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Abstract
The aim of this paper is to generalize a noncommutative Radon-
Nikodym theorem to the case of completely positive (CP) map. By only
assuming absolute continuity with respect to another CP map the ex-
istence of a Hermitian-positive density as the unique “Radon-Nikodym
derivative” is proved in the commutant of the Steinspring representation
of the reference CP map.

1 Preliminaries and definitions

Let A be a C*-normed algebra, and let B(h) denote the algebra of all bounded
operators on a Hilbert space h. In this paper we will obtain a positive self-
adjoint density operator o for a completely positive map « from A into B(h)
strongly absolutely continuous with respect to another such map ¢ given, say,
by a faithful weight or trace ¢ as ¢ = 1. It will be uniquely defined as a
noncommutative generalization of Radon-Nikodym derivative x4 in the Hilbert
space H of Steinspring representation of ¢.

To this end, we first recall the definition of compete positivity. If A and B
are C*-algebras, M (n) (n > 1) the algebra of n X n complex matrices and  is
a linear map from A to B, we shall say that x is n-positive if the map

Kn: AR M(n) — B® M(n),
kn(a®@m) =k(a) @m, a€ A me M(n),

is positive. The map k is called completely positive if it is n-positive for all
integers n.



The completely positive maps play an important role in the description of
quantum channels and time evolutions of open quantum systems [2].

Let us consider two quantum systems described in terms of C*-algebras A
and B. It can be easily shown that if the Heisenberg dynamics of the compound
system is described by a x-endomorphism v of A® B, then the reduced dynamics
as conditional expectation € of v corresponding to an independent state on B is
described by a completely positive identity preserving maps p : A — A (such
i = € o~ is usually called a dynamical map on A). The complete positivity of
a reduced dynamics was first pointed out by Kraus [4] in the context of state
changes produced by quantum measurements.

If a C*-algebra A describes an open physical system subject to completely
positive dynamics, then any dynamical map of this system, considered in a
representation ¢, is a completely positive map of norm one « : A — B(h), where
K =10 L.

Let us recall that the condition of complete positivity of x can be written
[5] in the form

<ni\n(a’{ak)nk> >0, Vn;ebh,VajeA j=1,...,n,VneN.
ik=1

The condition of normalization of k can be expressed in the form (1) = 1 if
1 € A and 1 stand for identities in .4 and B(h), respectively.

According to the famous results of Stinespring [5] any (normalized) com-
pletely positive map x : A — B(h) can be represented in the form

k(a) = Fimg(a)F,

where 7, : A — B(H,) is a representation of A on a Hilbert space H, and Fj
is a bounded (isometric) linear operator from § into H,. Such a representation
of a completely positive map will be called spatial. The normalization condition
for a dynamical map implies the isometricity FjF,, = 1.

Let ¢ and k denote completely positive maps from A into B(h) and let
{(ajm)m, i=1,... ,n} be a family of sequences in A. Such a family will be
called a (¢, k) family of sequences if for any n € N

n

Tim Y (il é(afyam) i)

ik=1

n

= lim Z <77i|:‘$<(aim - air)*(akm - akr))ﬂk> =0 (1-1)

m,r—o00

ik=1
Vn;€h, j=1,...,n

Now we generalize various forms and strengthened forms of the concept of ab-
solute continuity [3] in the case of completely positive maps.

Definition 1 A completely positive map k is called



(1) completely absolutely continuous with respect to a completely positive map
¢ if for any n € N

inf Y (n16(aakm)ng) = 0

z,k:l

for any increasing family {An,} of matrices A, = [af,,akm] implies

IBLf Z 771|K: CL a’k?n) > = 07 VUJ € ba J = 1,...,7’L,
i,k=1

(2) strongly completely absolutely continuous with respect to ¢ if for any (¢, k)
family of sequences {(ajm)m,j =1,... ,n} we have for any n € N

rr}gnoo Z <771‘H(a;kmakm)nk> = 03 Vﬁj € bv ] = 17 sy N,
k=1

(3) completely dominated by ¢ if there exists a A > 0 such that for anyn € N

> (mils(atar)ng) < A Z (milg(asar)ny),

i,k=1 i,k=1
Vn,€h, VajeA j=1,...,n

It is rather obvious that (3) = (2) = (1).

In the particular case ¢(a) = ¢(a)l, where ¢ : A — C denotes a positive
functional on A (e.g. a reference state, or trace), we shall say that x is com-
pletely absolutely continuous or strongly completely absolutely continuous or
completely dominated by the functional ¢. If completely positive maps are of
the form ¢(a) = p(a)1, k(a) = »(a)l, where ¢, ¢ are positive functionals on A,
then one can easily verify that our forms of absolute continuity (1)-(3) imply
that s is (1’) p-absolutely continuous, (2') strongly (-absolutely continuous,
(3") p-dominated, respectively in the sense of Gudder [3].

2 A Radon-Nikodym theorem for completely pos-
itive maps

Theorem 2 Let ¢ and k be a bounded completely positive maps form A into

B(h) and let H be a Hilbert space of a representation w : A — B (H) in which

¢ is spatial, that is
¢(a) = F*r(a)F, Va€ A, (2.1)

where I is assumed to be bounded operator ) — H. Then



(a) K is completely absolutely continuous with respect to ¢ if and only if it
has a spatial representation r(a) = K*m(a)K with w(a)K = Yn(a)F,
where ¥ is a densely defined operator in the minimal H, commuting with

m(A) = {r(a),a € A} on the lineal D = {Z; W(aj)Fnj}.

(b) k is strongly completely absolutely continuous with respect to ¢ if and only
if k is spatial in (w,H) and there exists a positive self-adjoint operator o,
uniquely defined on D, affiliated with the commutant w(A)" and such that

k(a) = F*or(a)F = (Ql/zF)*ﬂ'(a)(Ql/2F), Va € A, (2.2)

(¢) k is completely dominated by ¢ if and only if (2.2) holds and ¢ is bounded.

Proof. Let us first sketch the prove the part (a) given in [1].

The condition of absolute continuity means that x is normal in the minimal
spatial representation of ¢ with the support orthoprojector P, majorised by the
support Py of ¢. Therefore it is spatial, with the operator K : h — H uniquely
defining the operator ¥ = 7’ (K) on D by

' (K)n(a)Fn=m(a)Kn, YA€ AneEHh.

such that it commutes with 7 (A). The reverse is obvious.

Let us now prove the part (b) of our theorem.

(=) Let 7, be a representation of a C*-algebra A in the Hilbert space H,
generated by the algebraic tensor product A ® h with respect to a positive
Hermitian bilinear form

<Zai®7h‘

defined by the equality

woEnen) - |[Smon), o

> ar® 77k>ﬁ = > (milr(a}ar)n,) (2.3)
- :

n
i,k=1

(for details see [5]).
Let us denote by F; the bounded operator H, — b,

F.:n—1|1®n), (2.5)
(a canonical isometry h — H,; if k is normalized). Then we have [5]
k(a) = Fimg(a)Fy. (2.6)

Define an operator I, in H into H,, by the formula

I : Z?r(aj)Fnj — ‘Zaj ®nj>ﬁ = Zm(aj)F,mj. (2.7)



This is a consistent definition of a linear operator on the lineal D C 'H because
condition (2) implies (1) from which, taking into account (2.1), (2.5) and (2.6),
we obtain the condition

(<Zk: m(ak) F77k|z m(a;)Fn;) fO) (Zak®nk|za3®% )

Obviously, we have F,, = I, F.
To prove that I,; is closable let us first note that any sequence of elements

of {’ > m(aj)Fn; >} can be expressed in the form (‘ > 71'(@ij77{7.>) be any

sequence such that (‘ > ﬂ(ajm)Fnj>) — 0 and (‘ 22 Ajm ® nj>ﬁ) is con-
m m
vergent. Then for any set n;, 7 =1,...,n

im Y (3] $(a5marm )0)

= Jim > 0, F*m(aim)* 7 (akm) Fny,)
i,k

= lim_ > (w(aim) P m(agm) Fry,)
i,k

’Zﬂ'(aim)Fni>

2
‘:0.

= lim
m—00

Moreover,

lim Z <77i|f‘€((aim - air)*(akm - ak7'))nk>

m,r— o0

ik

= mI}I—I}oo < Z(azm a/zr @n; ’ Z Qlem — ak?“) ® nk>
= lim H| Z Qim — Qi ®771>

m,r— o0

:O7

hence (| > Gim ® 771->H) is Cauchy by assumption. Hence {(ajm)m,Jj =
m

1,.. .,n} form a (¢, k) family of sequences. Then from the strong complete
absolute continuity of x with respect to ¢ we have for any n € N

0= n}gnoo Z<77,' |"€(a;‘kma}km)77k->

2
i |00,
1

This proves that I, is closable.



Denote by I, its closure. Then there exists an adjoint operator I defined
on the lineal {| Zj a; @ 77j>,€}7 dense in H,, by the equality

<Z“j @Y ar® "7k>ﬁ = <Z7r(aj)F77j|I;‘ > ar® 77k>' (2.8)
J k 7 P

The positive self-adjoint operator ¢ = I 1, on the lineal {|x(a;)Fn;)} is affili-
ated with 7(A)’ because on the domains of I; and I} we have

me(a)l, = Ixym(a), Iim.(a)=m(a)l, (2.9)
Let us verify the first of the equalities (2.9). Taking into account (2.7) and (2.4)

we have
Zﬁ(aj)Fnj> = Wﬁ(a)‘ Zaj ® 77J»>"i
“[Soon),
Zw(aaj)Fnj>

7 (a)

:IK

= Iﬁw(a)‘ Zw(aj)Fnj>.

Taking into account that F, = I, F', we obtain
k(a) = Fimg(a)F,; = F*or(a)F
= (0'?F)*r(a)(0"*F) = K*x(a)K,

where K = o'/2F.
(<) Let {(ajm)m,j = 1,...,n} be a family of (¢, k) sequences. Then

(| > ﬂ'(am)Fm>) — 0 and moreover

0= lim Z <77¢‘/$((aim - air)*(akm - alﬂ“))nk>

m,r—o0 i
= ml;r_r}oo Z <77i‘(91/2F)*7T(a7;m — air)*ﬂ(akm — akr)(Ql/QF)’I]k>
= <91/2 > maim — ai)Fil 0"y mlakm ~ akr)Fnk>

; - .

lim Hgl/2| Zﬂ'(aim)F'ﬂi> — 91/2‘ Zﬂ(air)FnJ ‘2

m,r—00

Hence o'/2 (| > W(aim)Fni>)m is Cauchy, and since p'/2 is closed,

91/2(| Zﬂ'(aim)Fni»m — 0.



Then we have

lim Z 1|5 (O Qe )11 ) = Tr}iinooZ<77i|(Ql/zF)*ﬂ(aiM)*W(akm)(@1/2F)77k>

m— o0 -
i,k

‘ —0.

2
91/2‘ Z 7T(ai7n)f’j"7i>

This means that « is strongly completely absolutely continuous with respect to
¢. This completes the proof of part (a).

Let us prove part (c) of our theorem.

(=) Suppose £ to be completely dominated by ¢. As the condition (3)
implies (2), therefore (a) holds. It remains to prove that g is bounded. The
boundedness of o follows from the following calculations:

o S ntaren | = (¢ St Fule* Entas) )
| = 2}; (mi ‘;(a: @) < AZZ: (mil(ai ax)my.)
=;<Z m(a; Fm\z a; )Fn, )
| S et o

(<) Suppose that o'/? is bounded, then

> (nilrlagar)m,) = (n|(0'*F) n(ajax) (0> F)ny )
ik

ik
=< I/QZ m(ai) Fr;|o'/? Z m(ax F77k>

= HQUQIZ 7(a;)Fn;) ‘ < ||91/2H2H‘Z7r(ai)Fm>
= HQl/z” Z 771|¢) aiak)mﬁ)

ik

lim
m— 00

:

Hence k is completely dominated by ¢.

The uniqueness of ¢ can be assured by choosing the smallest Hilbert space
Hg in which ¢(a) has the Steinspring form ¢(a) = F*mg(a)F. Note that, if
¢ =1p, Hp = h @ Hy, Ty (a) =1® 7, (a) and F =1 ® f, where H, > f is
the space of the cyclic representation ¢(a) = f*m, (a) f of a positive functional
pon A m

The formulation of complete absolute continuity for CP maps belongs to
VPB, and the Main Theorem in the formulation of Parts (a) and (b) was origi-
nally given in [1].
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