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The present thesis is dedicated to two topics in Dynamics of Holomorphic maps.
The first topic is dynamics of simple parabolic germs at the origin. The second topic is
Polynomial-time Computability of Julia sets.

Dynamics of simple parabolic germs. A simple parabolic germ at the origin has

the form

F(w) = w + aw® + O(w?).

By a linear change of coordinates one can further assume that a = 1. Such germs are
of a great interest in modern Complex Dynamics (see e.g. [19], [20] and [30]). A local
description of dynamics of parabolic germs is well-known (see e.g. [11], [25]). If we apply

the change of coordinates z = —1/w and consider the germ at infinity
f(z) = —-1/F(—~1/2), then f(z)=z+1+0(z").
There exist constants ¢ > 0,7 > o > 7/2 such that in the sectors
{larg(z — ¢)| < a} and {|arg(z+c) — 7| < a}

there exist analytic solutions of the equation

i



with asymptotics

¢(2) = const +z + Alog z + O(z ™)

at infinity. These solutions are known as Fatou coordinates, and using them, one can
completely describe the local picture of the dynamics of F'(w).

Fatou coordinates help to answer a fundamental question in dynamics of parabolic
germs: the description of analytic conjugacy invariants. In [16] J. Ecalle and in [38]
S. Voronin independently described a set of analytic invariants which completely deter-
mines a conjugacy class of a given germ with a parabolic fixed point. The space of
Ecalle-Voronin invariants is infinite-dimensional. For the case of a simple parabolic germ
these invariants are two infinite sequences of complex numbers which can naturally be
interpreted as Taylor’s coefficients of two analytic germs Hy defined at z = 0 and z = oo.
S. Voronin used a dynamical approach to construct these invariants. The approach of
J. Ecalle relies on so called Resurgence Theory. Ecalle’s Resurgence results are of an
independent interest as they give a precise asymptotic description of Fatou coordinates.
In [15] and [16] Ecalle gave a construction of Resurgence Theory for a particular case
of a simple parabolic germ of the form F(w) = w 4+ w? + w?® + O(w?*) and outlined an
approach to the general case. In Chapter 1 we give new proofs of J. Ecalle’s Resurgence
results for the general case.

Resurgence Theory is based on the observation that the equation (1) has a formal
solution

¢(z) = const +z + Alog z + Z bz, (2)

j=1

where Y b;277 is a divergent power series. Using Ecalle’s Resurgence Theory we will
show that the right hand side of (2) can be interpreted as the asymptotic expansion of
the Fatou coordinates at infinity. Moreover, the Fatou coordinates can be obtained from
5 using Borel-Laplace summation. In Chapter 1 we also give a new proof of validity of
Ecalle’s construction of analytic conjugacy invariants for a germ with a simple parabolic

fixed point.
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Computability of Julia sets. Informally, a compact subset of the complex plane
is called computable if it can be visualized on a computer screen with an arbitrarily high
precision. Computer-generated images of mathematical objects play an important role in
establishing new results. Among such images, Julia sets of rational functions occupy one
of the most prominent position. Recently, it was shown that for a wide class of rational
functions their Julia sets can be computed efficiently (see [7], [8], [29]) and yet some of
those sets are uncomputable, and so cannot be visualized (see [9], [5]). Also, there are
examples of computable Julia sets whose computational complexity is arbitrarily high
(see [3]).

One of the natural open questions of computational complexity of Julia sets is how
large is the class of rational functions (in a sense of Lebesgue measure on the parameter
space) whose Julia set can be computed in a polynomial time. Informally speaking, such
Julia sets are easy to simulate numerically.

Conjecture. The class of rational functions of degree d > 2 whose Julia set can be
computed in a polynomial time has a full measure in the space of parameters.

The conjecture would imply, in particular, that typically the Julia set is poly-time com-
putable, even when the Julia set contains critical points, and hence dynamics is not
expanding. We make a natural step towards a proof of the conjecture.

Main Theorem. Let f be a rational function of degree d > 2. Assume that for each
critical point ¢ € Jy the w-limit set w(c) does not contain either recurrent critical point
or a parabolic periodic point of f. Then the Julia set J; is computable in a polynomial
time.

Our results give first examples of poly-time computable Julia sets which contain a critical

point.
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Chapter 1

Dynamics of Simple Parabolic

Germs via Resurgence Theory

1.1 Introduction

Below we briefly describe the results of Chapter 1 which are obtained jointly with David
Sauzin [14].
Let F(w) € C{w} be a germ at the origin of the form
F(w) = w+w? + aw® + O(w*) € C{w}.

We will call such a germ a simple parabolic germ at the origin. For us it is convenient to
work at infinity, in the coordinate z = —1/w. Introduce a germ at infinity

f(z) = SR N z+4+1+a(z), where

F(-1/z) (1.1)
a(z)=—pz '+ 0z e 'C{z}, p=a—1.
Let T'(z) :== z 4+ 1 be the unit translation. Our starting point is the following:

Proposition 1. There exists a unique formal series without constant term, ¢.(z) €

2 C[[z71]] such that the formal transformation
v.(2) = 2+ plog z + P.(2)
s a solution of the conjugacy equation
vof=Touw. (1.2)

The general solution of (1.2) in the set z + plogz + C[[z7!]] is v = v. + const.



The formal transformations v, + const were introduced by Ecalle [16] under the name
iterators, they are the first example in his theory of resurgent functions [15, 17]. The
series v, diverges everywhere. However, we will show that using Borel-Laplace summation
method one can obtain from v, two analytic functions v, v~ which satisfy equation (1.2).
These functions are Fatou coordinates of the germ f with a parabolic fixed point at
infinity.
For a formal series
P(z) = Z anz "
n>0

its Borel transform is defined by

MO =T

n=0

Definition 2. Let ¢ € z~'C[[z"!]] and $ be its Borel transform. Let I = (a,b), 0 <
b—a < m. We will say that ¢ is 1-summable in the arc of directions I if the following is

true:
3) @ converges near the origin;
2) ¢ extends analytically to a sector {( =re? € C; r >0, # €1},

3) there exist continuous functions C, : I — RT such that |(re)| < C() O for
allr >0and 0 € 1.

The Borel-Laplace sum of such a series ¢ is the analytic function

Gptr = [ b0 e
defined on the set
S(1,8) == {z : Re(ze") > B(6) for some 0 € I}.
We prove the following two results about ¢,.

Theorem 3. The series @, is 1-summable in the arcs of directions It = (—7/2,7/2)
and I~ = (n/2,3m/2). Let

90+ :ﬁ[Jr/\*, o :ﬁr?p*



Figure 1.1: Illustration to Theorem 4.

be the corresponding Borel-Laplace sums. Then the functions
vi(2)=z+plogz+ ¢t (2), v (2)=z+plogz+ ¢ (2)

are analytic solutions of the equation (1.2).

Theorem 4. The germ $, admits an analytic continuation along each path v : [0,1] — C
such that v(0) = 0 and y((0,1]) C C\ 27iZ. Let a,b C IT UI~. Assume that the closed

sector

{v(1) +re" : 0 € [a,b],r > 0}
does not intersect 2miZ.. Then there exist constants C, [ such that
| (cont, &,) (v(1) +re?)| < Ce. (1.3)

for all v > 0 and § € (a,b), where cont, o, stands for the analytic continuation of o,

along 7.

Ecalle in [16] proved Theorems 3 and 4 for the case p = 0 and gave a plan for a possible
proof in the case p # 0. His proof relies on the so called mould expansion of the formal
iterator v*. Here we prove Theorems 3 and 4 for an arbitrary p. Our methods are different
from Ecalle’s. In particular, our proof does not involve mould expansions.

Recall a notion of an asymptotic expansion (see e.g. [28]):
Definition 5. Let V' be a sector with the vertex at infinity of the form

V={z€C:|z| >R, argz € (a,b)}, (1.4)



where R > 0 and b — a < 27. Let ¢ be an analytic function in V and ¢ = > _jan,2™"
be a formal series at infinity. We will say that ¢ is an asymptotic expansion for ¢ if for

every closed subsector W C V and each n € N there exists M such that

n—

f(z) = Z%Z_j

1
|2["
7=0

<M

for each z € W. The asymptotic expansion ¢ is said to be Gevrey-k if one can take
M = M(n) = (n))/* A",

where A > 0 does not depend on n.

As a corollary of Theorem 3 we will obtain the following:

Theorem 6. The formal series ¢.(z) is a Gevrey-1 asymptotic expansion for both Borel-

Laplace sums ¢+ and o~ in sectors
{larg2| < a,|s| > R}, {Jargz— 7| < a2 > R}
respectively, for all m/2 < a < w and any R sufficiently large.

The first terms of the asymptotics for Fatou coordinates v*, v™:
vE(2) = 2+ plogz + O(z71)

are well-known (see e.g. [35]). However, the claim that the formal iterator v,(z) asymptot-
ically approximate Fatou coordinates at infinity was proven only recently by O. Lanford
and M. Yampolsky in [20]. Theorem 6 is stronger than the result of O. Lanford and
M. Yampolsky, since we obtain that the expansion is Gevrey-1.

Observe that two different analytic functions v+ and v~ with overlapping domains
share the same asymptotic expansion. The fact that the Borel-Laplace sums ¢+ and ¢~
of ¢, are different on the overlapping of their domains is due to existence of singularities of
$, on the imaginary line. In Mathematical Physics, this is known as Stokes phenomenon.

One of the main results of Chapter 1 is so called Bridge equation formulated by
J. Ecalle in [16]. He gave a sketch of a proof of this equation. Ecalle used the Bridge

equation to introduce analytic conjugacy invariants of the germs of the form
F(w) =w +w?+ O(w?) € C{w}.

at the origin. We will formulate and prove the Bridge equation in Section 1.4.



1.1.1 Dynamics of parabolic germs

In this section we briefly recall description of dynamics of a germ with a parabolic fixed
point at the origin. We refer the reader to [11] and [25] for details. Recall some important

definitions.

Definition 7. Let F(z) = Az + O(2?%) be a germ with a fixed point at the origin. The

origin is called a parabolic fixed point of f if A\ = 1 for some positive integer q.

Observe that if A = e*™/4_ then the iterate of the germ F°? has a parabolic fixed point
at the origin with the multiplier 1. Replacing F' with its iterate, if necessary, we will

always assume that A = 1. Let
F(z)=z(14+az"+...), where a # 0.
The number n is called the multiplicity of the fixed point at the origin.

Definition 8. A complex number v of modulus 1 is called an attracting direction if

av™ < 0 and a repelling direction if av™ > 0.
This terminology has the following meaning:

Proposition 9. If an orbit {F°*(2)}xs0 converges to the origin then F°%(z)/|F°%(2)|

converges as k — oo to one of the attracting directions.

Let v be the attracting direction such that F°*(z)/|F°*(2)| converges as k — oo to v.
Then we will say that the orbit {F°*(2)}1>0 converges to the origin from the direction of
V.

Observe that a germ F(z) = z(1 4+ az" + ...) admits a local inverse G(z) near the
origin. That is there exists a germ G(z) at the origin such that F(G(z)) = z = G(F(z))
for z in some neighborhood of the origin. We define a vector v to be a repelling direction

for F'(z) if v is an attracting direction for G(z).

Definition 10. Let v be an attracting direction for F. A Jordan domain P is called an

attracting Fatou petal for F if the following is true
e [ is injective on P;

o F(P\{0}) C P;



e an orbit {F°%(2)};>0 converges to 0 from the direction v if and only if P contains

all but at most finitely many points of this orbit.

Similarly, U is called a repelling petal for F' if U is an attracting petal for the local

inverse F1.

Theorem 11. Let F(z) be a germ with a parabolic fized point of multiplicity n + 1 at
the origin. There exists a collection of n pairwise disjoint attracting petals P, and n

pairwise disjoint repelling petals P! such that the following holds:

)

e the union (UP*)U(UP)U{0} forms an open simply connected neighborhood of the

orgin;

e an attracting and a repelling petal intersect if and only if the angle between the

corresponding directions is 7/n.

In particular, if n > 1 then each attracting petal intersects exactly 2 repelling petals
and each repelling petal intersects exactly 2 attracting petals. If n = 1 there is only one
attracting petal and only one repelling petal; their intersection consists of two connected
components.

To describe the local dynamics of F' we will use auxiliary changes of coordinates.
First, by a suitable conformal change of coordinates near the origin the germ F(z) can

be brought into the form (see e.g. [25]):
F(2) =z + 2" +a2®"t + O(z*).

Further, let v be an attracting direction. Consider the sector between two adjacent
repelling directions containing v. The change of coordinates
1
w=k(z) =——
(2) =——
sends this sector bijectively to the complex plane with a cut along the negative real axis.

The inverse of this change of coordinates  is given by

) = (—%)

where the branch of the n-th root is chosen such that the image of 1 is equal to v. In the

new coordinate w the germ F' has the following form:

f(w):K}OFOR_I(U}>:U)+1+§+O(L>,

w?



where

A:l(n+1—a).
n 2

In particular, near infinity f is closed to the unit translation. In fact, the following is
true (see e.g. [11] and [25]):

Proposition 12. Let P be an attracting or a repelling petal for F. Then there exists
a conformal change of coordinates ® : P — C, conjugating F to the unit translation
T(z)=z+1:

Qo F=Tod. (1.5)

By definition, for an attracting or a repelling petal P a conformal change of coordinates
® : P — C satistying (1.5) is called an attracting or a repelling Fatou coordinate corre-
spondingly. For a given petal P Fatou coordinate is unique up to an additive constant.
Namely, if &, ®5 are two Fatou coordinates on P, then ®; — &3 = const on P.

For technical reasons, it is convenient to consider Fatou petals satisfying an additional

property.

Definition 13. An attracting Fatou petal P is called ample if x(P) contains a sector of
the form

{zrarg(z —a) € (—f,0)} for some a > 0,5 > 7/2.
Similarly, one can define an ample repelling petal.

Lemma 14. The petals in Theorem 11 can be chosen to be ample. Further, if P is an
ample attracting petal, then ®(P) contains a right half-plane, if P is an ample repelling
petal, then ®(P) contains a left half-plane.

1.1.2 Horn maps and Ecalle’s analytic invariants
From now on we restrict ourselves to the case of multiplicity n + 1 = 2.

Definition 15. Let F(z) = z + az®> + O(2%) a # 0 be an analytic germ at the origin.
Then the origin is called a simple parabolic fixed point of F. We will call such a germ F

a simple parabolic germ at the origin.

Let F(2) = z + az? 4+ O(z%), a # 0, be a simple parabolic germ. By a linear change of
coordinates we may further assume that a = 1. There exist an ample attracting petal

P, and an ample repelling petal P. such that P, U P, U {0} is an open simply connected



neighborhood of the origin and P, N P, consists of two domains. Let &, and &, be

corresponding Fatou coordinates. Consider an equivalence relation ~ on P, given by
21 ~ 2 if either FY(z)) = 25 or F?(z) = 2z for some j > 0.

In other words, two points are equivalent if they are on the same orbit. Then the quotient
C4 = P,/~ is a Riemann surface. Observe that two points 21, zo € P, belong to the same
orbit if and only if ®,(z;) — ®,(22) € Z. Since ®,(P,) contains a right half plane, the
quotient space ®,(P,)/Z is isomorphic to the cylinder C/Z. The Fatou coordinate @,

define by passage to quotients an isomorphism
d,: C, — C/Z, where Cfa(z) = ¥,(z) mod Z.

Similarly we define a Riemann surface Cg := P, /. and an isomorphism &)r :C. — C/Z.

Observe that some orbits of F' belong to both petals P, and P,. Therefore, some
points from €, and €, are naturally identified. This allows us to define an analytic map
h = ®,0® ! The domain of definition of this map is (®,(P, N P,) mod Z) C C/Z. It

contains two regions W+ and W~ such that
Wt > {weC/Z: Im(w) > A}, W~ > {weC/Z: Im(w) < A}
for some large A > 0.

Proposition 16. One has
Im h(w) — +o0o when Imw — +oo0.

The cylinder C/Z is naturally isomorphic to the punctured complex plane C* = C\ {0}

with an isomorphism given by
ixp(z) = exp(27iz).

Denote

H=ixp oh~'o ixp~t.

Then H is analytic in a punctured neighborhood of the origin and a punctured neighbor-
hood of infinity. Moreover, H has removable singularities at 0 and co. Set H(0) = 0 and
H(c0) = 0o. Thus, H defines a pair of analytic germs in a neighborhood of the origin

and a neighborhood of infinity. We will use the notation H; to emphasize the dependence



of H on f. Since the Fatou coordinates are defined up to additive constants, the pair
of analytic germs Hy is defined up to pre- and postcomposition with mutliplication by
a nonzero number. In other words Hy can be replaced with cHy(z/d), where ¢,d € C*.
The analytic germs Hy are called Horn maps or Ecalle-Voronin invariants. The reason

for the second name is the following statement due to Voronin and Ecalle.

Theorem 17 ([16],[38]). Let f and g be simple parabolic germs. Then f and g are

conjugated by a conformal change of coordinates near the origin if and only if
H¢(z) = cHy(z/d), for some c,d € C*.

Thus, the conformal conjugacy class of an analytic germ of the form f(2) = z+22+0(2%)
is completely determined by the corresponding pair of analytic germs Hy. The latter can

be selected arbitrarily.

Proposition 18 ([16],[38]). Let H be a pair of analytic germs at the origin and at infinity
such that H'(0)H'(c0) # 0. Then there ezists an analytic germ of the form

f(z) =2+ 22+ az® + 0z
such that
H= Hf.
Moreover,
H'(0)H'(00) = exp(47*(1 — a)).

Further, the Horn maps Hy can be encoded by the Taylor coefficients {Aj}r>1 and
{A}ks_1 of the germs H; at the origin and at infinity. In fact, Ecalle used the name
analytic invariants for a different sequence of coefficients (see [16]). Namely, consider the
map

h=®,0®':®,(P,NP)—C.
The map h — Id extends to a 1-periodic map defined on the union W+ U W™, where
WH={w:wmod ZeW+*}, W~ ={w:wmod Ze W }.

Let B = B/ (f) and B, = B (f) be the Fourier coefficients of the restrictions (h —
Id)‘w-r and (h - Id)|W—2

h(w) =w+ Y Bfe™ ™ Imw >0, h(w)=w+» Bre ™™ Imw<0. (16)
k>0 k>0
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The coefficients B,:f, k >0, are called Ecalle’s analytic invariants. They are related with

the Horn maps by the following:

H(z) = zixp (ZB,jzk), 2 e U(0), Hs(z)=zixp (ZBk_z_k), z € U(o0),

k>0 k>0

where U(0) is a neighborhood of the origin and U(oo) is a neighborhood of co. In
particular, the coefficients A;,7 > 1, can be written as polynomials of the coefficients
B/ k > 0, and vice versa. Similar relations hold between the coefficients A;,j < —1,
and B,k > 0.

Observe that the coefficients B,:f are not uniquely defined. For each a € C and each
p € C\ {0} these coefficients can be replaced with the coefficients E,:f, where

Bf =a+ By, Bf =8B}, By =p7"B;.
In terms of Ecalle’s analytic invariants Theorem 17 can be rewritten in the following way:

Theorem 19. Let f and g be simple parabolic germs. Then f and g are conjugated by

a conformal change of coordinates near the origin if and only if
By (f) = By (f) = By (9) = By (9), Bi(9) =B"Bi(f), Bp(g)=p8"B;(f)
for all k > 1, where 5 # 0 is some constant.

In subsequent sections we will describe Ecalle’s construction of the invariants B,j:t and

give a proof of validity of this construction.

1.1.3 Borel-Laplace summation

In this subsection we explain the Borel-Laplace method of summation. We refer the
reader to [12] and [15] for details and proofs. First, let us give a definition and describe

properties of the Borel transform.

Borel transform

The formal Borel transform 4 is defined as the linear isomorphism

% [z — C[[c]], ﬁg(zcnz—“—l) - ch%.

n=0 n>0
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For a formal power series ¢ € 2z 'C[[z~!]] we will use the notation ¢ = B to denote
its Borel transform. The preimage under P of the subspace C{(} of convergent series at
the origin is the subspace of Gevrey-1 formal series without constant term 2z~ C[[z7]];
defined by

B(z) =) ez "t eClh &
n>0 (1.7)

3C, K > 0 such that |¢,| < CK"n! Vn > 0.

For such a formal series ¢(2), its Borel image ¢(¢) € C{¢} defines a holomorphic function
in the disk Dy/,(0) ={¢eC||¢| <1/K}.

Recall that for two germs g??,z?} € C{¢} their convolution is a germ at the origin defined
by

A I ¢ A I
()0 = / BB - ) dé (18)

0
Notice that the formula (1.8) gives an analytic germ defined in the intersection of the

disks of convergence of ¢ and gAD
Consider the monomials
A Ckfl

I =2z, 1) = R

Integrating by parts one can show that
A A A .
Iy *I; = Ipy; foreach k,j € N.
A . A A .
In other words, %’(z‘k_ﬂ) = %(z‘k) * %’(2_]). More generally, the following is true.

Lemma 20. Let g??,zAb e C{¢} be the formal Borel transforms of ¢,1) € z'C[[z~1]];.
Consider the product series X = @ € C[[z"]];. Then its formal Borel transform is
given by the convolution

A

A C A
(B0 = (r)(C) = / BB - ) da. (19)

Thus, the Borel transform induces an isomorphism from the algebra (z7'C[[z]]y,-)
with the usual multiplication rule to the algebra (C{(}, %) equipped with the convolution
product. Observe that the algebras above have no unit, since we did not define the image

of the element 1 € C[[27!]] by the Borel transform.

As for the differentiation operator 0 = C‘li—z, its Borel counterpart is the operator of

multiplication by (—():

A

O = Qo 0o (3%’)_1, égAD(C) = _CQAD(C)
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The case of a convergent formal series ¢(z) is characterized by the following:

¢(2) € 27 'C{z7'} < $(¢) extends analytically to C and
3C, 8 > 0 such that |$(¢)| < C el for all ¢ € C. (1.10)

Definition 21. For a formal power series ¢ = Y ¢,27F € C[[z7]] define order of ¢ by
ord (¢) =min{p|c, #0}, if $#0, and ord(0) = oo.
Define a distance between formal power series 3,1 € C[[z"']] by
d(p, ) = 27 ord@=9), (1.11)

The topology on C[[z7!]] generated by the distance (1.11) is called topology of the formal

convergence, or Krull topology.

Remark 22. Observe that a sequence (@p)rey C C[[z7!]] is convergent in the Krull
topology if and only if for each p there exists [ such that the coefficients at 2P of ¢y are

equal for all & > [.
Theorem 23. The distance (1.11) makes C[[27']] a complete ultrametric space.

Let Ty : z — z+ s be the translation by s € C. For a formal power series ¢ € C[[z7]]

we define ¢ o T as a formally convergent series

Plzts)=> %a’wz),

k>0

in which each of the terms is a formal power series. Here is another important property

of the Borel transform:

% (poTy) = e_Cségb for any ® € z 'C[[z!]]. (1.12)

Laplace transform and Borel-Laplace summation
Recall the definition of the Laplace transform. Denote by V' (6, ¢€) a region of the form
V(f,e) ={C€C:|¢—re”| <e for some 7> 0} (1.13)

where 6 € R, e > 0.
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Definition 24. Let ¢ be a germ at the origin which admits an analytic continuation
into a strip V(6,€). Assume that ¢ has an exponential type in the strip V (6, €), that is

for some constants C', 3 > 0

PO < CePlél for all ¢ € V(8,e). (1.14)

Then the Laplace transform of ¢ in the direction 6 is the function

2]6@(2) = /Oe ooe_zcho(C) d¢, Re(ze) > 3. (1.15)

Observe that monomials | k() = %, k € N, admit Laplace transform in any direc-

tion 8. One has
N A

LORB(F) = (ﬁe_?k)(z) =

Thus, Borel transform can be viewed as a formal inverse of the Laplace transform.
Laplace transform sends a convolution of two germs to the product of the Laplace

transforms of these germs.

Lemma 25. Let $1, 0y be two germs at the origin which admit analytic continuation in
a region of the form V (6, €) and satisfy (1.14). Then Oy %P, is a germ at the origin which

admits an analytic continuation in V (0, €) and for each ' > B one has

‘((,Apl * gA02> (C)’ <Pl for all ¢ €V (0,¢),

where C" = C'(F') > 0 is some constant. Moreover,

A

L0 (1% 2) (2) = L201(2)L %0 2). (1.16)
Let I = (a,b) CR,0 <b—a < 7. Let » be a germ at the origin. Assume that
1) & extends analytically to a sector V i={( =re? € C; r >0, § €I},

2) there exist continuous functions C, 3: I — RT such that |@(re)| < C() O for
all r >0 and 0 € I.

Any f as above is called an estimated type function for ¢. Using Cauchy Theorem one

A A
can show that the Laplace transforms £ and £%@, 6,6, € I, agree on the intersection

of their domains. This allows us to introduce the function

2193(2) = ﬁ(’?p(z), 2z € XN(I,8) = {z: Re(ze"”) > B(6) for some 6 € I}.
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Figure 1.2: The sector V' and the set ¥(1, 5).

Definition 26. Let ¢ € z~'C[[z']]; and ¢ = Bp. Let I = (a,b),0 <b—a < 7. We will
say that @ is 1-summable in the arc of directions I if there exists continuous functions

C,p: I — R* such that conditions 1) and 2) above hold. We will call the function L o
the Borel-Laplace sum of ¢.

Gathering together properties of Borel and Laplace transforms we obtain that the
Borel-Laplace summation commutes with the operations of differentiation and multipli-

cation.

Proposition 27. Let ¢ and 15 be 1-summable in the arc of directions I with a common
estimated type function 3. Then 0@ and @1; are 1-summable in the arc of directions I
with estimated type function B = [+ ¢ for any positive constant €. Moreover,

LI (0p) = 0L™ 3, LN ($# ) = (L79) (L))
In the next proposition we assume that b(z) € z7!C{z7'}. By (1.10) the function b
is entire and there exists Cy, By > 0 such that

1b(¢)| < Cye®ll for all ¢ € C. (1.17)

Proposition 28. Let p(z) be 1-summable in an arc of directions I and let 51 be an
estimated type function for ¢. Let s € C,b(z) € 27'C{z7"'} and Cy, By > 0 are as in
(1.17). Then ¢oTy and po(Id+b) are 1-summable in the arc of directions I with estimated
type functions B2(0) = £1(0) + |s| and B3(0) = max{S1(0) + Co, fo + 1} correspondingly.

Moreover,

LIB(GoT,) = (L'B3) oT., L'B(%o(1d+b)) = (L'Bp) o (1d+D).
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Proof. The formal series ¢ o Ty can be defined as a formally convergent series

poT(s) =3 S0 g(e)

r=0

Let = @gﬁ. One has:

1%(95 o TS) = Z (_SOTQAO =e %0,

= 7l
which implies 1—summability of ¢ o Ty in the arc of directions I with estimated type
function S, := B + |s|. Further, applying Laplace transform to e=*® for z € %(I, )
and 6 € I such that Re(ze?) > 3,(#) we obtain

(L7 (e7¢)) () = /0 e e H(()d¢ = /O e~ EHIB(()AC = (L10) (2 + 5).

Set ¥ = ¢(z + b(2)). Then

22 =3 1 ).

7!
Thus, Borel transform of the formal series ¥ can be written as a formally convergent sum

X = Z)ACT, where X, = ((—C)”?p) * lA)r and
>0 . . (1.18)
8,n = —'@(b’") = —'8 s -+ % ) (1 times).
r!

T

Let us show by induction that for each r € N

A Cr r—1
()] < %em (1.19)

for all ¢ € C. The base of induction » = 1 is true by (1.17). Assume that (1.19) is true

for a given r. Then one has

A

q
br1(C) = :llgr(C) * 8(0 = /8r(< — Cl)lA)(Cl)dcl, therefore
0

[q

b (O < 1 [ G gt gpeiici-a s = S0 i
‘ T+1 C | = or4l 7‘!(7‘—1)!8 € o€ 8= (r‘i‘ 1)|,r,|e ’
0

which proves the inductive step. For our purposes the following estimate rougher than

(1.19) will be enough:

? €O (got1)cl
br(g)’ < We 0
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Let ¢ € C such that 6 := arg ¢ € I. For simplicity we will assume that Co+ 1 (6) # o+ 1

(the opposite case can be treated similarly). Then one has

I¢]

Z/ 0 o (Bo+1)(ICl=5) 1 g —

r=0 r>0

9)6<m<9)+co)|<| (ot Id]
Bi(0)+Co—Po—1

C(6) / B O)+Co)s (oK) g5 — ¢

[e=]

This proves that y(z) = @(z + b(z)) is 1—summable in the arc of directions I with
estimated type function f3(0) = max{51(0) + Co, Sy + 1}. Moreover, by Lebesgue’s

dominated convergence theorem and Proposition 27, for each z € ¥(I, 83) one has

() =3 @) = X T ) e),

r!
r=>0 r>0

By Taylor formula, the latter series converges to (21 ©)(z + b(z)), which finishes the
proof. O]

1.1.4 Asymptotic expansions

In this section we recall the notion of an asymptotic expansion (see e.g. [28]).
Definition 29. Let V' be a sector with the vertex at infinity of the form

V={2€C:|z| >R, argz € (a,b)}, (1.20)

n

where R > 0 and b — a < 27. Let ¢ be an analytic function in V and ¢ = > _jan2~
be a formal series at infinity. We will say that ¢ is an asymptotic expansion for ¢ if for
every subsector

W={z€C:|z| =2 Ry, argz € [ay,b1]} CV

and each n € N there exists M = M(n) > 0 such that

n—1

12" f(2) =) a;z77| <M

J=0

for each z € W. The asymptotic expansion ¢ is called Gevrey-1 if one can take M (n) =
(n)'/k A" where A > 0 does not depend on n.
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Definition 29 implies the following:

Proposition 30. Let ¢ be an analytic function on a sector V' of the form (1.20). If ¢,

and @y are asymptotic expansions for p, then @1 = @s.

In this thesis we deal only with Gevrey-1 asymptotic expansions. The following result is
classical (see e.g. [12], [22] and [33]).

Proposition 31. Let ¢ € z7'C[[z7!]]; be 1-summable in an arc of directions I = (a,b).

Denote by p = ﬁIgAO the Borel-Laplace sum of ¢. Then for each € > 0 there exists R > 0

such that @ is a Gevrey-1 asymptotic expansion of @ in the sector
V={2€C:|z| >R, argz € (=b—7/2+¢€,—a+7/2—¢€)}. (1.21)
For the convenience of the reader we present here a proof of Proposition 31.

Proof. For simplicity assume that ¢ < min{1, (b—a)/2}. Let ¢ be the Borel transform of
. The definition of 1-summability implies that there exist constants C, 3 > 0 such that

12(0)] < CePl forall (€S :={re?:0c (a+e/d,b—e/4),r > 0}. (1.22)
Let ¢ = re', where 6 € (a + 3¢/4,b — 3¢/4),7 > 0. Then D,,/4(¢) C S. In particular,
16(¢1)| < CePITDI for all ¢ € Depya(C).

By the Cauchy estimates, for all 7 € N we obtain:
jlef'lel
¢

169D(0)| < CM? , where M =4/e, 8/ = (1+¢/4)8. (1.23)

Fix § > 0. Set
R=(08'"+0)/sin(e/4).

Let V be as in (1.21). Fix z € V. There exists 0 € (a + 3¢/4,b — 3¢/4) such that
|arg(e?2)| < m/2 — €/4. Then

Re(e2) > Re(e!™2=/Y|2|) > sin(e/4)R > ' + 6.

By the definition of the Borel-Laplace sum, one has:

o(2) = L9 (2) = / e
0
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Let p(z) = >, a;z77. Then

The inequality (1.23) implies that the integrals foei%o e (¢)d¢ converges for all j €

Z. . Moreover, integrating by parts n — 1 times, we obtain:

ei9 20

o) =z 42! / ()¢ = .. —Zajzwz" / e G ().
0

i(-)
It remains to bound the integral foe e oM (¢)d¢. Since @ is a germ at the origin,
there exists K, s > 0, such that

‘@(J’)(C” < GIKY
for all j € N and ¢ € D,(0). Combining this inequality with (1.23) we obtain

o0

ewoo s
‘ / eZ%(")(g)dg‘ < nlK" / e~ B HtAL + C M n)
0

S

sK™n! + %(%)nn' < C1A™n!,

where Cy = s + C/§, A =max{K, M/s}. This finishes the proof. O

1.1.5 Two examples

In this paragraph on two examples we explain how Borel-Laplace summation can be used

to solve analytically and to study the solutions of difference and differential equations.

Example 1: FEuler’s equation.

Consider the Euler’s differential equation
tF'(t) + F(t) =t. (1.24)

For us it is convenient to use a change coordinate ¢ = 1/z. In coordinate z the Euler’s

equation has the following form:

f(z)=0f(z) =1/z. (1.25)
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It is easy to check that this equation has a solution f (z) in terms of formal power series
in 271
flz) =) (=1)"nlz
n=0
This series is divergent everywhere, however it satisfies the Gevrey-1 condition (see (1.7)).
Thus, ]Af = P f is an analytic germ in a neighborhood of the origin. In fact, we can

compute it explicitly:

n=0
By Definition 26, for any arc of direction I C (—m,7) and any § > 0 the formal series
f is l-summable in the arc of directions I with an estimated type function 8. The
corresponding Borel-Laplace sum is

e oo

A LA —Cz .
LTf(2) = / §+ —dC, 0 € I,Re(e"z) > 0.

0

Proposition 27 implies that the map L jAf(z) satisfies the equation (1.25) on the domain

of its definition. In particular, for # = 0 we obtain the classical real analytic solution of

the Euler’s equation on R™:

—z/t

F(t):ﬁOffu/t):/e de, t>0.

z+1
0

Observe that } has a unique singularity at —1. Let z € C, Rez < 0, 64 € (7/2, 1) and
0y € (—m,7/2) such that Re(e'222) > 0. Then Laplace transforms of JA‘(Q in directions
61 and 6, evaluated at z give different results. Namely, using Cauchy formula, we obtain:

A

LGUA‘(Z) - A‘92}(2) = 2mie”.
Denote by C the Riemann surface of the logarithm:
(;:{C:reie|r>0, 6 € R}.

The function 20}(7“610‘), a € (—m/2,7/2),r > 0, can be extended to an analytic function
f on C such that

e for each arc of directions I = (a,b) C (—m, ) the function L ]A” coincides with the

restriction of f onto {re®:r >0,a € (=b—m/2,—a+7/2)};
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e for each r > 0 and o € R one has:

f(re @2y — f(re®) = 27ie®, where z = re'®.
Example 2: Abel’s equation.
Consider the difference equation
e(z+1) — p(2) = a(z), (1.26)

where a(z) is a given function. This equation is called Abel’s equation. We will assume
that a(z) € 2z72C{z7!} is an analytic germ at infinity. First, consider (1.26) as an

equation in formal series in z7!. Let
6 e'CllY), =29, i=%a

To find a formal (and then analytic) solution of equation (1.26) we transform it to an
equation in terms of ¢. By (1.12) we obtain that ¢ is a formal solution of (1.26) if and
only if { satisfies to

(€™ = 1P(¢) = al¢)-

By (1.10), a(¢) is entire and there exist constants Cy, 5y > 0 such that
la(¢)| < Coe®l for all ¢ € C.
Observe that a(0) = 0. It follows that the function
P(C) =a(¢)/(e=¢ = 1)

is analytic in C \ 27iZ*, where Z* = Z \ {0}, and there exists a continuous function
C:(—m/2,7/2)U(m/2,37/2) — R, such that

‘g?)(reie)‘ < CO)P" forall > 0,0 € (—1/2,7/2) U (1/2,31/2).

Define ¢ = @_1(@7) We obtain that ¢ is 1-summable in the arcs of directions IT =
(—m/2,7/2) and I~ = (7/2,37/2). Consider the Borel-Laplace sums of @:

et =L1"0, o= =L (.

Using Proposition 28, we obtain that ¢* are solutions of the equation (1.26). The

functions p* are defined and analytic on the domains

N(I%, By) = {z € C: Re(2€) > fy, for some 6 € I*}.
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These domains intersect by two halfplanes:
S(IT, Bo)NS(I, By) = WPUW ™ W™ ={z:Imz> fo}, W ={z:ITmz < —f}.

Though ¢ and ¢~ are Borel-Laplace sums of the same formal power series, generally,
their values on the intersection of their domains are different. Let 2z € WP, Let 6, €
(0,7/2) and 6y € (7/2,7) such that Re(¢'72z) > f;. Then, using Residue Formula, we

obtain

eiGloo 6i9200
*CZ/\ 7{2/\
LN e *a(¢) .. e*a(C) ..
- = [ - [ S -
0 0
271" Res (m 27rl<:i) = 271} d(2mki)e *™E (1.27)
e¢—1’
keN keN
Similarly, for z € W'ov
0t (2) — ¢ (2) = 2mi g a(—2mki)e* ki, (1.28)

keN

Thus, the difference p*(2) — ¢~ (2) is a periodic function of period 1 with Fourier coeffi-
cients { — 2#1&(—27rki)}k€N on W" and {27ri&(27rki)}k€N on W', Later we will study
an equation more general than (1.26) and see more complicated phenomenons than those

which occur for the solutions of the Euler’s and the Abel’s equations.

1.1.6 Resurgent functions

In the example of the Abel’s equation the Borel transform of the formal solution extends
to an analytic function on C\ 27iZ*. The formal iterator @, satisfies a more complicated
equation. As we will prove later, the Borel transform (, = é’@* is convergent near the
origin and admits analytic continuation along each path avoiding integer multiples of 27i
(see Theorems 3 and 4). However, in general, analytic continuations of ¢, along paths
which are not homotopic in C \ 27iZ give different results. It is convenient to state this

property of analytic continuation on the appropriate Riemann surface.

Definition 32. Consider the set &, of all (continuous) paths : [0,1] — C such that
either ([0, 1]) = {0} or ¥(0) = 0 and v((0,1]) C C\ 27iZ. We denote by %, the set of
all equivalence classes of & for the relation of homotopy with fixed endpoints. The map
v € Py (1) € C\ 2miZ* (here Z* = 7 \ {0}) passes to the quotient and defines the
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“projection” my: %y — C\ 2miZ*. We equip %, with the unique structure of Riemann

surface which turns 7y into a local biholomorphism.

Let v € #,. Then there exists a unique continuous path 7' C %, such that 7/(0) = 0
and mo(y/(t)) = 7(t) for each t € [0,1]. The equivalence class of v defines the point
v (1) € Zo.

Observe that the universal cover %, of C\ 27iZ with base point at 1 can be given an

analogous definition:

Definition 33. Consider the space &) of all paths v: [0,1] — C such that v(0) = 1 and
7((0,1]) € C\ 2miZ. We denote by % the set of all equivalence classes of 2 for the
relation of homotopy with fixed endpoints. The map v € & — (1) € C\ 27iZ passes
to the quotient and defines the “projection” m: %, — C\ 2wiZ. We equip #; with the

unique structure of Riemann surface which turns 7; into a local biholomorphism.

Both %, and %#; are connected and simply connected Riemann surfaces. There is a
unique point in %, which projects onto 0 (the homotopy class of the trivial path v(¢) = 0).
This point is called the origin of %, and is denoted by 0. We will call a sheet of %,
(or %) any connected component of the preimages of the half-planes {Re( > 0} and
{Re( < 0} by m (respectively, ).

A holomorphic function of %y, ¢ € O(%,), naturally identifies itself with a convergent
germ at the origin of C which admits analytic continuation along every path of & (see
[15], [30]); we shall use the same symbol ¢ for the function and its germ at 0. Using the
projection my we pull-back the 1-form d( to the space %,. This allows us to integrate

holomorphic functions on %, over continuous paths in %,.

Lemma 34. Let { be an entire function andz/Z\) € O(%,). Then X = @*121 € O(%,). Let
¢ € Xy and v C Ry such that v(0) = 0,7(1) = (. Then one has

N / B(mol€) — mlC)) () dC. (1.29)

Proof. The function h((, (1) = ¢(mo(C) — WO(Cl))@AD(Cl) is a holomorphic function of two
variables on Zy x %Z,. Therefore, the integral in (1.29) does not depend on the choice of
~ and defines an analytic function on %,. By definition of the convolution, this integral

A
gives an analytic continuation of ( % ). O

In fact, for any two functions )Ac,zAﬂ € O(%,) their convolution X *@AD lies in (%), but

the proof is more involved. For details we refer the reader to [26] and [32].
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1.2 Asymptotic expansion of Fatou coordinates

In this section we introduce the formal iterators of simple parabolic germs and prove

their properties formulated in Theorems 3-6.

1.2.1 The formal iterators of a simple parabolic germ

Let
F(w) = w+ w* + aw® + O(w*) € C{w}.

be a simple parabolic germ at the origin. For us it is convenient to work at infinity, in

the coordinate z = —1/w. Introduce a germ at infinity

f(z) = “Fi) =2+ 1+a(z), where (1.30)
a(z)=—pz '+ 0" ez 'C{z"}, p=a—1.

Following Ecalle [16], we call p the résidu itératif' | or resiter, of the germ f. Observe

that p is a formal conjugacy invariant for the germ f (see [25]).

Lemma 35. Two germs f,qg at infinity of the form (1.30) with the resiters p; and p,

correspondingly are conjugate by a formal power series:
g=xofox', where x(2) =z+ Y arz ",
k=1
if and only if py = py.
Lemma 35 implies that for p # 0 the germ f(z) and the unit translation
T(z)=z+1 (1.31)

are not conjugated by a formal power series. However, a conjugacy between f and T can
be found in a larger class of formal transformations. Namely, we will prove the following
(see e.g. [20]):

Proposition 36. There erists a unique formal series without constant term, ¢.(z) €

27YC[[z71]] such that the formal transformation

v.(2) =z + plog z + P.(2)

!Beware that it is —p that Buff and Hubbard call résidu itératif in their manuscript [11].
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s a solution of the conjugacy equation
vof=Touw. (1.32)

Every formal solution

v(z) =z+plogz + Zakz’k
k>0

of (1.32) is of the form v = v, + const.

Here, by log z we mean a symbol whose composition with f is defined by
log f(z) =1logz +log (1+ 27"+ 27"a(z)),

where the last summand is defined by substitution of the formal series 27! + z7la(z)
inside the formal series log(1+w) = w—w?/2+---. Thus, the conjugacy equation (1.32)

for a formal transformation v(z) = z + plog z + ¢(z) is equivalent to
o(z+1+a(2)) — @(z) = h(2), (1.33)
where the right-hand side is
hz) = —plog (14 27"+ 27"a(2)) —a(z) € 2 *C{z""}

and, in the left-hand side of (1.33), the term ¢o(Id 4+1+a) can be defined as the formally
convergent series of formal series Y £ (9"3(2))(1 + a(z))".

The formal transformations v, + const were introduced by Ecalle [16] under the name
iterators, they are the first example in his theory of resurgent functions [15, 17]. Observe

that the iterator v, is formally invertible with the inverse of the form

u(z) =z + Z Cpmz (27 og 2)™.

n,m=0

The formal series u, were studied in [15, 17] (see also [30]).

The first important result we prove is the following:

Theorem 37. The formal series ¢.(z) of Proposition 36 is 1-summable in the arcs of

directions I = (=Z2,%) and I~ = (5,2F).

Let 8 : ITUI~ — R, be an estimated type function for ¢,. As a consequence of

Theorem 37, we can define holomorphic functions

AT A
+_ rf .

! o, =L ¢,
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in E(I*,B) and E(I*,B). Denote by

# le

1 2

Log" z =

the principal branch of the logarithm defined in C \ R™, and by Log™ its analytic con-

tinuation to C \ R obtained by turning anticlockwise around the origin, i.e.

# le

Log™ z =im + )
1 ~1

Introduce sectorial iterators by the formulas:

vi(z) =z4+pLlogt 2+ ¢f(2), =zeX(I",p),

(1.34)
v, (2) = z+ pLlog™ z+ ¢, (2), zeX(I,B).

Proposition 38. The sectorial iterators v} (z) and v (z) are analytic solutions of equa-

tion (1.32) in the regions

S(IH8) N (ST, B)) and S(I,8)N (S, 8))
correspondingly.
As another Corollary of Theorem 37, using Proposition 31, we obtain the following:

Theorem 39. For each € > 0 there exists R > 0 such that the formal series ¢.(z) is a

Gevrey-1 asymptotic expansion for o and ¢~ in the sectors
Vi={z:|z| > Rargz€ (mr—e,m+¢€)} and V- ={z:|z| > R,argz € (¢,2r — €)}
correspondingly.

+

Observe that the functions v* are Fatou coordinates for the germ f with a parabolic

fixed point at infinity. Returning to the initial coordinate w = —1/z, we obtain:

Corollary 40. The maps ®,(w) = v} (—w™?) and ®,(w) = v, (—w™') are an attracting

and a repelling Fatou coordinates for F correspondingly.
Also, in this section we prove Theorem 4. Observe that for every sector of the form
V={C+r :r>0,0¢cabl} CR,,

there exists a sheet 7 of %, such that V' \ .7 is bounded. Therefore, Theorem 4 is

equivalent to the following statement:
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Theorem 41. The Borel image . of the formal series $.(z) belongs to O(%,). More-
over, for each v € Py such that v(1) = 27i(k + ) with k € Z, there exist continuous
functions C,3: ITUI~ — R such that

| (cont,, &,) (v(1) + re)| < C(6) 0"
forallr >0 and @ € ITUI" .

We will use this result in subsequent sections to present the construction of Ecalle’s

analytic invariants.

1.2.2 Existence and uniqueness of the formal iterator

In this subsection we prove Proposition 36. As before, let T'(z) = z 4+ 1 be the unit

translation. Define
b(z) =a(z—1) € z'C{z'}, m(z) = —h(z — 1), (1.35)

so that equation (1.33) for a formal series is equivalent to

@oT ™' —po(Id+b) = m. (1.36)
Observe that _yy
m(z) = plog (1—;5—2_52)) +b(2) € 272°C{z7"}. (1.37)

Since b(z) is convergent near infinity, by (1.10) there exists Cp, 5y > 0 such that b= b
satisfies
]8@)‘ < CpePoldl, (1.38)

Introduce operators D and B on the space C[[z!]] by

(DP)(2) =@(z —1) = &(2),  (B@)(2) = ¢(z+b(2)) — &(2), (1.39)

in other words

D=y Yro, B=> Lo, (1.40)

r=1 r=1

4

4 Is the operator of differentiation of formal series. Then we can rewrite the

where 0 =
equation (1.36) as

(D — B)g =m. (1.41)
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Let ¢ be a non-constant formal power series, 1 < ordp = p < co. Then
ord(0"9) = p+r, hence ord(Dg)=p+ 1.
On the other hand, ord(B¢) > p + 2. Thus,
ord(D—B)p =p+ 1 < 0.
It follows that the kernel of D — B consists of constant formal power series:
ker(D — B) = C.

Now, to prove Proposition 36, it remains to find a solution ¢ € 27'C[[z7!]] of the

equation (1.41).

Definition 42. Define the operators £ CC[[(]] = C[[¢]] and E: 272C|[[z7Y]] — z7C[[z7!]]
by the formulas

(E$)(¢) = () E=(#8)"0FEoB e (1.42)
Observe that for each ¢ € z~2C[[=~!]]; one has
b =By e (C{C}, hence BPe C{¢} and Ep € 2~ Cllz 7Y
Further, #(93)(¢) = —($(¢) and B(DF)(C) = (¢ — 1)&(C), therefore
DoE=1Id onz'C[[z7"]. (1.43)

In fact, for ¢ € z72C[[z7!]], E¢ is the only preimage of ¢ in z7'C[[z7!]] for the opera-
tor D. Observe that ord(E¢) = ord ¢ — 1.
Now equation (1.41) with the restriction ¢ € z7'C[[z!]] is equivalent to

¢ = Em + EBG.

The last equation is a fixed-point equation which has a unique solution, given by the

formally convergent series of formal series

Pe=Y Gurs Py =(EB) Em (1.44)

r>0

(ord(B¢) > ord ¢+ 2, thus ord @, , > r+1). This completes the proof of Proposition 36.
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Remark 43. Using the representation

1
B=> By, By:= Ebka’f (1.45)
E>1
we can define formal series
¢* = EBy, --- EBy, Em (1.46)

for any word k = ky - - - k, with letters kq,..., k. € N and with any length » > 0 (with
the convention ¢? = Em for the empty word, when r = 0). Denote by .4 the set of all
such words, including the empty word. Then we obtain a representation
Bo= > @
ke
The family ($*) is an example of mould with values in C[[z7!]], i.e. a map defined on

the set of all words on a given alphabet (see [17] and [31]).

1.2.3 Convergence of {, near the origin

Denote by B the Borel counterpart of the operator B:

é = ﬁé’o Bo (%’)_1 = Zék, ékDA( = ?A)k * (ék)A(),
) k1 . (1.47)
where by = —'%’(bk) = H@ S (k times).
7! !

Lemma 44. Let X be an analytic function in the disk D,(0) = {z € C : |z| < r}, where
r < 1. Assume that for some Cy > 0 and a function X : [0,1] — R, one has

b(Q)| < Co and |R(C)| < X(C]) for each ¢ € D, (0).

ANAN

Thenzz = EBX defines a holomorphic function on D,(0). Moreover,

A e —1
H(Q)| < S X)(¢]) for each ¢ € D,(0).
Proof. Using (1.42), we obtain the following:
A 1 < A A
w@y—%;é_llzmc—gx—gﬁmgma. (1.48)

Using induction, one can show that the functions ZA)k (see (1.47)) satisfy the following

inequality:
A

bk(o‘ g CE|¢|F!

PRIV (1.49)
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Observe that for each k € N, assuming that || < 1, one has:

¢ _ Kl 1 1

< = .
e —1) SJeC —1] SIg el —1] T Tt

It follows that for ¢ € D,.(0)

¢, X
g ) - G0 aG <

<l k(1] — )k 5
[ s < s 006D,

Taking the sum over k£ > 1 we obtain the inequality of Lemma 44. O]
Corollary 45. ¢, € 27 'C[[z]];.
Proof. The germs 9?3*,,» satisfy the following recurrent relations:

A AN A A AA

Cupy1 = EBQsr, Pso = Em.

Choose a constant C such that

8(@‘ < Co, ()] < Col¢| on the it disk D. Using

Lemma 44, by induction we obtain:

Mr—i—l
r!

N

b.(0)] <

I,

for each ¢ € D, where M = io_l This implies that the series ) g?)” converges uniformly

e~ 1-
r=0

on D. Tt follows that ¢, is analytic on . Therefore, p, € 2~ 'C[[z~]],. O

1.2.4 Auxiliary formal series 5},

In the sequel, we will use the formal series ¢, , to prove 1-summability of ¢, in the arc of

T T

directions (—7%, ). In this subsection we construct another variant of the decomposition

T 3_7r)

(1.44) which we will use to prove summability of ¢, in the arc of directions (7, 5

Recall that we have introduced b = a o T~!, so that the holomorphic germ whose
dynamics we study is

f=T+a= (Id+b)oT.

Consider now the local inverse of the germ f. One has

ft=d+bY)oT ™,



where b7 (2) = f1oT —1d € 27'CJ[[27!]], so that
To(Id+b") = (Id+b)'oT.
Composing both sides of equation

poT ' —po(Id+b) = m.
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(1.50)

by the expression (1.50), we see that @, is the unique solution in 2z 'C[[z7!]] of the

equation

poT —po(Id+bt) =m*

(1.51)

where m™ = —moT o (Id+b") = ho (Id+b") € 272C{27'}. The equation (1.51) can be

written in a form similar to (1.41). Namely, introduce operators

Dt =e? —Id=-DoT: ¢ poT — ¢ and

1 - - -
BT = Z ﬁ(zﬁ)’“aﬁ @ @o(Id+b") — .

r>1

We get:
(DT — BY)p. =m™.

Similarly to Definition 42 we introduce the operators
E*: (Cli¢]) = C¢)) and E*: z7Cll7)) = =~ 'Cfl="]
by the formulas

), EY=(#B)"'oF" o B2

and, analogously to (1.44), we define
951_,7’ — (E+B+)TE+m+.
Then we obtain a representation for ¢, different from (1.44):

r>0

(1.52)

(1.53)

(1.54)
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1.2.5 Summability of ¢, in the main sheet

In this section we prove Theorem 37. The proof is based on the following technical

statement.

Lemma 46. Let X be 1-summable in the arc of directions (—/2,7/2). Set X = QAB)Z.
Assume that for some Cy, By > 0, a continuous function X : R, — R, and continuous

functions Cy, By : (—7/2,7/2) — R, one has
(O] < Coe™ for each ¢ € €, [X(Q)] < C1(B)™PIX(|c]), if Re¢ >0,

where 0 = arg(¢). Then 1) = EBY is 1-summable in the arc of directions (—m/2,7/2).
Moreover, if Re( > 0, then
CoC1(6)

cos

1(0)] < 7 Oll(1 % X)([¢)),

where () = max {fy + 22, 51(0) } and § = arg (.

Proof. As we have shown before (see (1.19)), the functions ng = %g*k under the conditions
of the lemma satisfy the following inequality:
Chlcpten

El(k —1)!
for all ¢ € C. Observe that for each k € N, assuming that § = arg( € (—n/2,7/2), one
has

b(©)| < (1.55)

|e< - 1‘ > ‘e“’selq 1} 1 COSH|C|)

In particular, we obtain that

<
e¢ —1| ~ cosbk
for each ¢; € [0,¢]. Therefore, one has:

h k(¢ — s)ktefolll=s)
0 B1(6)s
< CI(H)/O (= Dlcosd e X(s)ds.

& ‘ k!

1
e¢ —1

C/\ A
/0 be(C — G (=G )FR(G) Ay

Thus, we obtain

R I<] —
2/}( ‘ C()Cl Z/C Ck ! |g| S) e Bo(I¢]—s)+61(0 8X< )d

cos 6 k —1)! cos 6F—1

0001(9) /KI (5 +& )(\q_ Y+51(6) 0001(9) ,
07 Cos s 1 S x d - N7 B (6)‘4-' 1 .
cos® J, ’ (s) cos 0 € (1% X)([¢])

In particular, this implies 1-summability of ¢ in the arc of directions (—m/2,7/2). O
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Now we are ready to prove Theorem 37:
The formal series ¢, are 1-summable in the arcs of directions (—m/2,7/2) and (7/2,37/2).
Proof. Since b € z7'C{z7'} and m € 272C{z"'}, by (1.10), there exist Cp, 5y > 0 such
that

A 5 Bol¢|
|b(C)’ < Cpe®lel for each ¢ € C, m(c) < Coe , if Re( >0, (1.56)
e —1 cos 6
where § = arg (. Recall that
A 7?1 A A A A
QD*J)(C) = € E?217 Pxr+1 = l?f?gD*J. for r > 0.

Using Lemma 46, by induction we obtain that for all ¢ with Re{ > 0 one has:

A Gt B®)\C]
r < " ,
br(O] € b iclre

where ('(0) = By + <. Tt follows that the series > @,,(¢) converges and gives analytic

cos @’
r=0

continuation of {, along the path [0, ¢]. Moreover, we obtain that

A C ! Co
%(C)‘ < cosoee(ﬁ (0)+:2) Il (1.57)

This shows that ¢, is 1-summable in the arc of directions (—m/2,7/2).
To prove l-summability in the arc of directions (7/2,37/2) we use representation
(1.54) for ¢,. Let ¢, = Y (e1f)) ,SZ — 3 (4 (b™)¥). Then we obtain

PO =) ! C?ﬁ(c — (=) ()G, $h(Q) = (<)

e et -1 F ' 1 Burtb) 1 a0 e ¢ —1
Using these formulas, we obtain an analog of the inequality (1.57) for Re{ < 0. O
1.2.6 Sectorial iterators
In this section we prove Proposition 38. Define I* = (=%,%),1~ = (5, 37”) By Theo-

rem 37, @, is 1-summable in the arcs of directions It and I=. Let §: IT U~ — R, be

an estimated type function for ¢,. Define holomorphic functions
pF=L"0., or =4L"0,
in $(IT,8) and (17, 8). Set

B.(6) = max(B1(6) + Co, Bo, B1(0) + 1).
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Then, by Proposition 28, the formal series
peoT™H — i o (Id+D)

is 1-summable and has Borel-Laplace sums holomorphic in Z(I a 5*) and E(I -, ﬁ*)

Moreover, since ¢, is a formal solution of (1.36), by Proposition 28 it follows that
e oT ! — pto(Id+b) = m.

Define
ot = T(z(ﬁ, @)), N o= T(E(I‘,B*)>.
Since f = (Id+b) o T and h = —m o T, we obtain the following

Corollary 47. For every z € ¥* one has

P (f(2) — ¢ (2) = h(z).

Now we are ready to prove Proposition 38:
The sectorial iterators v} (z) and v, (z) are analytic solutions of equation (1.2) in the
TegILons
S(IHB) N TSI, B)) and S(I7,8) N fHE(UI,8))

correspondingly.

Proof. There exists R > 0 such that 1 + |a(2)| < |z| if |z] > R. Let z € ¥~ such that
Rez < 0 and |z| > R. Then

Re(f(2)/2) = Re (1 + 24 > o,
Therefore, f(z) € C —R* and
Log™ f(z) = Log™ z + Log* (f(2)/2).
Since h(z) is defined as the convergent series at the origin
h(z) = —pLog" (f(2)/2) — a(2),

using Corollary 47, we obtain that

v, o f(2) = f(z) + pLog™ f(2) + . (f(2))
z+1—h(z)+pLog z+ ¢, (f(2) =v, (2) + 1.
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Figure 1.3: An example of a path ~.

Thus,
vy of(z)=v.(2)+1

for all z € ¥~ such that Rez < 0 and |z| > R. By analyticity, we obtain that this
formula holds at each point where both sides are defined. In particular, it holds on the

domain
Z(I*,ﬁ) N fﬁl(E(I*,B)).

For v} (z) the proof is similar. O

1.2.7 Resurgence of ¢, and summability in other sheets

To prove Theorem 41 we need to introduce some auxiliary objects in the space %,. For

m > 0 > 0 denote by %5 the union of all connected components of the set
{C S %0 : dist(ﬂ'o(C), 27T2Z> < 5}

except the connected component which contains the origin. Let ¢ € %, \ %;. Denote by
Y¢ = Yc,s the shortest path in %, \ % which connects the origin with ¢. We will assume
that -, is parameterized naturally. In particular, if [ is the length of the path ~,, then

Y (le) = ¢.

Clearly, for any ¢; = 7v¢(s),s € (0,l], the path 7, coincides with the restriction of .
onto [0, s]. Notice that:

IC] <l and [ —vc(s)] < e —s

for each ( € % \ % and 0 < s < [,

A A A

Lemma 48. Let X € O(%,) and 12 = EBX. Then

A

V€ O(%).
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Let R>1>09§ >0 and C = max{!g(g )|+ I¢] < R}. Assume that X : [0, R] — Ry is
such that

A

IX(O)| < X(Ie) for all ( € %o\ U with I < R.

Then there ezists a constant M = M(C, R, ) such that

Q)] < M(1 % X)(1e) (1.58)
for all ¢ € %o\ U with lc < R.
Proof. Formally,
g ) (- R a6 (1.59)
For each k£ € N the formula
i/ (-GG (1.60)

defines an element of 0(%,). For each ¢ with |(| < R one has

A

CH gl
K6 ‘ NN

Let ¢ € % \ %s such that [, < R. If  is in the main sheet and |(| < 6, then

b _ K 1t
e —1]  |e$—=1] " 1—e?

Otherwise, d((,2miZ) > 6 and

<
le¢ —1] T 1—ed

It follows that

[e.9]

kz eS 1— 1 /74 IA)k(C — (=) (¢) G| <

- (1.61)
. (Cle) e (1, — g)k—1 O Re(C+DR
Z ]{;l|€CC_ 1/, R Ek _Si)! X(s)ds < leT(l * X)(1e).

The inequality (1.61) implies that the series (1.59) converges uniformly on compact sub-
sets of #,. Thus, @?} € X. O
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Figure 1.4: Illustration to Definition 49: the set ,,5,”:/;2.

Definition 49. Let n € N and o € (0,7/2). Denote by 5, the set of all points
¢ € %o \ %s such that the following is true

1) |Im¢| < tana|Re(| + (2n + 1),
2) the projection of the path 7, on C intersects the imaginary line at most n times,
3) for every a € v, with Re(a) = 0 one has |a| < (2n + 1)7.

Item 2) should be understood in the following way: the number of connected compo-

nents of the set
{G1 €7¢c:Rer =0}

is less or equal to n. Observe that this number is at least 1 for each ¢, since 7.(0) = 0.

Also, notice that for each ¢ € £, one has 7 C £, Set
Lot ={Ce %, :Re¢ > —1}, (1.62)

Lemma 50. For each o € (0,7/2),6 € (0,1),n € N there exists a constant C; =
Ci(a,6,n) > 0 such that for each k € N and ¢ € .i”fgr one has

I
S
Kle — 1] S

Proof. From the definitions of £, and . it follows that there exists a constant M =
M (e, 0,n) > 0 such that

le < MI(| for all ( € 25, (1.63)
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Let ¢ € iﬁxf. First, assume that Re( € [—1,1]. Then
IC] < My=(2n+ 1) +tana + 1.

The set {w € %‘ff : Rew € [—1, 1]} projects to a compact subset of C\ 2miZ*. It follows
that |¢|/]e® — 1] is bounded from above by a constant M; = M;(c,d,n) on this set. Also,

(i
k!

< eMO,

which finishes the proof of Lemma 50 in the case Re ¢ € [—1,1].
Let Re¢ > 1. One can show that arg ( < 6y = arctan((2n + 1)7 + tan«). It follows

that for each k € N
(COS QOKDk
k! '

Using (1.63), we obtain the desired inequality. O

|€C _ 1‘ > ‘600890\C| _ 1| >

Proposition 51. Let X € ﬁ’(.,?i;o’;f) and@ — EBX. Leta € (0,7/2),0 € (0,1),n € N.
Assume that for each ¢ € .,?g‘;f one has

Q| < X 1),

where B > 0 and X : Ry — R, is a continuous function. Then for each € iﬂff one

has
1(0)] < CoCre?™ (1% X)(1,),

where f° = max {5y + CoC1, p1}, Co, Bo are as in Lemma 46 and C; = Cy(«,0,n) is as

in Lemma 50.

Proof. For each ( € gff by (1.55) and Lemma 50 one has

< (C C )k /ZC Meﬁo(lc78)+ﬂ1sx’(s)ds

/ B¢ — C)(=CFR(G) dGy

eC —1

It follows that

A > ke l — S k=1 /
SISy i(aTen / %eﬁ“k—s”m(sws < CoCre®' (1% X) (L)
k=1 ’
for all ¢ € %?‘;f. O

Now, we will obtain Theorem 41 as corollary of Proposition 51. Recall that we set
It = (-3,3),1 = (3,%).

27 2
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Corollary 52. The Borel image ., of the formal series p,(z) belongs to O(%,). For
each v € Py such that v(1) = 2mi(k + 3) with k € Z, there exist upper semi-continuous

functions C,3: ITUI~ — R such that
(1.64)

| (cont, &) (v(1) +re) | < C(9) A,

forallr >0 and @ e ITUI".
Proof. Let o € (0,7/2),0 € (0,1) and n € N. Using Proposition 51, by induction we

obtain that for any ¢ € fgﬁf one has:
N 1 r+1 g Bl
P r(c) < FCO 01 ZCQ )

where Cy = Cy(0), Sy > 0 are such that
< Coell for each ¢ € %o \ %,

m(¢)
1

es —

‘ZA)(C)‘ < Cpe®ldl for each¢ € C,

C, is the constant from Lemma 50 and 3 = By + CoC;. Thus, the series $,(¢) =

> 50 $..r(¢) converges uniformly on compact subsets of the set i”gf. Moreover,
(1.65)

£.(0)| < Cuet 0

for ¢ € .i”(f‘,f.
Now, let v be as in the statement of Corollary 52 and 0 € (—a, «). Let § < mcosa
and n be such that v € Z,. Without loss of generality we may assume that v C .,2”5‘?‘,’;“.

Then for each r > 0 from (1.65) we obtain:

| (cont, ¢.) (v(1) +1e) | < Coel@+CoenUm+n),
where [() is the length of the path . Thus, for each o there exist some numbers

Cy = Cy(a), P = Pa() such that
| (conty @.) (v(1) + re?)| < Cae™”

for all r > 0,0 € (—a,«). It is not hard to see that one can construct two continuous

functions C, 5 : (=5, %) — R, such that for each § € (=7, ) there exists o € (|6}, §) for

which
C(0) > Cy(a), B(O) > Baa).
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Then (1.64) is satisfied for 6 € (=%, 2). The case 6 € (3, %) can be considered similarly,
using the representation

Pu(¢) = ) @1,(Q), where ¢f, = B5],.

1.3 General singularities

In this section we enlarge the framework of resurgent functions. As we will see later, to
obtain Ecalle’s analytic invariants we need to study analytic continuations of {, to the
points near 27iZ. As we have shown in Theorem 41, generally, ¢, has branched singu-
larities at 27ki, k € Z*. This motivates introducing and studying germs with branched
singularity at the origin. We give here a brief account of the formalism of singularities,

referring the reader to [15], [30] for proofs and details.

1.3.1 General singularities, integrable singularities

Let us denote by
@:{(:reielr>0, 0 € R}

the Riemann surface of the logarithm. Observe that C is the universal cover of C \ {0};
it can be given a definition analogous to Definition 33, with 27iZ replaced with {0}. De-
fine ANA to be the space of the germs of functions analytic in a spiralling neighbourhood

of the origin, i.e. a domain of the form
{re? |0 <r < h(8), 0eR}CC

with a continuous h: R — {t € R: ¢ > 0}. We will view the space C{(} of regular germs
at the origin as a subspace of ANA.

Definition 53. Let SING = ANA /C{(}. The elements of this space are called singu-

larities. Denote by sing, the canonical projection:

ANA — SING

sing y

P = ¢ =singy(#(Q)).
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Any representative ¢ of a singularity ¢ is called a major of this singularity. Define the

variation map as follows:

SING — ANA

P = sing, () = $(0) = &(¢) — p(¢e™™).

var:

The germ { = var ¢ is called the minor of the singularity ¢.

Observe that the kernel of var: SING — ANA is isomorphic to the space of entire

functions of % without constant term. The simplest examples of singularities are poles

) 1 n . —1)"n!
0 = sing, <_27riC) , 6 = sing, (—(ngnH) , n

which belong to ker(var), and logarithmic singularities with regular variation, for which

WV

0,

we use the notation

A . 1 A A

"$ = sing, (2—7“@(() log C) : ©(¢) € C{¢}. (1.66)
The last example is a particular case of integrable singularity.

Definition 54. An integrable minor is a germ » € ANA which is uniformly integrable
at the origin in any sector, in the sense that for each 6; < 6, there exists a Lebesgue

integrable function f: (0,7*) — R™ such that

b1 < arg¢ < 0z and [(] < = [2(Q)] < f(ICD,

where r* > 0 is small enough so as to ensure that ¢(¢) be defined. The corresponding
subspace of ANA is denoted by ANA™ . An integrable singularity is a singularity ¢ €
SING which admits a major ¢ such that (p(() — 0 as ¢ — 0 uniformly in any sector
6, < arg( < 6, and var¢p € ANA™ . The corresponding subspace of SING is denoted
by SING™®,

For example, the formulas

Co—l
(1 —e2m)(0)’

I, = singo(}g), jv'U(C) = oceC\Z; (1.67)

define a family of singularities? among which the integrable singularities correspond to
Reo > 0. Another example is provided by polynomials of log (, which can be viewed as

integrable minors, and also as majors of integrable singularities.

2 In view of the poles of the Gamma function, }a is well-defined for 0 = —n € —N and jv'_n =60,
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By restriction, the variation map induces a linear isomorphism var™™: SING™ —

ANA™ (see e.g. [30]). The inverse map is denoted by
$ € ANA™ ") € SING™

Regular minors are particular cases of integrable minors and (1.66) provides their preim-

age for var™™). When the integrable minor & is not regular at the origin, one can obtain
its preimage by var™ using a Cauchy integral. Namely, pick any point \ in the domain

of analyticity of & and define

v o 1 A@(Cl)
SO(C)_Q_M 0 (—G

to obtain a major of *®.

d¢, arg A — 21 < arg ¢ < arg \, (1.68)

Observe that for every germ «(¢) € C{(} at the origin multiplication of majors by «

passes to the quotient:
Q= sing, O — ap = sing, (agvo) € SING .
In particular, multiplication by —( and e¢ — 1 define the operators
é, D : SING — SING, 5(70 = sing,, ( — Cc,vo), lv)gvo = sing, ((e< — 1)gv0)

The operator 0 is a derivation on the algebra (SING, ).

1.3.2 Convolution of general singularities

The notion of convolution (1.8) can be generalized for general singularities (see [15], [30]),
making SING an algebra with the convolution product. In the present thesis we deal
mostly with convolution of an integrable singularity with a general singularity.

First, consider the case of two integrable singularities. Let (,vo,zvﬂ € SING™. Then
$ = var gvo,zz = VaI"QZJ € ANA™, The formula

A

< A
{¢0) = / S - ¢ da

0

defines an element >A< e ANA™ We set
b xah = "%. (1.69)

Now let us introduce convolution of a general singularity with an integrable singu-
larity. For a point A € C and r > 0 we denote by D,.(\) the set of points which can be
reached from A be a straight path [\, A 4 (] of the length || < 7.
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Lemma 55. Let ¢ be an arbitrary singularity and X be an integrable singularity. Let

X = varX and ¢ be a major of ¢. Fiz a point \ € C and r > 0 such that D,(0) belongs

to the domain of analyticity 0f>A( and D,.(\) belongs to the domain of analyticity of o.
Define

¢
12,\(0 /SVO(Q)%(C —(¢1)d¢, ¢ € D.(N).

Then vy admits an analytic continuation to a spiralling neighborhood of the origin. More-

over, the singularity

V
Y = sing, ¥,

does not depend either on the choice of X or on the choice of the major ¢.
For ;(, c,vp,@vb from Lemma 55 we write
V=Xxp

and call 12 the convolution of X and ¢. For the definition of a convolution of two arbitrarily

singularities we refer the reader to [15] and [30].

Remark 56. The element § = sing, (2711@‘) is a unit of the algebra (SING, %):

§xp=0xd=¢ forall ¢ e SING.

Define
I, ="(&55), neN, Iy=4. (1.70)

(n—1)1

Then (1.67) together with (1.70) give a family of singularities I, parameterized by o € C.

The family I o, 0 € Cis a group under the convolution product:

}01 * }02 = }UDL@ for each 0,09 € C. (1.71)

1.3.3 Resurgent singularities

Identify the half-sheet
AT ={(=r|r>00ec(-%,%)}

of C with the connected component of 7y ! ({Re(’ > 0}) which contains the class of the
trivial path v = 1. Then we can view 0(%;) as a subspace of ANA.
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Definition 57. We call a singularity ¢ resurgent if it admits a major ¢ € O(%,), i.e. a
major which extends to the universal cover of C\ 27iZ with base point at 1. Denote the

space of resurgent singularities by
RES = sing, (0(%1)).

The half-sheet .7 can be identified also with the connected component of 7y ' ({Re ¢ >

O}) which contains the origin of %, in its closure. Then we can write
O(%h) = 0(#)NC{C},  RES=O(%)/0(%)-

Clearly, var maps RES into &(%), i.e. the minor of a resurgent singularity extends
analytically to %;. For this reason we sometimes call the elements of &(%;) resurgent
minors and the elements of O (%) regular resurgent minors.

In Theorem 41 and Proposition 51, we showed that
= O (%) and QAOH € O(%,) for each r > 0.

Introduce the corresponding integrable singularities:

&)* = b&)*a QVO*,T = bSAO*,r- (1'72)

Using the formalism of resurgent singularities we will define other useful singularities and

study the analytic continuations of the germs ®, and (,AD*,T to the spiralling neighborhoods
of the points from 27iZ.

Now, let us define the convolution of a resurgent singulary with a singularity of the

A AT . .
form "X, where X is an entire function.

Proposition 58. Let X be an entire function and ¢ be a resurgent singularity with a
major ¢. Let ( € %, and v be a path in %, starting at 1 and terminating at C. Then
the following formula

b(C) = / SR () — m ()G

~

defines an element of O(%1). The resurgent singularity 12 = singOJJ does not depend on
the choice of the major ¢.

As we mentioned in subsection 1.3.1, the notion of convolution can be extended to the

case of arbitrary singularities gvo,qzz € SING. In fact, RES is stable under the convolution:
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Proposition 59. For any <vp,1z € RES one has ¢ *gvb € RES.
See [17] for the details.

Definition 60. Let ¢, € RES,r € N be a collection of singularities. We will say that

. v . . . \ . \
the series > ¢, converges if there exist majors ¢, such that the series > ¢, converges
r>1 r=1

uniformly on compact subsets of Z; to some function ¢ € RES. We will call
v . i
¥ = sIg, ¥

the sum of the series > ¢,.

r>1
Lemma 61. The singularity ¢ in Definition 60 does not depend on the choice of the
majors gZ?T.
Proof. Let gvono € RES be other majors of ¢,. Then
O, — gvor,o € O(%,) for each r.

Moreover, the series

> (800 = £10(0) (1.73)

reN

\%
converges uniformly on compact subsets of %; to some function ¢ € &(%#;). Since the
functions ¢, — SanO are analytic near the origin, using Cauchy Theorem we obtain that
the series (1.73) converges uniformly on a neighborhood of the origin. It follows that

\

% € O(%), hence sing, (v) = 0.

1.3.4 Laplace transforms of summable singularities

For an arc of directions I = (61, 6,) such that 0 < 6, — 6; < 7w and a continuous function

§ on I denote by SING!# the space of singularities ¢ such that
1) var ¢ € ANA extends analytically to the sector {( = re?? € C:r>0,0€el};
2) for every € > 0 there exists a continuous function C': I — R, such that
blre)] < C(B)

for all ¥ > 0 and 6 € I, where $ = var .
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We will call elements of SING? summable singularities. By analogy with (1.15) we

introduce Laplace transform of singularities.

Definition 62. Let ¢ € SING’” with a major ¢ and the minor ». Fix # € I. Let
a > 0 be small enough such that ¢ is defined on an open neighborhood of the set
{¢=re": -2 <t <0,0<r <a}. Denote by ~, the curve v,(t) = ac’,t € [0—2m,0].
Then we define the Laplace transform of ¢ in the direction 6 by

elf 5o

5= [ e uodcr [T e 0 s Re(ee) > pi6). (1.74)

Observe that by Cauchy Theorem the value Zegva(z) does no depend either on the

ei(0—2m) o

choice of ¢ or on the choice of a. If the integrals felga e % p(¢) d¢ and f fo_oma € XP(¢) dC

converge then by definition of the majors and minors one has:
() = [ b0

where T', = [e!(®=2") o0, (027 ] U 7. Ule%a, e?oo]. As in the case of Laplace transform

of regular germs we denote by L ¢(z) the analytic function on

S(1,8) = {¢: Re(ze?) > B(6) for some 0 € I}

given by
ZJISVO(Z) = Eeavp(z), where 6 € I such that Re(ze?) > 5(6).
If ¢ € SING'” is an integrable singularity, choosing a major ¢ as in Definition 54,

when a goes to 0 we obtain

eif 5o

Epe) = £16) = [ e U0 Re(ze) > 3(6)

0

Thus, the definition of Laplace transform for singularities is consistent with the defini-
tion of Laplace transform for minors. We will mostly deal with resurgent singularities.
Therefore, we set RES!? = SING!# NRES. Here is an example of Laplace transform of

a non-integrable singularity (case Reo < 0)

v

LQ}U(z) =z argz€ (0—n/2,0+7/2), 0 €C, (1.75)

where 277 is considered as a multivalued function with the branch point at the origin.
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Proposition 63. Let ¢, ¢,, ¢, € SING"?. Then one has:
P1 % Da, éﬁvp € SING™?  and lv)gvp e SINGI A+

Moreover, the following holds:
(1.76)

Observe that the map
% . \Clz Y, — "C{¢} € SING, Bp="%B¢ (1.77)

v
is an isomorphism. The map £ can be extended to a larger domain including non-integer
powers of z and powers of log z using the formulas:

log ¢

t%(z"’) ~ 1, o€C, f%(logz) = o

(1.78)

v
The extended operator &% can be considered as generalized Borel transform. It is used
to define Borel-Laplace summation of formal series involving non-integer powers of z

and powers of logz. However, we will use the operator é restricted to the domain
Clog z + C[[z7Y]]1.

1.4 Bridge equation and Ecalle’s analytic invariants

1.4.1 The formal series @E*ﬂf

In section 1.2 we studied the formal iterator in the form v,(z) = 2+ plog z + @« (z), where
@« € 271C[[z7Y]]. To investigate the iterator further it will be more convenient for us to

write v, in the form

v.(2) = 2+ 1, (2), (1.79)

where 1, (2) is a unique solution of the equation

(D—B)=b (1.80)

such that ¢ € plogz + 2~ 'C[[z~1]].
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More generally, let t € C. Set fi(z) = z + 1+ ta(z) € C{z~'}. Consider an equation
vofy=Tow. (1.81)
Proposition 36 implies that there exists a unique formal power series
Yoy € tplogz + 27 1C[[z 7]

such that v,; = z 4 b, ,(2) is a solution of the equation (1.81). In particular, 1, = ..

The series z/;*,t is a solution of the equation
Pz —1) —(z +tb(2)) = tb(2).
This equation can be rewritten as follows:
(D — Bt)r&*,t = tb,
where B; can be obtained from (1.39) by replacing b(z) with tb(2):

(Bi3)(z) = (= + (=) — 3(2), B = 3 ~(tb)yer. (1.82)

rl
r>1 r

Similarly to formula (1.44) we obtain

77Z>o<,t = Z@E*,’r,ty (183)

r=0
with
lz*,o,t =tplogz+ F [tb(z) —tplog(1 — z_l)] € tplogz + 27 'C[[z Y]],
- B (1.84)
w*,r,t = (EBt)rw*,O,t € 2_1@[[2_1]].

Here the first term 1;*,(” = tplogz + tk [b(z) — pDlog z] is a preimage of tb for the

operator D; there are no logarithms in the other terms since
Bt(EBt)T_ll/;*,O,t € Z_Q(CHZ_IH

for r > 1. Denote 7])*7,, = 77/;*7,~71, so that 1, = ZT>0 JJH. The relationship between the

sequences ¥, and @, , is

Uy — Pur = p(EB)"(log z — EBlog 2).
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Introduce an operator

1 - - -
B = Z ﬁ(th“)T@T: @ po (Id+th") — ¢.
r>1

Similarly to (1.52) we obtain an equation
(DT — B) ¢y = tb*.

By analogy with the formula (1.54), we obtain a representation for ﬁ*,t distinct from

(1.83):

bea =D Ul (1.85)

r=0

where

Ulo. = tplogz + B[t () — tplog(1 + = )] € tplog =z + = *Cl[= "],
] ] (1.86)
fo= (BB 0o, € 2 'Clle 7]

*,7,T

1.4.2 Summability and resurgence of ﬁ*,t

For r € N set
w*,r,t = <%(72*,731&),

where zZMJ*mt are defined in (1.84). To define 121*7% we need to introduce an element
:@(log z). In view of the following observations:

dlogz = z1, é(@f() = —(x(¢) forall y e z7'C[[z7Y], 9?(,2_1) =1,

it is natural to set
A

HB(log z) = —% (compare with (1.78))

and

&*,O,t = —%p + % (E[th(z) — tplog(l — z71)]). (1.87)

Since é’log(l -2 )= 64517 we obtain that:

(S,
¢*,O,t - €< _ 1 6 _Z

+ C{¢}.

An analogue of Corollary 52 holds for the family of functions @AD*J .y (1/;”) =D >0 12*7”:



49

Proposition 64. For any t € C the Borel image @Z*,t of the formal series @Z)*t(z) belongs
to =&+ O0(%o). Let R> 1, k € Z and v € Py such that y(1) = 2mi(k + 1). There exist
contmuous functions C,3: ITUI~ — R such that for any t with |t| < R one has

| (cont, @Ab*t) (v(1) + reie)‘ < C(6) PO, (1.88)
forall®@ € ITUI andr > 0.

Proof. Fix o € (0,7/2),6 € (0,1) and n € N. Observe that

2/}* Lt = t‘%} (EZ _8kEb> - tﬁz (tkgk * ékfl}AC) , where fC(O = _Cb(g).

eS —1
k>1 k>1
(1.89)
Fix t € C with |t| < R. Let Cy, Cy, fp > 0 be constants such that:
A IF
16(¢)] < Coe™!¢l for each ¢ € C, kf“c—c” < Cy foreach k€N and ¢ € £
et — ’
(see (1.62) and Definition 49). Let ¢ € .fgif. Then
‘X(C)‘ < CoCre™® 11, 04(0)| < T
Using the same technique as we used in the proof of Proposition 51, we obtain:
|t|k+10k )k 1@50(16 s) o1
X CoC Bosq <
‘ ’64 . 1| Z/ 1) oS (& S
(1.90)

|t[2C3CFelPotic
le

le
/6|tco(l<—8)ds < RQC§C%6(RCO+’BO+1)IC.

0

Let Cy = R2C2CE, By = max{RCy + By + 1,8y + CoCy}. Using Proposition 51, by

induction we obtain that

A CQ(Cocl)r_llril
¢*,r,t<C)‘ < (,r — 1)[ C 6182l4
for all » € N. It follows that
Z w*w,t(c)‘ 02 ( C) (62+COCl)l (191)

r=0

The rest of the proof is similar to the Corollary 52. m



50

A
Remark 65. In Proposition 64 we have proved convergence of the series ) 1, ., only
r=0
for Re( > —1. However, in fact, using Lemma 48 we obtain that the series

A
Z w*,r,t
r=0

converges uniformly for (¢, () from compact subsets of C x (%, \ {0}).

Corollary 66. The function

C x (%0 \ {O}) - (Ca (ta C) — w*,t(C)
1s a holomorphic function of two variables.

Proof. For simplicity, for a complex manifold M denote by &(C x M) the space of
functions x(¢,¢) on C x M which are holomorphic in two variables (¢, (). Consider the
elements 12*%,5 as functions of two variables (t,(). Observe that (1.87) implies that the
function 1?)*7% lies in O(C x (C\ {2miZ})). Since the series in (1.89) converges uniformly
on compact subsets of Cx %y (see (1.90)), the function Q?J*M lies in O (C x %,). Moreover,
for » > 1 the element 12*,T+17t can be written as the series

Derirg = 3 0 % b (1.92)

k>1

Assume that @*,r,t € O(C x %p). Using Lemma 34 we obtain that tkgk * ék@*mt €
O(C x %) for each k € N. Inequality (1.61) implies that the series (1.92) converges
uniformly for (¢, ) from compact subsets of C x %,. It follows that ?Z*,rﬂ,t € O(Cx%A,).
Thus, by induction we obtain that Q?J*M € O(C x %) for all r € N. By (1.91), the series
> @*mt converges uniformly on compact subsets of C x (% \ {0}). Therefore,

r=0
A A
¢*,t - Zw*,r,t

r=0

is holomorphic in (¢,¢) on C x (%, \ {0}). O

1.4.3 The 7-normalization

Let I be an arc of directions and 3: I — R be a continuous function. We pick a
point 7 € X(I,) and denote by SING!? the subspace of SING'# consisting of the
singularities ¢ such that

LI(r) = 0.

Set RES!# := SINGL” N RES.
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Lemma 67. Let I be an arc of directions such that I N (7Z + w/2) = &. For any
¢ € SING!? | there is a unique zz € SINGL? such that

D = ¢. (1.93)

We will use the notation ;vb B

Proof. Denote by P = P, the projector
@ESINGIﬁI—)( Llp(1))d € Co.

Then
SINGL? = ker P,

Let ¢ € SING?. Choose a major ¢. Observe that the equation lv)z,vb = ¢ in SING!” is

equivalent to having a major ¢ such that

(ef = )i — p € C{C}.

The latter condition can be rewritten as:
Vv

@(C)

< + any regular germ,

2mi¢

where ¢ € C is arbitrary. Thus, the solutions of (1.93) are given by

(<)
et —1

b(¢) =

v

i = sing,

>+c5

where ¢ € C is arbitrary and ¢ = sing, <F114> Among these solutions there exists a

unique ¥ € ker P, namely:

12 = (Id — P) sing,, <%) (1.94)
[

Vv
Remark 68. Beware that sing, <§(—_<i> depends on the choice of the major ¢ (not only
on the singularity ¢), but the singularity in (1.94) does not. Indeed, suppose that ¢, is
another major of ¢. Then

Vv V.

©1(¢) — ¢(¢)
et —1

N4

X = ¢ — ¢ € C{¢}, hence sing, ( ) — 27iX(0)6 € ker Id —P.
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Thus, Lemma 67 defines an operator EVUT: SING!? — SING£’5 which satisfies
DoE.=1d
on the whole space SING??.

Remark 69. Observe that in Definition 42 we used a different kind of normalization to

invert the analog of D in the space of formal series.

Let I and 3 be as above. As before, let 5y € R be such that

16(0)| < Coe®! for all ¢ e C.

1.4.4 The singularity zvbT’t and the iterator v,.

In this subsection, we will transport the formulas (1.84) to the space of general singu-
larities. Let I stand either for I* = (=%, %) or for I~ = (=%, %). To fix the ideas, we
assume that I = I't. The case [ = I~ can be treated in a similar way. Let R > 0. Till
the end of this subsection we will assume that ¢ € C is a parameter such that || < R.

Introduce singularities
12*” = ,%12*’,,7,5,7” >0, (see (1.77) and (1.78)).

By (1.66) and (1.87), for any r the element JJ*M has a major of the form:

v 1 A
Vuri(C) = gifw*,r,t(c )- (1.95)

From the proof of Proposition 64 (see (1.91)) we obtain that there exists a continuous

function 5 : I — R, such that for all t € Dg(0)
V., € SING!? for each r € Z,, 1), , € SING, (1.96)

and for each 7 € X(I, B) one has:
Ll (1) = Ll (1),
r=>0
where the convergence is absolute. Without loss of generality we may assume that 5(0) >

Bo for all 8 € I. Introduce T-normalized singularities:

v

¢T,T‘,t = ¢*,r,t - LI¢*,r,t(T>5 € RES{—’Ba wT,t = ¢*,t - LI¢*,t(T)5 S RES{—’B : (197)
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v
We want to write the resurgent singularities 1, ,., in a form similar to (1.84). For this

reason, introduce the operators
v - v v, g v 1v v
By: ¢ € SING = by + (0°0), where by = b, b= D,

Observe that l';k = "ZA)k.

Lemma 70. Let X € RES and s € C. Then the series of singularities
S i
keN

converges as of Definition 60.

Proof. We will generalize some of the techniques which we used in Subsection 1.2.7 to

the case of resurgent singularities. Set
O = BiX.
Fix a major X of X such that X € O(%,). By Proposition 58, the singularity ;ﬁk has a

major of the form:

\Y

u(0) = / (b (m(¢) — m(C)dG, ¢ € %, (1.98)

~

where v is any path starting at 1 and terminating at (.

Let 0 < § < m. Set
Us = m({¢ € C:d(¢,2mZ) < §}).

For a point ¢ € %\ %5 denote by I'; the shortest path in %, starting at 1 and terminating
at (. Let L stand for the length of I';. Fix R > 0 and set

M:max{|)v((é)| (€ 9\ Us, L < R}, C:max{‘g(C)} : ¢ € C,[¢| < R}

Then one has:

CkRk—l

16:(C)] < o=

for each ¢ € C such that |[(| < R (see (1.49)).

Let ( € %1 \ s such that L < R. Using v = I'; in the formula (1.98), we obtain:

MC*R*

90| < s =1
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It follows that for each s € C one has:

3 |55 64(Q)] < Mexp(ls|CR).

keN

This proves that the series Y s*¢,(¢) converges uniformly on compact subsets of %,. By

Definition 60, the series of singularities

Z Sk%k

keN

is convergent. O

Now, introduce a family of operators és : RES — RES, s € C, by the formula

B.X =) s"BiX. X €RES.
keN

Lemma 71. For each r > 0 one has

Moreover,

IZT,T,t - t <E7ét) ETIV) <199)

Proof. First, let us show that 1277(” = tETIv). By (1.87) and (1.95), the element 12*,07,5 has

a major of the form

It follows that the element lv)ivﬂ*,oﬂf has a major of the form

v 1 ¢ — A 1 N
(€ = b, g, = t;;gf <_p(e c D + % ([b(z) — plog(1 — zl)})) = t;;gf

Here we used the identity % (log(1 —2z71)) = —ecgl, which can be verified straightfor-
wardly. Thus, by (1.97), we obtain

v v v Vv v
DQ/}T,O,t = Dw*,o,t = tb.

v Vv

Recall that 12770,1& € RES.?. By Lemma 67, we obtain the desired identity: ?ZTM =tk b.
Further, let » > 0. Then, since 95 =0¢ SING, one has

v VvV v V
Bt,[?Z)T,T',t = Btw*,r,t'
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On the other hand, the element ¥, ., , has a major of the form

v 1 A
Drri1a(O) = "B 0)

Observe that By, ., € 2 2C[[z7']];. Therefore,

berirdlQ) = % (BB ) = = (Biduss).

It follows that 51vbw +1+ has a major of the form

log ¢
271

] (Btzz*,r,t> .
This implies that lv)%*ﬁru = é’ (Btzﬁ*mt) = étlz*mt. Thus,

vy vV vV v v v
Dtpr iy = D¥syiry = Bithuyy = Bitbry

\ v Vv

By Lemma 67, we obtain that z/vjm, 114 = BBy, ;. Using an induction by r we complete

the proof of Lemma 71. O

Formally, we have:

zvﬂT,t = Z 127’,7",15' (110())

r=1
Observe that the singularity 1, ,, has a major of the form

v logC A 7,V
== s rt L *,7
¢T,T,t 27TZ ¢ ;T Q/) s ,t(T)

2mi¢
By Proposition 64 and Remark 65 we obtain that the series (1.100) converges (see Defi-
nition 60). By Lemma 71 we obtain the following:

Corollary 72. The singularity %T,t is a solution of the equation

Set

Define sectorial iterators by the formulas:
vE = LG = Td +L74),.

We call v, the 7-normalized sectorial iterator, since it is the unique sectorial iterator of f

such that vf(7) = 7. In fact, v, = v, + 7 — v (7).
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1.4.5 Algebra RESI[{]]

In this section we will consider both formal power series and convergent power series
with coefficients in RES. To distinguish different kinds of series we will use the symbol ¢
for convergent power series and the symbol t for formal power series. We introduce the

space of formal series in t with coefficients from RES:

RES[[{]] = {Z "X, : X, € RES} .

n=0
Notice that in the series above we treat t as a formal symbol and do not require conver-
gence. Similarly, define spaces RES™?[[t]] and RESL?[[¢]].

The space RES[[t]] forms an algebra under the convolution
SRS IITHE ST SF R
n=0 k>0 n=0 0<k<n

By the exponent of a series of singularities ;q =53 t”>v<n we mean the following formal
n>1

v v 1 v xk
exp (xt) — Z Ext )

k>0

series

The latter series is formally convergent since X; Fetr RESI[t]] for each k.

Any sequence of operators /vln : RES — RES, n > 0, defines an operator

Ac=Y" A, RES[[] —» RES[[(], AX, = ¢ Y A, 4
n=0 n=0 0<k<n
v
1.4.6 An auxiliary singularity W,

Fix w € 27iZ. Let us introduce operators

v v 19.. i\ F v i ¥
Bun: € RES = b« <—w n a) ?). Bui=> ¢B.x: RES[[{]] » RES[[],
’ k>1

where  is the operator of multiplication by (—(). To study the singularities at w of the

AN
branches of the minors ¥, we define an auxiliary singularity

W=ty (Eféwyt) E.b. (1.101)

r=0

By Proposition 63 and the definition of operator Z?T (see Lemma 67), since 3(0) > B, for
all @ € I, we obtain that Vv\?wmt c RESA[[{]].
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In this section together with the element %T,t € RES we will consider the formal series

%T,t € RES|[[t]] obtained by substituting t for ¢:
v vV V¥ T v v v v r+1
o=t <ETBt> E.b= <ETBt> 5O,
We prove the following:
Proposition 73. In RESI[[t]] the following identity holds:

v

W0 = ep( — wibyy). (1.102)
Notice that in Proposition 73 we do not state that the series from (1.102) are convergent.
We only state that the identity (1.102) holds coefficientwise. That is, for each k the
coefficients at t¥ in the left hand side and the right hand side of (1.102) coincide.
Denote an operator C\ : RESI[t]] — RES[[t]] by the formula:
Co=ld+B,=1d+> B,
k>1
Set T=D + Id = exp (—5) The operator T acts by multiplication by e¢.
Remark 74. In the space of formal power series in t with coefficients from C[[z7']], the
operator Cv?t corresponds to taking composition with Id +tb and the operator T corre-
sponds to taking composition with Id +1.
Lemma 75. For every X, @vbt € RES[[t]] one has:
1) Cv’t (5'({ * 1Zt> = CVYQVQ * Cv’tzzt, T ()vct * @7){) = %)%t * %zzt,'
2) Cv’te;(p ()v(t) = e>v<p (é’j(& , Ivje;(p (5'({> = e>v<p (7%'(,()
Proof. Observe that 1) implies 2) by linearity of the operators ét and T. Since both of

the operators commute with multiplication by t, to prove 1) it is enough to show that
Ct(%w) — OXx O, T(>V<*¢) —TX % T
for any )VC,JJ € RES. Since 9 is a differentiation on SING, using commutativity of the

convolution, we obtain:

v v v tkv v v v
O (X ) = (—b*k & (X >=
Ge8) -5 (G (19
tk *k - k! dm Y Ak—m,
> (53 (e i3)) -
k=0 =0
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v
The corresponding identity for 7' can be proven in a similar way. O

Proof of Proposition 73. Introduce an operator }vft : RES™[[{]] — RES"’[[{]] as follows:
[3’(}%{ = é’.r (e}v{p (—thv)) * <ét>v(t) - ;(t> .
Observe that the operator i ¢ increases the discrete valuation

val <Xt) = min {k 0: Xk #+ O}

on RES[[t]]. It follows that the following equation
(Id —IYIt> X, = 3§ (1.103)

has a unique solution in RESJ[[t]]. This solution can be written as formally convergent

series Z H ’"Xt We will show that both sides of (1.102) are solutions of the equation

(1. 103) ThlS will prove Proposition 73.
For any X € RES one has

It follows that the following identity holds in RES[[t]]:
W= 8.
r=>0

Further, similarly to the identity (1.104), by (1.99), we obtain that for all » > 0

Grrr = B, (G =1d) ¢

It follows that

b=t (B, (6 -10)) B

r=>0

Applying the operator D (Id — (éT (Cv't — Id))) = lv?—Hd —Cv't = %—é’t to this equation
we obtain:

%Q/JT,t = Cv't@/%,t + tb.
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Now, by Lemma 75, we have:
D (Id —[YL) exp (‘W@ZT,O = jﬁe}v{p <_WJ)T"> — exp (—wt%) * ((v?t exp (—mvbnt)) =
exp (—cﬂv{bTO — exp (—w(}t@vbm — wtl?) = 0.
This implies that
<Id —ﬁ[t> eXp (—W@ZT,t) — K(t)0

for some K (t) =3 -, K,t" € C[[t]]. Observe that by definition of éT,

(Ef (Id —ﬁt) e¥p (_mzﬂ>> (r) = (Z}Ie}vip (_MZTQ) (r) =1.

Therefore, Ky = 1 and K,, = 0 for n > 1. Thus, exp (‘W@Zm> is a solution of the
equation (1.103). This finishes the proof of Proposition 73. O

1.4.7 Alien operators and the singularity ;DM

Let X € O(%,). For a point n € %, such that m(n) = 2wik + 1,k € Z, introduce the

following germ in a neighborhood of 1:
S X(1+¢) =X +0),
where ¢ € C and |(] < 1. Clearly, the germ S,I)A( defines an element of 0(%).

Definition 76. Let w = 27ik for some k € Z and n € %, such that m(n) = w + 1.
Define the alien operator A, : RES — RES by the formula:

Ani = sing, (Sﬁ() ,

where X € RES and X = var X. In addition, if 5 is in the main sheet, we will use the

notation A = A,.

As before, we fix R > 0 and assume that ¢t € C is a parameter such that |t| < R. From
the proof of Proposition 64 (see (1.91)) we obtain that there exist continuous functions

Bry(0) on I = I such that for all 7,z € (I, Bg,,) all the values

(Z*I?Zm,t> (2), (Z’I@Zm> (2), <'EIA7]/J}T,T¢> (2), <ZJIAUIZT,t) (2)
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are defined and the following series converge absolutely

(L7000 )(2) = D2 (£10 s ) (), (£7 A0 ) (2) = D0 (£7 Ayl ) (). (1.105)
Similar statement is true for I~ by performing the Borel-Laplace summation of the series
1/37,1‘, = T;f rt- Thus, we will assume that fg, is defined on the whole J = I~ U I*.

The main result of this section is the following

Theorem 77. Let 7 € X(I,Bry). There exists a unique scalar formal series R, ;¢ =
Y tU'R, ., such that

r=0

v v
Anw‘r,t = RW,T,’LWw,T,t‘

Let us study the operators A,. The definition of A, directly implies that for any

entire function X and any ¢ € RES one has
ASX =0, A, (fc&a) = (wac) - Ay ®, (1.106)
where w = m(n) — 1 and (TW)A()(C) = X(¢ +w).

Lemma 78. Let X be an entire function and ¢ € RES. Then one has:
A, (b>A< * gvo) =" % Angvo.

Proof. Let ( € %, be a point in the main sheet such that |m({) — 1| < 1. In particular,
¢ can be reached from 1 by a straight path I'c := [1,{] C #;. Then for any n such that
m1(n) = 2mik 4+ 1,k € Z the point  + (¢ — 1) is well defined. Let ¢ € @(Z%,) be a major

v

of ¢. By definition, the element QZ} = "} % ¢ has a major zvﬁ such that

ho) = / SN (m(Q) — m(¢)) dGy

L¢

for ¢ as above (see Proposition 58). Let 7 be the path in %, starting at 1, terminating

~2m and going around the origin by a circle of radius 1 centered at the origin. Denote

at e
by FIC the path starting at e=?™, which projects to the same path in C as I'c. Then the
path I'; terminates at the point ¢" = ¢ + (¢ — 1). By Proposition 58 and definition of

operators 5, one has:

\

Spmamth(C) = b (727 4 (¢ — 1)) = / PC)X (m1(Q) = m(G)) dGr.

/
'yUFC
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Figure 1.5: Hlustration to Lemma 78.

Denote by P the path starting at ¢, going by yUT /C in the reverse direction, following
I'¢c from 1 and terminating at ¢. It follows that

var (b)% * 7L> (€)= QL(C) — SE—QTrﬂZ(C) = /SVO(Q))A( (m1(¢) — m1(¢1)) d¢y. (1.107)
Let m(n) = 2mki + 1. Set

s(()=n+(C—-1).

That is, s(¢) and 7 are in the same half-sheet, and s(({) projects to
m(n) + m(¢) — 1 =2nki + m(¢) € C.

Let I'y¢) be a path starting at 1 and terminating at s(¢). Denote by F/s(() be the path
starting at e~ such that F;(C) projects to the same path in C as I'c (see Figure 4).
Denote by Py the path starting at s(¢)’, going by v U F/s(c) in the reverse direction,
following I'y¢) from 1 and terminating at s(¢). Consider the analytic continuation of
the germs in the formula (1.107) along the path I'ycy. By definition 76, the element
55 = A, (b)A( * 12) has a major gvb such that

36 = var (R d) (50) = [ BcR ki + m() - mi(G)) s

Py

Denote by s(¢)’ the end point of the path F;(C) and let ' be the closest point to s(¢)’
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which projects to 2mik + 1. Using Cauchy Theorem we obtain that

b0 = / (G (ki + m(C) — m(C)) Gt

P(0)
/ SR @i+ m(¢) — m(C)) dGy — / SN @i+ m(C) — m(C) ddu,
[7,5(¢)] [n,5(¢)"]

The first of the integrals in the formula above is a regular germ at the origin. Therefore,

one has:

H(0) = reg(€) + / X0+ (G = 1) (11 (Q) = m(Cr)) dGi—

[1,¢]

X0+ @ - ) - m)
[1.¢]
where reg(() is a regular germ at the origin. Using similar considerations as before,

one can show that the latter formula denotes a major of X * Ané. This proves that
An(")A(*gvo):bf(*AnGD). O
Formula (1.106) together with Lemma 78 imply the following:
Lemma 79. One has Anét = éw,tAm where w = m(n) — 1.

Denote by P, the projector

X € SING™* s (L'X(7))6 € C3,

Proposition 80. Let n € %, such that m(n) = 2wik + 1,k € Z. Fiz v € ¥(1,5). Then
for any X € RES"? such that An)v( € RES'? one has:

(44, = B, Ay) X = PrALE X,

Proof. Let x be a major of the singularity X. Then, by the definition of éT (see Lemma
67) the element ﬁﬁ% has a major of the form

X | G
e$—1  2mi¢’

x>

© where X = varX. It follows that ¢ = Anlv?pv( has

where C} € C. Thus, var ZV?T;( = 21

a major ¢ such that

X(n+ (¢ — 1))
et —1

P(0) =
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for all ¢ in the main sheet with |m;(¢) — 1| < 1. Similarly, one can show that the element

gvb = LV?TA,];( has a major 55 such that

v Xn+(¢-1) ¢
o(C) = eS —1 + 2#2{

for all ¢ in the main sheet with |m(¢) — 1| < 1, where Cy € C. It follows that
(445, - B.4,) X =Co, CeC.

Applying operator P, to this equality we obtain that C'd = PTAWLVCT;(. n

Proof of Theorem 77. The singularities 1277,,# satisfy the following recurrent relations:

v Vv

¢T,7"+17t = ETBth,T,U wT,O,t = tETb
By Lemma 79 and Proposition 80, we arrive at the following identities:
v v v v v v v
Anwfr,r—l-l,t = PTAan,r—i-l,t + ETBw,tAan,r,tv Aan,O,t = PTAan,O,t € Co.

By induction we obtain that for any » € N one has:

v ! v v J v
A’]w’r,r,t = Z <ETBw,t> PTA??wT,r—j,t'

j=0

Summing the last identity over » > 0 we obtain

Ay, =Ry W, where R, .6 =P A, ,. (1.108)

w,T,ts

1.4.8 The Bridge equation

As before, let I = I = (—7/2,7/2). Combining Proposition 73 with Theorem 77, we
obtain that for all 7 € 3(/, fg,) one has

Ay = RyrgeXp( — wibry). (1.109)
Since @Z*,t — @7}7’,‘ = 21@7)*7{(7')5 € Co, the following holds.

Theorem 81. There exists a sequence of constants R, , and a formal series R, =
> oq U Ry, such that
Aythe o = Ryexp( — wibyy). (1.110)
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The relation between R, . and R, ; is:

R, =exp (wL[¢*7t(7)) Ry -4

We will refer to formulas (1.109) and (1.110) as Bridge equation. It was first formulated
by Ecalle [16]. Both of the formulas state that for each n the coefficients in front of
on the left hand side and on the right hand side of the corresponding formula are equal.

For instance, for n = 1 and n = 2 from (1.109) we obtain that
AyB b = Repid, AgB, (b5 OE,b) = ~wRyp1 B, + Ry,
Observe that by the choice of 8g,, the series

Ryry =Y t'Ry,, and Ry => t'Ry,

r>1 r>1

are uniformly convergent on the disk D = {t € C : |t| < R} (see (1.105) and (1.108)).
In fact one can prove that the formal series e>v(p( — wzzﬂt) (and e>v<p( — wzvb*jt)) converges
for all £ € C to an element of RES so that the identities (1.109) and (1.110) become
identities between elements of RES. However, proof of convergence of e>v<p( — wzzm) is
very technical and we do not give it here.

Let J=1"UIT = (—7/2,7/2)U(7/2,37/2). Let I be either I~ or I™.

Proposition 82. Let w € 2miZ andn € %, such that m(n) = 14+w. Forall z € ¥(J, Bry)

one has

(ZZIAnzZ*,t) (2) = Ryt exp < —w (Elzz*t> (z)> (1.111)
Proof. Let z € ¥(J, Bry). By Theorem 81 we obtain the following identity in C[[t]]:
<E1An12*7t> (2) = R4 (Eleﬁp( — O.MZ*’t)) (z) = Ry, cexp ( — w(ZQZ*O (z)) (1.112)
Moreover, using Corollary 66 we obtain that the formal series
(£ Ah.i) () and exp (= w(£70) () € Cl)

converges absolutely to analytic functions on Dg when plugging t =t € Dg. This proves

Proposition 82. O
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1.4.9 Relation with the Horn maps.

To obtain analytic conjugacy invariants consider the difference v (z) — v, (z), where
z € XTNY~ (see (1.34)). To fix our ideas, let Im z > 0. Observe that the sets % can

be written in the form
St =%(I1,8), ST =%(I",8). (1.113)

where 3 is a continuous function on I U I~. Let 6; € (—7/2,0),0, € (7,37/2) such
that Re(ze?') > [(6;) and Re(ze'%?) > B(6,). Then the values ﬁelng*(z) and 2924%*(,2)

are well defined. Therefore,

0 (2) —vr (2) = 9t (=) — i () = / e, (0)dC,

r

where I' = (c0e'®, 0] U [0, 00ei1). Let 1 > a > 0. Denote by v C C the path
(e®200, e U {e"a : t € (By,0, — 2m)} U [e27, e200).

For k € N denote by 7, (respectively I'y) the unique path in %, which projects to the
path y—2mik C C (respectively I'— (2rk+m)i) and has a non-empty intersection with the
quadrant {re? : r > 0,0 € (—=7/2,0)} C %,y. From Corollary 52 using Cauchy Theorem

one can deduce that

/F e, ()¢ = ( / ot / K / ) e, (C)dC.

It is not hard to see that
/ e*CZ{b*(C)dC — 0(627rinz)’

when Re z is bounded and Im 2z — oo. Let 1 be a point in the main sheet of %, such
that m1(n) = 1 — 27ki. Set
Rk - le.

As a consequence of the Bridge equation we obtain the following result.

Proposition 83. For each k € N one has:

/ e, (¢)d¢ = —Rye*™ kv () (1.114)

Tk

forall z€ XTUX™.
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Proof. By the definition of the operator S,, one has

[ b0 = e [ e (s,6) 0

T 0
where 1 € % is the point in the main sheet such that m1(n) = 1 — 27ik. Now, definition
76 implies that:

sing,, Sncﬁ* = An&)*.
Recall that

log ¢

Y, — ¢, = pA(log z) = psing, <_2m’§) , where 1), =), ;.

Therefore,
AWSVO* - Anw*
Fix R > 1. Set R, = R,1. Let I = I~ = (n/2,37/2). By Proposition 82, for
z € X(I, Br,,) we have:
(EULJM) (2) = R, exp ( - w(ZQA) (z))
Therefore, using the definition of the Laplace transform, we obtain:

| e (81 (©a¢ = ~E1a0.02) =

Yo

~Ryexp (= wllih,(2)) = — Ry exp(2rki(v: (2) = 2),
which finishes the proof. ]

As a corollary we obtain

n

?}:— (Z) - U*_ (Z) — Z RkBQﬂ'kiv*_(z) + 0(627rkiz)’
k=1

where z € T U X~ and Im 2z — oo. Similar relation is true when Im z — —oc:

U:r(z) =, (2) — 27ip — Z Rfke*QWkivI(Z) + 0<6727rku)'
k=1

As a consequence we obtain:

Corollary 84. The coefficients { BE}32, given by
B =—Ry, B, =—R_y, for keN, Bf =0, B, = —2mip,

form analytic conjugacy invariants (1.6).



Chapter 2

Computability of the Julia set.

Nonrecurrent critical orbits

2.1 Introduction

This chapter is organized as follows. In Section 2.1 we give all necessary preliminaries
in Computability and Complex Dynamics, state the results of Chapter 2 and discuss
possible generalizations. To illustrate the results of Chapter 2 on a simple case in Section
2.2 we prove that for every subhyperbolic rational function the Julia set is computable in a
polynomial time. In Section 2.3 we prove the main result under a simplifying assumption
that the rational map f does not have any parabolic periodic points. In Section 2.4 we

complete a proof of the main result.

2.1.1 Preliminaries on computability

In this section we give a brief introduction to computability and complexity of functions
and sets. The notion of computability relies on the concept of a Turing Machine (TM).
A precise definition of a Turing Machine is quite technical and we do not give it here.
For the definition and properties of a Turing Machine we refer the reader to [27] and [37].
The computational power of a Turing Machine is equivalent to that of a RAM computer
with infinite memory. One can generally think about a Turing Machine as a formalized
definition of an algorithm or a computer program.

There exist several different definitions of computability of sets. For discussion of

different approaches to computability we refer the reader to [10]. In this thesis we use

67
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the notion of computability related to complexity of drawing pictures on a computer
screen. Roughly speaking, a subset S is called computable in time t(n) if there is a
computer program which takes time ¢(n) to decide whether to draw a given 27" x 27"
square pixel in a picture of S on a computer screen, which is accurate up to one pixel
size. Before giving a rigorous definition of a computable Julia set we need to introduce
some notations.

First we give the classical definitions of a computable function and a computable

number.

Definition 85. Let S, N be countable subsets of N. A function f : S — N is called

computable if there exists a TM which takes x as an input and outputs f(x).

Note that Definition 85 can be naturally extended to functions on arbitrary countable

sets, using a convenient identification with N.

Definition 86. A real number « is called computable if there is a computable function
¢ : N — Q, such that for all n

o = ¢(n)| <27".

The set of computable reals is denoted by Re.

In other words, « is called computable if there is an algorithm which can approximate
a with any given precision. The set Re is countable, since there are only countably many
algorithms. The set of computable complex numbers is defined by Ce = Re + iRe.
Note that both Re and Ce considered with usual multiplication and addition form fields.
Moreover, it is easy to see that Ce is algebraically closed.

Let d(-,-) stand for the Euclidian distance between points or sets in R?. Recall the

definition of the Hausdorff distance between two sets:
dy(S,T) =inf{r >0: S C U, (T), T Cc U.(5)},
where U, (T) stands for the r-neighborhood of 7™
U(T)={z€R*:d(z,T) <r}.

We call a set 7" a 27" approximation of a bounded set S if S C T and dy(S,T) < 27"

When we try to draw a 27" approximation 7" of a set S using a computer program, it
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Figure 2.1: Values of the function hg.

is convenient to let 7' be a finite collection of disks of radius 27”2 centered at points of

the form (i/2"%2 j/2"2) for 4,7 € Z. Such T can be described using a function

—n—2
)

1, if d(2,9)
hs(n,z) =4 0, if d(z,9)

0or 1 otherwise,

(2.1)

where n € N and z = (i/2""2, j/2"%2) i, j € Z.

Using this function, we define computability and computational complexity of a set in

R? in the following way.

Definition 87. A bounded set S C R? is called computable in time ¢(n) if there is a TM,
which computes values of a function h(n,e) of the form (2.1) in time ¢(n). We say that
S is poly-time computable if there exists a polynomial p(n) such that S is computable

in time p(n).

Similarly, one can define computability and computational complexity of subsets of
R¥. Moreover, definition 87 naturally extends to subsets of C (see [10] Section 2.1). The

Riemann sphere Cis homeomorphic to the unit sphere
S?={x:|z| =1} Cc R
Consider the stereographic projection

P : 5%\ {North Pole} — C.
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The inverse of this projection is given by

2Re(z) 2Im(z) |z]*—1
22+ 17 [P+ 17 2P+ 1

Ptz > ; P71(c0) = (0,0,1).

Observe that P~! induces the spherical metric on @, given by the formula

dz

ds = ———.
TP

Definition 88. A subset K C C is called computable in time ¢(n) if P~'(K) C R? is

computable in time t(n).

Proposition 89. Let K C C be a bounded subset. Then K is computable as a subset of
C if and only if it is computable as a subset of R?. Similarly, K is poly-time computable

as a subset of@ if and only if it is poly-time computable as a subset of R2.

In this chapter we discuss computability of the Julia sets of rational functions. For
simplicity, consider the case of quadratic polynomials f.(z) = 2% + ¢. By computing the

Julia set J. of the map f., ¢ € C, we mean the following problem:
given the parameter ¢ compute a function h of the form (2.1) for S = J..

However, an algorithm M, computing h, can handle only a finite amount of information.
In particular, it can not read or store the entire input c¢ if ¢ ¢ Ce. Instead, it may
request this input with an arbitrary high precision. In other words, the machine M has
a command READ(m) which for any integer m requests the real and the imaginary part
of a number ¢(m) such that |¢(m) — ¢| < 27™. It can be formalized using the notion of

an oracle. Let

Dz{ﬁzkez,leN}
9l
be the set of all dyadic numbers. Denote
D" ={(z1,22,...,2,) :x; €D, 1< j<n}

the n-th Cartesian power of . We will say that the open disk Uy(c) (respectively closed

disk Uy(c)) is dyadic, if d and ¢ are dyadic. Denote by € the set of all subsets U C C

such that U can be represented as a finite union of dyadic disks.

Definition 90. A function ¢ : N — D" is called an oracle for an element z € R" if
|p(m) — x| < 27™ for all m € N, where || - || stands for the Euclidian norm in R". An

oracle Turing Machine M? is a TM, which can query ¢(m) for any m € N.
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The oracle ¢ is not a part of the algorithm, but rather enters as a parameter. In case
of a computer program the role of the oracle is usually played by the user, who enters
the parameters of the program. We should note also that an algorithm using an oracle
¢ require m time units to read ¢(m).

Now we are ready to define computability and computational complexity of the Julia

set of a rational map.

Definition 91. Let f be a rational map. The Julia set J; is called computable in time
t(n) if there is a Turing Machine with an oracle for the coefficients of f, which computes
values of a function h(n,e) of the form (2.1) for S = J; in time ¢(n). We say that J;

is poly-time computable if there exists a polynomial p(n) such that J; is computable in

time p(n).

2.1.2 Hyperbolic maps

A rational map f is called hyperbolic if there is a Riemannian metric p on a neighborhood

of the Julia set J; in which f is strictly expanding:

IDf- ()l > ol

for any z € Jy and any tangent vector v (see [25]). It follows that for a hyperbolic
map f there is a neighborhood U of J¢ on which the metric d,, induced by g is strictly

expanding:
d,(f(x), fly)) = kd,(x,y), forany z,y € U, where k> 1.

Let dg be the spherical metric on the Riemann sphere. Then d,, and dg are equivalent
on a compact neighborhood of J¢. One can deduce that there exists N € N, K > 1 and
a neighborhood V' of J¢ such that

ds (Y (@), f¥ () > Kds(a,y), for any a,y € V.

Moreover, the last property is equivalent to the definition of hyperbolicity. Hyperbolic

maps have the following topological characterization (see [25]).

Proposition 92. A rational map f is hyperbolic if and only if every critical orbit of f

either converges to an attracting (or a super-attracting) cycle, or is periodic.

Braverman in [7] and Rettinger in [29] have independently proven the following result.



72

Theorem 93. For any d > 2 there exists a Turing Machine with an oracle for the
coefficients of a rational map of degree d which computes the Julia set of every hyperbolic

rational map in polynomial time.

To explain why this is an important result we would like to mention the following. It
is known that hyperbolicity is an open condition in the space of coefficients of rational
maps of degree d > 2. The famous conjecture of Fatou states that the set of hyperbolic
parameters is dense in this space. This conjecture is known as the Density of Hyper-
bolicity Conjecture. It is the central open question in Complex Dynamics. Lyubich [21]
and Graczyk-Swiatek [18] independently showed that this conjecture is true for the real
quadratic family. Namely, the set of real parameters ¢, for which the map f(z) = 2% + ¢

is hyperbolic, is dense in R.

2.1.3 Subhyperbolic maps

A rational map f is called subhyperbolic if it is expanding on a neighborhood of the Julia
set Jy in some orbifold metric (see [25]). An orbifold metric is a conformal metric v(2)dz
with a finite number of singularities of the following form. For each singularity a there
exists an integer index v = v, > 1 such that for the branched covering z(w) = a + w”

the induced metric
dz

1(e(w) | 2
in w-plane is smooth and nonsingular in a neighborhood of the origin. Douady and
Hubbard proved the following (see [25])

dw

Proposition 94. A rational map is subhyperbolic, if and only if every critical orbit of f

is either finite or converges to an attracting (or a super-attracting) cycle.

For a subhyperbolic map, the corresponding orbifold has singularities only at post-
critical points, which lie in J;. In presence of these singularities the algorithm, which
works in the case of hyperbolic maps, can not be applied directly for subhyperbolic maps.
We show how to change this algorithm to compute the Julia set of a subhyperbolic map

in a polynomial time. One of the results of Chapter 2 is the following theorem.

Theorem 95. There is a TM M? with an oracle for the coefficients of a rational map
[ such that for every subhyperbolic map f the machine M? computes J; in polynomial

time, given some finite non-uniform information about the orbits of critical points of f.

We will specify later, which non-uniform information does M? use.
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2.1.4 The main results: nonrecurrent critical orbits

Let f be a rational map. For a point z € C denote by

0(z) = {f"(z) in > 1}

the forward orbit of z. Let w(z) = O(z) \ O(2) be the w-limit set of z. Denote C the set
of critical points of f which lie in Jy. Put
Qf = U w(c).
CGCf
Our main result is devoted to the class of rational maps without recurrent critical points.

Namely, we prove here the following:

Theorem 96. Let f be a rational map. Assume that f has no parabolic periodic points
and Q does not contain any critical points. Then J; is poly-time computable by a TM

with an oracle for the coefficients of f.

Although in this case there is no guarantee that any kind of expansion holds on the
whole Julia set of f, the following well-known theorem of Mané (see [23],[36]) implies

that there is an expansion on the closure of the postcritical set of f.

Theorem 97. Let f be a rational map. Let M C J; be a compact invariant set such that
M does not contain any critical points of f or parabolic periodic points and M Nw(c) = &
for any recurrent critical point of f. Then there exists N € N, such that ’DfN(z)‘ > 1
for any z € M.

As we see, the theorem of Mané gives an expansion only near the points, whose
forward orbits are isolated from the parabolic periodic points. The question arises: is it
possible to generalize Theorem 96 for the maps f with parabolic periodic points? It is
known that the algorithms, used for computing hyperbolic Julia sets, require exponential
time in the presence of parabolic points (see [25], app. H). However, in the paper [8] (see
also [10]) Braverman proved that for any rational function f such that every critical orbit
of f converges either to an attracting or to a parabolic orbit, the Julia set is poly-time
computable. Combining the algorithm used in [8] with the algorithm, which we use in

here to prove Theorem 96, we obtain the following generalization of Theorem 96:

Theorem 98. Let f be a rational map. Assume that Q0 does not contain neither critical
points nor parabolic periodic points. Then Jy is poly-time computable by a TM with an

oracle for the coefficients of f.
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2.1.5 Possible generalizations

In this subsection we discuss possible generalizations of our results. First we would like
to mention that the algorithm which we use to prove Theorem 98 cannot be applied to
compute the Julia set of a rational map f such that 2; contains a parabolic periodic

point. However, we believe that the following statement is true.

Conjecture 99. Let f be a rational map. Assume that Q; does not contain any critical

points. Then J; is poly-time computable by a TM with an oracle for the coefficients of
f.
Another important class of rational maps is the class of Collet-Eckmann maps.

Definition 100. Let f be a rational map. Assume that there exist constants C,vy > 0
such that the following holds: for any critical point ¢ of f whose forward orbit does not

contain any critical points one has:
IDf"(f(c))] = Ce™ for any n € N. (2.2)

Then we say that the map f is Collet-Eckmann (CE). The condition (2.2) is called the

Collet-Eckmann condition.

In [2] Avila and Moreira showed that for almost every real parameter ¢ the map
f.(2) = 2% + c is either Collet-Eckmann or hyperbolic. In [1] Aspenberg proved that the
set of Collet-Eckmann maps has positive Lebesgue measure in the parameter space of all
rational maps of fixed degree d > 2. Moreover, there is a conjecture that for almost all

rational maps f in this space the following is true:

1) the forward orbit of every critical point ¢ ¢ J; either is finite or converges to an

attracting periodic orbit;

2) for any critical point ¢ € J; either there exists v, C' > 0 such that |[Df"(f(c))| >

Ce for any n € N or the forward orbit of ¢ contains another critical point.

By the theorem of Mané 97, every rational map f such that Q; does not contain
neither critical points nor parabolic periodic points is Collet-Eckmann. We believe that

the following generalization of Theorem 98 is true.

Conjecture 101. Let f be a rational map such that the conditions 1) and 2) above are

satisfied. Then J; is poly-time computable by a TM with an oracle for the coefficients
of f.
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Thus, we conjecture that

Conjecture 102. For almost all rational maps f of degree d > 2 Jy is poly-time com-

putable.

2.2 Poly-time computability for subhyperbolic maps

In this section we prove Theorem 95. Namely, we construct an algorithm A which for
every subhyperbolic rational map f computes J; in polynomial time. The algorithm
A uses the coefficients of the map f and some non-uniform information which we will

specify in the following subsection.

2.2.1 Preparatory steps and non-uniform information

In this work we actively use the classical Koebe distortion theorem (see [13]). Let us

state it here. For § > 0,z € C set
Us(z) ={w e C: |w—z| < §}.

Theorem 103. Let f : U.(a) — C be a univalent function. Then for any z € U.(a) one

has:
(1 = |z = al/r)[f'(a)] : (1+ |z = al/r)[f'(a)]
Are—app NS T 29
’Z—CLHf/(CL)‘ < |f(z)—f(a)| < ‘Z_aHf,(aM (24)

(1 + [z —al/r) (1 =]z —al/r)?

The statement (2.4) of the Koebe distortion theorem can be reformulated the following

way. Let 1 >a >0, = CE'{;(;’))L’", ro = % Then

U, (f(a)) C f(Uar(a)) C Ur,y(f(a)). (2.5)

We will also use Koebe One-Quarter Theorem, which can be derived from Koebe Distor-

tion Theorem.

Theorem 104. Suppose f : U.(z) — C is a univalent function. Then the image f(U,.(2))
contains the disk of radius yr|f'(z)| centered at f(z).

Fatou and Julia proved the following fundamental result.
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Theorem 105. Let f be a rational map of degree d > 2. Then the immediate basin of
each attracting cycle contains at least one critical point. In particular, the number of

attracting periodic orbits is finite and do not exceed the number of critical points.
In our proof of Theorem 95 we will use the following general fact (see e.g. [40]).

Proposition 106. Let h(z) be a compler polynomial. There exists a TM M? with an
oracle for the coefficients of h(z) and a natural number n as an input such that M?
outputs a finite sequence of complex dyadic numbers By, Ba, ..., Py for which:

1) each p; lies at a distance not more than 27" from some root of h(z);

2) each root of h(z) lies at a distance not more than 2™ from one of f3;.

Denote Np(f) and N;(f) the number of critical points of f which lie in the Fatou
set and the Julia set of f correspondingly. The algorithm computing the Julia set of a

subhyperbolic map will use the numbers

Ne(f), Na(f) (2.6)

as the non-uniform information.

Observe that the assertions Np(f) = 0 and J; = C are equivalent. Indeed, by
Proposition 94 if Ng(f) > 0 then there is at least one attracting (or superattracting)
periodic point and the Fatou set is nonempty. On the other hand if the Fatou set is
nonempty, then there is at least one attracting (or superattracting) periodic point. The
basin of this periodic point contains a critical point. Thus if Ng(f) = 0, then the problem
of computing J¢ is trivial. Therefore, we will assume that Np(f) # 0 and Jy # C.

Also, without loss of generality we may assume that co ¢ Jy. Indeed if co € J, then
using Proposition 106 we can find a dyadic point zg which lie in the Fatou set of f. Let
h : C — C be a Mdbius map such that h(oc) = z,. Consider the map A~ o f o h instead
of f.

As a corollary of Proposition 106 one can obtain the following result (see [10], Propo-
sition 3.3).

Proposition 107. Let f be a subhyperbolic rational map. There exists a Turing Machine
M? with an oracle for the coefficients of f such that the following is true. Given the
number Np(f) of critical points ¢ ¢ Jp M? outputs a dyadic set B such that

1) all the attracting and super attracting orbits of f belong to B,

2) for any z € B the orbit of z converges to an attracting periodic orbit,

3) f(B) € B.
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Proof. The algorithm works as follows. Initially, let B be an empty collection of dyadic
disks. At m-th step, m € N, do the following. By Proposition 106 there is an algorithm
which finds all periodic points of f of period at most m with precision 27™73. Let p;
be an approximate position of a periodic point of period k;. The corresponding periodic
point z; belongs to the disk Us-m-3(p;). Consider the disk Uy-m/2(p;). If Uy-m/2(p;) does
not intersect neither one of the disks from B, then approximate the image f*i(Uy—m/2(p;))

by a dyadic set with precision 277!, Namely, find a set W; € € such that
dy (Wi, f5 (Uympa(ps))) <271
Verify if
Up-m(W3) C Ug-ms2(pi)- (2.7)
This would imply that
P (Upmpz(pi)) C Uz=m1(Wi) € Uyemsz_g-m1 (pi). (2.8)

In this case, compute dyadic sets B; such that By = U, -m/2(p;) and for each j =
0,1,...,ki — 1, f(Bj) € Bjt1, where j + 1 is taken modulo k;. Add dyadic sets B,
to the collection B.

Next, calculate approximations s; of the images f™(¢;) of critical points of f such

that |s; — f™(c;)| < 271 If there are Ng(f) of the points s;, such that

Up-m-1(s;) C B = U S,
SeB
then we stop the algorithm and output B. Otherwise, go to step m + 1.

Let us show that the algorithm eventually stops and outputs a set B, satisfying the
conditions 1) —3) of Proposition 107. Let z be an attracting (or super-attracting) periodic
point of period k& with multiplier \. Let |A| < r < 1. Then for small enough £ > 0 one
has

FH(U(2)) C Ure(2).

It follows that for some m > k the corresponding approximation p; of z and the set W;
satisfy the property (2.7). On the other hand if (2.8) holds, then by Schwartz Lemma
Us—m/2(p;) contains an attracting periodic point, whose basin contains Uy-m/2(p;). There-
fore if the algorithm runs sufficient amount of steps, the union B of dyadic sets from B

satisfies the condition 1) of the Proposition 107.
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By Proposition 94, the orbit of each critical point of f which does not lie in J;
converges to an attracting periodic orbit. Thus, for some m there will be Ng(f) of the
points s;, belonging to B. This implies that the algorithm stops. By Theorem 105, we
obtain that B contains all attracting periodic orbits of f. Notice that conditions 2) and
3) of the Proposition 107 for this set B are satisfied by construction. [

Denote C'F) the set of critical points of f which lie in the Fatou set of f. Put

PF; = F(CFy).

Jj=0

The next statement is a subhyperbolic analog of Proposition 3.7 from [10].

Proposition 108. There exists an algorithm which, given the coefficients of a subhyper-

bolic rational map f of degree d > 2 and the number Ng(f), outputs a planar domain

U € € such that:
(1) U e f(U),
(2) f(U)N PF; =g,
(3) J; €U CUL(Jy).

Proof. First use the algorithm from Proposition (107) to find a dyadic set B satisfying
to the conditions 1) — 3) of Proposition 107. Let m € N be large enough so that

C\ S (B) € Ui(J)).
We can algorithmically construct a dyadic set W such that
f™(B)> W s fi=™(B).
Compute a dyadic number d > 0 such that
Us(W) € f7H(W).
Also, compute dyadic approximations s; of critical points ¢; of f such that
ls; — ¢ < d.
By Theorem 94, for any critical point ¢; € C'Fy we will eventually have:

s; € Ug(c;) Cc Uy (W) € fHW).
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Therefore, for large enough m, the set W will contain Ng(f) of the points s;. Take such

m. Then for any s; € W one has
ci € Uy(s;) C Ug(W) C f~H(W).
Thus, CF; C f~1(W). Compute a dyadic set W such that
[ 2 W s f2W).

Clearly, for the set U = C \ W conditions (1) — (3) hold. O

2.2.2 Construction of the subhyperbolic metric

Here we give the construction of a subhyperbolic metric (see [25]). We modify the
construction from [25] to be able to write it as an algorithm. First we recall the definition

and basic properties of an orbifold. We refer the reader to [25] for details.

Definition 109. An orbifold (S, v) is a Riemann surface together with a function v :
S — N such that the set {z € S : v(z) # 1} is discrete. Points z for which v(z) # 1 are

called branch points.

Recall that an orbifold metric on a Riemann surface is a conformal metric (z)dz with a
finite number of singularities of the following form. For each singularity a there exists an
integer index v = v, > 1 such that for the branched covering z(w) = a 4+ w” the induced

metric
dz
1) | 1

in w-plane is smooth and nonsingular in a neighborhood of the origin.

dw

Definition 110. Let f be a subhyperbolic rational map. An orbifold metric g on a
neighborhood U of J; is called subhyperbolic if f is strictly expanding on U with respect
to

IDf()n>A>1

for any z € f~}(U) except the branch points.
Let p: 8" — S be a regular branched covering. Then for every z € S the local degree

of p at a point w € p~!(z) does not depend on w. One can define the weight function

v: S — N of the covering p assigning v(z) the local degree of p at w € f~1(2).
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Definition 111. Let (S, v) be an orbifold. A regular branched covering
p:S — S

with the weight function v such that S’ is simply connected is called a universal covering
of the orbifold (S, ). We will use the notation S, — (S, ) for a universal covering of
this orbifold.

Proposition 112. Let (S,v) be an orbifold. The universal covering

S, — (S,v)
exists and unique up to conformal isomorphism, except in the following two cases:

1) S~ C (the Riemann sphere) and S has only one branch point;
2) S = C and S has two branch points a1, ay such that v(ay) # v(az).

The Euler characteristic of an orbifold (S, ) is the number

s =x)- % (1- 5.

z€S

where x(9) is the Euler characteristic of the Riemann surface S. Since the set of branch
points of S is discrete the last sum contains at most countable number of nonzero terms.
If S contains infinitely many branch points then we set x(S,v) = —oo. The orbifold
(S,v) is called hyperbolic if x(S,v) < 0.

Lemma 113. If (S,v) is a hyperbolic orbifold then S, conformally isomorphic to the

unit disk.

Let f be a subhyperbolic rational map. Let U be the set from Proposition 108.
Construct an orbifold (U,v) in the following way. Put S = U. Denote by CJ; the
set of the critical points of f which lie in Jy. As the set of branch points of U take
BP = {f’(c),c € CJ;s,j € N}. Since f is subhyperbolic, BP is finite. Put v(z) = 1 for
all z € U\ BP. Denote by n(f, z) the local degree of f at z. Define numbers v(a),a € BP
such that the following condition holds:

for any z € U v(f(2)) is a multiple of v(2)n(f,2). (2.9)

If the orbifold (U, v) which we obtained is not hyperbolic, take any repelling orbit {z;}
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Figure 2.2: Construction of the subhyperbolic metric

of f of the length at least 5 and replace v(z;) by 2v(z;) for all z; from this orbit. The
new orbifold will be hyperbolic and satisfying the condition (2.9).

By Proposition 112, there exists a universal covering
U, 5 (U,v).

By Lemma 113, without loss of generality we may assume that U, = U is the open unit
disc. Since V = f~1(U) C U, Condition (2.9) guarantee that the map f~! lifts to a
holomorphic map

F:U—-T.

Note that W = F(U) = 7~ }(V) is strictly contained in U. Denote py the Poincaré metric
on U. By the Schwartz-Pick Theorem, the map F' is strictly decreasing in the metric py.
Let p be the projection of py onto U. For any w € U and z = m(F(w)) one has:

IDf ()l = IDF(w)] ™ (2.10)

It follows that the map f is strictly expanding with respect to the norm induced by u.
To show that the metric p is subhyperbolic we need to prove that p is uniformly strictly

expanding. First we will prove an auxiliary lemma.

Lemma 114. There exist a constant C' > 0 such that for any z € U except the branch
points of the orbifold (U,v) one has:

1(2)

-1
C<dz

1
< C’max{|z—aj]”(a.7’> 1},
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h(w)=w"+3g, -

Figure 2.3: Ilustration to Lemma 114

where a; are the branch points. The constant C' can be obtained constructively.

Proof. Let z € U. Assume that z is not a branch point. To estimate u(z) without loss
of generality we may assume that z = m(0). Recall that the Poincaré metric on the unit

disk is of the form:

2|dw
|pu(w)] = 1_—|w|2
Therefore one has:
pz)| 2
dz |Dm(0)|

We can construct a dyadic number R such that U is contained in a disk of radius R. By

Schwartz Lemma,

Dr(0)| < R
Thus,

N(Z) —1

—21 = 2R

dz

Recall that the set BP of branch points consists of critical points which lie in Jy
and possibly one repelling periodic orbit. It follows from Proposition 106 that we can
construct a dyadic number ¢ > 0 such that disks Us.(a;) are pairwise disjoint and all

belong to U. Assume first that z ¢ |JU.(a;). Considering the branch

¢:U(z) = U,
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of 771 such that ¢(z) = 0, by Schwartz Lemma we obtain
[Dm(0)] > e.

Let z € U.(a;) for some j. Then in a neighborhood V' (0) of 0 the map 7 can be written

in the form
m(w) = g(w)™ + a;,

where g(w) is a one to one map from V' (0) onto Us(0) with § = (2¢)'/™. In V(0) one has

Dr(w) = mg(w)™ ' Dg(w). (2.11)
Consider the map y = ¢! : Us(0) — V(0). Since

9(0)] = |z = qy /™ < 271/,
by Schwartz Lemma we get:

[Dx(9(0))] € K = K(e),

where constant K > 0 can be obtained constructively. Now (2.11) implies that

D (0)] = mE ™z — a7,
which finishes the proof. m
Proposition 115. There exists a constant A > 1 such that

1D (2) | > A

for any 2 € V.= f~Y(U). The constant \ can be constructed algorithmically.

Proof. For a map g : Uy — U, between two hyperbolic Riemann surfaces denote by

1Dg ()]0,

the magnitude of the derivative of g computed with respect to the two Poincaré metrics.
Denote dist, the distance in the metric g on U and disty the distance in the Poincaré
metric on U. Let

1 W —=TU

be the inclusion map (see figure 2). Then we have:

IDE(w)lluw = [[DF(w)lluw || Di(F(w)ww < [|[Di(F(w))l|lw-
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Using Lemma 114 it is not hard to show that we can construct a dyadic constant R > 0
such that
dist, (2, U\ V) < R forany z € V.

Let z € V. Then there exists w € W and ¢ € U\ W such that
m(w) =z and disty(w, () < R.

A suitable fractional linear transformation sends ¢ to 0 and w to x > 0. Explicit calcu-
lations show that

el — 1 el —1

14+
d:dU(x,O):logl_x, so that T= IS GRL T (2.12)
Now, by Schwartz-Pick Theorem, one has:
[1Di(w)lwy < [|Di(z)llu\opu- (2.13)

The right hand side of the last inequality can be estimated explicitly. It is equal to

2|z log x|
"=

Note that a(x) increases with z. By (2.12) and (2.13), the value || Di(w)||w,u is bounded
from above by a(X) < 1 for X = (eff —1)/(ef' + 1). By (2.10) we obtain that ||Df(z)]|,
for z € V is bounded from below by 1/a(X). O

Corollary 116. The metric pu s subhyperbolic.

Lemma 114 and Proposition 115 together make a subhyperbolic analog of Proposition
3.6 from [10].

2.2.3 The algorithm

Denote V, = f~*(V). Notice that
Jf@VkH@Vk@V
for any k£ € N. Let us prove the following auxiliary statement.

Proposition 117. There is an algorithm computing two dyadic constants Ky, Ky > 0
such that for any z € V3 \ J; and any k € N if f*(z) € Vi \ V3 then one has

K K
et S < d(z, Jy) < 2

[Df(2)] [Df*(2)
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Proof. First construct a dyadic number R such that
0 < R <min{d(C\ V3, Js),d(V;,C\ V)}.

Then for any z, k, satisfying the conditions of the proposition, the open disk Ur(f*(z))

does not intersect neither J; nor a forward orbit of a critical point of f. Let
¢: Ur(f*(2)) = C

be the branch of (f*)~! such that ¢(f*(z)) = 2. Then, by Koebe Quarter Theorem, the
image ¢(Ugr(f*(2))) contains a disk or radius 1 R|D¢(f*(2))|. Since J; is invariant under
f, it follows that

R
dz,J;) > ————.
S o)
Set Kl = R/4
Further, consider
PJy={f/(c):ceCJj >0} (2.14)

Notice that PJ; is finite. Recall that we can algorithmically construct approximate
positions of all critical points of f which lie in Jy with any given precision. Thus, we
can approximate P.Jy. We can also algorithmically construct positions of some points in
J¢ which lie apart from PJ; with any given precision. For instance, using the algorithm
from Proposition 106 we can calculate an approximate position of a repelling periodic
orbit. Using the above we can construct a finite number of pairs of simply connected

dyadic sets W € Uy, such that the following is true
1) W;NJy # @ for any j;
2) UW; > Vi\ Vs
3) YU, cV\ PJ;.

For each j fix the Riemann mapping ¢, : U; = D = {2 : |z| < 1}. Assume now that z, k
satisfy the conditions of the proposition. Then f*(z) C W; for some j. Let ¢ : U; — U(z2)
be the branch of (f*)~! such that ¢(f*(z)) = 2. Consider the map

gbogbj_l:D—)U(Z).



Figure 2.4: Ilustration to Proposition 117.
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Notice that ¢;(W;) € D. Applying both parts of Theorem 103 to the map ¢ o wj_l, we

can construct a dyadic number 7; > 0 not depending either on z or on k such that ¢(W;)

is contained in the disk of radius 7;|D¢(f*(z))| centered at z. It follows that
d(z,Jp) < m.
Set Ky = max{r;}.
As a preparatory step construct a dyadic set W5 such that
Vs eWy @Vs.
Compute dyadic numbers 1 > s > 0, > 0 such that
e < min{d(Wa, €\ V), d(Vs,C\ Wa)}, Vi € U,(Jy).

Let m = max{r(a;)}. Lemma 114 implies that for any z € V

Cd(z, Jp) < dist, (2, J;) < mCd(z, J;)'/™.

(2.15)

(2.16)
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Let log stand for the logarithm with base 2. We will use the standard notation [x] for
the integer part of a real number x.
Assume that we would like to verify that a dyadic point z is 27" close to J;.

Consider first points z which lie outside V3. Construct a dyadic set W5 such that
Jy C Wy e Vs.

Then we can approximate the distance from a point z ¢ W3 to J; by the distance form
z to W3 up to a constant factor.
Now assume that z € V3. Consider the following subprogram:
1:=1
while i < [log(mC?s'/™)/log A + (n +1)/log A\] + 1 do

(1) Compute dyadic approximations

pi~ f(z) = f(f7(2) and d; = [Df'(z)| = [Df7'(2) - DF(f7(2))]

. .. . —n—1
with precision min{27"! ¢}.

(2) Check the inclusion p; € Wy:
o if p; € Wy, go to step (5);
o if p; ¢ Wy, proceed to step (3);

(3) Check the inequality d; > K,2"™! + 1. If true, output 0 and exit the subprogram,
otherwise
(4) output 1 and exit subprogram.
(5)i—i+1
end while
(6) Output 0 end exit.
end

The subprogram runs for at most L = [log(mC?s'/™)/log A+ (n +1)/log\] + 1 =
O(n) number of while-cycles each of which consists of a constant number of arithmetic
operations with precision O(n) dyadic bits. Hence the running time of the subprogram

can be bounded by O(n?lognloglogn) using efficient multiplication.
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Proposition 118. Let f(n,z) be the output of the subprogram. Then
1, if d(z,Jp) >27"1
f(n,2) =1 0, if d(z,J;) < K271, (2.17)

either O or 1, otherwise,

_ _Ki
where K = o

Proof. Suppose first that the subprogram runs the while-cycle L times and exits at the
step (6). This means that p; € Wy for ¢ = 1,..., L. In particular, p;, € Ws. It follows
that fL(z) € V1. By (2.15) and (2.16) we obtain:

d(z, Jp) < Cdist, (2, J;) < CAEdist, (f5(2), J;) <
N EmC2d(f5(2), J)V™ < X EmC?st/m L 27
Thus if d(z, J;) > 277!, then the subprogram exits at a step other than (6).
Now assume that for some ¢ < L the subprogram falls into the step (3). Then
pi-1 € Wy and p; ¢ Wo.

By (2.15), f'(z) € Vi \ Va. Now if d; > K,2"*! + 1, then |Df'(z)| > Ky2""'. By
Proposition 117,
d(z, J;) <277 L

Otherwise, |Df(2)| < K2"™ +2 < (K3 + 1)2""!. In this case Proposition 117 implies

that
K,

g—n-1,
Ky +1

d(Z, Jf) 2

0

Now, to distinguish the case when d(z, J;) < 27"~ from the case when d(z, J;) > 27"

we can partition each pixel of size 27" x 27" into pixels of size (27"/K) x (27"/K) and
run the subprogram for the center of each subpixel. This would increase the running

time at most by a constant factor.

2.3 Maps without recurrent critical orbits and parabolic
periodic points

In this section we will prove Theorem 96. Throughout this section let f stand for a
rational map without parabolic periodic points such that {1y does not intersect the set

of critical points of f.
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2.3.1 Preparatory steps and nonuniform information

As in the case of subhyperbolic map, without loss of generality we will assume that

oo ¢ Jy. For any ¢ € C'Jy put
No(c) = max{n : f"(c) € CJs} + 1.

Put Ny = max Ny(c). Denote
CGCJf

C={f"c):ceCJ0<n< No(e)}, M={fr(c):ceClsn=No(c)}.

By our assumptions, there are no either recurrent critical orbits or parabolic periodic
points of f, the set M is invariant and does not contain critical points of f. Thus, the
set M satisfies the conditions of Mané’s Theorem 97. The following result is classical
(see [25]).

Theorem 119. Let g be a rational map. Then the boundary of each cycle of Siegel disks
and each cycle of Herman rings belongs to PJ, (see (2.14)).

Lemma 120. There are no either Siegel disk cycles or Herman ring cycles in the Fatou

set of f.

Proof. Assume for simplicity that there is a Siegel disk A. By replacing f with an iterate
if necessary, we can assume that f(A) = A. Then the boundary 0A of the Siegel disk is
forward invariant under f and belongs to P.J;. It follows that A does not contain any
critical point of f. Thus, OA satisfies the condition of Mané’s Theorem 97. Therefore,
there exists N such that fV is expanding on a neighborhood of A. This is impossible,

since f is conjugated to a rotation inside A. The other case can be treated similarly. [

To compute the Julia set the algorithm will use the following non-uniform infor-
mation:
N1. Np(f), Ns(f) and degrees my, ..., my, s of the critical points of f which lie in Jy;
N2. Ny, N € N, dyadic numbers §,0" > 0,¢ > 1 and a dyadic set U M such that

Usja(M) D fN(U), Uspp(M) DU D Usi(M), Ussja(U)NC =@
and for any z € Uss2(U) one has
IDfY(2)] > ¢

In this section we will prove the following theorem.
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Theorem 121. Let f be a rational map such that f has no parabolic periodic points
and ¢ does not contain any critical points. There exists a Turing Machine which, given
an oracle for the coefficients of the map f and the non-uniform information (N1, N2),

computes Jy in a polynomial time.

Now we prove several auxiliary lemmas.
Lemma 122. For any z € U and any 21, 2, € Uss/2(2) one has

|/ (21) = [N (22)] 2 qlzr — 2ol

Notice that, in particular, the restriction of /¥ on Uss/2(2) is one to one for any z € U.

Proof. Using Lagrange formula
g(z1) — g(22) = (21 — 22) Dg(Az1 + (1 — N)29), A€ [0,1], (2.18)

for g(2) = f¥(z) we obtain

V(1) = [N (2)] = glzn — 2.

For simplicity set F' = f. From N2 one can deduce that
d(F(z),J¢) = qd(z, Jy) for each z € Us(U). (2.19)
Indeed, let ¢y € J; be such that
d(F(2),Jr) = |F(2) = Col.

Let I be a preimage of the straight segment [(o, F'(2)] by F' such that z is one of the ends
of the curve I. Denote by z, the other end of I. If I C Uss/5(U), then |DF(w)| > ¢ for
all w € I, therefore (2.19) is true. Otherwise, let 2’ be the first intersection of I with
OUss/5(U) and I' be the part of I starting at zy and terminating at z’. One has:

[F(2) = ol 2 [F(2) = F(2)| 2 ql(I') = 36q/2 = qd(z, Jy),
where [(I") is the length of the path I’

Lemma 123. For any z € U and k < min{j € N: FV(2) ¢ U}, k € N, one has

(2.20)
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Figure 2.5: Illustration to Lemma 123

Proof. Let z, k satisfy the conditions of Lemma 123. Put
zi = F(2),U; = Us(2),5 =0,1,... k.

By Lemma 122, F' is univalent on U; for each 7 =0,1,...,k —1 and

F(U;) 5 Ui
It follows that there exists V' C Uy such that

F*(V) = U,
and F* is univalent on V. Lemma 122 implies that

V' C Usjq(20)-
Let h: U, — V such that h o F* is identical on V. Put

ro = d(zx, Jf).

Then ry < 2. Using Koebe Distortion Theorem in the form (2.5) for r = 2r and o = 1/2,

we obtain:
Uiz (2) € h(Uno(20)) C Urojp (2101 (2)- (2.21)
Since Jy is invariant under f, it follows that
%r0|h'(zk)] < d(z,Jp) < 4rolh' (zx)]. (2.22)

Since Dh(z) = #k(zy (2.22) is equivalent to the first part of (2.20). Similarly, one

can prove the second part of (2.20). Observe that we can not prove a lower bound for

d(F*(z), M) in this way since M is not necessarily invariant under F~1!. O
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Till the end of this section in each of the preceding statements we assume that the
Turing Machine has an access to the non-uniform information (N1, N2) and an oracle

for the coefficients of the map f.

Lemma 124. There exists a TM which computes dyadic numbers €1 > 0, K > 0, such

that for any critical point ¢ of f which lie in J; one has
d(f(2),J;) = Kd(z, Jg)|z — |
for any z € U, (c), where m is the degree of f at c.

Proof. By Proposition 106 we can find approximate positions of all critical points of f.
Notice that the orbit of every critical point of f which lie in the Fatou set converges to
an attracting cycle. Using the ideas from the proof of Proposition 107 we can distinguish
the critical points which belong to the Fatou set from the critical points which belong to
the Julia set. Let ¢ € J¢ be a critical point of degree m. Then we can approximate the
coefficient a,, at (z —¢)™ in the Taylor expansion of f at ¢ and compute vy > 0 such that

f(z) = f(o)

am(z —c)m

—1‘<1

for any z € U,(c). Let w be any m-th root of a,,. Then there exists a unique holomorphic

map ¢ from U, (c) to a neighborhood of the origin such that
f(z) =¢(z)™+ f(c) on U,(c) and 9'(c) = w.
Make v smaller if necessary in order to have
[¢'(2)] 2 |wl/2 for any z € U,(c).

The image f(U,(c)) contains a disk U,(f(c)), where @ > 0 can be algorithmically con-
structed. Let 0 < g1 < 7y such that

f(Uei(€)) C Uapa(f(©))-
Take z € U, (c). Observe that
d(f(z), Jr) < d(f(2), f(c)) < a/2.

Let ¢y € J¢ such that
d(f(2), Jg) = |f(2) = Gol-
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Figure 2.6: Illustration to Lemma 124

Then ¢y € U,(f(c)). There exists 2y € Jr N U,(c) such that f(z9) = {p. One has

F(2) = f(z0) = ()" = w(z0)" = | [ (0(2) —n;). where 1; = €2™9/™(z).

§=0

3

Let 0 < jo < m — 1 be the number for which 7;, takes the closest value to ¢(z). From
simple geometric observations it follows that

2|¢(2)]

m

[9(2) = 05| = [&(2)| sin(m/m) >

wl,
> —lz -
m

for any j # jo. Since ¥~ (n;,) € Jy, it follows that

jwllz = ¢l

d<f<z>,Jf>>< ) e) — el = Kz — (),

where K = m!'™"™|w|™/2. O

m

Using the definition of the dyadic set U and Proposition 106 one can prove the fol-

lowing statement.

Lemma 125. There exists a TM which computes a dyadic number e5 > 0 such that

UL, ((7) NTN(U) = @ and Mo (U@ (5)) cU. (2.23)
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Proposition 126. There exists a TM which computes a dyadic number 0 < v <
min{ey, g2} such that the following is true. For any z € U, (5’) and k = min{j €
N: fNi+No(2) ¢ U} one has

d(fFNTN(2), Jp) = qd(z, Jy).
Proof. First put v = min{ey,es}. Let z € U, (5’) \ Jr. Set
w= fN(2),k =min{j € N: Fi(w) ¢ U},

where F' = fV. Using Lemma 123, we obtain:

A(FH(w), Jy) _ d(F*(w), M)

dw,J;) = 9d(w, M) (224)

Let c € C. Put h = fNo. Let m, be the degree of h at ¢ € C. Then we can algorithmically

construct a dyadic number L. > 0 such that

me

() = h(e)] < Le|z — ¢

for any z € U,(c). Then
d(h(z), M) < d(h(=), h(e)) < Lel= — ™. (2.25)

Lemma 124 implies that we can algorithmically construct dyadic numbers o, > 0, K. > 0

such that
d(h(z),Js) = K.d(z, J;)|z — ¢! (2.26)

for any z € U, (c). Combining (2.25) with (2.26), we get

d(h(z), Jy)
d(Z, Jf)

d(h(z), M)

> K L'
|z — ¢

(2.27)
for any z € Uninfa.1(c) \ J¢.

Take 7 such that v < min {%, ac} for any ¢ € C. Recall that in (2.24) F stands
for f¥ and w stands for f*°(z), in (2.27) h stands for fNo. Now (2.27) implies that

d(w, Jy) < qu(w,M)
d(Z,Jf) - o

(2.28)

for any z € U, (5) Combining (2.24) and (2.28), taking into account that U D Uy (M),

we obtain the statement of Lemma 126. O
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An analog of the Proposition 108 holds for the maps f, which satisfy the conditions
of Theorem 121.

Proposition 127. Let f be a rational map such that f does not have any parabolic
periodic points and y does not contain any critical points of f. There exists a TM
which given an oracle for the coefficients of the map f and the non-uniform information

outputs a planar domain V € C such that:
(1) Ve fv),
(2) f32(V)N PF; = 2,
(3) JpeV.
The proof is similar to the proof of Theorem 108. Denote

o=CcJ;u | 0(g=CuM, W=V\6.

CECJf

If CJy = & then f is hyperbolic. Since for hyperbolic maps poly-time computability of
the Julia set is well known (see [7] and [29]), we will assume that C'J; # @. Then f(O) is
strictly smaller than ©. It follows that f(W) is strictly larger than W. Let || - ||y stands
for the hyperbolic norm associated with W. Then

|IDf(z)||lw > 1 for every z € W.

Let dw be the metric on W induced by || - ||w. It follows that:
dw (f(2),J;) = dw(z, J;) for every z € f~H(W). (2.29)

Notice that

inf f(z 0.
zle\(UW(é))| ) >

One can construct a dyadic subset V; such that
ffvVyeviev

Denote Wy = Vi \ ©. Using ideas from Section 2.2 and standard considerations one can

show the following:

Lemma 128. One can algorithmically construct dyadic numbers r € (0,1],¢ > 1, R >
0,e > 0, such that
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(1) dw(f(2), ;) > tdw(zJ;) for any z € W\ (UW (5) U U) ;
(2) d(f(z),Js) = rd(z, Js) for any z € W\ U, (5) ;
(3) Dr(0) DV D Vi D U(Jy).

Notice that the Euclidian metric d and the hyperbolic metric dy, are equivalent on

any compact subset of W. The following lemma can be proven similarly to Lemma 114.

Lemma 129. One can algorithmically construct a dyadic constant C' > 0 such that
C (2, J;) < dw(z, J;) < Cd(z, Jy) (2.30)

for any z € Wy \ (U7 <5> UU).

Lemma 130. There exists a TM which computes dyadic number S > 0 and m € N such
that for any | € N and z € Vy one has d (f'(z), Jy) = Sd(z, J;)™.

Proof. Tt follows from Lemma 124 that one can compute dyadic numbers 1 > n > 0,

m > 1 such that
a(f7(2),Jy) = nd (2 )" (2.31)

for any z € U, (6) and j =1,2,...,Ng— 1. Let z € Vi \ J; and l € N. If fi(z0) ¢ Vi
for some 1 < 7 < [, then by Lemma 128 one has:

d(f'(z0),Jf) =€, 0 =d(2,J;), and thus, d(f'(z),Jf) = Sd(z0, Jp).

€
0

Assume that
fj(zo) eV forall 1<j5<I.

Put Iy = 0. Define inductively numbers /; and points z; = f'i(z) as follows:

;

L+ 1, itz ¢ U, (5) uvu,
l; + N, if z eUandl;+N <1,

° (2.32)
L+ No+ kN, if z €U, (C) and I, + Ny + kN < 1,

i =

e otherwise.

while [; < [, where
k=min{j € N: fN+No () ¢ U}.

Now by (2.29), Lemma 128 and Proposition 126 the following is true:
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1) dw(zit1,Jf) = dw(zi, Jy) for any i
2) if z ¢ U, (6) U U, then
dw (zit1, Jr) = tdw(z, Jr) and d(ziy1, Jp) = rd(z;, Jy);
3) if z; € U and [; + N < [, then
d(ziy1, Jy) 2 qd(zi, Jp);
4) if ;€ U and [, + N > [, then

d(zis1, Jf) = TN_ld(Zz‘, Jr);

5) if z € U, (5) and I, + Ny + kN < [, then

d(zis1, J5) = d(z;, Jy);

6) if z € U, (C) and li + No + kN > I, then

d (zip1, Jp) = e (2, Jp)™

The items 1) — 5) are direct corollaries of the choice of the dyadic constants, formula

(2.29), Lemma 128 and Proposition 126. Let us prove 6). Let
5 €U, (C) and b+ No+ kN > 1

If [; + Ny > [, then 6) follows directly from (2.31). Otherwise let n be the remainder of
[ —1; — Ny modulo N. Then by (2.31) and (2.19)

d(zi41,Jp) 2 "N (flilifn(zi)a Jp) =
PN (N (z), p) = N d (2, )™

Let s be the number of i-th, for which
5 d U, (5) uuU.

If s # 0 then let I; be the minimal and I, be the maximal such i.
case 1: s = 0. Then one of the following two possibilities holds.
a) 2 € U, <5> Then [ = I,. By 6),

d (f'(20),J5) = nr™td (20, Jp)™ .
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b) zp € U. Then by 3) and 4),

d (fl(zo), Jf) > V71 (2, Jr) .

case 2: s # (0. There are two possibilities.
a) l;, = 1. Then I = I,. As in the case 1,

d (fl(zo), Jf) > V7l (2, Je)™.

b) I, < 1. Then, by 3) and 5), d(zy,, Jr) = d(z0, Jf). By (2.30),

d<2127 Jf) > CildW(Zfzv Jf) > CildW(Zhv Jf) > 072d<207 Jf) (233>
Among the numbers Io + 1, 1o + 2,...,[ there is at most one number j such that
Zj € Ufy (5)

and at most one number j such that
zj €U, but [; + N > L.
It follows that
d(f'(=), Jp) = " Vnd (21, Jp)™ = Sd(z, Jp)™, (2.34)

where S = rm+tNpC—2m,

Thus, in both case 1 and case 2
d(f'(z0), Jy) = Sd(z, Jp)™,
which finishes the proof. O

Theorem 131. There exists a TM which computes the coefficients of a polynomial p(n)
such that for any z with d(z, J;) > 27" one has

() ¢ V.
Proof. Let z = 2z € V; and d(zp, J§) > 27". Let [ be the maximal number such that

fi(z) € Viforall j =0,1,...,1
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Construct I;, z; as in Lemma 130. Then properties 1) — 6) hold. Let iy,...is be the

sequence of indexes for which
Then, by Lemma 129 and properties 1) and 2) from Lemma 130,

§ = d(f'(20), ;) = C*%d(20, Jy) = C 2527

It follows that
s < Ki(n) = [nlog, 2 + 2log, C + log, J].

Let 7 be an index such that z; € U. Let
ki =min{j € N: fN(z) ¢ U}.
It follows from Lemma 130 that
0> d(kai(zi), Jr) = qkid(zi, Jr) = gkis2—mn,

Therefore,

ki < Ky(n) = [mnlog, 2 + log, d —log, S].

Now it is easy to see that among any Ks(n) + 1 consecutive integer numbers between 0

and [ there exists ¢ such that
a¢ U, (C)uu
Let J be the number of elements in the sequence [;. We obtain that
J < (Kyi(n) + 1)(Ka(n) + 1).
Observe that for each 0 < j < J — 1 one has:
lis1 —1; < NKy(n) + Np.

It follows that

Since f~1(V) € V;, € V, this finishes the proof. O
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2.3.2 The algorithm

Similarly to Proposition 117 one can prove the following result.

Proposition 132. There is an algorithm computing two dyadic constants Ky, Ko > 0
such that for any z € V and any k € N if f*(2) € f(V)\ f~(V) then one has

Kl K2
D) S 1S By

Now we are ready to describe the algorithm. The steps of the algorithm are analogous

to the steps of the corresponding algorithm for a subhyperbolic map. Compute a dyadic

number £ > 0 such that
e <min{d(V;,C\ V), d(f(V),C\ W)} (2.35)

Assume that we would like to verify that a dyadic point z is 27" close to Jp. If
z ¢ Vi, we can approximate the distance from z to Jy by the distance form z to V4 up to
a constant factor.

Now assume that z € V;. Let p(n) be the polynomial from Proposition 131. Similarly
to the case of a subhyperbolic map, consider the following subprogram:
1:=1
while i < p(n+ 1) do

(1) Compute dyadic approximations

pi f'(z) = f(f71(2)) and di ~ |Df'(2)| = [Df7(2) - DF(f71(2))]

with precision min{27""! ¢}.

(2) Check the inclusion p; € Vi:
o if p; € Vi, go to step (5);
e if p; ¢ V1, proceed to step (3);

(3) Check the inequality d; > K,2"™! + 1. If true, output 0 and exit the subprogram,
otherwise

(4) output 1 and exit subprogram.

(5)i—i+1

end while
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(6) Output 0 end exit.
end

The subprogram runs for at most p(n + 1) number of while-cycles each of which
consist of a constant number of arithmetic operations with precision O(n) dyadic bits.

The following proposition is proved in the same way as Proposition 118.

Proposition 133. Let f(n, z) be the output of the subprogram. Then

1, if d(z,Jp) > 27"
f(n,z) =4 0, if d(z,J;) < K271, (2.36)
either 0 or 1, otherwise,
K
where K = Ratl:

2.4 Maps with parabolic periodic points

In this section we will sketch the proof of Theorem 98. Let f be a rational map such that
24 does not contain either critical points or parabolic periodic points. We will assume
that the periods and multipliers of the parabolic periodic points are given as a part of
the non-uniform information. Replacing f with some iteration of f if necessary, we may
assume that the multiplier and the period of each of the parabolic periodic points is equal
to 1. Then at each parabolic periodic point (in fact, a fixed point) p the map f can be
written in the form

f(2) =2+ c,(z — p)™ T + Oz 1),

where n, € N. We will assume that the numbers n, are also given as a part of the
non-uniform information. Observe that some parabolic fixed points of f may belong to
the postcritical set of f.

In this section we denote by CJ; the set of critical points ¢ € C'J; such that the
forward orbit O(z) does not contain any parabolic periodic points and by C'.J ]If the set
of critical points ¢ € Jy such that an iteration of ¢ hits a parabolic fixed point. Let
No(c), No, M,CN’ be the same as in section 2.3. For numbers o, 3 > 0, a direction v €

[0, 27] and a point w € C introduce a sector
VY(B,a) ={z € Uy(w) : arg(z —w) € (v — B, v+ p)}. (2.37)

Let p1,...,ps be all parabolic fixed points of f. The algorithm will use the same

non-uniform information (N1, N2) which was described in subsection 2.3.1 and, in
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Figure 2.7: Hlustration to non-uniform information N3.

addition,

N3. approximate positions a; of p; with a dyadic precision o« > 0 and a number 5 > 0
such that for each j:

1) p; is a unique fixed point of f in Us,(a;) (and thus p; can be approximated efficiently

using Newton method);

2) for each critical point ¢ which lie in J; one has

Uza(a;) \ {p;} N O(c) = &;

3) for each attracting direction v € [0, 27| at p; the sector
‘/jy = ‘/pl; (/B, 2@)

belongs to an attracting Fatou petal at p,.
Observe that for a point 2 in the sector V" the distance d(z,Jy) up to a constant factor

can be approximated by |z — p;|. We will use the following result from [8] (see Lemma
8).

Lemma 134. Let g(z) = z + cpp12™ + cpi22™™2 + ... be given as a power series
with radius of convergence R > 0. There is an algorithm which given a point z with

|z] < 1/m < R computes | = [m"/C|]-th iteration of z and the derivative Dg'(z) with
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precision 27° in time polynomial in s and logm. Here C' is some dyadic constant which

can be algorithmically constructed. The algorithm uses an oracle for the coefficients c,,.

Lemma 134 implies that we can compute ”long” iterations of points close to parabolic
periodic points efficiently.

By the assumptions on the map f one can algorithmically construct a dyadic number
€ > 0 such that the following is true. Let a point z be e-close to the Julia set. Assume
that some iteration f*(z) belongs to U.(p;). Consider the neighborhood V = U.(f*(z)).
Let

Vo=U(2),W,.... Ve =V

be the pullbacks of V' under f along the orbit of z, where U(z) is a neighborhood of
z. Then the number of n for which V,, contains a critical point ¢ € J; is bounded from
above by a constant independent from k£ and z. In a similar fashion as Proposition 117

using ideas of Lemma 124 we can prove the following statement.

Proposition 135. One can algorithmically construct dyadic numbers Ky, Ky,e > 0 such
that for each z € U.(Jy) if k satisfies the following

f(z) € U.(Jy) for n=1,...,k, and f*(z) € U.(p;)

for some parabolic fized point p; then

Kid(f*(2), J;) Kad(f*(2), Jy)
|Df(2)| IDfF(z)|

From the description of the dynamics near a parabolic point using Koebe Theorem

<d(z,Jyp) <

103 we can obtain the following result.

Proposition 136. One can algorithmically construct numbers Ks, L > 0 such that for
each z € Uc(p;) \ (UV}) and each n € N if

fi(z) € Ud(py) for alli=0,1,... 1= 2"

then one has |f'(z) — p;| = 2"z — p;| and

LG —pl AT 1)~y
BT S Tdm) S gl

Now we briefly explain how to adopt the algorithm from Paragraph 2.3.2 to prove

Theorem 98. Assume that we want to verify if a point z is 27"-close to J;. Construct a
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sequence z; = f'i(z) in a way analogues to the construction from Lemma 130 (see (2.32)).
We will define /;;1 in a different way from (2.32) only if z; € U.(p,) for some parabolic
fixed point p;. In this case we do the following.

1) If z; € V" for some attracting direction v then we stop. We can find the distance from
z; to Jy up to a constant factor. Using Proposition 135 we can estimate the distance
from z to J; up to a constant factor.

2) If z; € U.(p;) \ (UV}) then consider the points f*(z;), where k, = 2/47). Observe that
by Lemma 134 we can find a 27" approximation of f* (z;) in time polynomial in 7 and

n. Let r be the minimal nonnegative integer number such that
5 (2) =il > e

Set zi11 = fFr(2).

Observe that a direct analog of Theorem 131 is not true in a presence of parabolic
periodic points, even if we assume that z does not belong to an attracting basin of a
parabolic periodic point. For a point 27" close to a parabolic fixed point in a repelling
petal it takes exponential time in n to escape an e-neighborhood of the parabolic fixed

point. However, using Lemma 134 and Proposition 136 we can prove the following:

Proposition 137. There is an algorithm computing coefficients of a polynomial p(n)
such that if

d(z,Jf) > 27" and z ¢ UV} for each i=0,1,...,p(n),

then d(zymy, J§) > €. Moreover, we can compute 2~"2-approzimations of z; = f'(z) and

Dfli(z) fori=0,...,p(n) in time polynomial in n.

Now we briefly describe the algorithm computing the Julia set J; in a polynomial
time in n. Let z € U.(Jf). Assume that we want to verify that z is 27" close to Js.
Without loss of generality we may assume that 217" < ¢. Compute approximate values
a; of z; and d; of Df%(z;) with precision 2772 i =1,...,p(n).

1) If z; € UV} for some i such that

d(zj,Jr) <e/2 for j=1,...,i

then we can find approximate distance from z; to J¢. By Proposition 135, we can find
d(z,Jg) up to some constant.

2) If d(z;, Jr) > ¢/2 for some i, then we can find the distance d(z;, J;) up to a constant
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factor. Using Koebe Theorem (103) we can find the distance from z to J; up to a constant
factor.

3) If neither 1) nor 2) holds then by Proposition 137
d(z, Jf) < 27"

In conclusion, let us mention an alternative numerical method to calculate iterations
of points close to parabolic periodic orbits. This method has been implemented in recent
literature. To illustrate the method we consider a map with a simple parabolic point at

the origin: .
h(z) =2+ 2% + Zakzk.
Let j(z) = —1/z and F(z) be the germ at inﬁnilg;ggiven by
F(z)=jofoj(z)=—1/f(—1/2) = 2+ 1+a(z), where a(z) = O(z7").
Denote by T the unit shift: 7'(z) = z+ 1. In [15] and [16] Ecalle has shown the following

Theorem 138. The equation Wo F(z) = T oW(z) has a unique formal solution in terms
of the series (generally, divergent)
U(z) = plogz + Z ez r (2.38)
k=1
The series ¥ gives an asymptotic expansion for an attracting and a repelling Fatou co-

ordinates of the map F, ¥, and VY, correspondingly.

For survey on divergent series and asymptotic expansions we refer the reader to
[28]. Theorem 138 means that the Fatou coordinates ¥, and ¥, near infinity can be
approximated by finite sums of the series (2.38). To approximate n-th iteration of the
map f near the origin one can use the following formula:

f"(z)=joW¥ toT"oWoj
where W stands for either ¥, or ¥, depending on whether z belongs to an attracting or a
repelling Fatou petal of f. We would like to emphasize that this is not a rigorous method
since we do not know how many terms of the series (2.38) to take to obtain the desired
precision. However, empirically, the asymptotic expansion (2.38) approximates the Fatou
coordinates W,(z), ¥;(z) with a very high precision. For instance, in [20] Lanford and
Yampolsky used the series (2.38) in their computational scheme for the fixed point of the
parabolic renormalization operator. Our work in progress [14] give us a reason to hope

that the described method can be made rigorous.
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