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ABSTRACT

Most mycorrhizas are ‘balanced’ mutualistic associations in which the fungus and plant exchange commodities
required for their growth and survival. Myco-heterotrophic plants have ‘exploitative’ mycorrhizas where transfer
processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not
mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding
other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an
interface resulting from synchronised plant-fungus development. The diversity of interactions between mycor-
rhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists
of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that
mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant.
A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is
proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are ‘linear’ or coiling’,
and of ectomycorrhizal associations (ECM) are ‘epidermal’ or ‘cortical’. Subcategories of coiling VAM and
epidermal ECM occur in certain host plants. Fungus-controlled features result in ‘morphotypes’ within
categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of
epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules
and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories,
subcategories and morphotypes of mycorrhizal associations is provided.
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I. INTRODUCTION

Mycorrhizas are multifaceted associations comprising di-
verse morphological, functional and evolutionary categories
(Smith & Read, 1997; Brundrett, 2002). Some types of
mycorrhizas are similar and share plant lineages while
others have highly distinct anatomical features and sep-
arate evolutionary histories (Brundrett, 2002). Vesicular-
arbuscular mycorrhizal associations (VAM), which are also
called arbuscular mycorrhizas or glomeromycotan mycor-
rhizas, are the most widespread and common root-fungus
associations (the usage of arbuscular or vesicular-arbuscular
mycorrhizas is discussed in the Appendix). Ectomycorrhizal
associations (ECM) are also important in many habitats, but
restricted to certain plant families. Other types of mycor-
rhizas are restricted to the Orchidaceae or the FEricales,
while some angiosperm families typically have nonmycor-
rhizal (NM) roots (Brundrett, 1991; 2002). This review
considers symbiosis and mutualism from a mycor-
rhizologist’s perspective, the nature of interactions in other
types of symbiotic associations have been summarised else-
where (e.g. Starr, 1975; Cook, 1977; Boucher, James &
Keeler, 1982 ; Paracer & Ahmadjian, 2000).

The purpose of this review is to consider the diversity of
mycorrhizal associations and contrast them with other root-
fungus associations. Unique characteristics of mycorrhizas
are identified and used to formulate a comprehensive defi-
nition of these associations that excludes other plant-fungus
interactions. The diversity of interactions between mycor-
rhizal fungi and plants and factors regulating their associ-
ations are examined. A modified hierarchical classification
scheme for mycorrhizal associations consistent with the
regulation of association morphology by plants and fungi is
proposed. This review was written as a sequel to earlier
reviews on mycorrhizal ecology (Brundrett, 1991) and the
evolution of mycorrhizal associations (Brundrett, 2002),
which should be consulted for further information.

II. DEFINING MYCORRHIZAL ASSOCIATIONS

The terms symbiotic and mutualistic have been used inter-
changeably to describe mycorrhizal associations. Symbiosis
was originally used to define both lichens and parasites
(DeBary, 1887 — cited by Paracer & Ahmadjian, 2000), but
many scientists now use this term to describe beneficial
associations only (Lewis, 1985; Paracer & Ahmadjian,
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2000). Fungal symbioses have been defined as ‘all associ-
ations where fungi come into contact with living host from
which they obtain, in a variety of ways, either metabolites or
nutrients’ (Cook, 1977). However, this definition excludes
associations of myco-heterotrophic plants that are entirely
supported by a fungus (Section III.3). Only the broadest
definition of symbiosis (e.g. ‘living together of two or more
organisms’) applies universally to mycorrhizal associations
(Lewis, 1985; Smith & Read, 1997).

The term mutualism implies mutual benefits in associ-
ations involving two or more different living organisms
(Boucher, 1985; Lewis, 1985). Mutualistic associations
occupy the mutual benefit (+ +) quadrant in diagrams
contrasting the relative benefits (4+) or harm (—) to two
interacting organisms (Fig. 1). Fig. 1 is similar to other phase
plane diagrams describing biological interactions arising
from the Lotka-Volterra equation (see Lewis, 1985), or
cost-benefit models for associations (Tuomi, Kytoviita &
Hardling, 2001). Mutualism is an isocline in these diagrams
indicating that both species are more successful together
than they are alone (Boucher, 1985).

Mycorrhizas cannot be universally categorised as
mutualistic associations because benefits to fungi are im-
plausible in associations of myco-heterotrophic plants, as
explained in Section III.3. Mutualistic associations include a
wide range of direct and indirect, or symbiotic and non-
symbiotic associations, many of which function by means
other than nutrient transfer (Boucher et al., 1982; Paracer &
Ahmadjian, 2000). As explained above, all mycorrhizal
associations are symbiotic, but some are not mutualistic.
In this review, the terms ‘balanced’ and ‘exploitative’ are
proposed for mutualistic and non-mutualistic mycorrhizal
associations respectively (Section III). The use of specific
terms for mycorrhizal associations avoids problems result-
ing from inconsistent use of the terms symbiosis and
mutualism.

The term mycorrhiza (meaning fungus-root) was orig-
inated by Frank (1885), who was fairly certain that these
symbiotic plant-fungus associations were required for the
nutrition of both partners. More recently, mycorrhizas have
been defined as associations between fungal hyphae and
organs of higher plants concerned with absorption of sub-
stances from the soil (Harley & Smith, 1983). Broader defi-
nitions have also been published (e.g. Hawksworth et al.,
1995), but are of little value as they do not exclude patho-
genic associations. Mycorrhizas are now considered to differ
primarily from other plant-fungus associations because they
are intimate associations with a specialised interface where
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Fig. 1. Phase plane diagram comparing types of mycorrhizas
and other categories of plant-fungus interactions. These cat-
egories are explained in Section III.

exchange of materials occurs between living cells (Nehls et al.,
2001 ; Pfeffer, Bago & Shachar-Hill, 2001). Most mycor-
rhizas occur in roots, which evolved to house fungi
(Brundrett, 2002), but they also occur in the subterranean
stems of certain plants and the thallus of bryophytes (Smith
& Read, 1997; Read et al., 2000). Pathogenic associations
also involve intimate plant-fungus contact, but differ from
mycorrhizas because they lack fungus to plant nutrient
transfer, and are highly detrimental to their host plants —
resulting in disease symptoms (Cook, 1977). Pathogenic
fungi are typically not specialised for efficient mineral
nutrient acquisition from soil (see Table 2 in Brundrett,
2002). A new, broader definition of mycorrhizas that
embraces the full diversity of mycorrhizas while excluding
all other plant-fungus associations is presented here. A
mycorrhizas is: a symbiotic association essential for one or both
partners, between a_fungus (specialised for life in soils and plants) and a
root (or other substrate-contacting organ) of a lving plant, that is
primartly responsible for nutrient transfer. Mycorrhizas occur in a
specialised plant organ where intimate contact results from synchronised
plant-fungus development.

Any plant containing a fungus can be designated as a
‘host’, regardless of whether the association is beneficial or
not. As in the case of a person hosting a party, the plant
cannot be assumed to be in control of the situation. Many
terms (symbiont, associate, mycobiont, inhabitant, etc.) can
be used to designate mycorrhizal fungi within plants, but it is
usually sufficient to call them fungi. Mycorrhizal fungi
should not be called endophytes to avoid confusion with
other plant inhabiting fungi (Section III.1). The neutral term
‘colonisation’ is preferential to infection (implying disease)
when describing mycorrhizal fungus activity (Brundrett e/ al.,
1996 ; Smith & Read, 1997). Similarly, ‘inoculum potential’
or ‘inoculum levels’ should be used to designate fungal
activity in soil, rather than infectivity, as is the case with
other soil fungi (Baker, 1978). Fungal entities in roots
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should be identified as ‘colonies’ rather than infection units
(Brundrett ez al., 1996).

III. DIVERSITY OF MYCORRHIZAS

Any attempt to define mycorrhizal associations must be
based on an understanding of the full spectrum of variation
in these associations. Mycorrhizal associations occur across
several continua representing varying degrees of inter-
dependence and morphological specialisation (Fig. 1). The
isocline in the upper right quadrant of Fig. 1 (+ +) is a
continuum of increasing plant dependence, starting with
facultatively mycorrhizal and nonmycorrhizal plants and
culminating in plants with obligate mycorrhizal associations
(defined in Section III.2.a). Obligately mycorrhizal plants
serve as a fulcrum between the isocline and a second
continuum of decreasing fungal benefits culminating in
mycorrhizas of myco-heterotrophic plants (without photo-
synthesis). The second continuum is parallel to the vertical
axis (representing harm or benefit to fungi), because fungal
benefits decrease while plant benefits remain high. Both of
these continua correspond to major differences in the
biology of fungi and the functioning of their associations
with plants, as discussed in Sections III.2 and III.3. Parasitic
and antagonistic associations occupy the other two quad-
rants in the plant-fungus benefits continuum (Fig. 1). The
relationship between plant harm and fungal benefits would
vary considerably between different categories of pathogenic
or endophytic fungi (only generalised relationships are
shown in Fig. 1). Antagonisms of plants by fungi or fungi by
plants are discussed in Section III.4.

(1) Endophytic activity

The most appropriate definition of endophytism is symptom-
less assoctations of other living organisms that grow within living plant
tissues (Wilson, 1995; Stone, Bacon & White, 2000). Many
fungi can rapidly colonise the cortex of living roots without
causing disease, including pathogenic or necrotrophic fungi
with latent phases as well as beneficial fungi that offer pro-
tection against pathogens, but it is not easy to categorise
precisely roles of these fungi (Sivasithamparam, 1998).
Endophytic associations differ from mycorrhizas primarily
by the absence of a localised interface of specialised hyphae
(present in most mycorrhizas), the absence of synchronised
plant-fungus development, and the lack of plant benefits
from nutrient transfer (Section II). However, plants may
benefit indirectly from endophytes by increased resistance
to herbivores, pathogens or stress, or by other unknown
mechanisms (Satkkonen et al., 1998).

Fungi are the most commonly studied endophytes, but
these can also include bacteria, algae and other plants (Stone
et al., 2000). Endophytic associations have various strategies
for transmission and impacts on plants that range from
harmful to beneficial (Saikkonen et al., 1998; Stone et al.,
2000). Predominantly phytopathogenic fungus genera
such as Fusarium and Colletotrichum also include endophytes
(Kuldau & Yates, 2000; Redman, Dunigan & Rodriguez,
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Table 1. Summary of evidence supporting the hypothesis that the majority of mycorrhizas are balanced associations. Evidence
for both ectomycorrhizal associations (ECM) and vesicular-arbuscular mycorrhizal associations (VAM) is provided, unless

otherwise stated

Evidence

Selected references

Host plant and mycorrhizal fungus productivity is correlated
Correlation between plant benefit (yield or
reproduction) and the degree of mycorrhizal fungus
colonisation®
Correlation between ECM fungus productivity and
host tree dominance
Fungus sporulation requires mycorrhizal formation

Plant productivity is low when soil factors inhibit
mycorrhizal fungi (fungicides, disturbance, pH,
salinity, waterlogging, temperature, etc.)

Fungus productivity is decreased by factors that
harm plants (herbicides, pollution, disturbance, etc.)

Both partners occur together

VAM fungi are incapable of saprotrophic survival
and can only be grown with a host plant

ECM fungi normally only occur with compatible
host plants in nature

Mycorrhizal fungus biomass and diversity increases
in parallel with that of plants after severe disturbance
(volcanism, glaciation, or mining)

ECM fungus introduction often is required to grow
host trees in exotic locations

Co-dispersal of plants and VAM fungi in early succession

Simultaneous reciprocal exchange of commodities between plant and fungus
Synchronised bi-directional fluxes of nutrients have
been measured
Substantial energy (metabolite) fluxes from plant to
fungus during active associations

Substantial fungus-mediated mineral nutrient fluxes
from soil to plant during active associations

Nutrient fluxes or plant growth responses are
proportional to the area of the symbiotic interface

Soil hyphal development in response to plant
growth or nutrient requirements

Nutrient accumulation in plants can be explained by
mycorrhizal phenology

Physwlogical interdependence of plant and fungus
Mycorrhizal dependency has been established for
many plants at realistic soil nutrient levels
Roots of most plants are more efficient at
mycorrhizal formation than direct nutrient uptake

Most mycorrhizal fungi are obligate symbionts

Synchronised development
Root growth is required for mycorrhizal formation
Nutrient uptake is synchronised with mycorrhizal
formation and soil hyphal activity

Clapperton & Read (1992); Shumway & Koide, 1995;
Gange (1999)

Fogel & Hunt (1979); Vogt et al. (1982);
Hogberg & Hogberg (2002)

Pearson & Schweiger (1993); Douds (1994);
Lamhamedi ez al. (1994)

Evans & Miller (1988); Sidhu & Chakravarty (1990);
Juniper & Abbott (1993); McInnes & Chilvers, 1994;
Setdld (1995); Thomson et al. (1996); Soulas et al. (1997)

Termorshuizen & Schaffers (1987);

Brundrett & Abbott (2002)

Douds et al. (2000); Smith ez al. (2001)
Brundrett (1991); Molina e al. (1992); Brundrett e al. (1996)

Allen et al. (1987); Gemma & Koske (1990);
Gange ¢t al. (1993); Brundrett & Abbott (2002);
Helm et al. (1996); Corkidi & Rincén (1997)

Brundrett et al. (1996); Dunstan et al. (1998)

Koske & Gemma (1990)

Pearson & Jakobsen (1993); Nehls ¢t al. (2001);
Pfeffer et al. (2001)

Rygiewicz & Andersen (1994); Smith et al. (1994);
Markkola et al. (1995); Hogberg et al. (1999);
Douds ez al. (2000); Miller & Kling (2000)

Smith et al. (1994); Marschner (1995);
Kabhiluoto & Vestberg (1998); Nasholm ez al. (1998);
Miller & Kling (2000)

Burgess et al. (1994); Dickson et al. (1999)

Miller & Kling (2000); Wallander et al. (2001)

Newton (1991); Mullen & Schmidt (1993);
Lapointe & Molard (1997)

See Table 6 in Brundrett & Abbott (2002)

Baylis (1975); Janos (1980); Brundrett & Kendrick (1988);
Manjunath & Habte (1991); Wilson & Hartnett (1998);
Siqueira & Saggin-Junior (2001)

Brundrett ez al. (1996); Smith & Read (1997)

Hepper (1985); Chilvers & Gust (1982)

Bethlenfalvay et al. (1982); Cairney & Alexander (1992);
Mullen & Schmidt (1993); Merryweather & Fitter (1995);
Lussenhop & Fogel (1999); Wallander ez al. (2001)

* See text for further explanation.
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Table 2. Contrasting the nature of plants and fungi with balanced or exploitative mycorrhizas

Factor Balanced

Exploitative

Plant form
Plant habitat

All types

Plant shoots

Plant roots

Plant dependency on fungus
Fungus life-mode

Efficient photosynthesis
Substantial root system
Obligate or facultative
Specialised for efficient growth
both in soil and plants
Fungus dependency on plant
of independent growth in nature
Exchange processes

Exchange location Root (or stem)

Interface Specialised hyphae in specialised
plant organs
Development Fungus colonisation synchronised with

plant organ growth. Requires young

plant organ

Dominate most terrestrial habitats, limited
capacity to grow in very deep shade

Most are obligate symbionts, incapable

Reciprocal transfer of essential resources
for both the plant and fungal partner

Typically small herbs without lignification

Restricted to particular habitats, often
in deep shade

Non-photosynthetic or weakly photosynthetic

Roots often highly reduced or absent

Obligate

Saprophytes or parasites without dual specialisation, or
balanced mycorrhizal associate of another host plant

Do not benefit from mycorrhizal associations
(unless with another host)

Unidirectional transfer of essential resources
for the plant at the expense of the fungus

Stem or root

Unspecialised or specialised hyphae in highly
specialised plant organ

Fungus may recolonise the same cells. May continue
to function in older plant organs

See Table 1, Brundrett (2002) and Leake (1994) for references.

2001). Root endophytes with dark septate hyphae
(called dark septate endophytes or DSE) are common in
many habitats, and may provide benefits to their hosts
(Jumpponen & Trappe, 1998). These widespread root
inhabitants are closely related to some ECM and ericoid
fungi (Vralstad, Schumacker & Taylor, 2002), but do not
form mycorrhizal associations as defined by morphological
criteria (Section IV).

Endophytic growth of mycorrhizal fungi in plants is fairly
common, but differs primarily from mycorrhizal associ-
ations formed by the same fungi elsewhere by the lack of
coordinated development and specialised interface hyphae
(see Section IV.1). Fungal benefits from these associations
are uncertain as mycorrhizal fungi apparently are incapable
of long-term endophytic survival. Glomeromycete fungi
are not capable of saprobic existence, probably because
their soil hyphae cannot absorb sugars, and ECM fungi
generally only occur in the presence of compatible host
plants (Table 1).

Glomeromycete fungi are ubiquitous soil organisms that
often proliferate within patches of soil organic material
(St John, Coleman & Reid, 1983; Joner & Jakobsen, 1995;
Azcon-Aguilar, Bago & Barea, 1999). These fungi com-
monly grow in living plant tissues other than roots (e.g.
rhizome scales — Brundrett & Kendrick, 1988 ; Imhof, 2001).
They also occupy dead soil animals and spores of other VAM
fungi, presumably to acquire nutrients or avoid predation, or
perhaps as mycoparasites (Rabatin & Rhodes, 1982 ; St John
et al., 1983; Koske, 1984; Warner, 1984). Glomeromycete
fungi commonly grow in roots of ECM plants (e.g. Harley &
Harley, 1987; Cazares & Trappe, 1993; Smith, Johnson
& Cazares, 1998). This endophytic activity is distinguished
from functional dual ECM/VAM associations by the ab-
sence of arbuscules (Section V). Endophytic colonisation of
NM plants by VAM fungi is common, but considered to be

of limited functional significance because it typically occurs
in old moribund roots and does not result in plant growth
responses (Ocampo, 1986; Muthukumar e al., 1997; Gio-
vannetti & Sbrana, 1998). However, some species in pre-
dominantly NM families like the Cyperaceae have VAM
associations (see Table 4 in Brundrett, 2002 ; Muthukumar,
Udaiyan & Shanmughavel, 2004).

When initiated by spores or other limited sources of
mnoculum in experiments, ECM fungi weakly colonise
root surfaces before they have sufficient energy to form
typical mycorrhizas (Clowes, 1951 ; Chilvers & Gust, 1982;
Brundrett et al., 1996). This establishment phase may equate
to a transition from saprotrophic to mutualistic activity.
Some ECM fungi form associations with a mantle but no
Hartig net on non-host roots (e.g. Harrington & Mitchell,
2002). The opportunistic growth of fungal hyphae on the
surface of roots is common in nature and could be con-
sidered to be a form of endophytic association in which
fungi feed on root exudates without penetrating cells. Mor-
phological criteria defining ECM associations are discussed
in Section IV.2a.

Formation of a second type of mycorrhizal association by
fungi seems to be rare, in contrast to the widespread occur-
rence of their endophytic activity. Exceptions include
members of the Hymenoscyphus ericae aggregate that form both
ericoid and ECM associations with different hosts (Vralstad,
Fossheim & Schumacher, 2000; Vralstad e al, 2002).
However, other studies found that ericoid fungi colonised
roots of several ECM hosts, but do not form ECM (Bergero
et al., 2000; Piercey, Thormann & Currah, 2002). Sen,
Hietala & Zelmer (1999) found that some Rhizoctonia isolates
that associate with orchids also colonise conifer roots, pre-
sumably as endophytes or parasites. Some fungal associates
of myco-heterotrophic orchids (e.g. species of Corallorhiza
and Rhizanthella) primarily are ECM associates of dominant
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plants in their habitats (Warcup, 1985; Taylor & Bruns,
1999; McKendrick ¢t al., 2002). The significance of endo-
phytic activities of mycorrhizal fungi is not clear; it may
provide benefits to these fungi, or simply be a consequence
of their high inoculum levels in soils.

(2) Balanced mycorrhizas

The majority of mycorrhizal associations provide substantial
benefits to both plants and fungi (Table 1). I propose that
these be called ‘balanced’ mycorrhizas (as opposed to other
possibilities such as reciprocal or mutualistic) to imply that
exchange processes are in dynamic equilibrium. Balanced
mycorrfuzal associations are those in which both organisms receive
essential commodities through reciprocal exchange. Thus, the balance
of costs versus benefits may shift to favour one partner over
the other at times, but must later shift back to a more equi-
table arrangement or both partners will be disadvantaged in
the long term.

The term balanced defines a particular category of
mutualism to distinguish mycorrhizas from the many other
types of these associations. Balanced associations have
remained the dominant type of mycorrhizas throughout
the evolutionary history of land plants (Brundrett, 2002).
Perhaps mycorrhizal plants and fungi have some capacity to
assoclate selectively with the partners that provide the most
benefits. However, the coupling of costs and benefits by
simultaneous exchange across a common interface (Pfeffer
et al., 2001; Smith, Dickson & Smith, 2001) is the key
attribute likely to result in the stability of associations
on evolutionary timescales (Brundrett, 2002). Reciprocal
exchange was believed to be the key to mycorrhizal func-
tioning long before the physiological processes involved
were known (e.g. Rayner, 1928; Hacskaylo, 1973). After a
comprehensive review of early mycorrhizal literature,
Rayner (1928) summarised the available evidence by stating
that most types of mycorrhizas functioned by ‘regular and
demonstrable periodic exchange of nutritive material’ and
these associations were ‘relatively stable in equilibrium’.
These quotes demonstrate that the key ideas behind the
definition of balanced associations provided above are sup-
ported by early mycorrhizal research as well as by the
modern research summarised in Table 1.

Pathogenic associations are not balanced, because plant-
fungus development may not be highly coordinated and
nutrient transfer only benefits the fungus (Section II). Mycor-
rhizal fungi also typically have more consistent growth
patterns in plants than do parasitic or endophytic fungi, due
to regulation by root features resulting from plant-fungus
coevolution (Anderson, 1992; Brundrett, 2002). Most other
types of mutualism have less metabolic and morphological
coordination than balanced mycorrhizas (Boucher et al.,
1982; Paracer & Ahmadjian, 2000).

Ideally, evidence is required that substantial benefits
accrue to both the mycorrhizal plant and fungus due to
reciprocal transfer in order to designate associations as
balanced. However, in practice, it is often difficult to
measure the benefits mycorrhizal fungi provide to plants,
especially in the field, and most available information comes
from experimental synthesis of mycorrhizas using artificial

Mark Brundrett

conditions (McGonigle, 1988; Brundrett ef al., 1996; John-
son, Graham & Smith, 1997). Nevertheless, there now is
ample evidence, as outlined in Table 1, that mycorrhizal
plants typically have correlated productivity and co-occur-
rence of partners, reciprocal exchange, and synchronised
development. Evidence for plant-fungus interdependence
includes increased fitness or fecundity of both partners when
they occur together, or their failure to exist alone. Physio-
logical interdependence has been established by links
between carbohydrate utilisation and mycorrhizal develop-
ment, fungus biomass and host plant productivity to the
degree of mycorrhizal formation (Table 1). Synchronised
development has been confirmed by detailed morphological
studies, which also demonstrated the short lifespan of the
active interface (Hartig nets, arbuscules, or coils). The link
between mycorrhizal development and plant benefit is
supported by experimental studies where valid comparisons
were made (Table 1), but this relationship is often obscured
by other factors in field trials (McGonigle, 1988).

The majority of mycorrhizal fungi are known to be obli-
gate symbionts, so the benefits they receive from balanced
associations with plants are not in doubt (Table 1). How-
ever, there are exceptions to this generalisation, such as
plants that require a companion plant linked by a common
hyphal network, which probably do not support their as-
sociated fungi (Section III.3). Plants also provide important
non-nutritional benefits to mycorrhizal fungi, especially by
providing shelter within roots (Brundrett, 2002). The fact
that most host plants benefit substantially from mycorrhizal
associations is a well-established scientific paradigm (Smith
& Read, 1997). Substantial non-nutritional benefits to
the disease resistance, water relations, or photosynthetic
capacity of mycorrhizal plants can also occur (c.g. Ruiz-
Lozano & Azcon, 1995; Cordier et al., 1998; Nehls e/ al.,
2001). However, there are also plants which are not
mycorrhizal, or which have facultative associations where
benefits are conditional on soil conditions (see below).

(a) Facultatively mycorrhizal and nonmycorrhizal plants

Symbiotic associations include organism which may be:
‘obligate’ symbionts that are necessary for the partner being
considered which does not normally occur alone, and ‘fac-
ultative’ symbionts that are not always required by the
partner being considered which can occur alone (Starr,
1975; Cook, 1977). Al VAM, and most ECM fungi are
considered obligate symbionts incapable of independent life
without plants, but ericoid fungi may not be obligate plant
associates, and orchid fungi probably are fully independent
of their hosts (Brundrett, 2002). Plants can be described
as ‘obligately mycorrhizal’, ‘facultatively mycorrhizal’, or
‘nonmycorrhizal’ (Janos, 1980; Brundrett, 1991, 2002;
Habte & Manjunath, 1991; Marschner, 1995). Detailed
explanations of these categories are provided by the cited
references, so only a brief summary is provided here.
Nonmycorrhizal plants have roots that are highly resist-
ant to colonisation by mycorrhizal fungi and do not form
functional associations (Brundrett, 2002). Facultative
mycorrhizas are balanced associations, where plant benefits
are conditional on soil fertility. Experiments have shown
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that facultatively mycorrhizal plants benefit from VAM only
when soil phosphorus levels are relatively low and these
plants typically have relatively long, narrow and highly
branched roots with long root hairs in comparison with
obligately mycorrhizal species (Table 1). TFacultatively
mycorrhizal plants apparently have the capacity to limit the
extent of their associations to reduce costs in cases where
fungi provide little benefit (Koide & Schreiner, 1992). Soil
moisture and aeration levels can also regulate mycorrhizal
colonisation for wetland plants (Cantelmo & Ehrenfeld,
1999; Beck-Nielsen & Madsen, 2001).

There is a continuum from obligately mycorrhizal plant
species that benefit from associations across a wide range of
soil fertility levels to those which only benefit in infertile soils.
In some studies, the benefit provided by mycorrhizas
decreased as the degree of mycorrhizal colonisation of roots
increased (Clapperton & Read, 1992; Gange, 1999). This
seems to be a rare phenomenon that would probably be
confined to facultatively mycorrhizal plants growing in
relatively fertile soils, because the majority of species used in
experiments respond positively to increased inoculum levels
of mycorrhizal fungi (Table 1). A study of Brazilian native
plants found that most were highly dependent on VAM, and
many were Incapable of absorbing phosphorus without
mycorrhizas even in highly fertile soils (Siqueira & Saggin-
Juanior, 2001). A theoretical model has shown that associ-
ations with reciprocal transfer of carbon and nutrients are
likely to evolve regardless of the costs to the plant if mineral
nutrients strongly limit plant growth (Tuomi ¢t al., 2001), as
1s often the case in natural ecosystems (Brundrett, 1991).

Mycorrhizas only increase plant fecundity if the benefits
provided by improved mineral nutrition or other factors
outweigh the production costs of mycorrhizal associations
(see Johnson et al., 1997). Mycorrhizal associations have
been considered to be parasitic in cases where the costs
outweigh the benefits, as occurs in several cropping systems
(Hendrix, Jones & Nesmith, 1992; Johnson et al., 1997).
However, crops that benefit from mycorrhizas may eventu-
ally replace those that do not, because of crop rotation or the
implementation of sustainable agricultural systems. These
subsequent crops would benefit from mycorrhizal inoculum
maintained by earlier crops that did not benefit from these
fungi. In some cases, mycorrhizas result in increased fec-
undity or disease resistance rather than increased yield
(Newsham, Fitter & Watkinson, 1995; Shumway & Koide,
1995; Cordier et al, 1998). We must remember that
mycorrhizal benefits are calculated in highly artificial situ-
ations by measuring the growth of non-mycorrhizal control
plants that normally do not occur in this state in nature
(Brundrett, 1991). I suggest that facultative mycorrhizas
should be considered to be balanced associations, as
reciprocal plant-fungus exchange processes benefit both
species except when external conditions negate fungal
benefits. It is not appropriate to designate ineffective
mycorrhizal fungi as parasitic if they are capable of provid-
ing substantial benefits to plants in more natural situations.

It seems to be far more common for plants to exploit
mycorrhizal fungi than for these fungi to exploit plants
(Brundrett, 2002). Reports of growth depression caused by
VAM fungi are surprisingly rare considering how ubiquitous
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these associations are, and seem to be even rarer for other
types of mycorrhizas. For example, significant growth
depression did not occur in any of the VAM inoculation
trials using natural soil fertility levels summarised in Table 6
of Brundrett & Abbott (2002): These data were from 23
studies of plants from 11 natural ecosystems in which 63 %
of 235 plant species were highly responsive to mycorrhizas
and the rest did not respond significantly. Most plants with
ECM are considered to be highly dependent on these as-
sociations, but some hosts (e.g. Eucalyptus spp. in plantations)
may not benefit in highly fertile soils (Brundrett et al., 1996).
Trees grown in exotic locations may associate with less-
compatible fungi than when growing in their indigenous
habitats (Lu et al., 1999). Both VAM and ECM fungi vary
in carbon sink strength and apparently also in symbiotic
effectiveness (e.g. Abbott, Robson & Gazey, 1992; Burgess,
Dell & Malajczuk, 1994; Cullings, Azaro & Bruns, 1996).
However, fungal isolates that perform poorly in some
experiments may provide substantial benefits to plants in
other trials where growing conditions are more suitable for
that particular fungus (Dickson, Smith & Smith, 1999).

The practical designation of plants as facultatively
mycorrhizal is often not based on physiological data. Field
surveys have shown that plant species generally have (i)
consistently high levels of mycorrhizas, (ii) inconsistent, low
levels of mycorrhizas or (iii) are not mycorrhizal; those in the
second category have traditionally been designated as
facultatively mycorrhizal (Janos, 1980; Brundrett, 1991,
2002). This designation was originally based on experiments
where both the mycorrhizal colonisation and mycorrhizal
dependency of plant species were measured (Baylis, 1975;
Janos, 1980). Facultatively mycorrhizal plants defined in this
way are common in many natural ecosystems, but typically
are much less important than obligately mycorrhizal species
in most undisturbed habitats (Brundrett, 1991). Facul-
tatively mycorrhizal species have also been recognised by
inconsistent reports about their mycorrhizal status (e.g.
Trappe, 1987) but some conflicting results probably result
from problems with the methodology used for sampling or
assessment (see Brundrett, 2002).

(3) Exploitative mycorrhizal associations

The evolutionary trend for increasing plant control over
mycorrhizal fungi culminates in associations of myco-
heterotrophic plants without chlorophyll that are fully
dependent on highly specific relationships with fungi (Leake,
1994; Bidartondo & Bruns, 2001; Brundrett, 2002;
McKendrick ef al., 2002). Nutrient exchange in these as-
sociations is unidirectional because the plant functions as a
very large sink for fungal nutrients, but cannot, or does not,
provide a significant contribution to the growth or nutrition
of the associated fungus (Table 2). Mycorrhizal associations
where fungi do not seem to receive any benefits from plants
have been called epiparasitic, myco-heterotrophic, or
cheating associations (Furman & Trappe, 1971; Leake,
1994; Taylor & Bruns, 1999). Associations where only the plant
recetves substantial benefits from nutrient exchange are defined here
as ‘exploitative mycorrhizas’. This term more accurately
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reflects the nature of the associations from both plant and
fungus perspectives (“exploitative’ plant, ‘exploited’ fungus).
These mycorrhizas are the reverse of relationships between
higher plants and parasitic fungi (Fig. 1).

Exploitative associations generally occur in myco-hetero-
trophic plants with little or no photosynthetic ability (Leake,
1994 ; Cummings & Welschmeyer, 1998), but some associ-
ations of green plants can also be partially or fully exploi-
tative (see below). Plants with exploitative mycorrhizas are
typified by shoot and root reduction, as well as the lack of
visible photosynthetic pigments (Table 2). Parasitic plants
often share these features, but are usually not mycorrhizal
and have physical attachment to other plants (haustoria).
Separate lineages of plants with exploitative mycorrhizas
have evolved from plants with VAM, ECM or orchid
mycorrhizas (Brundrett, 2002).

Myco-heterotrophic plants are unable to synthesise
metabolites to sustain their fungi, and so are indirectly sub-
sidised by other members of their plant community that
provide energy and nutrients to their fungi (Bjorkman,
1960; Newman, 1988). They probably also acquire most of
their water and nutrients through fungal connections (since
they have few if any roots). Bidartondo e al. (2000) observed
higher than normal concentrations of mycorrhizal roots of
the primary host (dbies magnifica) in soils near the myco-
heterotrophic plant Sarcodes sanguinea. They interpreted this
as evidence that S. sanguinea benefited the mycorrhizal fun-
gus by providing additional habitat for it. However, a cost-
benefit analysis would suggest that the overall impact of a
greater concentration of mycorrhizal activity is likely to be
detrimental to the fungus (Rhizopogon ellenae) in the long-
term, as it could only occur at the expense of distal parts of
the mycelial network required for nutrient uptake. Further
research is required to establish (i) if the presence of exploi-
tative plants like S. sanguinea results in an overall reduction or
increase in the fecundity of associated fungi, and (i) if the
fecundity of exploitative plants is determined by the original
size and density of patches of the fungus.

Plants with exploitative mycorrhizas have extremely
high host-fungus specificity with ECM, orchid or VAM
fungi (e.g. Bidartondo & Bruns, 2001; Bidartondo et al.,
2002), and thus would be more vulnerable to fluctuations in
fungal populations than plants with less specific fungal
associates. If myco-heterotrophic plants have an adverse
effect on an exploited fungus, this would probably result in
their eventual decline in a particular location and explain
why some of these plants are very rare and can disappear
from particular locations (Leake, 1994; Rasmussen, 1995).
It 1s normal for both ECM and VAM fungi to have very
patchy distribution patterns in soils (e.g. de la Bastide,
Kropp & Piché, 1994 ; Brundrett & Abbott, 1995; Dahlberg
& Stenlid, 1995). Perkins & McGee (1995) found orchid
fungi were concentrated close to a host plant, but other seed
baiting studies have also found orchid fungi a considerable
distance from their hosts (Masuhara & Katsuya, 1994 ; Batty
etal., 2001). It is very difficult to separate cause from effect in
studies contrasting the distribution of mycorrhizal plants
and their fungi.

Mycorrhizas are generally considered to function by
two-way exchange processes across a symbiotic interface
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between plant and fungus cells (Section I11.2). However, the
symbiotic interface is unlikely to work in the same way in
exploitative associations as it does in balanced associations.
There is no selective advantage for the fungus to evolve the
means to transport nutrients into the plant because it gains
nothing in return, and some exploited fungi have not co-
evolved as mycorrhizal associates with plants (Brundrett,
2002). Ultrastructural studies of exploitative associations
have shown that lipids (a major storage product of fungi) can
be released into host cells after the collapse of hyphae
(Peterson, Howarth & Whittier, 1981; Schmid & Ober-
winkler, 1994). This process has been described as lysis or
digestion, but the latter is not appropriate since it has not
been established whether the plant or fungus controls it.
Mycorrhizal scientists no longer consider hyphal lysis an
important means of nutrient transfer in balanced mycor-
rhizal associations (Smith & Smith, 1990), but lysis seems to
be more important in exploitative associations. Exploitative
associations have unique, highly complex interfaces that
function by means that are not fully understood (Burgeft,
1959; Robertson & Robertson, 1982; Leake, 1994 ; Schmid
& Oberwinkler, 1994; Rasmussen, 2002). Further work is
required to determine how these mycorrhizas function. The
collapse of old hyphae allows reinvasion of the same host
cells, making more efficient use of limited space within the
reduced organs of exploitative plants (Brundrett, 2002).

Photosynthetic orchids seem to have a greater capacity to
regulate the growth of invading fungi than other hosts, as
the fungi involved have not evolved as mutualistic plant
inhabitants (Brundrett, 2002; Rasmussen, 2002). Orchid
mycorrhizal associations are thought to require a delicate
balance between the aggression of the fungus and the plant’s
defences, and only certain host-fungus combinations are
successful (Burgeff, 1959; Hadley, 1982). Fungistatic meta-
bolites produced by the plant are believed to be important
for controlling compatible fungi (Burgeft, 1959; Xu et al.,
1998). The evolution of many lineages of orchids with fully
exploitative associations provides further evidence of a
highly evolved capacity to control fungi (Molvray, Kores
& Chase, 2000; Brundrett, 2002).

Plants which are not fully myco-heterotrophic may also
exploit mycorrhizal fungi, if they are part of the continuum
from balanced to exploitative associations (Fig. 1). Most
plants with the arbutoid type of ECM have chlorophyll, but
also associate with the same fungi as adjacent trees and may
receive some advantages from this (Molina & Trappe,
19824a). Mycelial connections by ECM fungi between dif-
ferent hosts can result in transfer of carbon between plants
and a net carbon gain by one host (Simard et al., 1997).
Carbon transferred between plants interconnected by VAM
generally stays in roots and thus would not directly benefit
the second host, but may provide indirect benefits by
reducing association costs (Robinson & Fitter, 1999). It has
been suggested that seedlings growing under mature trees of
the same species are partially supported by shared associ-
ations (Newbery, Alexander & Rother, 2000; Onguene &
Kuyper, 2002). However, support of seedlings by their
parents is unlikely to be substantial, as only a very small
proportion of tree seedlings survive (Newman, 1988;
Newbery et al,, 2000). Dickie, Koide & Steiner (2002)
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compared seedling establishment near trees with the same
(ECM) or different mycorrhizas (VAM). These seedlings
established better near ECM trees, and this was considered
primarily to result from increased mycorrhizal colonisation.
Sharing a common type of mycorrhiza may also increase
the functional similarity of the root systems of different
species competing for soil nutrients (Brundrett, 1991). The
role of plant connections by shared fungal networks re-
quires further study, as in most cases the transfer of sub-
stances appears to be insufficient to influence the growth
and survival of plants, yet myco-heterotrophic plants are
able to live entirely by this means. The ecological import-
ance of shared hyphal networks is the focus of other reviews
(Newman, 1988; Brundrett, 1991; Perry, 1998; Wilkinson,
1998).

(4) Antagonism (allelopathy)

Opportunistic associations of mycorrhizal fungi on non-host
plants, or of plants on non-associated fungi, can be inter-
preted as antagonism if they cause harm to one organism
(Fig. 1). Both ECM and VAM fungi have been occasionally
reported to cause damage to roots of non-hosts by attempted
colonisation (Allen, Allen & Friese, 1989; Plattner & Hall,
1995). For example, colonisation of Gyperus rotundus roots by
VAM fungi reduced plant growth, especially in the presence
of a mycorrhizal companion plant (Muthukumar et al.,
1997). Damage to non-host roots by ECM fungi has most
often been reported in sterile culture experiments using
hosts and fungi that do not normally associate together
(Molina & Trappe, 19826). During succession in many
habitats, NM plants are outcompeted by mycorrhizal
species (Brundrett, 1991; Francis & Read, 1995; Brundrett
& Abbott, 2002). This probably occurs because the mycor-
rhizal species are more eflicient at acquiring limiting soil
nutrients such as phosphorus (Newman, 1988; Brundrett,
1991), but direct antagonism of non-host plants by mycor-
rhizal fungi may also occur in some cases as inoculum levels
increase during succession (Allen et al., 1989).

Plant communities dominated by plants with one type of
mycorrhiza may tend to be self-perpetuating by producing
a soil environment hostile to other fungi. This antagonism
of plants with another mycorrhiza type could result from
restricted mineral nutrient availability, or inhibition of
mycorrhizal fungus activity by allelopathy (see Brundrett &
Abbott, 2002). It has been reported that trees with ECM
often fail to become established in sites dominated by plants
with ericoid mycorrhizas such as Calluna, Gaultheria, Kalmia
or Rhododendron shrublands (Robinson, 1972; Messier, 1993;
Yamasaki et al., 1998; Walker ez al., 1999). However, Nilsen
et al. (1999) found that allelopathic effects of ericoid plants
could be measured in artificial conditions, but had little
mmpact in the field. Changes to soil properties in ecosystems
dominated by ECM trees with decomposition-resistant
leaves results in slower nutrient cycling and a predominance
of organic nutrient sources which are considered to be less
accessible to VAM fungi than to ECM fungi (Allen et al.,
1995; Michelsen et al., 1998). Substances in ECM tree leaf
litter can have allelopathic influences on AM fungi
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(Tobiessen & Werner, 1980; Kovacic, St John & Dyer,
1984). Hyphal mats formed by ECM fungi considerably
alter the soil physical and chemical environment (Griffiths,
Baham & Caldwell, 1994), perhaps creating inhospitable
conditions for establishment of other plants. Interactions
between plants with different types of mycorrhizas are dis-
cussed in detail elsewhere (Francis & Read, 1995; Brundrett
& Abbott, 2002).

Some of the fungi that associate with green orchids
may also be parasites of other plants (e.g. Sen et al., 1999).
Ruinen (1953) summarised evidence that epiphytes, es-
pecially orchids and ferns, were antagonistic to their host
trees, a condition he called epiphytosis. This evidence
includes (i) correlations between tree health and epiphyte
abundance, (i1) histological evidence showing that similar
fungi invaded tree branches and leaves as occurred in the
roots of orchids, (iii) orchid growth on specific trees, and
(iv) sections across orchid roots and tree branches showing
continuity between fungal hyphae in both. Johansson (1977)
observed that some epiphytic orchids were most abundant
in unhealthy trees, but no causal relationship was estab-
lished. The epiphytosis theory is controversial and most
epiphytic orchids are considered to have facultative
mycorrhizas (Benzing & Friedman, 1981). However, the
mycorrhizal dependency of epiphytic orchids has not
been examined. Modern methods are required to confirm
or refute Ruinen’s (1953) observations of tree-orchid
interconnections by a common fungus, and tree-fungus
nutrient transfer (e.g. stable isotopes to detect nutrient
transfer or systemic fungicide to inhibit orchid fungi in
trees). Shared fungi may provide the most plausible expla-
nation for host tree specificity, which occurs for some epi-
phytic orchids, in much the same way that the distribution
of specific fungi in soils can determine where terrestrial
orchids grow (Batty et al., 2001).

(5) Variable associations

The same combination of host plant and mycorrhizal fungus
can display different types of interactions during the estab-
lishment, active phase, and senescence of mycorrhizal asso-
ciations (Table 3). The range of host-fungus interactions is
also affected by variations in the mycorrhizal dependency of
the host plant and the impact of soil conditions on mycor-
rhizal benefits (Section III.2 a).

Induction of defensive reactions in roots by hyphae dur-
ing the formation of normal mycorrhizal associations has
been reported for both VAM and ECM fungi (Albrecht ez al.,
1994; Lambis & Mehdy, 1995; Vierheilig e al., 2000).
Albrecht et al. (1994) found that chitinase and peroxidase
enzymes, likely to be key parts of the plant’s defences,
were induced by some ECM fungal associates of Eucalyptus
species. They found that the greatest induction of these
enzymes occurred with the most compatible strains, so they
were not related to poor root colonisation by incompatible
strains. VAM fungi also elicit phytoalexins, but this does not
constitute a full defence response (Koide & Schreiner, 1992).
Partial defence induction may result because mycorrhizal
fungi cannot fully evade plant defences, or because initial



Table 3. Different phases in the life histories of mycorrhizal fungi and corresponding aspects of plant-fungus associations

G8Y

Stage

Vesicular-arbuscular mycorrhizal fungi

Ectomycorrhizal fungi

Other mycorrhizal fungi

Free-living

Endophytic

Balanced
mycorrhizas

Exploitative
mycorrhizas

Antagonistic

Necrotrophic

¢ Long-term survival requires a host plant
e Soil hyphae have a limited capacity for
independent survival in soils

¢ Long-term persistence in older roots of host
plants
¢ Hyphae in non-host roots, rhizome scales, etc.

e Normal associations with arbuscules
¢ Root growth and structure of many hosts
optimised for mycorrhiza formation

e Myco-heterotrophic VAM plants

e Growth reduction can occur in highly fertile
soils

® Defensive enzymes and chemicals may be
induced in host roots

e Damage to roots of non-host plants may occur

¢ Digestion of arbuscules by plant?
e Transfer of nutrients from senescent roots by
fungus

® Most have a limited capacity to live and
spread without hosts
e Some have saprotrophic capabilities

e Partial associations with non-host plants

e Compatible associations with a Hartig net

e Slow short root growth to allow fungus
establishment

¢ Hyphae confined to certain cells

e Myco-heterotrophic associations of plants
such as Monotropa

e Defensive reactions and chemical

accumulation (e.g. tannins) in hosts

Partial colonisation of roots of incompatible

hosts

e Changes to soil properties in hyphal mats
detrimental to other plants

Invasion of senescent root cells by hyphae may
occur
Transfer of nutrients to other hosts can occur

¢ Extended independent phases as saprotrophs,
parasites or mycorrhizas with other plants

Colonisation of bryophytes by ericoid
mycorrhizal fungi?
Orchid fungi in other plants

® Mycorrhizas of green orchids?
® FEricoid mycorrhizas are considered to be
balanced

® Myco-heterotrophic orchids

Orchid fungi include pathogens of other
plants or fungi

e Digestion of hyphal coils by plant?
® Incompatible fungi that kill orchids

See text for examples and references.
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Table 4. Summary of types and categories of mycorrhizal associations regulated by host plants

Vesicular-arbuscular

Mycorrhizal association formed by glomeromycete fungi in land plants usually with
arbuscules and often with vesicles

Associations that spread predominantly by longitudinal intercellular hyphae in roots
(also known as Arum series VAM)

Associations that spread predominantly by intracellular hyphal coils within roots
(also known as Paris series VAM)

Coiling VAM 1in roots with short segments divided by constrictions

Coiling VAM with arbuscules in one layer of cells of the root inner cortex

Coiling VAM of myco-heterotrophic plants, with or without arbuscules

Associations of higher fungi with land plants with short lateral roots where a hyphal
mantle encloses the root and a Hartig net comprising labyrinthine hyphae

Hartig net fungal hyphae colonise multiple cortex cell layers of short roots
(most associations are in gymnosperms)
Hartig net fungal hyphae are confined to the epidermal cell layer of short roots

Epidermal Hartig net with transfer cells (plant cells with cell wall ingrowths)

Exploitative epidermal ECM of myco-heterotrophic plants in the Ericales where
individual hyphae penetrate epidermal cells

ECM of autotrophic plants in the Ericaceae where multiple hyphae penetrate

Associations where coils of hyphae (pelotons) penetrate within cells in the plant

Associations within a stem or rhizome
Associations of myco-heterotrophic orchids

Coils of hyphae within very thin roots of plants in the Ericaceae

mycorrhiza
1.1 Linear
1.2 Coiling
1.2.1 Beaded
1.2.2 Inner cortex
1.2.3 Exploitative
2 Ectomycorrhiza
penetrates between root cells
2.1 Cortical
2.2 Epidermal
(occurs in angiosperms)
2.2.1 Transfer cell
2.2.2 Monotropoid
2.2.3 Arbutoid
epidermal Hartig net cells
3 Orchid
family Orchidaceae
3.1 root Associations within a root cortex
3.2 stem
3.3 Exploitative
4 Ericoid
5 Subepidermal

Hyphae in cavities under epidermal cells of plants in the monocot genus Thysanotus

stages of colonisation are not fully balanced associations.
The induction of defences would occur at some cost to the
plant, but may increase its resistance to subsequent patho-
genic invasion.

Old dead roots are an important source of imnoculum for
glomeromycete fungi which can survive as endophytes in
living roots for up to 10 years after arbuscules have col-
lapsed, presumably functioning as inoculum reservoirs for
subsequent generations of roots (Brundrett & Kendrick,
1988). These fungi also have a necrotrophic phase when
host roots die, providing the fungus with first access to
nutrients that can be transferred to hyphae in other plants
(Eason, Newman & Chuba, 1991). ECM fungi can also
necrotrophically colonise senescent host roots in some cases
(Nylund, Kasimir & Arveby, 1982; Downes, Alexander &
Cairney, 1992).

As summarised in Table 3, mycorrhizal fungi have dif-
ferent phases of activity, where the same fungus can be an
endophyte, mutualist, saprophyte, or necrotroph at different
times or in different situations. As this Table demonstrates,
the structural and functional diversity of associations formed
by mycorrhizal fungi in natural ecosystems is much greater
than is generally acknowledged. An understanding of the
changing roles of fungi during the life-cycle of mycorrhizal
associations requires careful observation of material of
known age, or an understanding of the phenology of plants
collected in the wild (Section V).

IV. TYPES AND CATEGORIES OF
MYCORRHIZAS

Despite the fact that types of mycorrhizas are classified into
morphological categories using criteria designed by humans,
these categories also scem to have biological relevance
as they are highly consistent within plant and fungal
lineages and each has characteristic physiological attributes
(Smith & Read, 1997; Brundrett, 2002). Seven or more
types of mycorrhizas have been recognised, but some are
very similar. Early morphological classifications separated
mycorrhizas into endomycorrhizal, ectomycorrhizal and
ectendomycorrhizal associations based on the relative
location of fungi in roots (Peyronel et al., 1969). It is now
recognised that VAM, ericoid and orchid mycorrhizas are
unrelated types of ‘endomycorrhizal’ associations with
contrasting anatomical features and separate host and
fungus lineages (Lewis, 1973; Brundrett, 2002). Thus, the
term ‘endomycorrhiza’ is invalid because it encompasses
several phylogenetically and functionally disparate associ-
ation types.

In theory, mycorrhizas could be defined by structural or
physiological characteristics. However, in practice, only
anatomical observations can reliably be used to designate
categories of these associations, because links between mycor-
rhizal colonisation and plant physiological parameters
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are not known in most cases where identification of associ-
ations occurs (Section II1.2). The structural features used to
define types and categories of mycorrhizas can be regulated
by properties of the host, the fungus, or by interactions in-
volving both. However, practical definitions used to classify
mycorrhizas must be based primarily on features controlled
by the plant, as features controlled by the fungus are too
highly variable at the scale of individual plants. For exam-
ple, it is possible to find most of the fungus-defined cat-
egories (‘morphotypes’) of VAM within a single root and
one host plant will have many ECM morphotypes resulting
from particular fungi. The two main categories of ECM and
VAM associations (defined below) are highly consistent
within a given host plant and are believed to be a conse-
quence of genetically defined root structural properties
(Smith & Smith, 1997; Brundrett, 2002). Smith & Smith
(1997) found that VAM morphology categories were con-
sistent within many, but not all plant families. Plant-defined
morphological categories of ECM are also highly correlated
with plant lineages (Section IV.2a). Categories of mycor-
rhizas are summarised in Figs 2 and 3.

(1) Vesicular arbuscular mycorrhizas

Arbuscules are normally used to define VAM associations.
They can be quantified by standard microscopic procedures
and their abundance is usually correlated with the degree of
colonisation of young roots by VAM fungi (McGonigle ¢t al.,
1990; Toth et al., 1990). However, arbuscules are ephemeral
structures that are often absent or hard to see (due to root
age and pigments) in field-collected roots (see Brundrett ez al.,
1996). Old VAM associations without arbuscules can be
consistently identified by characteristic hyphal branching
patterns in host plants if the observer has adequate experi-
ence. Thus, knowledge of root phenology and experience
gained during observations of the same or closely related
species is routinely used to determine whether old roots
without arbuscules have VAM. Colonisation of non-host
plants by glomeromycete fungi has sometimes been desig-
nated as vesicular mycorrhizal colonisation (e.g. Smith et al.,
1998), but should be called endophytic activity (Section
IIL.1).

Morphological and functional categories of associations
formed by glomeromycete fungi in plant organs that may be
encountered 1in field surveys are listed below:

(a) Typical balanced VAM in young plant organs with
prevalent, even colonisation of roots by hyphae with dis-
tinctive growth patterns and arbuscules (common).

() Older balanced VAM 1in roots with standard hyphal
colonisation patterns (as in a), but without intact arbuscules
(very common).

(¢) Endophytic associations in non-host roots and other
NM plant organs with diffuse growth of hyphae resulting
in sparse, Inconsistent colonisation without arbuscules
(widespread, sporadic).

(d) Exploitative VAM in partially or fully myco-hetero-
trophic plants with intense colonisation of reduced roots or
stems by specialised hyphae forming distinctive patterns that
in some cases lack arbuscules (uncommon and restricted to
certain plant families).
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A. Determined by plant B. Determined by fungus

VA

<

[ VAM

Glomus Types I

I Coiling | I Linear l

Scutellospora & Gigasporal

Beaded

Exploitative

Others

Fine endopytes ]

Medium endopytes I

_I
_.|
-I Acaulospora types I
_I
._|
._l

Others I

Fig. 2. Morphological classifications of vesicular-arbuscular
mycorrhizal (VAM) categories and subcategories resulting from
the host properties (A), and morphotypes resulting from fungal
properties (B). Fungal morphotypes defined by Abbott (1982)

are shown.
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Fig. 3. Morphological classifications of ectomycorrhizal
(ECM) categories and subcategories resulting from the host
properties (A), and morphotypes resulting from fungal proper-
ties (B). Fungal morphotypes shown are major categories
defined by Brundrett et al. (1996).

Vesicles may be present or absent in all these categories.
Note that exploitative associations with glomeromycete
fungi should be called VAM, even in hosts where arbuscules
are never formed, as their presence is the ancestral condition
for these fungi, which presumably simultaneously form
associations with arbuscules in other plants.

There is disagreement about whether arbuscular mycor-
rhizal association (AM) or vesicular-arbuscular mycorrhizal
association (VAM) is the most appropriate name for these
mycorrhizas (see Smith, 1995; Walker, 1995; Smith &
Smith, 1997). The term arbuscular mycorrhizas has gradu-
ally become more fashionable because some fungi do not
produce vesicles in roots. However, there are problems with
the use of arbuscules alone to define VAM because (i) these
associations are routinely identified in old roots without
intact arbuscules, (i) their role as the primary site of
nutrient transfer has not been fully established (Smith &
Smith, 1997), and (ii1) glomeromycete fungi have exploita-
tive mycorrhizas without arbuscules in some myco-
heterotrophic plants (e.g. Schmid & Oberwinkler, 1994;
Imhof, 1999).
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The most appropriate terminology for describing VAM
associations depends on the particular phylogenetic,
structural or functional approach used to classify their
components. Classification schemes for glomeromycete
fungi assume that storage structures formed in soil and roots
are phylogenetically distinct, but fungi without vesicles in
roots often produce temporary storage structures in soil
(Brundrett et al., 1996; Dalpé & Declerck, 2002; Declerck
et al., 2004). Phylogenetic studies have shown that the most
primitive taxa of glomeromycete fungi have dimorphic
spores (Sawaki, Sugawara & Saito, 1998; Morton &
Redecker, 2001). One of these two spore types seems to
function primarily as a short-term storage organ (M. Brun-
drett, unpublished observations). Spores produced by glo-
meromycete fungi are of unknown phylogenetic origin and
may have evolved from a storage structure rather than a
sexual spore. Many shared biochemical and genetic events
would be involved in the formation of spores and vesicles, as
both derive from swellings of relatively unspecialised hyphae
and accumulate storage products from the cytoplasmic pool.
Fungi without vesicles are likely to be derived from ancestors
with them. Thus, it may be as appropriate to use a classifi-
cation scheme which groups spores and vesicles together as
it is to separate them on artificial grounds. The arguments
summarised above suggest that the term vesicular-arbus-
cular mycorrhiza is as accurate as arbuscular mycorrhiza.
However, the name arbuscular mycorrhiza is now more
widely used (see Appendix).

The VAM fungi have been raised to the rank Glomero-
mycola (= Glomeromycetes, glomeromycete, glomeromycotan),
so the older name Glomales (which has been corrected to
Glomerales) no longer represents the whole phylum
(SchiiBler, Schwarzott & Walker, 2001). The old name
phycomycetous mycorrhizas is invalid as it included fungi
now classified in separate kingdoms. Neither can these fungi
be referred to as zygomycetous. These fungi should be
identified as the Glomeromycota, with individual genera listed
when appropriate.

(a) Categories of vesicular arbuscular mycorrhizas

There are two main types of VAM, named by Gallaud (1905)
as Arum and Paris type associations. In plants with Paris VAM
associations hyphae grow as coils within cells, while those
with Arum VAM have colonies that expand primarily by lin-
ear hyphal growth along longitudinal air channels between
cortex cells (see Fig. 1.11 in Brundrett et al., 1996). It is pro-
posed here that the Arum and Paris categories of VAM
should be designated as ‘linear’ and ‘coiling” VAM re-
spectively. Categories of mycorrhizal associations are not
always consistent within plant genera (Smith & Smith, 1997),
so should not be named after them. There may be physio-
logical differences between linear and coiling VAM, as it has
been suggested that substantial host-fungus exchange may
also occur within plant cells that contain hyphal coils (Smith
& Smith, 1997). The arbuscular interface of these associ-
ations is similar in structure to the arbuscular interface of
linear VAM associations (Armstrong & Peterson, 2002).
Some plants with coiling VAM fungi have ‘inner cortex’
associations where hyphae occur throughout the cortex but
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arbuscules only form in a single inner-cortex cell layer
(Brundrett & Kendrick, 1990; Widden, 1996). Plants with
‘beaded roots’ are a separate subcategory of coiling VAM
where roots have many short segments separated by con-
strictions. These roots have also been called nodular roots,
but this causes confusion with nitrogen-fixing associations
(Brundrett, 2002). Other subcategories of coiling VAM are
recognised in plants with exploitative associations (e.g.
Imhof, 1999, 2001), or which have highly irregular coils
(Widden, 1996). Inner cortex, beaded, and exploitative
associations are only known in plants with coiling VAM.
More research is required to determine how many sub-
categories of VAM exist. Categories and subcategories of
VAM are listed in Fig. 2A and defined in Table 4.

Substantial variations in the growth patterns of hyphae
associated with particular VAM fungi should be referred to
as ‘morphotypes’ (Abbott, 1982; Brundrett et al., 1996;
Merryweather & Fitter, 1998). Major VAM morphotypes
are listed in Fig. 2B. In roots with linear VAM some fungal
morphotypes spread by both coils and linear hyphae,
especially if these fungi only form small colonies. Some
authors have suggested that plants with roots that contain
both coils and linear hyphae should be considered an in-
termediate category (e.g. Smith & Smith, 1997; Cavagnaro
et al., 2001). However, these inconsistencies seem to be due
to particular fungi, and, thus, do not constitute true cat-
egories of VAM as defined here. Morphological studies have
demonstrated that the overriding influence of root anatomy
on mycorrhizal morphology results in consistent morpho-
logical association categories for most plant species.

(2) Ectomycorrhizas

The presence of a Hartig net, consisting of labyrinthine
hyphae between root cells, is used to designate ECM associ-
ations (Frank, 1885; Harley & Smith, 1983). Correlations
between Hartig net thickness and host growth responses to
specific strains of inoculated fungi support the hypothesis
that the Hartig net is the primary zone of nutrient transfer in
these associations (Burgess et al., 1994; Dell et al., 1994).
However, correlations between Hartig net structure and
mycorrhizal benefits have been established for only a few
species. ECM associations can be distinguished from
saprotrophic fungi growing on the surface of roots, or casual
interactions between ECM fungi and non-host species, by
careful microscopic observation (Agerer, 1995; Brundrett
et al., 1996).

Observations of the fruiting of putative fungal associates
near a potential host plant cannot alone be used to des-
ignate ECM associations (Harley & Smith, 1983; Molina,
Massicotte & Trappe, 1992). These designations may be
incorrect if fungi fruit a considerable distance from their
host tree or are wrongly assumed to be ECM associates.
These problems are illustrated by literature citations that
incorrectly designate VAM trees such as Acer, Fraxinus and
Ulmus as ECM hosts (see Table 22 in Harley & Smith, 1983
and Table 11.2 in Molina et al., 1992 for examples taken
from the older literature). Many of the trees misclassified as
ECM hosts have beaded VAM roots (Brundrett, 2002), as
these can be mistaken for ECM short roots in the absence of
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careful microscopic examination. The author maintains a
list of known genera of ECM plants on the Internet that can
be expanded when proof of the mycorrhizal status of other
genera is provided (Brundrett, 1999). We must be careful of
generalisations about members of fungus families because
of exceptions such as Boletinellus (Gyrodon) merulioides, a basi-
diomycete in a predominantly ECM clade (Kretzer &
Bruns, 1999), which only fruits under ash trees. This bolete
was erroneously designated as an ECM fungus, but actually
associates with subterranean aphids (Brundrett & Kendrick,

1987).

(a) Categories of ectomycorrhizas

There are two basic morphological categories of ECM: (i)
associations typical of angiosperms such as Fucalyptus, Betula,
Populus, Fagus and Shorea with a Hartig net confined to epi-
dermal cells, and (ii) those of gymnosperms such as members
of the Pinaceae where the Hartig net occupies multiple lay-
ers of cells in the cortex (Alexander & Hogberg, 1986;
Kottke & Oberwinkler, 1986; Massicotte, Ackerley &
Peterson, 1987). There are a few exceptions to this rule such
as the angiosperm Dryas integrifolia, which has a cortical
Hartig net (Melville, Massicotte & Peterson, 1987). These
categories result from anatomical features of the host root
and the same fungus can form both types with different hosts
(see Brundrett, 2002). It is proposed that these be designated
as ‘epidermal’ and ‘cortical’ categories of ECM to reflect
these fundamental differences (Fig. 3A). Some reports of
cortical Hartig nets in angiosperms result from errors caused
by examining root cross sections where slanting epidermal
cells can appear multi-layered (Massicotte et al., 1993).
Observations of longitudinal sections of roots or cleared
whole roots provide a clearer picture of Hartig net organis-
ation than do cross sections (Massicotte et al., 1993; Brun-
drett e al., 1996). Convergent evolution of plants with ECM
results in dimorphic (heterorhizic) root systems, where short
roots have limited apical growth and high branching den-
sities (Brundrett, 2002). Plant growth regulators supplied by
the ECM fungus influence root swelling, extension and
branching, and, when applied experimentally, can induce
similar root morphologies in the absence of fungi (Kaska,
Myllyld & Cooper, 1999; Barker & Tagu, 2000). Roots with
transfer cells in the Hartig net, such as occur in Pisonia grandis
(Ashford & Allaway, 1982) and Alnus spp. (Massicotte et al.,
1987), should probably be considered a separate sub-
category of epidermal ECM (Fig. 3A). Categories and
subcategories of ECM are listed in Fig. 3A and are defined
in Table 4.

There are considerable variations in the structure and
function of ECM formed by one host associating with dif-
ferent fungi (Agerer, 1995). The degree of short root
branching and the structure of the mantle and Hartig net
vary because of the presence of different mycorrhizal fungi
(Godbout & Fortin, 1985; Newton, 1991; Agerer, 1995).
Plant-fungus specificity varies considerably in ECM associ-
ations, from narrow host range fungi that associate with a
single host species to broad host range fungi that associate
with different families of host plants (Molina et al., 1992).
Host-fungus combinations that form functional associations
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are designated as compatible (Molina et al., 1992). Several
morphotypes of ECM with progressively thicker mantles
and Hartig nets considered to represent varying degrees of
host-fungus compatibility are recognised (Burgess et al.,
1994; see Table 4.9 in Brundrett ¢t al., 1996). Tuberculate
ECM associations, comprised of dense aggregations of
ECM roots, have been reported from Eucalyptus, Pseudotsuga,
Castanopsis and  Engelhardtia, but seem to be uncommon
(Trappe, 1965; Haug et al., 1991). The truffle-like fungi in
the Australian genera Mesophellia and Castorium form a
unique type of mycorrhizal association, where mycorrhizal
roots are incorporated in fungal fruit bodies (Dell et al.,
1990). Superficial ECM associations defined by the presence
of a thin Hartig net and sparse mantle have been observed
in synthesis experiments using host-fungus combinations
which are not fully compatible (Burgess et al, 1994;
Massicotte et al., 1999), but superficial ECM also occur in
natural ecosystems (e.g. Clowes, 1951; Malajczuk, Dell &
Bougher, 1987). The morphotypes listed in Fig. 3B result
from properties of specific compatible fungi, and most are
known to occur in both epidermal and cortical Hartig
net hosts.

Associations reported in the literature as atypical ECM
include the ‘mycorrhiza-like’ associations of Morchella sp. on
members of the Pinaceae (Dahlstrom ez al., 2000), Cortinarius
cinnamomeus on Carex spp. (Harrington & Mitchell, 2002),
Tricholoma matsutake on Pinus (Gill et al., 1999), and the vari-
able associations of Adenostoma fasciculatum (Allen et al., 1999).
ECM associations also can occur in annual plants (McGee,
19884). Some plants have both ECM and VAM and their
relative importance can vary with the age of the plants and
their habitats (Moyersoen & Fitter, 1998; Chen, Dell &
Brundrett, 2000; van der Heijden, 2001). There also are
cases where associations called ectomycorrhizal or ectendo-
mycorrhizal meet none of the required morphological cri-
teria (e.g. Bratek e al, 1996 —a VAM association?).
Erroneous designation of mycorrhizas appears to have
resulted from mixed root samples in some cases, such as
reports of ECM ferns (Brundrett, 2002). See p. 33 in
Brundprett ef al. (1996) for a more comprehensive consider-
ation of ECM designation problems.

(b) Monotropoid, arbutoid and ectendomycorrhizal associations

Arbutoid and monotropoid mycorrhizas have traditionally
been considered to be separate from ECM associations,
despite their many similarities (Smith & Read, 1997). The
fungi which form these associations typically are also
ECM associates of other hosts (Molina & Trappe, 1982a;
Massicotte et al., 1993), so the unique features of these
associations must be controlled by the host plant. A survey
of plants in the Ericaceae found that arbutoid mycorrhizas
were not consistent, as many of the same plants simul-
taneously had ECM (Largent, Sugihara & Wishner, 1980).
Arbutoid mycorrhizas have been considered to be either a
category of ECM (Molina & Trappe, 1982a), or a type of
ericoidd mycorrhizas (Fusconi & Bonfante-Fasolo, 1984).
However, phylogenetic studies have shown that plants in the
Ericaceae with ericoid mycorrhizas descended from those
with arbutoid associations (Cullings, 1996), so arbutoid
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Table 5. Examples provided to demonstrate a proposed classification scheme for types, categories, subtypes and morphotypes of
mycorrhizas. Categorical information is listed with the most significant terms last (e.g. Glomus linear VAM, or ectendocortical

ECM)

Defined by host plant
Fungal morphotype
(if known) Subcategory Category Type* Other name
Glomus Linear VAM Arum series VAM

Inner cortex Coiling VAM A type of Paris series VAM
Superficial Epidermal ECM

Arbutoid Epidermal ECM Arbutoid mycorrhizas
Ectendo- Cortical ECM Ectendomycorrhizas

* VAM = vesicular-arbuscular mycorrhiza, ECM = ectomycorrhiza.

associations were derived from ECM rather than ericoid
association. It is recommended here that within the
hierarchical classification of types of mycorrhizas, arbutoid
and monotropoid mycorrhizas should be classified as sub-
categories of epidermal ectomycorrhizas (Fig. 3A, Tables 4
and J).

Ectendomycorrhizas are currently recognised by a defi-
nition based on fungi rather than plants (Yu, Egger &
Peterson, 2001) that does not morphologically distinguish
them from arbutoid mycorrhizas. Observations of ectendo-
mycorrhizas, defined in this narrow sense, are largely re-
stricted to highly fertile artificial situations where trees
grown for forestry are unlikely to benefit from mycorrhizas,
and competition from other fungi is limited (Yu et al.,
2001). However, ECM with some degree of intracellular
hyphal penetration may occur in a wider range of situations
than is generally acknowledged (e.g. Brundrett, Murase
& Kendrick, 1990). The differences between ECM and
ectendomycorrhizal associations are very unclear, because
they do not involve separate plant lineages, and some of the
fungi involved are poorly known. There may also be cases
where hyphae penetrating host cells belong to a different
fungus than the one forming the Hartig net, or in which cell
penetration occurs only in senescent associations (Yu et al.,
2001). Egger & Fortin (1988) originally suggested that
ectendomycorrhizas should perhaps be considered a devel-
opmental phase or evolutionary stage of ECM. Ectendo-
mycorrhizas do not occur in a separate plant lineage
and occupy the same level in the classification hierarchy
as superficial and tuberculate mycorrhizas. Thus, it is
recommended that ectendomycorrhizas be relegated to
a fungal morphotype, rather than a true category of ecto-
mycorrhizas (Fig. 3, Tables 4 and 5).

(3) Other mycorrhizas

Despite phylogenetic evidence that ericoid mycorrhizas
evolved from plants with ECM (Cullings, 1996; Brundrett,
2002), there 1s ample evidence that they are sufficiently dis-
tinct to warrant separate classification from other types of
mycorrhizas. Morphological categories have not been
recognised within ericoid mycorrhizas, but may exist. Fur-
ther research is required to confirm if substantial differences
in the structure and function of mycorrhizas occur between

the roots and stems of terrestrial orchids, or between
chlorophyllous and achlorophyllous orchids (Table 4). The
sub-epidermal association of plants in the Australian
monocot genus 7hysanotus discovered by McGee (1988a) is a
morphologically distinct type of mycorrhiza (Table 4). The
fungi that associate with Thysanotus have not been identified.

V. CLASSIFYING MYCORRHIZAS

Mycorrhizal associations are classified primarily by mor-
phological features controlled by the host, but information
from fungus-based classification schemes should also be
provided. Examples of a proposed classification scheme for
mycorrhizal associations are shown in Table 5. It is vital that
consistent definitions are used lo distinguish mycorrhizal association
ypes and that these definitions are included in all published work to
allow nterpretation of data and comparisons between different studies.
The classification in Table 5 uses the categories, sub-
categories and morphotypes of mycorrhizal fungi shown
in Figs 2 and 3 and defined in Table 4.

It is important to clearly distinguish which functional
category of association was observed and to describe the
evidence used to make this judgement. A conclusive diag-
nosis should not be provided when there is uncertainty
about the type of association observed. Observational and
interpretational problems need to be considered when using
data from the literature (see Harley & Smith, 1983;
Brundprett ef al., 1996), especially if criteria used to identify
mycorrhizal associations are not stated (e.g. Hartig nets or
arbuscules). Researchers will need to confirm the mycor-
rhizal status of plants themselves if there are any questions
about the reliability of existing information.

In some cases inappropriate methods of observation that
reveal minute details of associations are used in mycorrhizal
studies without also providing a low-magnification overview
that allows associations to be identified. Problems with the
identification of association types may also arise from the use
of material of unknown age that lacks ephemeral structures
such as arbuscules, or inadequate sampling (e.g. observation
of a limited number of sectioned roots). It is preferable to
identify mycorrhizal associations in whole-root preparations
using a clearing and staining technique that allows sufficient
sampling volume and replication (Brundrett ez al., 1996). In
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ecosystem surveys, the degree of mycorrhizal colonisation
should be expressed as the proportion of susceptible roots
that were mycorrhizal, by excluding woody roots. This
requires an understanding of root structure and phenology
(Brundrett et al., 1996).

The taxonomic classification of most mycorrhizal fungi
has not been fully resolved. Consequently, it is vitally
important to submit voucher specimens of any fungi used in
experiments to a registered herbarium to allow their names
to be confirmed and updated in the future (see Agerer et al.,
2000). It is also advisable to include material in a form that
will preserve DNA for future studies. Unfortunately, the
identity of fungi used in many mycorrhizal studies cannot be
precisely determined. This prevents us from establishing
relationships between the taxonomy and biology of mycor-
rhizal fungi used in these experiments.

Mycorrhizas are three-way interactions of plants, fungi,
and soils (Brundrett, 1991), so we must expect environ-
mental and edaphic factors to affect their structure and
function. Consequently, descriptions of mycorrhiza types
should include information about the soils and habitats
where they occur which can be as valuable as information
about the taxonomic identity of fungi (Brundrett, 1991).
Studies of mycorrhizal synthesis under artificial conditions
should include comparisons with the same host and fungus
in natural habitats to identify artifacts due to cultural con-
ditions. Combinations of host plants, fungi and soils that do
not occur in nature may provide inaccurate knowledge of
structure and physiology.

Our current knowledge of the physiology of mycorrhizal
associations is largely based on generalisations formed by
assembling fragmentary evidence from separate measure-
ment of the roles of plants and fungi, in many cases
using highly artificial conditions (Miller & Kling, 2000).
Consequently, there 1s much scope for future studies which
investigate the reciprocal nature of mycorrhizas by simul-
taneously measuring the fitness and functioning of both
partners. A whole-ecosystem approach to investigating the
role of mycorrhizas in nutrient and energy cycling in natural
situations will allow us to formulate a better understanding
of the typical magnitude of costs and benefits for each
partner in mycorrhizal associations (see Miller & Kling,
2000). Assessment of the functional diversity of mycorrhizal
associations, and the impact of perturbations such as
pollution or climate change on ecosystems dominated by
mycorrhizal species requires a more comprehensive under-
standing of how a balance between the interests of mycor-
rhizal plants and fungi is maintained.

VI. CONCLUSIONS

l. A new definition of mycorrhizas is provided to en-
compass the full diversity of these associations. These plant-
fungal associations are primarily responsible for nutrient
transfer, are essential to one or both organisms and involve
synchronised development.

2. Mycorrhizal fungi have a wide diversity of roles
and can also function as endophytes, necrotrophs and
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antagonists of non-host plants, with roles that vary during
the life of associations.

3. Most mycorrhizas can be described as balanced
mutualistic associations in which the fungus and plant
exchange commodities required for the growth and survival
of both partners. These occupy a separate isocline from
pathogenic, endophytic, or antagonistic associations in the
continuum of plant-fungus interactions.

4. Myco-heterotrophic plants have exploitative mycor-
rhizas where transfer processes benefit only plants. These
non-mutualistic associations involve fungi with primary
roles as saprophytes, parasites or balanced mycorrhizal
associates of other plants.

5. After considering the relative merits of vesicular-
arbuscular mycorrhizas and arbuscular mycorrhizas, it is
concluded there is no compelling reason to switch to
arbuscular mycorrhizas.

6. The main categories of vesicular-arbuscular mycor-
rhizas are linear and coiling associations, and of ecto-
mycorrhizas are epidermal and cortical associations.
Subcategories of coiling and epidermal associations occur in
certain host plants. Arbutoid and monotropoid associations
are redefined as subcategories of epidermal ectomycorrhizas
and ectendomycorrhizas as a morphotype.

7. It is recommended that mycorrhizal associations are
defined and classified primarily by anatomical criteria
regulated by the host plant as fungal controlled features
(morphotypes) vary within plants. A hierarchical classifi-
cation scheme for types, categories, sub-categories and
morphotypes of mycorrhizal associations is proposed.
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IX. APPENDIX

(1) Usage of arbuscular and vesicular-arbuscular
mycorrhizas

As shown in Fig. 4 the name arbuscular mycorrhizas (AM)
has become more common than vesicular-arbuscular
mycorrhizas (VAM), but the latter is still frequently used.
Thus, there is no consensus about which name for these
associations 1s most correct. Usage of these terms varied
considerably between databases, with a much smaller pro-
portion of papers in Biological Abstracts found using VAM
than in CAB Abstracts (Fig. 4). Literature searches using
‘arbuscular mycorrhizas’ as a search term will also find
papers with ‘vesicular-arbuscular mycorrhizas’ in their
title or abstract. However, a surprisingly large number of
relevant papers (over 10 % of those in Buological Abstracts in
2002) were not found by searches using either term, because
they used endomycorrhiza, mycorrhiza, abbreviations such
as AM, names of fungi, or no useful search terms in their
titles.

It is recommended that all papers should include vesicu-
lar-arbuscular mycorrhiza or arbuscular mycorrhiza in
their title if they primarily concern these associations.
Endomycorrhiza, the obsolete name for these associations,
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Fig. 4. Publications containing arbuscular mycorrhizas,

vesicular-arbuscular mycorrhizas, or other terms in titles or
abstracts. This graph summarises 2002 data from three data-
bases (Buwlogical Abstracts, BIOSIS; CAB Abstracts, CAB Inter-
national; Agricola, US Department of Agriculture) using a
web-based literature search of the titles and abstracts of scien-
tific publications (www.ovid.com). Combined results include
some duplication.

should not be used at all. The International Mycorrhizal
Society (www.mycorrhizas.org) should address the issue of
association names and provide effective means of com-
municating recommended nomenclature to all mycorrhizal
scientists.



