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Abstract. - We present a molecular dynamics test of the Central Limit Theorem (CLT) in a
paradigmatic long-range-interacting many-body classical Hamiltonian system, the HMF model.
We calculate sums of velocities at equidistant times along deterministic trajectories for different
sizes and energy densities. We show that, when the system is in a chaotic regime (specifically,
at thermal equilibrium), ergodicity is essentially verified, and the Pdfs of the sums appear to
be Gaussians, consistently with the standard CLT. When the system is, instead, only weakly
chaotic (specifically, along longstanding metastable Quasi-Stationary States), nonergodicity (i.e.,
discrepant ensemble and time averages) is observed, and robust q-Gaussian attractors emerge,
consistently with recently proved generalizations of the CLT.

Introduction. – During recent years there has been
an increasing interest in generalizations of the Central
Limit Theorem (CLT). This theorem – so called because of
its central position in theory of probabilities – has ubiqui-
tous and important applications in several fields. It essen-
tially states that a (conveniently scaled) sum of n → ∞ in-
dependent (or nearly independent) random variables with
finite variance has a Gaussian distribution. Understand-
ingly, this theorem is not applicable to those complex
systems where long-range correlations are the rule, such
as those addressed by nonextensive statistical mechan-
ics [1, 2]. Therefore, several papers [3–10] have recently
discussed extensions of the CLT and their correspond-
ing attractors. In this paper, following [5, 6], we present
several numerical simulations for a long-range Hamilto-
nian system, namely the Hamiltonian Mean Field (HMF)
model. This model is a paradigmatic one for classical
Hamiltonian systems with long-range interactions which
has been intensively studied in the last decade (see, for
example, [6, 11–21], and references therein). In [5] it was
shown that the probability density of rescaled sums of iter-
ates of deterministic dynamical systems (e.g., the logistic
map) at the edge of chaos (where the Lyapunov exponent
vanishes) violates the CLT. Here we study rescaled sums of
velocities considered along deterministic trajectories in the

HMF model. It is well known that, in this model, a wide
class of out-of-equilibrium initial conditions induce a vio-
lent relaxation followed by a metastable regime character-
ized by nearly vanishing (strictly vanishing in the thermo-
dynamic limit) Lyapunov exponents, and glassy dynam-
ics [14–16]. We exhibit that correlations and nonergodicity
created along these Quasi-Stationary States (QSS) can be
so strong that, when summing the velocities calculated
during the deterministic trajectories of single rotors at
fixed intervals of time, the standard CLT is no longer ap-
plicable. In fact, along the QSS, q-Gaussian Pdfs emerge
as attractors instead of simple Gaussian Pdfs, consistently
with the recently advanced q-generalized CLT [4,5, 9].

Numerical simulations. – The HMF model de-
scribes a system of N fully-coupled classical inertial XY

spins (rotors)
-

si= (cos θi, sin θi) , i = 1, ..., N,with uni-
tary module and mass [11, 12]. These spins can also
be thought as particles rotating on the unit circle. The
Hamiltonian is given by

H =

N∑

i=1

pi
2

2
+

1

2N

N∑

i,j=1

[1 − cos(θi − θj)] , (1)
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where θi (0 < θi ≤ 2π) is the angle and pi the conjugate
variable representing the rotational velocity of spin i.
The equilibrium solution of the model in the canonical
ensemble predicts a second order phase transition from a
high temperature paramagnetic phase to a low tempera-
ture ferromagnetic one [11]. The critical temperature is
Tc = 0.5 and corresponds to a critical energy per parti-
cle Uc = Ec/N = 0.75. The order parameter of this phase
transition is the modulus of the average magnetization per

spin defined as: M = (1/N)|∑N
i=1

-

si | . Above Tc, the
spins point in different directions and M ∼ 0. Below Tc,
most spins are aligned (the rotators are trapped in a single
cluster) and M 6= 0. The out-of equilibrium dynamics of
the model is also very interesting. In a range of energy
densities between U ∈ [0.5, 0.75], special initial conditions
called water bags, with initial magnetization M0 = 1 (i.e.
with all the spins aligned and with all the available en-
ergy in the kinetic form), drive the system, after a violent
relaxation, towards metastable QSS which slowly decays
towards equilibrium with a lifetime which diverges like a
power of the system size N [13–15].

In this section we simulate the dynamical evolution of
several HMF systems with different sizes and at different
energy densities, in order to explore their behavior either
inside or outside the QSS regime. For each of them, fol-
lowing the prescription of the CLT, we construct proba-
bility density functions of quantities expressed as a finite
sum of stochastic variables. But in this case, following the
procedure adopted in ref. [5] for the logistic map, we will
select these variables along the deterministics time evolu-
tions of the N rotors. More formally, we study the Pdf of
the quantity y defined as

yj =
1√
n

n∑

i=1

(pj(i)− < pj >) for j = 1, 2, ..., N , (2)

being pj(i), with i = 1, 2, ..., n, the velocities of the jth-
rotor taken at fixed intervals of time δ along the same tra-
jectory, obtained integrating the HMF equations of mo-
tions (see [14] for details about these equations and the
integration algorithm adopted), and < pj > the time av-
erage of the pj(i)’s over that trajectory. The product δ×n
gives the total simulation time over which the sum is cal-
culated. Note that the variables y’s are proportional to
the time average of the velocities along the single rotor
trajectories. In the following we will distinguish this kind
of average from the standard ensemble average of the ve-
locities calculated for the N rotators at a given time and
over many different realizations of the dynamics. The lat-
ter can also be obtained considering the y’s variables with
n = 1 and < pj >= 0. In general, although the standard
CLT predicts a Gaussian shape for sum of n independent
stochastic values strictly when n → ∞, in practice a fi-
nite sum converges quite soon to the Gaussian shape and
this, in absence of correlations, is certainly true at least
for the central part of the distribution [23]. Typically we
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Fig. 1: Temperature time evolution for the HMF system, with
N=100 and M1 initial conditions, for U = 0.69 and for U = 0.4.
The presence of a QSS regime is visible only in the U = 0.69
case, although a transient regime exist also for U = 0.4. See
text or further details.

will use in this section a sum of n = 50 values of veloci-
ties along the deterministic trajectories for each of the N
rotors of the HMF system, though larger values of n were
also considered.

In the following we will show that, if correlations among
velocities are strong enough and the system is weakly
chaotic, CLT predictions are not verified and, consistently
with recent generalizations of the CLT, q-Gaussians ap-
pear [3–5]. The latter are a generalization of Gaussians
which emerge in the context of nonextensive statistical
mechanics [1, 2] and are defined as

Gq(x) = A(1 − (1 − q)βx2)1/1−q , (3)

being q the so-called entropic index (for q = 1 one re-
covers the usual Gaussian) , β another suitable parameter
(characterizing the width of the distribution), and A a
normalization constant (see also ref. [10] for a simple and
general way to generate them). In particular we will show
in this section that:

(i) at equilibrium, when correlations are weak and the
system is strongly chaotic (hence ergodic) standard CLT is
verified, and time average coincides with ensemble average
(both corresponding Pdfs are Gaussians, either in the limit
n → ∞ or δ → ∞);

(ii) in the QSS regime, where velocities are strongly cor-
related and the system is weakly chaotic and nonergodic,
the standard CLT is no longer applicable, and q-Gaussian
attractors replace the Gaussian ones; in this regime en-
semble averages do not agree with time averages.

For all the present simulations, water-bag initial condi-
tions with initial magnetizazion M0 = 1, usually referred
as M1, will be used. In general, several different realiza-
tions of the initial conditions will be performed also for
the time average Pdfs case, but only in order to have a
good statistics for small values of N (for N=50000, on the
contrary, only one realization has been used: see fig.7(b)).
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Fig. 2: Numerical simulations for the HMF model with N=100,
U=0.4 and M1 initial conditions. No QSS are present for this
energy value. (a) We plot here the Pdf of the single rotor
velocities at the time t=40000 (ensemble average over 1000
realizations), i.e. we plot the (normalized) variable y defined as
in eq.(2) with n = 1. The shape is Gaussian since the system
is at equilibrium. In the other figures (b), (c) and (d) we
plot the time average Pdfs for the normalized variable y, with
n = 50 but with different time intervals (δ=100,200 and 1000),
calculated over an increasing simulation time after a transient
of 40000 time units. An average over 1000 different realizations
of the initial conditions was also considered in order to have
a good statistics. Even if we are at equilibrium, it is evident
a strong dependence of the entropic index q of the q-Gaussian
fitting curve on the time interval δ adopted. Anyway, a time
interval δ = 1000 is already sufficient to obtain a Gaussian-
shaped Pdf. See text for further details.

Finally, to allow a correct comparison with standard Gaus-
sians (represented as dotted lines in all the figures) and q-
Gaussians (represented as full lines), the Pdf curves were
always normalized to unit area and unit variance, by sub-
tracting from the y’s their average < y > and dividing by
the correspondent standard deviation σ (hence, the tradi-
tional

√
n scaling adopted in Eq. (2) is in fact irrelevant).

The case N=100. We start the discussion of the nu-
merical simulations for the HMF model considering a size
N=100 and two different energy densities, U=0.4 and
U=0.69. In the first case no QSS exist, while in the sec-
ond case QSS characterize the out-of-equilibrium dynam-
ics and correlations formed during the first part of the
dynamics decay slowly while the system relaxes towards
equilibrium [14, 15]. With N = 100 this relaxation takes
however a reasonable amount of time steps, thus one can
easily study also the equilibrium regime. The situation is
illustrated in fig. 1, where we show the time evolution of
the temperature - calculated as twice the average kinetic
energy per particle - for the two energy densities consid-
ered, starting from M0 = 1 initial conditions. As expected
QSS are clearly visible only in the case U = 0.69, although

a small transient regime exists also for the case U = 0.4
(further details of this kind concerning numerical simula-
tions can be found in [14]).

N=100 and U=0.4. Here we discuss numerical simu-
lations for the HMF model with size N=100 and U=0.4.
In this case it has been shown in the past that the equi-
librium regime is reached quite fast and is characterized
by a very chaotic dynamics [11, 12].

In fig. 2 a transient time of 40000 units has been per-
formed before the calculations, so that the equilibrium is
fully reached (see fig.1). In (a) we consider the ensemble
average of the velocities, i.e. the y variables defined as in
(2) with n = 1, at t = 40000 and taking 1000 different re-
alizations of the initial conditions (events). The Pdf com-
pares very well with the Gaussian curve (dashed line), as
expected at equilibrium. On the other hand, we consider
in (b), (c) and (d) the Pdfs for the variable y with n = 50
and with different time intervals δ over an increasing sim-
ulation time at equilibrium. As previously explained, this
procedure corresponds to performing a time average along
the trajectory for all the rotors of the system. In this
case only the central part of the curve exhibits a Gaussian
shape. On the other hand, Pdfs have long fat tails which
can be very well reproduced with q-Gaussians (full lines).
If one increases the time interval δ going from δ = 100
(b), to δ = 200 (c) and finally to δ = 1000 (d), the tails
tend to disappear, the entropic index q of the q-Gaussians
decreases from q = 1.45 ± 0.05 towards q = 1 and the
Pdf tends to the standard Gaussian. This means that, as
expected, summed velocities are less and less correlated
as δ increases (see also ref. [5]) and therefore the assump-
tions of the CLT are satisfied as well as its prediction.
Notice that n = 50 terms and a time interval δ = 1000 are
sufficiently large to reach a Gaussian-shaped Pdf. This
situation reminds similar observations in the analysis of
returns in financial markets [23], or in turbulence [24].

N=100 and U=0.69. Let us to consider now numeri-
cal simulations for the HMF model with size N=100 and
U=0.69. In this case a QSS regime exists, but its char-
acteristic lifetime is quite short since the noise induced
by the finite size drives the system towards equilibration
rapidly. However strong correlations, created by the M1
initial conditions, exist and their decay is slower than in
the case U = 0.4. In fig. 3 we show in (a) the Pdf of
the velocities calculated at t = 100 (i.e. at the beginning
of the QSS regime). An ensemble average over 1000 real-
izations was considered. The Pdf shows a strange shape
which remains constant in the QSS, as already observed
in the past [13], and which differs from both the Gaussian
and the q-Gaussian curves.

On the other hand, we show in (b) the Pdf of the vari-
able y with n = 50 and δ = 40, i.e. calculated over a
total of 2000 time steps after a transient of 100 units, in
order to stay inside the QSS temperature plateaux (see
fig.1). In this case the system is weakly chaotic and non
ergodic [14, 15] and the numerical Pdf is reproduced very
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Fig. 3: Numerical simulations for the HMF model, with N=100
and U=0.69 and M1 initial conditions. We are in this case
inside the QSS regime. (a) We plot here the Pdf of the single
rotor velocities at time t = 100 (ensemble average over 1000
realizations). The shape is not Gaussian. (b) Time average
Pdf for the normalized variable y with n = 50 and with a
time interval δ = 40, calculated after a transient time of 100
time units. An average over 1000 different realizations of the
initial conditions was also considered in order to have a good
statistics. The resulting shape is very different from that one
shown in (a) and can be very well fitted with a q-Gaussian.
Thus, in the QSS regime, ensemble average and time average
are inequivalent. See text for further details.

well by a q-Gaussian with q = 1.65 ± 0.05. Thus we can
conclude that ensemble and time averages are inequivalent
in the QSS regime. Note that, due to the shortness of the
QSS plateaux, for N = 100 it is not possible to use greater
values of δ or n in the numerical calculations of the y’s.

In fig.4 we repeat the previous simulations for N = 100
and U = 0.69, but adopting a transient time of 40000
steps, in order to study the behavior of the system af-

ter the QSS regime. The ensemble average Pdf (over
1000 realizations) of the single rotor velocities at the time
t = 40000 is shown in (a) and indicates that equilibrium
seems to have been reached. In fact the agreement with
the standard Gaussian is almost perfect up to 10−4. In the
other figures we plot the time average Pdfs for the variable
y with n = 50 and for different time intervals δ, as done for
U = 0.4. More precisely δ=100 in (b), δ=1000 in (c) and
δ=2000 in (d). Again it is evident a strong dependence
of the Pdf shapes on the time interval δ adopted. In fact
initially (b) the Pdf is well fitted by a q-Gaussian with a
q = 1.65 ± 0.05, however increasing δ, in (c) and (d), the
central part of the Pdf becomes Gaussian while tails are
still present and can be well fitted by q-Gaussians with
values of q that tend towards unity. However, at variance
with the U = 0.4 case, in this case not even a time interval
δ = 2000 is sufficient to reach a complete Gaussian-shaped
Pdf down to 10−4: evidently the strong correlations char-
acterizing the QSS regime decay very slowly even after it,
making the equilibrium shown by the ensemble average
Pdf in (a) only apparent. This means that full ergodicity,
i.e., full equivalence between ensemble and time averages,
is reached, in this case, only asymptotically.

The last statements are confirmed by panels (e) and (f)
of fig.4, where the effect of increasing the number n of
summed velocities, keeping fixed the value of δ, has been
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Fig. 4: Numerical simulations for the HMF model, with
N=100, U=0.69 and M1 initial conditions. We are here after
the QSS regime. (a) We plot the Pdf of the single rotor ve-
locities at t=40000 (ensemble average over 1000 realizations).
The shape is Gaussian since the system is at equilibrium. In
the other figures we plot the time average Pdfs for the nor-
malized variable y, calculated after a transient time of 40000.
An average over 1000 different realizations of the initial con-
ditions was also considered in order to have a good statistics.
In figs.(b-d) we considered n = 50 but with different time in-
tervals, more precisely δ=100 (b), δ=1000 (c) and δ=2000 (d),
over an increasing simulation time at equilibrium. In the last
two figures (e) and (f) we show the Pdfs obtained by keeping
fixed the value δ = 100 and increasing the number n of ve-
locities in the sum for getting y. More precisely, n = 5000 in
(e) and n = 50000 in (f). It is clear that, both for δ → ∞

and n → ∞, the Pdfs shape tends to a Gaussian. See text for
further details.

investigated. More precisely δ=100 and n = 5000 in (e)
and n = 50000 in (f). As expected, the increment of n
makes the Pdf closer to the Gaussian, essentially because
the total time over which the sum is considered increases
(for n = 50000 we cover a simulation time of 5 × 106)
and therefore correlations become asymptotically weaker
and weaker, thus finally satisfying the prediction of the
standard CLT

In order to study in more details the ensemble-time in-
equivalence along the QSS regime in the next subsection
we will increase the system size and discuss numerical re-
sults for N = 5000 and N = 50000.

N=5000 and N=50000 at U=0.69. In fig.5 we show
the time evolution of the temperature for the cases
N=5000 and N=50000 at U=0.69, always starting (as
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Fig. 5: Temperature time evolution for the HMF system, with
U = 0.69, M1 initial conditions and for N = 5000 and N =
50000. The presence of a long-lasting QSS regime is clearly
visible in both the cases and the plateaux are very much larger
then in the N = 100 case.

usual) from the M1 initial conditions. It is evident that,
for both systems, the length of the QSS plateaux is very
much greater than for N = 100.

We discuss first numerical simulations done inside the
QSS for N=5000 and U=0.69.

In fig.6 we show in (a) the ensemble average Pdf of ve-
locities calculated over 1000 realizations at t = 100, i.e.
at the beginning of the QSS regime. Its shape, constant
along the entire QSS, is clearly not Gaussian and looks
similar to that of fig.3 (a). In panels (b-d) we show the
effect of increasing the number n of velocity terms in the
y sum on the time average Pdfs, calculated using a fixed
value of δ = 100. An average over 200 different realiza-
tions of the initial conditions was also considered in order
to have good statistics. In this case only for n = 1000 a
q-Gaussian, with q = 1.45 ± 0.05, emerges. This is most
likely due not to the effective number of n used but, con-
sistently with fig.6, to the fact that when choosing a large
n one is averaging over a larger interval of time and thus
considers in a more appropriate way the average over the
entire QSS regime. In any case the observed behavior
goes in the opposite direction to the prescriptions of the
standard CLT and to the trend shown in panels (e-f) of
fig.4. Indeed, increasing n, the Pdf tails do not vanish
but become more and more evident, thus supporting even
further the claim about the existence of a non-Gaussian at-
tractor for the nonergodic QSS regime of the HMF model.
Moreover, the results of fig.6 confirm the robustness of the
q-Gaussian shape along the entire QSS plateaux and the
inequivalence between ensemble and time averages in the
metastable regime.

Let us now definitively demonstrate this inequivalence
considering the case N=50000 at U=0.69. In fig.7 (a) we
plot the ensemble average Pdf of the velocities calculated
(over 100 different realizations) at t = 200, i.e. at the be-
ginning of the QSS regime, and after a very long transient,
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Fig. 6: Numerical simulations for the HMF model with
N=5000, U=0.69 and M1 initial conditions, in the QSS regime.
(a) We plot the Pdf of single rotor velocities at the time t=100
(ensemble average over 1000 realizations). (b-d) We plot the
time average Pdfs for the normalized variable y, after a tran-
sient time of 100 units and considering increasing values of n

with a fixed time interval δ = 100, i.e. considering an increas-
ing total simulation time inside the QSS. An average over 200
different realizations of the initial conditions was also consid-
ered in order to have a good statistics. Only for n = 1000, i.e.
when the entire QSS extension has been considered (see fig.5),
we get a very good q-Gaussian shape. See text for further
details.

at t = 250000 (full circles). In panel (b) we plot the time
average Pdf for the normalized variable y with n = 5000
and δ = 100, after a transient of 200 time units and over a
simulation time of 500000 units along the QSS. It is impor-
tant to stress that in this case only one single realization

of the initial conditions has been performed. The shape
of the time average Pdf (b) results to be again a robust
q-Gaussian, with q = 1.4 ± 0.05. The latter is completely
different from the ensemble average Pdf of fig.7(a) (that
is also very robust over all the plateaux), thus confirming
definitively the inequivalence between the two kind of av-
erages and the existence of a q-Gaussian attractor in the
QSS regime of the HMF model.

Conclusions. – The numerical simulations presented
in this paper strongly indicate that dynamical correlations
and ergodicity breaking, induced in the HMF model by the
initial out-of equilibrium violent relaxation, are present
along the entire QSS metastable regime and decay very
slowly even after it. In particular, considering finite sums
of n correlated variables (velocities in this case) selected
with a constant time interval δ along single rotor trajecto-
ries, allowed us to study this phenomenon in a very clear
and stringent way. Indeed, we numerically show that, in
the weakly chaotic QSS regime, (i) ensemble average and
time average of velocities are inequivalent, hence the er-
godic hypothesis is violated, (ii) the standard CLT is vi-
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Fig. 7: Numerical simulations for the HMF model for N=50000,
U=0.69 and M1 initial conditions in the QSS regime. (a) We
plot the Pdfs of single rotor velocities at the times t=200 and
t=250000 (ensemble average over 100 realizations). (b) We plot
the time average Pdf for the variable y calculated over only one
single realization in the QSS regime and after a transient time
of 200 units. In this case we used δ = 100 and n = 5000,
in order to cover a very large portion of the QSS (see fig.5).
Again, a q-Gaussian reproduces very well the calculated Pdf
both in the tails and in the central part (see inset). See text
for further details.

olated, and (iii) robust q-Gaussian attractors emerge. On
the contrary, when no QSS exist, or at a very large time
after equilibration, i.e., when the system is fully chaotic
and ergodicity has been restored, the ensemble average of
velocities results to be equivalent to the time average and
one observes a convergence towards the standard Gaus-
sian attractor. In this case, the predictions of CLT are
satisfied, even if we have only considered a finite sum of
stochastic variables. How fast this happens depends on
the size N , on the number n of terms summed in the y
variables and on the time interval δ considered.

These results are consistent with the recent q-
generalized forms of the CLT discussed in the literature
[3–6, 9], and pose severe questions to the often adopted
procedure of using ensemble averages instead of time av-
erages. Along the same lines, nonergodicity was recently
exhibited in shear flows, with results that were fitted with
Lorentzians, i.e., q-Gaussians with q = 2 [22]. The whole
scenario reminds that found for the leptokurtic returns

Pdf in financial markets [23], or in turbulence [24], among
many other systems, and could probably explain why q-
Gaussians appear to be ubiquitous in complex systems.
Finally, we would like to add that, although it is certainly
nontrivial to prove analytically whether the attractor in
the nonergodic QSS regime of the HMF model precisely
is a q-Gaussian or not (analytical results, as well as nu-
merical dangers, have been recently illustrated in ref. [8]
for various models), our numerical simulations unambigu-
ously provide a very strong indication towards the exis-
tence of a robust q-Gaussian attractor in the case con-
sidered. This opens new ways to the possible application
of the q-generalized statistics in long-range Hamiltonian
systems.

∗ ∗ ∗

We thank Marcello Iacono Manno for many technical
discussions and help in the preparation of the scripts to
run our codes on the GRID platform. The numerical cal-
culations here presented were done within the TRIGRID
project. A.P. and A.R. acknowledge financial support
from the PRIN05-MIUR project ”Dynamics and Ther-
modynamics of Systems with Long-Range Interactions”.
C.T. acknowledges financial support from the Brazilian
Agencies Pronex/MCT, CNPq and Faperj.

REFERENCES

[1] Tsallis C., J. Stat. Phys, 52 (1988) 479
[2] Tsallis C., Gell-Mann M. and Sato Y., Europhys.

News, 36 (2006) 186, and references therein
[3] Tsallis C., Milan J. Mathematics, 73 (2005) 145, and

references therein
[4] S. Umarov, C. Tsallis and S. Steinberg, cond-

mat/0603593, (2006)
[5] Tirnakli U., Beck C. and Tsallis C., Phys. Rev. E, 75

(2007) 040106 (R)
[6] Tsallis C., Rapisarda A., Pluchino A. and Borges

E.P., Physica A, 341 (2007) 143
[7] F. Baldovin F. and A. Stella, Phys Rev. E, 75 (2007)

020101(R)
[8] Hilhorst H.J. and Schehr G., Jstat, 06 (2007) P06003
[9] Vignat C. and Plastino A., arXiv:0706.0151[cond-

mat.stat-mech], (2007)
[10] Thistleton W.J., Marsh J.A., Nelson K. and Tsal-

lis C., IEEE, in press, cond-mat/0605570 , (2006)
[11] Dauxois T., Latora V. , Rapisarda A. , Ruffo S. and

Torcini A., Lecture Notes in Physics, edited by T. Daux-

ois, S. Ruffo, E. Arimondo, M. Wilkens, Vol. 602

2002, p. 458
[12] Latora V., Rapisarda A. and Ruffo S., Phys. Rev.

Lett., 80 (1998) 692
[13] Latora V., Rapisarda A. and Tsallis C., Phys. Rev.

E, 64 (2001) 056134
[14] Pluchino A., Latora V. and Rapisarda A., Physica

D, 193 (2004) 315
[15] Rapisarda A. and Pluchino A., Europhysics News, 36

(2005) 202
[16] Pluchino A. , Latora V. and Rapisarda A., Physica

A, 370 (2006) 573
[17] Giansanti A., Moroni D. and Campa A., Physica A,

305 (2002) 137
[18] Chavanis P-H., Eur. J. Phys. B, 53 (2006) 487
[19] Antoniazzi A., Califano F., Fanelli D., and Ruffo

S., Phys. Rev. Lett, 98 (2007) 150202
[20] Morita H. and Kaneko K., Phys. Rev. Lett., 96 (2006)

050602
[21] Tamarit F., Maglione G., Stariolo D. A., and An-

teneodo C., Phys. Rev. E, 71 (2005) 036148
[22] Wang Y., Krishan K. and Dennin M., Phys. Rev. Lett.,

98 (2007) 220602
[23] Mantegna A. and Stanley H.E., An Introduction to

Econophysics, edited by Cambridge University Press,

Cambridge 1999

p-6



Title

[24] Beck C., Lewis G.S. and Swinney H.L., Phys. Rev. E,
63 (2001) 035303

p-7


