteriza-
tions, but the connection between opposite sides is préseatas well as in many
others. That the equality in the theorem is true in a tangkeqtiadrilateral was
established at [5].

Theorem 6. A convex quadrilaterald BC'D with diagonals intersecting aP is
tangential if and only if

(AP + BP — AB)(CP + DP —CD) (BP+CP — BC)(DP + AP — DA)

(AP+ BP + AB)(CP+ DP+CD) (BP+CP+ BC)(DP+ AP+ DA)

Proof. In a triangleABC with sidesa, b andc, the distance from verteA to the
incenter! is given by

. w be(s — a) be(—a+b+c)
Al = — T = =\ =\ ©
2 (S—bl))ﬂ S a+b+c
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In a quadrilateral BC' D, let the incenters in triangle4BP, BC P, CDP and
DAP bel, I, I3 andl, respectively. Using (5), we get
PI, — \/PA - PB(AP + BP — AB)
AP+ BP + AB ’
PI, \/PC’ -PD(CP+ DP —CD)
CP+DP+CD

Thus in all convex quadrilaterals
AP-BP-CP-DP(AP+ BP — AB)(CP+ DP —CD)
(AP + BP + AB)(CP+ DP+CD)
and in the same way we have
AP-BP-CP-DP(BP+CP— BC)(DP+ AP — DA)
(BP+ CP+ BC)(DP+ AP + DA) '
In [16], Woo proved thatPl; - PIs = Pl - Pl4 if and only if ABCD has an
incircle. Hence it is a tangential quadrilateral if and oifly
AP-BP-CP-DP(AP+ BP— AB)(CP+ DP —CD)
(AP+ BP+ AB)(CP+ DP+CD)
AP-BP-CP-DP(BP+ CP— BC)(DP+ AP — DA)
- (BP + CP + BC)(DP + AP + DA)
from which the theorem follows. O

(PI, - PI3)* =

(PI, - PI,)* =

5. losifescu’s characterization

In [13] Nicusor Minculete cites a trigonometric charactation of tangential
quadrilaterals due to Marius losifescu from the old Romajoarnal [11]. We had
never seen this nice characterization before and suspgrbobhas been given in
English, so here we give one. Since we have had no accessRothanian journal
we don’t know if this is the same proof as the original one.

Theorem 7 (losifescu) A convex quadrilateralh BC' D is tangential if and only if

tan = - tan = = tan 2 - tan —
an — - tan — = tan — - tan —
2 2 2 2

wherex = ZABD,y = /ZADB, z=/ZBDC andw = ZDBC.
Proof. Using the trigonometric formula
ou 1—cosu
tan 2 1+cosu’
we get that the equality in the theorem is equivalent to
I—cosx 1—cosz 1—cosy 1—cosw
l+cosz l+cosz 1+cosy 1+cosw'
This in turn is equivalent to

(1 —cosz)(1l —cosz)(14 cosy)(l + cosw)
=(1—cosy)(1—cosw)(1l+ cosx)(1+ cos z). (6)
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Figure 9. Angles in losifescu’s characterization

Leta = AB,b = BC,c = CD,d = DA andq = BD. From the law of

cosines we have (see Figure 9)

@+ ¢ — d?
CoOSpy = ————,
2aq
so that
2 (0 1\2 _ _
| —cospe L —@=0" _ (d+a-g){d—a+q)
2aq 2aq
and
2 2 d —d
L+ cosa = @19 _(atg+datqg—d)
2aq 2aq

In the same way
(a+d—q)la—d+q)

1 —cosy = 2dq ,

| cos s — (b+c—Q)(b—c+q)7
2cq

| costw — (c—l—b—q)(c—b—l—q)’
2bq

Thus (6) is equivalent to

(d+qg+a)(d+qg—a)

14 cosy = 2dq ,

| 4 cos» — (c+q+b)(c+q—b)7
2cq

1+ cosw = (b+q+c)(b+q—c)‘
2bq

(d+a—q)d—a+q)? b+c—q)b—c+q? (d+q+a) (b+q+c)

2aq

2cq

2dq 2bq

(a+d—q)la=d+q)? (c+b—q)c=b+¢q)?* (a+q+d) (c+q+D)

2dq
This is equivalent to

P((d—a+q?b-c+q?—(a—d+q?*(c—b+q)?) =0

where
P =

2bg

2aq

2cq

(7)

(d+a—q)btc—q)(d+g+a)b+q+c)

16abedq?t
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is a positive expression according to the triangle inetyuapplied in triangles
ABD and BC'D. Factoring (7), we get
P((d—a+q)(b—c+q)+(a—d+q)(c—b+q))
((d=a+q)b—c+q)—(a—d+q)c—b+q)) =0.
Expanding the inner parentheses and cancelling some tthisiss equivalent to
4qP(b+d—a—c)((d—a)(b—c)+¢*) =0. (8)

The expression in the second parenthesis can never be equalat Using the
triangle inequality, we have > a — d andq > b — c. Thusq® = (a — d)(b — ¢).
Hence, looking back at the derivation leading to (8), we haeved that

tan < - tan = = tan 2 - tan — & b+d +
an — - tan - = tan — - tan — =a C
2 2 2 2
and losifescu’s characterization is proved according ¢édRttot theorem. O

6. Characterizations with other excircles

We have already seen two characterizations concerningotireekcircles op-
posite the intersection of the diagonals. In this sectionmilestudy some other
excircles. We begin by deriving a characterization sintibethe one in Theorem 6,
not for its own purpose, but because we will need it to proeentext theorem.

Theorem 8. A convex quadrilaterald BC'D with diagonals intersecting aP is
tangential if and only if
(AB+ AP - BP)(CD+CP—-DP) (BC—BP+CP)(DA—DP + AP)
(AB — AP+ BP)(CD — CP+ DP) (BC+ BP—CP)(DA+ DP — AP)’
Proof. It is well known that in a triangled BC' with sidesa, b andc,
tané— (s=b)(s—¢c) [(a=b+c)a+b—rc)

2 s(s—a)  \(a+b+c)(—a+b+c)

wheres is the semiperimeter [9, p.158]. Now,#f is the intersection of the diago-
nals in a quadrilateral BC'D andz, y, z, w are the angles defined in Theorem 7,
we have

AB + AP — BP)(BP + AP — AB)
AB+ AP + BP)(BP — AP + AB)’

CD + CP — DP)(DP + CP — CD)
CD+ CP+ DP)(DP —CP + CD)’

(
(
(
(
(
(
(
(

¥ [(DA+AP—DP)(DP+ AP — DA)
Y DA+ AP + DP)(DP — AP + DA)’
. w_ [(BC+CP—BP)(BP+CP— BC)

2 BC + CP+ BP)(BP—CP+ BC)
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From Theorem 7 we have the equdlity
2% _tan?2? . tan2 ¥
5 = tan 9 tan 5
and putting in the expressions above we get
(AB+ AP — BP)(BP+ AP - AB)(CD+CP —DP)(DP+CP —CD)
(AB+ AP+ BP)(BP — AP+ AB)(CD+ CP+ DP)(DP - CP +CD)

(DA + AP — DP)(DP + AP — DA)(BC + CP — BP)(BP + CP — BC)

o L

tan - tan

(DA+ AP + DP)(DP — AP+ DA)(BC + CP + BP)(BP — CP+ BC)’
Now using Theorem 6, the conclusion follows. O

Lemma9. If J; is the excenter opposité in a triangle ABC' with sidesa, b and
¢, then
(BJ1)?  s—c

ac S—a
wheres is the semiperimeter.

Proof. If R, is the radius in the excircle opposite we have (see Figure 10)

sin T—B = —Ra
2  BJ’
BJj cos E = T ,
2 s—a
(BJy)? - s(s—b) _ s(s—a)(s—b)(s— c)’
ac (s —a)?
and the equation follows. Hef#is the area of trianglel BC and we used Heron’s
formula. O

Figure 10. Distance from an excenter to an adjacant vertex

8This is a characterization of tangential quadrilateralg,that’s not important for the proof of
this theorem.

Here itis important that Theorem 6 is a characterizatioranfential quadrilaterals.
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Theorem 10. A convex quadrilaterad BC'D with diagonals intersecting ab is
tangential if and only if the four excenters to triangld$8 P, BCP, CDP and
D AP opposite the verticeB and D are concyclic.

Figure 11. Excircles to subtriangles opposite the vertidéemd D

Proof. We use the notatiod s p| g for the excenter in the excircle tangent to side
AP oppositeB in triangle ABP. Using the Lemma in triangled BP, BCP,
CDP and D AP yields (see Figure 11)

(PJAP\B)2 AB+ AP — BP
AP -BP ~ AB— AP+ BP’
(PJCP|D)2 CD+CP—-DP
CP.-DP  CD-CP+DP’
(PJcpip)? BC+CP—BP
CP-BP ~ BC-CP+ BP’
(PJapip)? DA+ AP — DP
AP-DP ~ DA— AP+ DP’
From Theorem 8 we get thatBC D is a tangential quadrilateral if and only if

(PJapg)* (PJepip)*  (PJepig)* (PJapip)?

AP.-BP CP-DP CP-BP AP-DP’
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which is equivalent to
PJap - PJopip = PJcpis PJapp- 9)

Now Jyp|pJopip @nd JoppJap|p are straight lines throug since they are
angle bisectors to the angles between the diagonafsHa’'D. According to the

intersecting chords theorem and its converse, (9) is a tiondor the excenters to
be concyclic. a

There is of course a similar characterization where theees are opposite the
verticesA andC.

We conclude with a theorem that resembles Theorem 4, butthatlexcircles
in Theorem 10.

Theorem 11. A convex quadrilaterald BC'D with diagonals intersecting aP is
tangential if and only if

1 1 1 1

R, R R R
whereR,, Ry, R. and R, are the radii in the excircles to triangleda BP, BCP,
CDP and D AP respectively opposite the vertic8sand D.

Proof. We use notations on the altitudes as in Figure 12, which &redime as in
the proof of Theorem 4. From (3) we have

1ot 11
R, hg ha M~
1ot 1
Ry, hp  hc  hy’
L1 1 1
R. hp  hc = hs’
LI S U
Ry  hp ha hy
These yield
1 + 1 1 1 1 1 1
R, R. Ry Rq hi hs hy hy
Hence
L, 1.1 1 1 1 1
R, R. Ry, Ry hi  hs hy hy
Since the equality to the right is a characterization of éetigl quadrilaterals ac-
cording to (2), so is the equality to the left. d

Even here there is a similar characterization where the@gsiare opposite the
verticesA andC.
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Ry

> B
Figure 12. The exradii and altitudes
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