N-tree Disjoint-Set Forests
for Maximally Stable Extremal Regions

Erik Murphy-Chutorian and Mohan Trivedi
Computer Vision and Robotics Research Laboratory
University of California, San Diego
erikmc@ucsd.edu, mtrivedi@ucsd.edu

Abstract

In this paper we introduce the NDS-Forest data structure, which can be used
for the calculation and representation of Maximally Stable Extremal Regions
in real-time video. In contrast to the standard MSER algorithm, the NDS-
Forest stores information about the extremal regions as they are formed, mak-
ing it unnecessary to regrow the regions from seed pixels. Using the NDS-
Forest structure, we describe a system that uses MSERs in an automobile for
face registration, segmentation, and pose estimation of the driver.

1 Introduction

While the visual world is comprised of three-dimensional objects transformed by pro-
jective geometry, it is often much easier to represent visual information as a set of local
two-dimensional features. As a consequence, there has been much interest in processes
that locate and describe salient image regions that are invariant to changes in pose, rota-
tion, and scale.

Although no methods exist to completely reverse the projective deformation without
depth information, affine-covariant region detectors have been proposed which can re-
peatably detect regions that undergo affine distortion [10, 4, 8, 17]. Since a projective
transformation is locally-affine, these techniques are often applied to images under the
assumption that local image patches are small enough to merit an affine approximation.

The central concept underlying affine-covariant regions is the ability to apply an affine
transformation to an image region that transforms it into a canonical shape. Quite fre-
quently this is accomplished by mapping an elliptical image patch onto a uniform circular
region. This can be accomplished by iteratively changing the shape of the ellipse such that
the normalized circular image patch will have an isotropic texture [10, 6]. This leaves a
rotational ambiguity, but this last unknown can be overcome with rotationally-invariant
region descriptors [11, 5], or by careful choice of a dominant direction [7] although such
direction can be highly unstable given the isotropic constraint.

Another approach is to use Maximally Stable Extremal Regions (MSERs), as they
provide an affine-covariant region with an arbitrarily shaped boundary [8]. In this case,
affine covariance can be achieved by normalizing the region’s covariance matrix about its
center of gravity and then using the characteristic shape of the region itself to resolve the
rotational ambiguity [18].

BMVC 2006 doi:10.5244/C.20.76



There are further advantages of MSERs. In a systematic comparison of affine-covariant
region detectors, MSERs were shown to outperform all other detectors in terms of repeata-
bility given viewpoint and lighting changes [12]. In the same comparison, it was shown
that MSERs can be computed much more quickly than any of the other affine-covariant
regions.

MSERs have been successfully applied to a variety of problems, including wide-
baseline stereo [8], object recognition [19, 9, 14], image retrieval [13, 18, 15], and scene
classification [1]. In this paper we will also demonstrate how MSERs can be used for
face registration and pose estimation, although our primary contribution in this work is
the NDS-Forest for efficient calculation of the regions.

For any image processing program, there are some simple rules that can dramatically
reduce the computational requirements, which can ensure that the program will continu-
ally process frames in real-time.

1. No heap memory allocation at runtime. Allocating and deallocating memory in
every frame can dramatically slow down realtime applications. The solution is to
preallocate enough memory at initialization, and continuously write and overwrite
this space.

2. Efficient algorithms. Although very intuitive, it is imperative to use the algorithm
that achieves the least upper-bound on efficiency.

3. No unnecessary recalculations. The results of calculations that will be required
later should be maintained in memory. Assuming that the memory requirements
are not unreasonable, there is no reason to recompute information that is required
in multiple steps in the program.

It is with this third rule especially that the MSER algorithm can be improved. In its
published form, the algorithm provides a method to characterize all of the MSERSs in a
single pass through the image, but it provides no method to retain specific information
about the regions. To determine the pixels that comprise the region, one must complete
a flood fill algorithm once for each region, although all such information existed and was
lost during the first pass through the image. Since there can be hundreds or thousands or
these regions in a single image frame, this is a substantial portion of the total computation.

In this paper, we introduce the NDS-Forest data structure that allows for faster calcu-
lation of Maximally Stable Extremal Regions. We show that it that satisfies all of the rules
mentioned above, while retaining all necessary information during the detection step, so
that finding the pixels that make up the region requires a simple tree traversal. We have
used this framework to create a system that is able to detect and display maximally stable
regions in real-time. In addition, we demonstrate a novel application in which MSERs
coupled with a skin-tone prior can be used for real-time face registration in a pose esti-
mation system. In comparison to color-based thresholding approaches, this method can
succeed despite affine changes in hue and persons whose skin color significantly deviates
from the prior.

In Section 2 we describe MSERS in more detail, and in Section 3, we describe our new
data structure. In Section 4 we describe our method of face registration and segmentation,
and in Section 5 we provide concluding remarks.



2 Maximally Stable Extremal Regions

Maximally Stable Extremal Regions are best described using a watershed topography
analogy [8]. Fundamentally, a grayscale image is a two-dimensional function, mapping
an (x,y) coordinate to an intensity value. Similarly, a watershed can be represented as a
function assigning a depth to every 2-D position. To understand MSERs, you must first
imagine that the the watershed is initially dry and then slowly filled with water. Initially,
puddles would begin to form in the deepest crevasses. As the water level increases, the
puddles would become ponds and lakes, and occasionally two of these would merge to
form a larger body of water. This step can be viewed as the termination of the smaller
lake, and the addition of all of its water into the larger lake. When this occurs, the volume
of water in the lake is highly unstable as a tiny increase in the water level changed the
volume dramatically. With Maximally Stable Extremal Regions, the focus is to discover
water levels that are instead local minima in the rate of change of the water volume.

In general, an extremal region is a set of pixels connected by their 4-neighbors that
satisfy the property that all of their intensities are uniformly greater or less than the in-
tensities of every pixel that surrounds the region. An extremal region is maximally stable
if given an intensity i and a margin A, the change in the number of pixels in the region
from i — A to i + A is a local minimum. A large value for A will generate only a few
highly stable regions, while a smaller value will detect many less-stable regions. The
advantage of a small delta value is that more regions will be detected which allows more
invariant information to be extracted from an image. The primary trade-off is an increase
in complexity to characterize these regions, which suggests the need for an efficient rep-
resentation. Figure 1 illustrates the effect of different values of A.

In the original formulation, MSERs are detected as follows. First all of the pixels in
the image are sorted by intensity, which can be quickly accomplished in O(n) with the
non-comparison based BinSort or CountingSort [8, 2]. Next, the pixels are added in order
to a list of connected components maintained by a disjoint-set data structure. The data
structure has an associated union-find algorithm, which provides methods to unite two
components and find the component in which a particular pixel belongs [8, 2]. As more
and more pixels are added to the list, the components grow and merge with each other.
After all of the pixels have been added, nothing is left but a single component comprising
every image pixel. To discover the MSERs, a separate data structure is used to keep
track of the area of each connected component as pixels are added to the components.
This structure stores the area of each component as a function of intensity, terminating
any component if it merges with a larger one. Once all of the pixels have been added,
the MSERs can be found as the components that satisfy the maximal stability criterion
mentioned above. Since the typical disjoint-set data structure is not persistent [3], it is
impossibly to recover the connected components that existed after a subset of the pixels
had been added. Thus, at the termination of the algorithm, nothing is known about the
MSERs other than a single pixel within the region and a boundary threshold, since all of
the information characterizing the connected components has been lost. In the following
section we describe a solution to this problem.



Figure 1: Maximally Stable Regions displayed with bounding boxes. Note the increase
in the number of regions for different margins. (left) 254 Regions. (center) 681 Regions.
(right) 1533 Regions.

3 NDS-Forest

In graph theory, a node is the basic building block of a graph, which is comprised of nodes
connected to each other by edges. A path is a sequence of consecutive edges. A tree is
a graph in which any two nodes that are connected by exactly one path, while an N-tree,
is a tree in which any node has at most N edges. A forest refers to a graph comprised of
one or more trees. A disjoint-set forest is a disjoint-set data structure that represents each
connected component as a separate tree in a forest [2].

We now introduce the N-tree Disjoint-Set Forest (NDS-Forest). The NDS-Forest is
a disjoint-set data structure that is partially persistent, meaning that one can recover the
nodes that existed in any tree at any given time. In the context of MSERs, the NDS-Forest
can recover the full set of region pixels given a single point and intensity threshold.

The NDS-Forest combines aspects of a doubly-linked N-tree data structure and a
disjoint-set forest. It exceeds the functionality of the disjoint-set forest by maintaining
an N-tree that keeps track of the order in which nodes are added to each connected com-
ponent and how components merge together.

3.1 Union Find

As mentioned in Section 2, a union-find algorithm provides two methods: Union(X,Y)
and Find(X). Union merges the two sets that contain nodes X and Y, while Find returns
the characteristic root node of the set containing X. Given a disjoint-set forest, these
methods can be efficiently performed with the use of two heuristics [2]:

Union by Rank is the process of always connecting the smaller tree to the root of
the larger tree. This can be achieved by maintaining the parameter rank, which provides
an upper-bound on the height of each node. A tree whose root has a greater rank is
considered larger than one with lesser rank, and whenever two trees of the same rank
are merged together, one is arbitrarily connected to the other and the rank of the root is
incremented by one.

Path Compression is a method to flatten the trees. Whenever Find(X) traverses a node
that does not directly connect to the root of the tree, the node is made to point to the root
of the tree. This way, subsequent calls to Find(X) require only a single operation.

Combining both Union by Rank and Path Compression, n image pixels can be added
to the forest in O(noi(n)) where a(n) is the extremely slow-growing inverse Ackermann



150

——MSER + Flood Fill
—— MSER + NDS-Forest

125
100

75

Computation Time (ms)

50

0 500 1000 1500 2000
Number of Maximally—Stable Regions

Figure 2: Comparison of the NDS-Forest to MSER + Flood Fill (320x240 pixel image)

function. This has been proven to be the optimal efficiency for any disjoint-set data struc-
ture [16].

3.2 N-tree Graph

Each node in an NDS-Forest possesses an array of N initially NULL pointers to neigh-
boring nodes, as well as an index corresponding to the time at which it was added to the
forest. Whenever Union(X,Y) is called, one of the free pointers of X is used to con-
nect X to Y, and another of Y to connect Y to X. In the case of MSERs, any pixel can
have as many as four possible neighbors, so in this application N = 4. The full algorithm
is presented in Algorithm 1. At any time index, every node that has been added to the
NDS-Forest is a member of a doubly-connected N-tree along with every other node in the
connected component. To find all of the nodes that existed in the component at a specific
index i, one can traverse the tree beginning at any node, stopping at any leaf or any node
with index > i. A recursive implementation of this traversal is shown in Algorithm 2, and
it should be noted that a queue-based iterative solution is also easily realized.

In summary, each NDS-Forest Node contains the following minimum data:

parent - A pointer leading to the characteristic member of each set

index - The time index at which the node was created

rank - An integer providing an upper-bound on the height of each node
neighbor[/N] - An array of up to N pointers connecting nodes to each other

3.3 MSER + NDS-Forest

To quickly calculate MSERs using an NDS-Forest, we can preallocate an NDS-Forest
node for each pixel in the image. We sort the image pixels by increasing intensity, and
then we add them one-by-one into the forest. This involves one call to MakeSet(X, ) for
each insertion, followed by a call to Union(X,Y) for each of the 4-neighbors that have
already been added to the forest. As in the standard MSER algorithm, we main a separate
list of extremal regions and their areas, and once all of the pixels have been added, we
find all of the extremal regions that are maximally stable. We now can realize any of these
regions using the method described in Algorithm 2 to traverse the region in O(m) where
m is the number of pixels in the region. This is the lowest possible bound on a traversal,



Algorithm 1 NDS-Forest Insertion
Procedure MakeSet (X, index)
X.parent — X

X.index < index

X.rank 0

X .neighbor|[1 : 4] — NULL ‘I’ ‘I’
Procedure Find(X)

if X # X .parent then
X.parent — Find(X.parent)

end if

return X .parent

Procedure Union(X,Y) 2]
A — Find(X)
B — Find(Y)
if A #B then
X .neighbor[length(X .neighbor) + 1] — Y
Y.neighbor|length(Y.neighbor) + 1] — X
if A.rank > B.rank then
B.parent < A
else
A.parent — B
end if
if A.rank = B.rank then
B.rank — B.rank + 1

end if
end if NDS-Insertion Example

since each node is visited exactly once. By including the pixel position as an additional
data member in each node, we can perform operations on any region such as estimating
the center of gravity, fitting an ellipse, finding a convex hull, or simply recovering the
pixel-level segmentation. To find MSERs with decreasing intensity, we repeat the above
steps but insert the pixels in decreasing order.

In terms of performance, we have implemented the MSER algorithm using an NDS-
Forest on a personal computer with a 3 GHz processor. Given a 320x240 video stream,
our implementation can discover all of the MSERSs at approximately 15fps. We have com-
pared our implementation to one which requires an explicit flood filling'. Figure 2 shows
the overall improvement using the NDS-Forest which is more pronounced for larger im-
ages with many regions.

4 Face Registration and Segmentation

While MSERs have the ability to locate invariant regions with high repeatability, the re-
gions themselves can be tailored to a specific task by modifying the input. To use MSERs

'We compared our system to a basic recursive flood filling algorithm. Faster methods exist, but they are
more complex to implement and still cannot achieve the performance efficiency of a tree traversal.



Algorithm 2 NDS-Forest Traversal
Procedure StartTraverse (X ,threshold)
Traverse(X , threshold, NULL)
Procedure Traverse(X ,threshold, previousX )
if X £ NULL and X .index < threshold then
for k = 1 to length(X .neighbor) do
if X .neighbor(k| # previousX then
Traverse(X .neighbor k], threshold,X)
end if
end for Traversal to i =3
end if

as a detector of face regions, we can pre-filter the image to create extremal regions out of
skin-tone. This can be accomplished by considering the chrominance components from
a digital color image. In our experiments, we convert an RGB image into the CIE Lab
perceptual colorspace. In this space, every pixel has a luminance component L and two
chrominance components a and b. By ignoring the luminance components and consid-
ering only the color vector ¢ = [a b]T we can create a system that is sensitive to color,
but invariant to changes in intensity. We create a skin-tone prior by assuming a jointly-
gaussian distribution on ¢ and estimating the mean and covariance U, and X, from color
samples taken from face images of ten people. With these parameters, we create the
Mahalanobis distance image,

M(x,y) = (I(x,y) — o) Ze(I(x,y) — e). (1)

We then apply the MSER algorithm to the Mahalanobis distance image since the skin-
tone of a face clearly delineates a stable extremal region. This method has multiple ad-
vantages over a thresholding approach. Since the algorithm has a preference for extremal
regions rather than a range of intensity, persons with skin-tone that greatly varies from the
prior will still provide a stable regions so long as their skin is uniformly different than the
background. Another advantage is that the algorithm yields multiple hypotheses. Rather
than make a critical decision as to which pixels belong to the face and which to the back-
ground, our method may classify multiple overlapping regions as stable segmentations.
This can be of great benefit in situations involving partial shadows such as in Figure 4.

Although this algorithm successfully finds faces, it also yields many non-faces as
well. Thresholds on region size and improbable intensities can greatly reduce the number
of facial candidates, but to obtain better results, the region must pass a more sophisticated
verification step.

As an example, we created a real-time face pose estimation system for driver aware-
ness. As shown in Figure 3, we fit a square to each candidate region, and then scale it
to a 32x32 pixel square. We perform recognition and pose estimation on each region by
extracting a SIFT feature [7], and matching it to its nearest neighbor from a set of train-
ing views. If the euclidian distance between the new feature and the template is below a
threshold, the system identifies the region as a face with the pose of the template. Since
there are typically many overlapping regions, there can be multiple hypotheses in a single
frame. To provide a single estimate, we use the median consensus over 5 frames to choose
the head direction. This system is able to run at 10fps on a 3 Ghz personal computer.



AVl AV ot
Realtime Video Capture Mahalanobis Distance Maximally-Stable
of Driver Attention from Skin-tone Prior Extremal Regions

Rearview Mirror

Pose Estimate
from SIFT consensus

Figure 3: Overview of Pose Estimation with MSER + NDS-Forest

5 Conclusions

In this paper we introduced a new data structure which can be used to find and characterize
Maximally Stable Extremal Regions. The system requires no heap memory allocation
at runtime and attains real-time performance in streaming video. It attains the lowest
possible bound on efficiency for the disjoint-set problem as well as the lowest possible
bound on region traversal. In doing so, the data structure extends the original MSER
formulation since it explicitly provides a method to traverse all of the detected regions.

In addition, we present a system for face registration and pose estimation which
applies the MSER algorithm to a Mahalanobis distance image rather than a standard
grayscale image. This enables the MSER algorithm to function as a robust skin-tone
segmentation algorithm, and we have exploited this property by detecting a driver’s head
pose in an automobile. In this context, the NDS-Forest is particularly useful since fast
driver intent analysis can be the crucial step in preventing an accident.

In future work we would like to exploit the shape information of each region as well
as the texture inside it. For head pose estimation, shape can provide complementary
information which could boost performance. We also would like to investigate the utility
of MSERs for automobile lane detection and sign detection. Figure 6 shows an example
segmentation result of the MSER + NDS-Forest algorithm applied to a freeway scene.

6 Acknowledgments

Support for this work was graciously provided by Volkswagen of America, Inc. and
the U.C. Discovery program. We would like to thank Joel McCall and the rest of our
colleagues in the Computer Vision and Robotics Research laboratory for their helpful
suggestions and assistance.



MSER boundaries

Figure 4: Face registration with JPEG compression artifacts and partially-shadowed faces.

I @ (M It's Still SUDDEN DEATH!
KPR 10, 1951

L1

15¢ Er

MSER boundaries MSER boundaries

Figure 5: Registration of synthetic faces.

Grayscale input MSER boundaries

Figure 6: MSERs can be used for traffic lane and traffic sign detection.



10

References

[1] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Scene classification via pLSA.
In Proc. European Conf. Computer Vision, 2006.

[2] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press and McGraw-Hill Book Co., second edition, 2001.

[3] Zvi Galil. Data structures and algorithms for disjoint set union problems. ACM
Computing Surveys, 23(3):320-344, 1991.

[4] Timor Kadir, Andrew Zisserman, and Michael Brady. An affine invariant salient
region detector. In Proc. European Conf. Computer Vision, May 2004.

[5] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A sparse texture representa-
tion using affine-invariant regions. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pages 319-326, 2003.

[6] Tony Lindeberg and Jonas Garding. Shape from texture from a multi-scale perspec-
tive. In Proc. Int’l. Conf. Computer Vision, 1993.

[7] David Lowe. Distinctive image features from scale-invariant keypoints. Int’l J.
Computer Vision, 60(2):91-110, 2004.

[8] Jifi Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. In Proc. British Machine Vision
Conference, 2002.

[9] Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele. Local features for object
class recognition. In Proc. Int’l. Conf. Computer Vision, pages 1792-1799, 2005.

[10] Krystian Mikolajezyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. Int’l. J. Computer Vision, 60(1):63-86, 2004.

[11] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-
scriptors. [EEE Trans. Pattern Analysis and Machine Intelligence, 27(10):1615—
1630, 2005.

[12] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jif{
Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of
affine region detectors. Int’l. J. Computer Vision, 65(1/2):43-72, 2005.

[13] Frederik Schaffalitzky and Andrew Zisserman. Viewpoint invariant scene retrieval
using textured regions. In Proc. Dagstuhl Seminar Content-based Image and Video
Retrieval, pages 11-24, 2004.

[14] Josef Sivic, Bryan Russell, Alexei Efros, Andrew Zisserman, and William Freeman.
Discovering object categories in image collections. In Proc. Int’l. Conf. Computer
Vision, 2005.

[15] Josef Sivic and Andrew Zisserman. Video Google: A text retrieval approach to
object matching in videos. In Proc. Int’l. Conf. Computer Vision, volume 2, pages
1470-1477, October 2003.

[16] Robert Tarjan. Worst-cases analysis of set union algorithms. J. ACM, 31(2):245—
281, 1984.

[17] Tinne Tuytelaars and Luc Van Gool. Matching widely separated views based on
affine invariant regions. Int’l. J. Computer Vision, 59(1):61-85, 2004.

[18] St&pin Obdrzalek and Jifi Matas. Object recognition using local affine frames on
distinguished regions. In Proc. British Machine Vision Conference, 2002.

[19] St&pin Obdrzélek and Jifi Matas. Sub-linear indexing for large scale object recog-
nition. In Proc. British Machine Vision Conference, 2005.



