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2 V. A. ROHLIN

The present work is devoted to the axiamnt%c dfscr%ption of
the ordinary measure of Lebesgue or Lebesgue-Stieltjes in terms
of the abstract theory of measure and to the stud? ?f the Lebes-
gue space, its homomorphisms, measurable decompositions, and fac-

spaces, which arise when one carries out this axiomatization.
tor ]

The work consists of four paragraphs. §1 contains ge?eral
definitions and notations, used throughout the entire wormt For
the most part, these definitions are not new, and are applicable
not only to Lebesgue spaces, but To arbitrary measufe spaces. §2
is devoted to the definition and Structural properties of Lebes-
gue spaces. In §3, we set forth the:general theory of measurable

decompositions, homomorphisms, and factor spaces of Lebesgue
aces. Finally in §4, we give a classification of measurable de-
spaces.

compositions and homomorphisms.

The principal definitions and theorems of.thf first three

raphs, in particular, the axiomatic description of a Lebes-
i ps and the theorem on the existence of a canonical system
E:e :z::res, is taken from my unpublished opus Unitary rings and
;yn:lical systems (University of Moscow, June 1940). In comImc-t
tion with the matters set forth in Nos. 1, 2, and 4 of 32, :?fe
that in 1942, P. R. Halmos and J. v. Neumann [1] published a ‘; 3
ferent axiomatic description of the unit interfal f?om the point
of view of the abstract theory of measure; their axioms of cou:ta-
bility coincide with those which we take in No. 1 ?f $2, but F e
place of the axiom of completeness is taken by a different axiom.
The theorem on isomorphisms (No. 5 of §2) %s due t? von Neumann
[2], and the proof given here is a simplifzed ver?non of von &eu-
mann's proof. Nevertheless, the formulation of this theorem 51:?nh
in the text is stronger than the formulation of von N?umann, whic
ijs insufficient for the aim of the present work (the 1Tprovement
consists in the fact that the image UM of the space H.za not as-

d at the beginning to be a Lebesgue space). I am indebted to
s“m; Kolmogorov for the idea of a canonical system of measures
?&o.'l of §3), who informed me of it in the yea? 1940. Other re?
sults, closely related to the theorem on the existence of canoni-

-
cal systems of measures, were published in [3] and [4].

The principal results of the present work have appeared in

- added in proof. As I learned from [9], the indicated results from [3] and [4]
te - .
are false.
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Doklady Akad. Nauk SSSR [5].

§1. General measures,
No. 1. Space with a measure. Subspaces. It is well known
that a real-valued function u, defined on a cer

tain collection Q#
of subsets of an arbitrary set ¥

, 1s called completely additive

if Q# is a Borel field of sets; this means that Qu contains, with
any two sets, their difference, and with any sequence of sets,
their union (and consequently, their intersection);

quence of pairwise disjoint sets AREQM,

for every se-

%‘(liJAu)-——'guAn-
By the term measure, we shall mean throughout this work a non-
negative completely additive function yx, have the following two
properties! if ACB and uB = 0, then AEQH (consequently u4 = 0);

MEQ, and pM=],

Under these circumstances, the basic set M is called a space with

the measure u, and its elements are called points. Sets of the col-

lection Q# are said to be measurable. Measurable functions and the

Lebesgue integral are defined in the usual fashion,

The outer measure HeAd of a set ACH is defined as the lower
bound of the measures of the measurable sets containing 4. Of

course, this lower bound is always attained; that is, there always

exists a measurable set B containing A for which HB = p,A. Every
such set B is called a measurable hull of the set 4. The measurable
hull is defined uniquely up to sets of measure zero. If B and B’
are two measurable hulls of the set A, then prB’+B§‘) =0." In-
deed, the intersection BB’ 1S again a measurable hull of the set
A, and for this reason u(BB') = uB = uB',

The outer measure e in its turn completely defines the meas-

UTe L a subset A of i is measurable if and only if LA+ pei = 1
and if 4 is measurable, then pd = MaA.

If M is a space with measure, then every subset 4 of M which
is not a set of measure zero (u,A > 0) can also be considered as
8 space of the same kind (a subspace of the space M), if we de-

fine in A a measure K4, taking the sets of the form X4 = AX, where

_ _
*The line above indicates the complementary set: B =M - R
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ini by the rela-
xefgi, as measurable, and defining py for such sets by

tion

F'I'XA . (1)

i imply the collec-
In particular, if A is measurable, then QMA is simply

tion of those measurable sets of the space H,_-hich lie in A, and
the measure py is defined by the formula pyX = ui/pd. |
No. 2. Homomorphisms. Decompositions. Faft?r-spacez. Ah:;:fh-
valued mapping of the space ¥ into the spac? M 1s.calle Tmage ’
morphic mapping, or simply a homomorphism, if the 1nver::r: o
every measurable set is measurnb:e and h:? th:fs::: :::ce sy
i 1 ident that every homomorphism
:::g:;a:z ;? ::ljehomomorphism of M onto a certain subspace of the
e M are its
Closely connected with homomorphisms of the spac: -
decompositions into disjoint subsets, the so-called e :m::e -
the decomposition. Sets which are unions of elem?ntsﬂo sk
position {, we call [-sets. With every homomor?hxsm of- x
M, we associate a definite decomposition of this space, namely,

- . £
he decomposition {y whose elements are the inverse images o
the de

nts un r l‘.h et t I the inverse 1mages Of sets.
de € mapping H, CH 3ets are g
pot

Conversely, to every decomposition of the space M, th:re :::::s-
ponds a definite homomorphism H = Hg of the ?pace M, :r e
Ly = L. In order to construct this homomorphism, we take he ot
mfnts C of the decomposition [ as points of a new s?u?e; ; e'hich
tor space of the space M with respect to the camposxtl?th ; e
we shall designate as M/{, and which becomes a space wi

ure if we liltlUdRCC 1into 1t a measure Ly, defxnlng a set AC /
(]

to be measurable in M/ when the [-set

Z={JC
CEX

is measurable in M, and setting
p X =pZ

hich
The homomorphism Hy is the mapping of the space ¥ onto :/decom-
igns to every point of the space M that element of the de
Bss

po.‘nt‘-lon W T ot es. Lt 1s Ob\' ous that the decom-
{ in which he pol 1i I 1
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position {H associated with the homomorphism H = Hr, is once again
{. The definition of the measure By is such that for Ht, not only
is the inverse image of every measurable set measurable, but also
the image of every measurable set jig measurable. On account of
this fact, it is possible to assert that if the decomposition {

is generated by some homomorphism H of the space M into a different
space H'(C=§H}, then the one-to-one mapping Ty of the factor space
M/l into M', which carries every point CEM/I into the point of

the space H' into which carries all of the points of the set
CEH/L, is a homomorphism. It is evident that the homomorphisms

H, Hy and Ty are connected by the relation H=H.Ty.

Starting with the decomposition {, we arrive at a collection
of [-sets. Conversely, every collection of sets lying in M leads
to a definite decomposition. Let z= {S,} by an arbitrary system
of subsets of the set ¥. We shall agree to designate by the sym-
bol Ha one of the two sets sq,S;, and consider all possible sets
of the form (— R,
where @ runs through all possible val

ues. The sets C are disjoint
and cover M, that is, they generate a

definite decomposiaion.
which we denote by the symbol [(Z). The set of all £(Z)-sets coin-

cides with the set of all sets which can be obtained from the sets

of the system X with the help of all

possible set-theoretjc opera-
tions (including complementation)

+ Tepeated as many times as de-
sired. This collection of sets is denoted by the symbol W5, A par-
ticularly important case is that in which %S ;s the collection of

all subsets of the space M. This takes place if and only if (3}

is the decomposition of ¥ into individual points,

The system S also induces
a definite System of subsets,
the form Sq4 = A4S, ses, In ex
to every decomposition 4
of the space 4, namely,
sets C, = AC

in every subspace A of the space M
namely, the system Z4 of all sets of
actly the same way, there corresponds
of the space ¥ o definite decomposition L4
the decomposition of the space 4 into the
s where C is an element of the decomposition [, Regard-
ing {A-aeta of the space 4 as sets in M, we shall call them /-sub-
sets of the ser 4.

No. 3. Systens of measurable sets, A measure 4’ defined on a

collection of sets ﬂg » is called a part of the measure 4", de-
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fined on the collection of sets qu, if ﬂ“fcﬂ“- and p'A = p"4A
for all AE(&R. On the other hand, the transition from g’ to u”,

as well as the measure p" itself, is called an extension of the

measure u’.

Let £ = {qm} be an arbitrary system of measurable sets. It
is plain that among the parts of the measure u, defined for all
sets §;, there is always a minimal element: this is the common
part of the family of all such measures. We shall denote it by
the symbol py. The measure us can be obtained in the following
way. We denote by £ the system of sets complementary to the sets
of the system Z. We agree further to demote by & a finite set of

indices a. I[f the number of indices in the set 3 is equal to r,
then, we shall sometimes write 87 instead of §; in this connec-

tion, the value r = 0 is admissible: 50 is the void set. We set:
D(E)=NS, D@E)=n3: r>0;
aEa” «€a"
D(3) = D3 =M.

Instead of D(5) and D(3), we shall also write Ds(8) and Ds(5).

The collection of sets of the form Dy(8) we shall denote by the
symbol Zj. In accordance with this, we shall denote the collec-
tion of all sets of the form DE{SJEE{SJ by (Z+fld. and the col-

lection of sets of the form

E=|E., E€(Z+3),,

Aem]

which is the field of sets generated by the system Z and the set
M, by the symbol {Z+f]ds- Furthermore, the collection of sets of

the form

E=£|E,,, E.€(2 + T)a, 2

will be designated by the symbol {z+§]dv' Finally the collection
of all sets of the form
E=Ex En€(Z+ ),
[

is denoted by the symbol {Z+z}dgs. For every set ACH,

Ly

| i
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(sz)eA =infpE, fe (24 34w Esa (3)

thus the measurable hull of the set 4 with respect to the meas-
ure uy can always be found in the collection of sets [E+f]&75

and hence a fortiori in the Borel field B generated by the sys-
tem 2 and the set ¥, ’

Since, for every set E €szf}dg, the representation (2) can
be chosen so that the sets E, are pairwise disjoint, it follows
from (3) that the measure us, which is not in general defined
by its values on %, is defined by its values on [2+:ld‘ Indeed
it is already defined by its values on Z4, since if these lastl
values are known, then the values of the measure us on (2+Z)
can be calculated from the easily verified formula: ’

BOBDEN =F—1* 3 wD@+P). (4)
A=) Ky
The numbers uDs(5) defining, in this fashion, the measure
#3, we call them characteristic numbers of the system . We in-
troduce the following special notation for them:

%(3) =2z (3) = xg (13 8) = uD (3).

X(8) is a function defined on the collection A of all sets §. Its
values are not entirely arbitrary: if we introduce the function

w(8,5) = wE(S.gl = we(p;8,3), setting

@B F) =1 ¥ @+, (5)
=0 bt s

then, in view of {4), it turns out that

w (3, §)>0. (6)
1{80] -], (7}

Furthermore,

The Borel field Q#

50 on which the measure 4y 1s defined, we

th;ll.denote in the sequel by the symbol Q. It contains the Bo-
rel field BT and is contained in its turn in the Borel field LD
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consisting of all sets of the form

A =A+N, A€BIL, uN =0.

It is possible that both fields O and Q'S are not contained in

.
No. 4. The space My. Let {a} be an arbitrary countable set

of indices. For M, we take the set of all possible systems

y = (¥a) where each of the symbols Yg takes two values x  and Z;;
for S, we take the set of those systems Y = (¥y) for which
a g’

y, = x, , and for S we take the system of all possible S;. Let X
a a ' ‘
beoan argitrary real-valued function defined on A and satisfying

the inequalities (6), where @ is defined by formula (5) and com-
dition (7). We shall show that there exists a measure g 10 M, de-

fined in particular on 5, such that
1z (25 8) = 1 (3). (8)

Proof. We define the function 4 on the collection of sets

(X*i]d by means of the formula:
w(D@)-D @) =0 3), (9)

and extend it further by additivity over the field [Z+:]ds' con-

sisting of sets of the form

E;Ga. E,e(Z + %) (10;
* =l

Such an extension is possible, since for every set 3 Eli+§]ds,

there exists a representation of the form (10) with pairwise dis-
the fact that the result does not depend upon the

o a4 u
B i s from the definition (5)

jce of the representation (10) follow
tion satisfies all of the con-
func-

«cho
i d func
of the function w. The extende : ¥
ditions of the known theorem on the extension of additive
tions and therefore can be extended further to a certain measure
1
which will satisfy condition (8).
satisfying condition (q}, we shall

nd the space M with the measure

[

The minimal measure A,
designate in the sequel by I
I G shall designate by Hx.
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No. 5. Types. A homomorphic mapping of the space ¥ into the
space M' is called an isomorphism if it is one-to-one and if the
inverse mapping is homomorphic. An isomorphism is also called an
isomorphic mapping. If there exists an isomorphic mapping of the
space M onto M', then the spaces M and H' are also said to be iso-
morphic. This definition carries over also to a wider class of ob-
jects: to systems of spaces and systems of subsets defined there-
on, decompositions, mappings, and functions. Two objects S ahd S’,
defined in the systems {qu} and {R&} of spaces with measure, are
called isomorphic, if there exists a system of isomorphisms U,
connecting the spaces i and l'a. which carries S into S'. For ex-
ample, two homomorphisms, a homomorphic mapping H of the space My
onto the space My and a homomorphic mapping H' of the space li on-
to the space My are isomorphic if there exists an isomorphism U,
of the space M; onto the space Mj and an isomorphism Uy of the
space Mg onto the space Wy such that B' = Uzﬂuif. Another example:
a decomposition { of the space M is isomorphic to a decomposition
" of the space W', if there exists an isomorphic mapping U of
the first space onto the second such that for every element C of
the decomposition {, the set C' = [C is an element of the decom-
position {’. It is evident that if the homomorphisms H and H' are
isomorphic, then the corresponding decompositions (g and (g are
also isomorphic. In turn, isomorphism between two decompositions

[ and {' implies an isomorphism of the corresponding factor spaces

M/C and M'/T'.

To every specified isomorphism of the space M into the space
M', there corresponds an imbedding of the first into the second.
Thus we designate the identification of points of M and M', carry-
ing M into a subspace of the space H'.

For the theory of measure, the principal concept is not that
of an isomorphism, but the concept of an isomorphism modulo zero:
we speak of an isomorphism modulo zero, if upon removing from the
corresponding spaces appropriate sets of measure zero, we obtain
an isomorphism. Here we have encountered an expression which we
shall constantly use throughout this work. Consider two objects
S and 5', defined in systems {lh} and {H&} of spaces with measure.
We shall say that S and S’ are identified modulo zero if it is

possible to make S and S' identical by the removal of appropriate
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sets of measure zero from the spaces M, and M;. In general, the
expression modulo zero (mod () in assertions concerning the ob-
ject S means that this assertion is true for some object S' which
is identical with S mod 0.

We shall say that objects which are isomorphic mod ( are of
one and the same type. We shall designate the type of the object
S by the symbol 7(S). Properties of an object which are at the
same time properties of all objects isomorphic to it mod 0, that
is, properties of the type, are called invariant.

§2. Lebesgue measure.

No. 1. Separability. We shall say that the space M is separ-
able, if there exists a countable system [ of measurable sets hav-
ing the following two properties:

(Q) For every measurable set ACM, there exists a set B such
that ACBCM, B is identical with 4 mod 0, and B is an element of
the Borel field H" generated by ['; in other words, U = ﬂ“ (see
No. 3 of §1).

() For every pair of points x,y, €M, there exists a set

G €[" such that either z €G, y¢G. or xgG, }'¢G,‘ in other words,
LIC) is a decomposition of the space M into individual points,

and W is the collection of all subsets of the space ¥ (see No. 2
of §1).

Every countable system " of measurable sets satisfying con-
ditions (L) and (M) will be called a basis of the space M.

As an example of a separable space, we may present the space
My (No. 4 of §1). The system = serves as a basis for this space.

If A is a subspace of the space M and I" is a basis in H,.
then 'y (No. 2 of §1) is a basis in A; consequently, subspaces of
separable spaces are separable.

One can infer in a trivial fashion from (Q):

(%') For every measurable set ACM, there exists a set BCH
identical with A mod 0 which belongs to the Borel field H genera-
ted by [; in other words, Q'[" = O.‘u. (See No. 3 of §1.)

If M is simply a space with measure, then condition (') is
essentially weaker than condition (Q); we shall show, however,

that in a separable space, every countable system of measurable
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sets satisfying condition (') is a basis mod ¢

Indefd, let ' be an arbitrary counl:a;ble system of measurable
sets, satisfying condition (2'). We take any basis at al]l in ]
call it I, and construct, for every set G€I', a set G'E H’ wh; h
. . - - : A
is idfntic‘l with G mod 0. We then remove from M the set

U (GG*+GG) (GET), which evidently has measure 0. Then ¥ is con -
verted into a new space, and [ becomes a system of sets in this
space which, as one can easily see, is a basis

No. 2. Completeness, Let M be a separable space, and let
B = Bﬂ be an arbitra'ry basis in M. We agree to let the symbol A
stand for one of the two sets B .Eﬁ; in particular, we shall 1
Aﬂ{a) stand for that one of these sets which cont::;na the i o
a. Since an intersection of the form S

N A4a (1)

(8 runs through all possible values) camnot contain more than one
point, it follows that the intersection

N Az (a)

i:ona:.sts exactly of the point a. Consequently, every set consist-
ing of one point, and therefore all finite and countable sets
are measurable. ,

If all intersections of the form (1) are non-void, then we

sn?r that the space ¥ is complete with respect to the basis B. I
this case, the formula o

Ap= Ay (a) (2

establishes a one-to-one correspondence between the points of the
space M and the systems {""ﬁ}- For example, the space ﬂx (No. 4 of
§1) is complete with respect to its basis X

" If the space ¥ is not complete with respect to its basis B
the questi i 1 1 W I
ﬁe&q: s‘:.o: ar.lses as to compleungﬂ'n. A space # with a speci-
. a?:s B, with respect to which ¥ is complete is called the
completion of the space ¥ with respect to the basis B, if ¥ i
subspace of th ¥ vi g i
e space M with outer measure 1(E M = h P
the measure in the space i} d i 5 B il e
Wty » and if the basis B induces the basis

)+ Since the Systems (A,S) are in one-to-one correspon-
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dence with the systems {Aﬁ), where {5 = Bﬂ' - Bﬁ* and consequent-
ly with the points of the space ¥, and since the characteristic
numbers of the basis B are equal to the corresponding characteris-
tic numbers of the basis B, it follows that the space M with basis
B can be completely described in terms of the space ¥ and its bas-
is B. In this fashion, the completion is unique in the sense that
if there is given another completion of M with respect to B, let
us say the space M' with basis B', then there exists an isomorphic
mapping of the space i onto i', carrying B into E' and leaving

the points of M fixed. On the other hand, the completion always
exists, As a matter of fact, we set xg = 85, ;ﬁ = Eﬁ- and con-
struct the space *1‘ taking the characteristic numbers of the bas-
is Z equal to the corresponding characteristic numbers of the bas-
is B. The space qz, defined in this fashlon by means of the space
M with the basis B, will be denoted as W= N(B) its measure as

4, and its basis T as B. Formula (2) defines a one-to-one mapping
of the space M onto a certain part of the space M. Going in turn
froﬂ the colif:tions By and Ed (Eoé_3 of §1) to the collections
(B+B) ; and (B+B)y, (B+B)g, and (B+B)g4., ﬂp and ﬂh, we assure our-
selves that this mapping is an isomorphism, and in this fashion

we produce an imbedding of the space ¥ in R(B). Under this imbed-
ding, the basis E induces the basis B in M, and ﬁe(H) = {, that
is, the space M(B) with basis B is indeed the completion of the
space M with respect to B.

In view of the equality ﬁeﬂ = 1, only two cases are possible:
either ¥ covers all of M mod 0, or M is non-measurable in M. In
the first case, the pair M, B is identical mod 0 with the pair
ﬁ, E. that is, M its complete mod O with respect to B. We shall
show that in the second case, M cannot be complete mod 0 with res-
pect to B. In fact, let ¥’ be such a space and let B' = {B'ﬁ} be
a basis of M' such that M' is complete with respect to B’ and the
pair M', B' is identical mod 0 with the pair M, B. Then the mapp-
e B, 5,
of the system B onto the system B’ generates an isomorphic mapping
of the space M onto the space M', carrying the basis E into the
basis B' and leaving fixed the points which belong to both spaces.
But M covers all of ¥' mod 0; consequently, M covers all of imﬂla

.
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If the space M is complete mod O with respect to some basis,

then it is complete mod 0 with respect to every other basis.

Proof. Let B = {Bﬁ} and [ = {Gy} be two arbitrary bases in
M. We unite them into a new basis [[ = B + r - {Bﬁ Gy} and we
agree to denote the points of the spaces H(B) and H{F}, respec-
tively, by the symbols @ and F:

@ =(4y) (As =By, By), F=(Fy) (Fy=0G, G,
Then points of the space M([I) are represented in the form:

(48, Fy) =(a, f). : 3

Like every measurable subset of M, Gy is the intersection
of the set M with a certain measurable subset G; of M(B):

Gy = MG, ©)]

Choosing sets G’ in some fixed fashion which satxsfy the equali-
ties (4), we combine the systems B{QS} and [' = Iﬁy} then we ob-
tain the system II' = B + [ {Bﬁ'ay}' which is a basis in the
space M' I(B) with exactly the same characteristic numbers as

the basis [l in 4. Consequently, the mapping
Bll = Bﬂ’ G; ¥ GT

of the system [I' onto the system I defines an isomorphism of the
space H'(II") onto the space ﬁ(n]. Under this isomorphism, the
points of the set ¥ remain invariant, and the set M’ goes into
the set Lg of all points (3), for which all of the sets F,, cor-
responding. in view of (4), to sets F, (F;, . = G, if F, = Gy.and
Gy(*ﬂ’“GY} if F Gy}. contain the polnt @. In fact, the
sct H' consists precxsely of those pn1ntsﬁﬁ3,F ) of the space

M'(II') for which the point @ belongs to all of the sets Fy

We denote by D7 the element of the basis H of the space
H(Hl corresponding to the element G? of the basis H(Dy is the set
of those points (3), for which F Gy) and by Ey the set of
those pairf:.-s (3) for which EGG.;,. Of course, the set -D\."Y is meas-
urable in M(II); but alsn the set Ey is msasurable in M(II). In
fact, since the basxa B = {Bﬁ} of the space H(B) and the subsys-
tem of the basis H of the space M corresponding to it have

the same characteristic numbers, it follows that the outer meas-
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b
ure of the set By in M) is equal to the outer measure of the set

G'y in M(B); and the same is true of the complements of these sets;

hence, measurabxlxty of the set Gy in H(B) implies measurabilicy
of the set B in H(H}

It follows from the definitions of the sets Lg, D ly s and Ey
that

Ly =u (D E
B lij ':D'\' E‘P + DT‘ E\’}n (5)

where all of the complements are taken in the space H([I). But,
evidently
MDT - G-r,

and, in view of (4), we also have
MEr= G'r;

consequently, the measurable sets Dyﬁy + DYEY do not intersect
with the set HC:H{H), which has outer measure 1 in R(U}. There-
fore all of these sets have measure (. This means, in view of
(5), that the set Ly covers all of the space (1) mod 0.

The proof is now quickly brought to its conclusion: from
the assertion that M is complete mod  with respect to B, we con-
clude in turn that W is identical mod 0 with W(B), with Lg (in
view of the isomorphism constructed above between l(B} and Lp),
with H[H}, with the set L, which is obtained in place of Lg if
we interchange the places of the bases B and [", and finally,
with E(F} (in view of the isomorphism between i(rl and L, analo-
gous to the isomorphism constructed above between M(B) and Lp).
This implies of course that M is complete mod 0 with respect to [
Separable spaces which are complete mod (0 with respect to
their bases are called Lebesgue spaces; and the corresponding

measures are called Lebesgue measures.

No. 3. Completeness and measurability, We have seen, that
if the space M is separable, then all of its subspaces A are al-
so separable. We shall show that if M is a Lebesgue space, then
the subspace A is a Lebesgue space if and only if A is measurable
in M.

Proof. We shall show first, that if A is measurable in N,
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then A is a Lebesgue space. We take an arbitrary basis [ = {ql}
in M and take the system [y as a basis in A (No. 2 of §1). There
exists a natural mapping of the basis [" onto the basis [4:

Gg g AG:.

and to this mapping, there corresponds a one-to-one mapping of
N -~

the space M([") onto the space A(I"y). We denote this mapping by

U, Evidently,

Gy (uas 3, 8) < g7 or (85 3, §)
(see No. 3 of §1). From this, it easily follows that

(I"JI )e (UX) ﬁ &

and, consequently, sets of measure zero go into sets of measure
zero. Furthermore, the collection f? (No. 3 of §1) goes into the
collection Eﬁu: and this implies that U carries every measurable
get into a measurable set. Since M is a Lebesgue space and since
A is measurable in 4, A is measurable in F(FJ. and the image UA
of the set A is measurable 1n I{rd;. But UA = A; consequently,

A 1s measurable in I(PA}, that is, A is a Lebesgue space.

We shall now prove that if A is a Lebesgue space, then A
is measurable in M. We may assume without loss of generality
that A = {, for one may always replace M by the measurable
hull of the set 4, and if A is measurable in this hull, then
A will be measurable in M as well. Let [" be a basis in H. We

have:

Ac Mz M(D),

and since p,A = { and ;eH = 1, it follows that

z,A=1
The space ﬁ{ﬁ is complete with respect to the basis ['; conse-
quently, H:") is the completion of the space A with respect to
the basis induced in A by the basis [ (it coincides with ! A)

But A is a Lebesgue space; consequently, A is measurable in
F(r‘), and hence in M also.

The theorem just proved shows that the property of a set to
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be measurable does not depend upon its accidental occurence in
a Lebesgue space but is actually an intrinsic property of the
set itself.

We note, that the proof given above that A is measurable
in M if A is a Lebesgue space retains its validity even if ¥
is not a Lebesgue space but merely a separable space. Thus, a
Lebesgue space is a measurable subset of every separable space
in which it is imbedded, and we obtain the following theorem:

In order: for a separable space to be a Lebesgue space, it
is necessary and sufficient that it be absolutely measurable,
that is, measurable in every separable space containing tt.

No. 4. Construction of a Lebesgue space, Let M be a Lebes-
gue space. Since uM = 1, there cannot be more than n - { points
with measures exceeding 1/n, for every n, Consequently, the sets
consisting of one point which positive measure form a no more
than countably infinite collection and can be numbered in a se-
quence

By Paiaang (5")
for which wPy > uP, >+

We set
ma(M)=uP. (r=1,2 ...).

if the sequence (5') is infinite, and

uP, for n<p,
m,{M}-{ 0 for n>p

if it contains only p members. The numbers =_(M) are of course

invariants of the space M.

If

Dima (M) =1,
fie=|

that is, if the space M consists mod 0 of points of positive
measure, then we call the measure u discrete. In this trivial

case, all sets are measurable, and for every ACH,

eA = 2 wPe

—

Pa—A
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If

ma M) =0 (n=1, 2, ..., (6)

that is, if there are no points of positive measure, then we call
the measure g continuous. In this case, as we shall show, the
space M has the type of the unit interval with ordinary Lebesgue
measure.

First of all, we translate (6) into the language of charac-
teristic numbers. We agree to take the natural numbers 1,2,...

as the indices o and consider the sequence of pairs
w = (8n :n) (n=0,1, 2, ...}

(see No. 3 of §1), in which 8, = 59 = 30, and the pair m, is ob-
tained from the pair -1 by the process of adding the number n
to one of the sets 8, _4, gﬁ‘i' It is evident that in such an ad-
missible sequence, the sets Sn and g; do not intersect, and their
union is the set of the first n natural numbers; furthermore, if

< n,, then SRICSH? and EniCSni,. We now set

ni 2
wr (15 %) = wp (&5 34, 3a)-
If the measure u is continuous, then, for every basts
T = {G,}, ve have the following limit property:

lim wp (g; w) =0, (7)

A=

for an arbitrary admissible sequence TysTgesne s Conversely, if
the relation (7) holds for a certain basis [, and for arbitrary

admissible sequences TysTgress then the measure p 1§ continuous.
For the proof, it suffices to refer to the formula
wp (45 ®a) = ¢ (Dr (8a) Dr (3a))  (Ra= (8, 3a))
(see No. 3 of $1) and to the sequence of inclusions
Dr(8y) Dr (3) 2 Dr (3:) Dr (35) 2 -+ -

Frtom these, it follows that the left side of relation (7) is

equal to the measure of the intersection
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N (Dr (3x) Dr (Zn),
which is either void or consists of a single point.

Let X(8) be an arbitrary function defined on the collection
A of all finite sets of natural numbers and satisfying, in addi-

tion to conditions (6) and (7) of No. 3, §1, the condition
nliulul(ﬂ,,} =0 @®)

for every admissible sequence MgsTgsevs « We shall designate by
L the half-open interval (0,1] of the real line and by A ordin-
ary Lebesgue measure on L. (We use curved parentheses if the end-
point is not included and square brackets if the endpoint is in-

cluded.) We construct a basis l\:Ax= {Ln} for L such that
xa (3 8) = x(8). (9)

As previously, we shall denote by the symbol 7, pairs (SH,EA)
for which the intersection of the sets Sn'E; is void and for
which the union is one set of the first n natural numbers. We
first assign to each pair 7, a certain half-open interval J(m,)
= (a{ﬂh),ﬁ[nﬁll in L. Only one pair m, corresponds to the value
n = 0, and we shall take J(NOJ = L, that is, a[ﬂoj =0, 5‘”0): 15
If all of the half-open intervals J(m,_;) have already been con-
structed, then we construct the half-open interval J(mw,) =
lalm,),B(m 1], corresponding to an arbitrary pair m, = tﬁn,gh},
in the following fashion. We consider the pair Tp~¢ into which
the pair m, is transformed when we remove from it the number n;

and we define
& (7)) = 2(%a—1)y,  B(ma) = a(moi) + 0 (xa),

if n€5,, and

a(ms) =8 (mp_y) — @ {“n}| B(ma) =8 (ma1),

if n€3 . From the sets J(m,) which have been defined in this

manner, we define the sets L, by means of the formula:

Lay== 1) Flmg):

!ﬂgn
Obviously,
J(ma) = Dy (8a) BA {En}u
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and

A (7n) = 0 (=a);
consequently, the formula
wy (A; 3, 8)=w(3, §)

is clearly valid for those pairs ts,§; which we have agreed to
designate as 7,. But then it is also valid for arbitrary pairs
(5,5}, for if the largest of the numbers belonging to the sets
5, 5, is equal to n, then
Da(3)Dr(®)= _U__ Di(3x) Ds (3a);
8,28, 5,08

(8q, 8) =my

in particular, relation (9) is valid.

It follows from condition (8) that A is a basis of the space
L. We shall show that L is complete mod 0 with respect to A

Indeed, every intersection

Jl K.l; Kn =t Ln, Zn

can be represented in the form
N /(=) (10)
L]

where TysTgsens is a certain admissible sequenc;. The intersec-
tion (10) is void only when the sequence of half-open intervals
J(my)2J(mg)2 " converges to a point which serves as the com-
mon left-hand endpoint of all of these half-open intervals, be-
ginning with a certain one of them. That is, the intersection

(10) is void for a cauntabie set of sequences K;,Kg,... But

this means that the space L!/\) differs from L only on a count-
able set of points; hence L is measurable in ZlA}, that is, L

is complete mod 0 with respect toJ\.

We can now summarize the results obtained in the following
fashion: the unit interval (with the usual measure) is a Lebes-
gue space in which there exist bases with arbitrary characteris-
tic numbers, satisfying condition (8).

Since every one-to-one correspondence between two bases,

under which the corresponding characteristic numbers are equal,
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produces an isomorphic correspondence mod () between the points
of the corresponding Lebesgue spaces, it follows that we have
proved the theorem stated at the beginning of No. 4: every Lebes-
gue space with a continuous measure is isomorphic mod 0 to the
unit interval. From this theorem it evidently follows that the
numbers =, () form a complete system of invariants of the space

M: if

ma (M')y=ma(M") (n=1,2 ..)

then
(M) == (M").

Therefore, the Lebesgue space M is isomorphic Mod 0 to the
space consisting of an interval of length

my (M) =1 — D) ma(M)

n=al
with ordinary Lebesgue measure and a sequence of points with
measure ln(H)(nzj,Q,...}.

No. 5. Minimal properties of Lebesgue measure.

Lemma. Let [/ be a one-to-one mapping of the Lebesgue space
M into the separable space M'. Suppose that under this mapping,
the inverse image of every measurable set is measurable, and
that the inverse image of a set of measure zero always has meas-
ure zero, and that the inverse itmage of a set of posttive meas-
ure always has positive measure. Then M' is a Lebesgue space,
and the image of every measurable set is measurable; in particu-
lar, the image UM of the space M covers mod ( the entire space
M.

Proof. We shall first prove this lemma under the assumption
that ' a Lebesgue space. Since U obviously establishes a one-to-
one correspondence between the points of the spaces ¥ and H'
which have positive measure, we can remove these points at the
very beginning, and, in view of the results of the preceding No.,
we may suppose that M and M’ are intervals with ordinary Lebes-
gue measure, Let [' be the set of all intervals in 8’ having
rational endpoints. The inverse image J = U™1J' of the interval
J'€M" is a measurable set, and hence there exists a Borel set

BJ which contains J and is identical with J mod 0. The set
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U(Bs—J) (UJ=TJET),

has measure zero and therefore can be included in a Borel set of
measure zero, say BO‘ Let us denote by V the mapping induced by
the mapping U on the Borel set B = 4 - Bp- I1f B is regarded as

a new space, then V is a mapping of B into M' which is identical

mod 0 with U.

We shall first show that for the mapping V, the image of
every measurable set is measurable. Since EJ - JCZBO, the inter-
section JB coincides with the intersection BjB and is hence a
Borel set; in other words, the inverse images under V of all in-
tervals J' €' are Borel sets. But in this case, ¥ is a Baire
function, and the images of all Borel sets are also Borel sets.
Thus, if A is a Borel set, then its image VA is measurable. If
A is a set of measure zero, then it can be included in a Borel
set of measure zero, say By. The image VB, of this latter set,
according to what we have proved, is measurable; furthermore,
VB4 has measure zero, since its inverse image B4 has measure
zero. However, VAC:VBA; consequently, the set VA is measurable.
Finally if A is an arbitrary measurable set, then it can be re-
presented as the union of a certain Borel set Ai and a certain
set Ap of measure zero, and we have: VA = VAi + VAO. Hence in

this case also, VA is measurable.

We return now to the mapping U. Since ¥' - UB = M’ - VB,
and the image VB of the space B is measurable, it follows that
the set Bb = M - UB is measurable in M; furthermore, its meas-
ure is equal to zero, for its inverse image U_IBb coincides with
By From this it follows that for every set ACH, the first mem-
ber of the decomposition

UA =U(B,4) + V (BA) {1

is always measurable (U{BOA]C:Bb)- But, if A is measurable in ¥,
it follows that BA is measurable in B, and by what has been prov-
ed above, the second member of the dissection (11) is also meas-
urable; hence the entire set UA is measurable.

We have proved that the image of every measurable set is
measurable. The fact that UM covers mod 0 all of M' has already

*See (6], 39.
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tacitly been proved by us; we have seen, indeed, that UB covers
mod 0 all of M'.

Suppose now that ¥’ is an arbitrary separable space. We con-
struct an arbitrary completion W' of the space H' and shall con-
sider U as a mapping of the space M into M'. It is not difficult
to see that this mapping satisfies all of the conditions of the
lemma. Consequently, the image of every measurable set is measu-
rable in i', and therefore, measurable in M'. Furthermore, UM
covers mod 0 all of M'. But = = Consequently, M' covers
mod 0 all of F', that is, M’ is a Lebesgue space. At the same
time, we see that UM covers mod 0 all of the space M'.

As an immediate consequence of the lemma just proved, we
have:

Theorem on isomorphisms. A one-to-one homomorphism of a
Lebesgue space into a separable space is an isomorphism.

In its turn, the following theorem is easily obtained from
the theorem on isomorphisms:

A proper part of a Lebesgue measure cannot be the measure
on a separable space. A proper extension of the measure on a
separable space cannot be a Lebesgue measure,.

Proof. Let M be a Lebesgue space with measure 4, and M' a
separable space into which M is changed if its measure is replac-
ed by a certain part thereof, u'. Evidently, the identical map-
ping of M onto W' satisfies all of the conditions of the theo-
rem on isomorphisms. Consequently, Qp = an and u' = u.

Finally, from this theorem follows:

Theorem on bases. Every countable system [ of measurable
subsets of a Lebesgue space which satisfies property (M) (No. 1
of §2) is a basis.

Proof. The measure induced bv the measure g on the collec-
tion @ (No. 1 of §2) is a separable part of the measure u. Con-
sequently, O = QM, and [" is a basis.

No. 6. The metric structure associated with a Lebesgue space,.
We set ofd,B) = p(iﬁ+4§} for any two sets A, BCM which are meas-
urable. The function p satisfies the axiom of symmetry and the

triangle axiom and will satisfy the axiom of identity, if we
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agree to understand identity as identity mod 0. Going from the

collection ﬂ# to the collection (M) of classes of measurable sets
which are identical mod 0, we thus obtain a metric space. Union

and intersection of measurable sets lead to the same operations on
elements of the collection (). The collection Q(H) with the met-
ric p defined in it and with the operations of union and intersec-
tion of elements is a metric structure, which we regard as being ®

associated with the space M.

We shall not list all of the properties of a metric struc-
ture (M) which are necessary for its independent axiomatic defi-
nition, and merely note that the space QQ(¥) is complete and sepa-
rable in the sense of the theory of metric spaces. Its complete-
ness is @ simple consequence of the Riesz-Fischer theorem, and
separability of the space M: if [" is any basis in M, then the
field [F+F}ds generated by [ is countable and is everywhere dense
in Q(H).

By definition, two metric structures Q(#) and Q(H') are iso-
morphic to each other, if there exists a one-to-one correspon-
dence carrying the first of them onto the second -- an isomorphic
mapping -- which leaves invariant the metric o and the operations
of union and intersection of elements. To every mapping of the
space M onto the space M’ which is an isomerphism mod 0, there
corresponds a natural isomorphic mapping of the metric structure
(M) onto the metric structure Q(M’). It turns out that every iso-
morphism of the metric structure (M) onto the metric structure
(M’ ) is generated in this sense by a mapping of the space M on-

to the space M' which is an isomorphism mod 0.

Proof. Let U be an arbitrary isomorphic mapping of the met-
ric structure (1(H) onto the metric structure (¢M" ). We choose
any basis [" in M and consider the system of elements of the struc-
ture Q(M) which correspond to the sets in [", The images of these
elements in the structure Q(M') under the mapping U are classes
of measurable sets of the space #'. In each of these classes, we
select a certain set; in this way, we obtain a certain countable
system ['' of measurable sets of the space ¥', satisfying, evident-
ly, condition (2') and therefore being a basis mod 0 (No. 1 of
§2). Corresponding characteristic numbers of the systems [ and

" are equal; consequently, the correspondence between the sys-
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tems [ and "' corresponds to an isomorphism mod 0 of the space
M onto the space M' (No. 2 of §2), and it is easy to convince
one’s self that the isomorphism of Q(¥) onto ((H') engendered
thereby is actually the original isomorphism U.

The argument set forth above shows at the same time that
any two isomorphisms mod 0 of the space M onto the space M',
generating one and the same isomorphic mapping of the structure
(M) onto Q(M') are identical mod 0.

No. 7. Measures in metric spaces. The goal of the present
No. is to show that all of the most important measures are ac-
tually Lebesgue measures. Its content tends in the direction of
the abstract theory of measure, and its results will not be used

in the present work.

Let R be a metric space, separable and complete in the sense
of the theory of metric spaces. Let us suppose that there is in-
troduced into R a certain measure u. We shall show that if all
open sets are measurable with respect to, and form a system satis-

fying condition (Q) of No. 1, §2, then u is a Lebesgue measure.

Proof. We suppose first that R is the unit interval with
its usual metric, that is, that g is a certain Lebesgue-Stieltjes
measure, Evidently, we are at liberty to assume that there are
no points of positive measure. We designate by the symbol I, the
closed interval with endpoints 0,z ‘and set f(x) = uI_. The func-
tion f produces an isomorphism mod 0 of the space R with measure
4 onto the unit closed interval with urdinarv Lebesgue measure.

Consequently, u is a Lebesgue measure.

In order to prove the theorem in the general case, we shall
now show that every measure of the type under consideration is
isomorphic mod 0 to a certain Lebesgue-Stieltjes measure. For
this, we note that according to a well-known theorem of the des-
criptive theory of sets*®, R can be represented as the image of
a Borel subset of the closed unit interval under a certain one-
to-one and continuous mapping. With the help of this mapping,
which we designate by U, we transfer the measure x from R onto
the closed unit interval. Then we obtain a measure u', isomorphic
mod ( to the measure g, and the proof will be completed, if we
make it clear that ' is a Lebesgue-Stieltjes measure, that is,
that all open subsets of the closed unit interval are measurable
*See [6], 3s.
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with respect to g’ and form a system satisfying condition (8) of
No. 1, 2. But their measurability follows from the fact that [
carries every Borel set into a Borel set*, and condition {¢) is

fulfilled in view of the fact that U1 carries every open set

into an open set.

§3. Measurable decompositions.

No. 1. Canonical system:of measures. Let ! be an arbitrary
decomposition of the Lebesgue space M. Let us suppose that by
means of the introduction of certain measures 4cy the elements
C of this decomposition themselves are turned into spaces with
measure. We shall say that the system {pc} is canonical with res-
pect to Cor if

1) #c is a Lebesgue measure for every mod 0 point C of the
factor-space M/(;

2) for every measurable set ACM, a) the set AC is measurabe
in its space C for every mod 0 point CEM/L, b) Lc(AC) is a meas-
urable function of the point CEM/L, and c)

pAd = ( 4. (40) d..
Mg

It is immediately obvious that if the systenm {pc} Ls canont-
cal with respect to [, then, for every basis [ of the space. M,
the system ['n, consisting of the sets Gc = GC, GEl', serve as a
basis in the space C, for every mod ( point CEM/L. This is an
immediate consequence of Conditions 1) and 2a) and the theorem
on bases (No. 5 of §2), for every system o evidently satisfies
condition (®) in its own space. From this theorem, it is not dif-
ficult to infer that a canonical system of measures is defined
essentially uniquely by its decomposition [, that is, if any two
systems of measures {“C} and {M’C} are canonical with respect to
{, then ue, = #'c for all mod 0 points CE€EM/L. Indeed, designating
by Z the inverse image of the measurable set XCM/L under the
homomorphism fly (No. 2 of §1), we shall have, for every measuraHe
set ACM:

Jec (40 du, = { ue(azC)du, = u(a2) =
£ Az
- 5 et AZO du, = ( . (AC) du,,
P x
*See [6], 35.
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from which it follows that ug(AC) = u'((AC) for all mod 0 points
CEM/L. In order to convince one’s self of the truth of our asser
tion, it is now sufficient to have A run through the collection
Fd (see No. 3 of §1), generated by an arbitrary basis [" of the
space M. '

Having established in this way the uniqueness of a canoni-
cal system of measures, we now turn to the problem of its exis-
tence.

We agree to call a decomposition [ measurable, if there
exists a countable system Z of measurable sets -- a basis of
the decomposition [-- such that [(Z) = {. As an example of a
measurable decomposition, we offer the decomposition of M into
the inverse images of points under the mapping defined on M by
a measurable real function or a finite or countably infinite sys-
tem of measurable real functions. As a basis of such a decompo-
sition, one can take, for example, the inverse images of open
intervals with rational endpoints. A different example: the de-
composition {y (No. 2 of $1), corresponding to the homomorphism
H of the space # into a different Lebesgue space H', is always
measurable, since the inverse image of an arbitrary basis of the

space H' is certainly a basis of the decomposition (g.

In order for the decompostition [ to possess e canonical sys-
tem of measures, it is necessary and sufficient that it be meas-

urable,

Proof of necessity. Let {uc} be a system of measures which
is canonical with respect to [. Let us take in M a basis [ and,
for an arbitrary set A of the collection rd (see No. 3 of $1)

and an arbitrary point x €EC;
7, (X) = pe (AC).

Since each of the functions pp(AC) is defined for all mod 0 points
CEM/L and since the set of these functions is countable, it fol-
lows that, ignoring a certain [-set of measure zero, we can con-
sider that all of the functions ¢4 are defined on the entire

space M. Let [’ be the measurable decomposition generated by

these functions. We shall show (and by this the necessity of our

condition will be proved) that [ = ¢{'.

Let us assume that { 7 {'. Since the functions ¢, are con-
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stant on each element of the decomposition I, it follows from
this that there exists two different elements Cy and Cy of the
decomposition [, on which up fACI) = Mg (ACgy) for every set
AElg. But this means that tée bases FCI and ch. which are in-
duced by the basis [ in the spaces Cl and C2, have the same char-
acteristiﬁ numbers, in virtue of which the spaces Ci and C2 them-
selves are connected by a natural isomorphism mod 0. The corres-
ponding elements of these spaces are obviously distinct, since
they lie in different sets of the decomposition [, and further-
more, every set A€l which contains one of them contains the

other. The absurdity of this conclusion shows that [ = ',

We note that the reasoning used above does not use property
2¢c) of canonical systems of measures. Therefore every decomposi-
tion of a Lebesgue space which satisfies conditions 1), 2a), and

2b) is measurable.

Proof of sufficiency. We shall divide this proof into

several parts.

A) Let " be a certain basis in M, and let Aﬁird. We denote
by Z the inverse image of a measurable set XC#,{ under the map-
ping H;. Since, for fixed A, the function w(AZ) is a completely
additive function of the set X, which vanishes along with ng,
there exists a measurahle function ¢, defined on M/ such that

for every measurable subset X of M/,

#(42) = {2, (€ du, (1)
X
{See [7], p. 168). This function is defined by the set 4 in an

essentially unique fashion.

We choose a certain fixed function ¢4 corresponding to the

set Aer'd, and we set
QA(C):“CA-

vgc is a set function defined for all A €[;. We wish to extend

it to a Lebesgue measure.

B) Let us first suppose that M is complete with respect to
". Then the problem of extending the function ve to a Lebesgue
measure is none other than the problem of constructing the meas-
ure py according to the function X(&) ='xctﬁ} = veD(3) (see No.



28 V. A. ROHLIN

4 of §1 and No. 2 of §2), and, therefore, is solvable if condit-
ions (6) and (7) of §1 are satisfied. But these conditions are
satisfied for all mod 0 points CEM/L, for, if we denote the
function @ corresponding to X.='XF in virtue of formula (5) of
§1 by the symbol wC and if we use the linearity of the formula
referred to, then we obtain:
chfs 5)du.=p(D(3)-D(5)-2)>
X
Besides this,
(¢ (30 = ve () dug = 0 (M2) = 2.
x X
Thus, if M is complete with respect to [, then the extension of
the function v to a Lebesgue measure is possible for every mod
0 point C EM/{. But this result retains its validity also in the
general case. It is not difficult to var:fy this, going from the
space ¥ with the basis [ to the space M) with the basis r and
from the system £ to the system 2, consisting of all sets of the
system Z and the set M.

C) We denote by M; the space into which ¥ is changed when
we replace the measure u by the measure vip. My is a Lebesgue
space for every mod 0 point C €M/L. We shall show that 1f 4 is a
measurable subset of M, then

a') A is measurable in My for every mod 0 point CEM/T,

b') veA is a measurable function of the point CEH/L, and

¢') for every measurable set XCM/T,

u(AZ) = S veddy,.
x
Assertions a'), b'), and c') are evidently true, if A € rd:

in view of the linearity of formula (4) of No. 3 of §1, they are
hence valid also if A € r!‘+I")d. If A € {r‘+l"]do_. then 4 can be re-

presented in the form:
- —_
A= U An As€(T+Dy,
ma=]

where the sets A are pairwise disjoint, and assertion b') fol-

lows from the formula

ved = Sivcd,, )
o |
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while ¢') follows from (2) and the relations

u(AZ) = E; 1 (Aa2) = i S veA, du. =S ( i -;CA,,) dp..
X \a=l

el =l ¥

If A E(tF+F1d,5. then A can be represented in the form

A=ﬁ°l An Ay € (C+Tae,

where .413.423-", and b’) follows from the relation
ved = lim v A, (3)
n—»x

and ¢') follows from (3) and the relations

u(AxZ) = s vedadps, 0 velAn <1,
b3 '
the latter of which holds for all mod 0 points C € M/]. Finally,
if 4 is an arbitrary measurable set in M, then there exist sets

By € (T+T) 4,5 and By € (") 4 5 such that

B,D A, pB,=uA; By,DA, pB,=pA,

and we thus have:

E(vcsl +% B) dvg = | vcBude + (eBuds, = p(B2) + 1 (B,2) = pz.
&

For this reason, we have, for all mod 0 points C € M/L,
‘CBI —l— \!cB' = l,

that is, a’) is valid. We see also, that for all mod 0 points
95.4: vcﬁl,

from which the validity of b') and ¢') also follows.

D) The canonical system of measures He which we wish to con-
struct is obtained from the family of measures v in an extreme-
ly simple fashion: uc is the measure induced by the measure vp
in the subspace C of the space M;. Evidently, the proof of the
present theorem will be completed if we show that fom every mod

0 point C € M/, the set C is measurable in the space Mo and
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veC = 1.
Let A € [E+f}d and let A' = H;A. Since the set A is meas-

urable with respect to g, it is also measurable with respect to

all mod 0 measures vg, and we have:
w(42) = (20 € oy
x L
Uhere'xdr is the characteristic function of the set A'. Conse-

quently, for all mod 0 points C € MH/L,

ve (A) =14 (O, o)
and since the collection (2+21d is countable, it follows that
all relations (4), corresponding to different sets A E (Z+:1d,

are valid for all mod 0 points C € M/{. Furthermore, every set

C can be represented in the form:

C= 0 An An€(Z+Z)a
n=|

where 413A2:’"'. Consequently, 1f we discard a set of measure
zero, it appears, that the set C is measurable with respect to
ve and
v.C = lim vehAn =1,
n—>»m

for, in view of (4), vcdn =4 for all n = 1,2,°""»
No. 2. Factor-spaces and homomorphisms of Lebesgue spaces.

Let S be an arbitrary basis of the measurable decomposition (. We

shall show that the system X', into which the system I goes under
the homomorphism H (see No. 2 of 81), is a basis of the factor
space M/T. It is plain that the system &' satisfies conditxo? ()
of No. 1 of §2. In order to show that it also satisfies condit-

ion (@), we denote by p' the part of the measure ur, defined on

the collection @', that is, we set Gyt = {“L}E’ (see No. 3 of §1).

u' is just that measure into which the homomorphism HC carr1:? \
= Q%' is jus ion into whic

the measure ps, and Qp' = 03' is just that collection into whi

In the space M/l, we replace the
and obtain a space M', for which
We shall establish (and by this

Hy carriés the collection E%.
measure iy by the measure g,
the system Z' serves as a basis.
our assertion will be proved) that wh = B

For this purpose, we return to the proof, set forth in the

; ; .
previous No that canonical systems of measures exist. It 1s no
No.,
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difficult to verify that this proof remains valid if we replace
it in the measure Hr by the measure p’. Consequently, for every
measurable subset A of M, the function ugp(AC) is measurable with
respect to p'. But if A is a {-set, then the function us(AC) ob-
viously coincides with the characteristic function of the set
Hg,q, in view of which this set itself must be measurable with re-
spect to the measure p’'. Thus, all sets of the form HyA, where

A is a measurable [-set, are measurable with respect ;o «', and

this means that p' = By

We shall now show that the factor space of a Lebesgue space
with respect to a measurable decomposition is a Lebesgue space.
We have already proved that M/l is a separable space. As a basis
for M/L, one may take the image of any basis Z of the decomposi-
tion L under the homomorphism HC' We extend the system £ by add-
ing some countable system of measurable sets, obtaining in this
way a basis [ of the space M, and denote by ¥ the part of the bas-
is I of the space M= B(Tl which corresponds to the system Z (see
No. 2 of §2). Furthermore, we consider the decomposition
Z = Z(z} of the space H (see No. 2 of §1) and the factor-space
corresponding thereto, B/Z. The system E', into which the system
E is carried by the homomorphism HE. is a basis of the space Q@E.
ani it is evident that ﬁ/z is complete with respect to 3. Thus,
E/ﬁ is a Lebesgue space. But, the decomposition induced in # by
the decomposition E. is precisely {, and if we carry the element
C of the decomposition { into that element { of the decomposition
E for which C = HE, then we obtain an imbedding of the space ¥, {
into E/Z. This imbedding haswthe property that HEH = M/C, and
since M covers mod 0 all of M, it follows that M/{ covers mod 0
all of ;/E. Consequently, M/l is a Lebesgue space.

Suppose now that A is an arbitrary homomorphism of the Le-

besgue space M into the separable space M'. We have:
H= HCH TH!

where Ty is a one-to-one homomorphism of the factor space M/L in-
to M (No. 2 of §1). Since the decomposition {y is measurable,
H/CH is a Lebesgue space, and, applying the theorem on isomor-
phisms (No. 5 of §2), we obtain the following theorem on homo-

morphisms:
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If H is a homomorphism of a Lebesgue space into a separable
space, then Ty is an isomorphism, so that the homomorphisms H
and H;H are isomorphic.

In particular:

A homomorphic image of a Lebesgue space in a separable space
ts a Lebesgue space, and

under a homomorphic mapping H of a Lebesgue space into a

separable space, the images of measurable [y-sets are measurable.

No. 3. Operations on decompostitions. Let M be an arbitrary

set and let [ and I’ be decompositions of M. We agree to write

<y, U, (3)

if L #U' and {' is a subdecomposition of the decomposition [
(that is, all elements of the decomposition [, and consequently
all [-sets, are ['-sets). The relation 2 defined in this way
makes the collection of all decompositions of the set M into a
partially ordered set, which is a complete structure and which

we denote by the symbol Z. In this structure, we shall call the
least upper bound of a system of decompositions its product, and
the greatest lower bound, as usual, its intersection. The product
is denoted by the symbol [I, and the intersection by the symbol
n. If {{a} is an arbitrary system of decompositions, the elements

of the decomposition [I{_ are sets of the form

C = nC:r

where C, is an element of the decomposition { . With regard to

: r -
the decomposition [W{a, we can say that two points x and z' lie
in the same element if and only if there exists a finite sequence

Xg1X9,000,%, of points such that in the chain

X, Xy Xga o-een Xn, X

every neighboring pair of points belong to one and the same ele-
ments of one of the decompositions [,
The structure Z possesses both a zero and a unit element:

zero is the decomposition whose sole element is the set M, and

the unit is the decomposition of the set ¥ into individual points.

We now suppose that Y is a Lebesgue space, and denote by Z”

the set of all measurable decompositions of the space Y. Being
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a subset of the sec Z, Z, is also a partially ordered set; however,
generally speaking, Zy is not a substructure of the structure Z,
For, the product of a finite or countably infinite system of measu-
rable decompositions is again a measurable decomposition (in order
to obtain a basis of the decomposition ., it is sufficient to
unite bases of the decompositions §a}; but the intersection of
even two measurable decompositions can be non-measurable. The set
Zy 1s not a structure even if we forget about the operations T and
1 in the structure Z and try to introduce new operations in Z,
using the fact that Zy is a partially ordered set, for two ele-
ments of this partially ordered set may fail to hayve a greatest
lower bound. In order to obtain a structure from ZM, one must go

over to the classes of decompositions which are identical mod .

We shall designate the class of a measurable decomposition by
the same letter as the decomposition itself, but with underlining.
The set of all such classes will be denoted by the symbol Zys We

agree to write

i<t g
if L 7 L' and there exist decompositions { € [, [' € L', such that
(5) holds. In this way, we make gu into a partially ordered set.
We shall show that Zy is a complete structure,

We have already seen that the product of an arbitrary finite
or countably infinite system of measurable decompositions is a
measurable decomposition. Therefore every finite or countably in-
finite system of classes Ly possesses a least upper bound: this is
the class of the product Hg constructed from arbitrary decomposi-
tions [  of the classes L But one can assert more: every non-
void system of classes ly has a least upper bound in Z,. For the
proof, we select in each class {s @ certain decomposition ar, de-
note by P the collection of all {,-sets corresponding to all pos-
sible decompositions Lo+ choose in P, using the separability of
the metric structure Q” (No. 6 of §2), an arbitrary countable sys-
tem X dense in P, and set: { = [(S). The decomposition { is measu-
rable, and we assert that its class L is the least upper bound of
the system of classes Lo- That is,

1< > 2q for all a;
2) if L' > [ for all a, then Lt »r,

>a
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In order to prove assertion 1), we consider an arbitrary bas-
is &, = (qmﬂ} of the decomposition [ . Since the system £ is dense
in P, it is possible to find, for every set S p, a set Séﬁ of the
Borel field B which is identical with it mod . It is evident
that the decompositions (', = [(Z',), where I’ = {S'aﬁ}' belongs
to the same class Ly as {;. (The decomposition {'y can differ

from {_ only on the set

(+3

;Ej (SasSap + SasSag),

which has measure zero.) But { > [’ : therefore [ > i

In order to prove assertion 2), we choose an arbitrary decom-
position {' in the class {'. Since ' > [, for all a, it follows
that one can find for every set S € £ a ['-set S’ which is iden-
tical with it mod 0. It is evident that the decomposition
C'i = [(Z'), where £’ is the system of all sets S', belongs to
the same class [ as C{C'i can differ from { only on the set
|J(§S'+S§'), which has measure zero.) But (' > {‘I; consequently
2 L

We have proved that in Zy, every non-void system of elements
Gy has a least upper bound. From this, it is easy to show that
every non-void system of elements [, possesses also a greatest
lover bound in g,. Indeed, we consider the collection of elements
[, which satisfy the relation { < §a for all a. This collection of
elements is evidently non-void, for it contains the null class
(corresponding to the null decomposition of the structure Z). Con-
sequently, it possesses a least upper bound in Zy, which will be
the greatest lower bound of the system {;a}. Thus, gM is a genuine
complete structure.

The structure gh has a zero (the null class) and a unit (the
class of the unit decomposition, which is measurable in view of
the separability of the space M). Two measurable decompositions
£y and L4 whose product is identical mod 0 with the unit decompo-
sition will be referred to as mutually complementary. It is plain
that the decompositions [, and {9 are mutually complementary if
and only if the space M has a basis mod ( (that is, a countable
system of measurable sets, enjoying property {2') (No. 1 of §3)),

which consists of Ci-sets and [g-sets.
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Now, let  be any decomposition whatsoever of the space M
We consider the set of all measurable decompositions {‘ that s;tis-
fy the relation {' > I. The collection of the corresponding
classes has a greatest lower bound in Zy, which we denote by £
A decomposition Ci belonging to the class gl can be characterii;d
mod 0 as the finest of all the measurable decompositions for which
[ is a subdecomposition. We call it the measurable hull of the de-
composition [. The measurable hull of a decomposition  is defined
in essentially a unique manner. From the foregoing exposition, it
follows that it can be found by the formula: i

L=T(z),
where £ is an arbitrarily chosen countable system of measurable
{-sets which is dense in the collection of all measurable {-sets

No. 4. The product of Lebesgue spaces. Let M, and Mo be
Lebesgue spaces with measures Ky and Mg. We consider an arbitrary
function A,,4 1 ]

: : P( 1 2).of sets Ai € Qpi and A? € ﬂ# » which enjoys the
ollowing properties: ¢

a) ¢ is non-negative;

b) & is completely additive with respect to both of its ar-
guments;

) (A M) = Ay BMpAg) = noAy.
We denote by M the set-theoretic product of the sets M, and
Hy: !
2
M= M, x M,,
and by M the collection of sets of the form

A=A XA, A€Q,, A€Q,

We shall show that there exists a measure u for M, defined in par-

ticular on M and satisfying the relation

P(ALXA3)=?(-41-A|) (6)
for all pairs of sets A, € 0
s Ay 4ig and A2 € 0#2.
The process of constructing the measure ¢ differs in no way
from the process of constructing the ordinary measure in the pro-

duct of two spaces. Although this ordinary measure is obtained

from ou initi =
r general definition only for i(AI,AQJ = “141'“242' never-
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theless, the well-known proofs which its construction demands em-
ploy only properties a), b), and c), of the function ¢, and not
the special form of ¢ indicated above. This circumstance releases

us from the necessity of carrying out detailed proofs.

We consider the field [M+ﬁ}ds; this is the collection of sets

of the form
= 0 A™, a™ew,
ne=l

and we extend the function u, defined on M by formula (6), over
(M*ﬁ)ds by the additive law (this is possible, since there exists
a representation in the form (7) for every A € (MtM) . with pair-
wise disjoint set A(™); the uniqueness of the extension follows
from the additivity of the function & with respect to its argu-
ments). The extended function satisfies the conditions of the
known theorem on the extension of additive functions and there-
fore can be extended in its turn to form a certain minimal meas-
ure, which we shall also designate as gu. We shall call the space
M with the measure p the product of the spaces M; and My with res-
pect to the function ¢. In particular, the ordinary product, cor-
responding to the function ¢f41,42) = pgA uoAg, will be called
the direct product.

These definitions can be generalized to the case of an arbi-
trary finite or infinite system of spaces M, with measures u,.
In doing this, it is assumed that ¢ is a function of sets
A, € qu, defined only for such systems {Aa} that the sets A,
which differ from the corresponding sets M, are present only in
finite numbers, and satisfying conditions a) and b), and condition

c) in the following formulation:
c) if the system {A,} is such that 4; 7 M, only for a = 3,
then ¢({A }) = “Aﬂ‘

M is the set-theoretic product of the spaces M_:

M=1TI] M.,

M is the collection of sets of the form

A=1II As,

*Compare (8], ITI, 4.
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where only a finite number of the sets Aa are distinct from the

corresponding sets M_, and ux is the minimum of all measures v for

which QVJM and
v(q A.,) =2({Aa}). (8)

If we wish that the product M of the spaces M, should be a
Lebesgue space, then we must first of all postulate that the set

of these spaces should be countable, for if it is uncountable
’

then, barring extremely trivial cases, the space M will not be
separable. In the case of a countable set of spaces M

: , th
M is always separable, for if r, . o

are bases of the spaces M_, th
the union " of systems of sets = -

Az X T Ms  (A.€Ty)
pra

is a basis of the space M. In this connection, it is not difficule
to see that from the completeness of the spaces

M, with re
; 2 Spect to
their bases [;, one can infer that ¥ is com

: plete with respect toll
In this way, the product of a finite or countably infinite sys-

tem o L
en of Lebesgue spaces is a Lebesgue space. Furthermore, the meags-

ure E ts the only Lebesgue measure defined for all sets of the col-
lection M and satisfying relation (8). As a matter of fact let 4
be a different Lebesgue measure defined : .

: for all sets of the callec-
tion M and satisfying relation (8). Since the collection Q , con
” Y

tains M, it contains the system [ which has Just been canstructed:
and since [" enjoys property () of No. ] of §2 in the collection '
M, it follows from the theorem on bases (No. 5 of §2) that u'ois
completely determined by its values on the collection [ ,CM. That
is, u' is determined by property (8). o

Now let

x'=n-¥¢. xCEMﬂJ
be an arbitrary point of the space #. We set
=iy,

H, is a homomorphism of the space M onto the space ¥, and the cor
L L,

Fesponding decomposition Ly is the decomposition of the space M
lnto sets of the form =

Xg X H ME-

Bsa
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By No. 2 of §3, Ty is an isomorphism, and we may identify the
a

space M, with the corresponding factor space ¥/f, and suppose that
M is the product of all of its factor-spaces H/{ . This product

is defined by the relations:

Hc¢=|;]cm ?({Xﬂ})=p‘(gz¢):

where C, is understood on the left to be a point of the space M/{d
and on the right to be a set in the space ¥, and X, = Ht Z,.
a

We now reverse the question. Let M be a Lebesgue space and
let Z = {Ca} be a finite or countably infinite system of measurable
decompositions of the space M; under what conditions can M be con-
sidered to be the product of the factor-spaces M/L, in the sense
just described? From the discussion above, it follows that this

will be the case if and only if all intersections

0 Ca, ©

where C, is an arbitrary element of the decomposition f,, consist
of exactly one point; that is, if
a) all of the intersections (9) are non-void; this condition

we shall express by saying that the system Z is crossed;
b) ML, is the decomposition of M into individual points.

If we are concerned not with an exact resolution into a pro-
duct, but merely with a resolution med (0, that is, if we demand
only that the system should be identical mod 0 with a certain sys-
tem Z' = {{’_}, which resolves its space M' into the product of
factor-spaces M'/(',, then we can obtain the following stronger re-
sule:

Every finite or countably infinite system Z, which satisfies
mod O the condition b), resolves mod 0 the space M into the pro-
duct of factor-spaces M/{,. For the proof, it is sufficient to ob-
serve that in a Lebesgue space, every finite or countably infinite
system of measurable decompositions is crossed mod (. Indeed, let
Z, be any basis at all of the decomposition {,- We form the union
of all of the systems £, and extend the countable system of measu-
rable sets obtained in this way to a basis [ of the space #. Let
ia be the part of the basis [ o£ the space W =\;lr1 which corres-
ponds to the system Eu; we set [ = C(EGJ and Z = {Qa}. It 1s evi-
dent that the system 7 is crossed in M and that it induces the sys-
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tem Z in the space H. Since M is a Lebesgue s
covers mod 0 all of i, and,

identical med ¢.

pace it follows that¥
consequently, the systems Z and Z are

We shall call measurable decompositions

£y and {y ind .
if, for every measurable [y=set 2 1 9 independent

¢ and every measurable §2-aet 22,

#(Z21Zy) =pZ,-p2Z,.

Since, on the one hand,

p(Z,2,) = SFC. (€2,2,) dpy, = Sne.fclza}dm
T, H- 2, l

(Cy is an element of the decompesitian £

1) and, on the other hand,

pZypZ, = S pZ, dyg,,
H(Z.
it follows that the condition of inde

pendence can be f i
the following fashion also: et

every measurable set [, -set Z inter-
sects all mod ) spaces Cy in sets having the same Ee ;

: asure, which
is equal to the measure of the set Z v

9 in the space ¥:
P, (C1Zy) = pZ,. €10)

For a arbitrary measurable decom

position [ and an arbitrary
measurable set A, we ser:

dy A = vraimi =
CEMffn pc(CA), D:A= v(-[aei‘l;x;l:ax pe(CA).

We call dgd the inner diameter and D

_ A the outer diamet im-
ply the diameter, of - ol

the set A with respect to {. If d,4 = ng
then we say that 4 is a set of constant width mod

oy 0 with respect

It follows from the foregoing that decompositi

: . ons {, and [
are independent if and only if every measurable {s-s o .

: et 1s a set of
constant width mod 0 with respect to {1. For this,

sufficient that the sets of the collection {Z?ld should have con
stant width mod 0 with respect to ;1 {see No. 3 of $1), where
(£5)4 is any basis at all of the decomposition o

it is clearly

If the decompositions {1 and C? are not only independent, b
also mutually complementary (No. 3 of %3
independent complements of each other,

ut
or, as we shall say,

. then there corresponds to
em 1 i
a resolution of the space ¥ into the direct product of the

*This concept is borrowed from the theory of probability; see EB]. V1 §1
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factor-spaces ﬂ/{I and M/{q. In this case, letting the set 22 run
through the collection (22]d' we concluded from the relations (10)
that the homomorphism HC induces in all mod 0 spaces C; isomor-
phic mappings of these spaces onto the factor-space M/{i. (In
the case of a resolution mod (, these mappings are isomorphisms
mod 0.)
§4. Construction of a measurable decomposition.

No. 1. Formulation of results. 1In this paragraph, we shall
give a complete classification of measurable decompositions of a
Lebesgue space. In view of the theorem on homomorphisms (No. 2 of
§3), this will give at the same time a complete classification of
the homomorphisms of these spaces.

Let L be an arbitrary measurable decomposition of the Lebes-
gue space M. Every mod 0 element C of this decomposition, regard-

ed as a Lebesgue space, (No. 1 of §3), posseses its own invariants

2,(C), mg(C),... (No. 4 of §2). We can consider a, as a function
defined on the factor space M/{. In view of their definition, they
satisfy mod 0 the following inequalities:

mJI}U» My 2 Ma 41, i my < 1. (l)

=1

We shall designate the sequence my,m5,... corresponding in
this way to the decomposition { by the symbol my. It is clear
that the type r[n;] of the sequence mC‘ is an invariant of the
decomposition {: if 7({') = 7(L{"), then Timps) = T{m;w}‘ The prin-
cipal result of the present paragraph is that:

(I) the functions m, are measurable;

(11} &f T{ng;] = Tlmcul, then 7({') = 7(L");

(III) for every sequence m of measurable functions m, defin-
ed on a certain Lebesgue space and satisfying mod 0 the inequali-
ties (1), there exists a measurable decomposition { (of a certain
other Lebesgue space) such that r(mgl = 7{m).

In other words, the foraula
“In accprdance with the general definiti of §1, the sequence m' of func-

? of Ne. § " T
tions M, defined on the lebesgue space M, and the sequence M’ of functions m, de-

fined on the Lebesgue space M, belong to a aingle type:

1“1"]::{(1‘!["]'
if there exists an isomorphism mod 0,x" = k', of the space ' oato M', such that
for all n and for all mod 0 points ' € i,

my (x) =m (2").
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T (C} =T {m;]

establishes a one-to-one correspondence between types of measurable
decompositions and types of sequences of measurable functions sat

isfying mod 0 the inequalities (1).

The decomposition [ assumes an especially simple form when
the functions a, are mod @ constant, that is, all med ¢ spaces C
are isomorphic mod 0 among themselves. As an example of such a de-

composition, one may take the decomposition of the direct product

a‘” =5 Ml = M2 (2)

into sets C = x4 2% 32, where xy € 31. In view of (II), every meas-
urable decomposition with functions m, which are constant mod 0
assumes this form. In other words, if the functions m_ are con-

n
stant mod 0, then the decomposition { possesses an independent
complement. Since the converse is obvious, we can assert: in ord-
er for the measurable decomposition { to admit an independent com-
plement, it is necessary and sufficient that all mod ¢ spaces C
should be of one and the same type.

The most important case is that in which the measures being
considered -- the measure #r and all mod 0 measures kg -- are con-
tinuous. Then, as spaces “i and H2 in the product (2), we can sim-

ply take closed intervals, and we obtain the following theorem:

if the measure My and all mod 0 measures e are continuous,
then the decomposition { is isomorphic mod 0 to a decomposition
of the unit square into closed tntervals parallel to one of its
sides.

In the general case, a measurable decomposition has only a
slightly more complex form. We can consider the functions m_ as
being defined on a set [ of points of the axis «, cansistin: of
the interval (0,15) and a certain sequence of points z,,%9,...,
let us say zp =1+ 1/k. The measure is defined in the space L
83 ordinary:Lebesgue measure on the interval (0,10), and the meas-
ure of the point xp is lp, where lp > lg+4 and Iy + zk$11k = 1.

We designate as 'OD the set of points of the plane xy, bounded on
the left and right by the lines z = 0 and x = [,, below by the

line y = 0 and above by the curve
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¥ =) =1— 3} ma(2).

We designate as Hok{k=i,2,...} the interval on the line = = 1 + 1/k
included between the line y = 0 and the curve y = my(x). Next, we

set:

M, =hﬁ%nﬁ'}Jlﬁﬁ»-

Next, we denote by M, (n=1,2,...) the set of points of the line
y = 1 *+ 1/n which lie over points of the set L. Qur space M is ob-

tained by uniting the set M, with the sets My Mg, oo
M=M,+ U M,
n+‘l-J.1 Mn (3)

In order to define the measure p, we defined by Ho0 the ordinary
plane Lebesgue measure, and by ppp(k=1,2,...) the ordinary linear
Lebesgue measure on the line z = { + 1/k, and for a set AgCHy,
we set: o

o Ay =Hoo (Mye 4o) + §| tox (Mo Ay).
We consider Ao as measurable with respect to Ko if and only if all
of the intersections HOkAG are measurable with respect to their
measures inp. Furthermore, we designate as g, (n=1,2,...) the Leb-
esgue-Stieltjes measure defined by the formula:

l"'n!rr = S My (X}dl,

'
where In is an interval on the line y = 1 + {,/n, and I is the 1in-
terval on the axis of x which lies under I,. Finally, we agree to
consider those sets ACM as measurable whose intersections with
all of the spaces M,(n=0,1,2,...) are measurable with respect to

the appropriate measures, and we define

wA =po (My A) + ) ¢a(Ma A).
n=|
It is not difficult to convince one’s self that the space M

with the measure p is a Lebesgue space. Our decomposition is a de-

composition of the space M into sets Cj, lying on the vertical

lines x = a. This decomposition is obviously measurable. The space

C, consists of the interval of the line x = a contained between

the line y = 0 and the curve y = ag(x), with ordinary linear Lebes-

gue measure, and the sequence of points y, = 1 + {/n of this same

line (n=1,2,...) with measures m,(a). We can identify the factor-
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space M/L with the space L. In this way, the sequence m; corres-

ponding to the decomposition { is given by the sequence "y,mg, ..

Since the numbers Zﬂ and the functions m, were given arbi-
trarily, the present construction proves Theorem (III). Ac the
same time, in the light of Theorem (II), it provides us with a
measurable decomposition of the most general kind.

No. 2. Removal of one-sheeted sets of positive measure.
The sets M;,Mg,... which served us in the preceding No. for con-
structing the decomposition {, have the property that they inter-
sect every element of the decomposition £ in not more than one
point. Sets of this kind will be referred to as one-sheeted with
respect to {. We commence with the construction of a resolution

of the form (3) for an arbitrary decomposition [.

Lemma. Among the measurable sets which are one-sheeted with

respect to [, there exists a set of maximal measure,

Proof. We denote by a the least upper bound of measures of
one-sheeted measurable sets; let 41,42,... be a sequence of sets
for which :

ulemgA, =g, (4)
We wish to replace dI,Az,... by another sequence, also enjoying
property (4), but, besides this, converging. This replacement is
carried out inductively: we set: A’j = AI’ and if the set A’n—i
is already defined (n=2,3,...), then we denote by Xn—j the set of
those C € M/, for which Ho(CA,) > pC{CH'n_I}, (5)
and by Z —4 the inverse image of the set Xn—j under the homomor-
phism Hy. We define the set A', by the formula: At =

Z,_4A.. A ! _ﬁ”iA’n‘i )
n-1An+ AlL of the sets 4 n 2re, clearly enough, one-sheeted meas-
urable sets. For all mod 0 points C € Xﬁ“j' we have: CA', = CA' 1
E nwLe
and in consequence, Ho(CA' ) = pC(CA’n_Ij; if C € Xn—j' then CA'
= CA,, and this means that HC(CA') = ue(CAL) > HefCA'—y). There-
fore for all mod  points C € M/, Ke(CA' ) > ;C(CA'H_I); (6)
the seti Zn-i and zn—1 are characterized mod 0 by the fact that
for CCZH_I, equality obtains in relation (6), while for CCZn.,i,
the strict inequality holds.

CA‘i,CA'E,... is a sequence of sets of the space C each con-
s1sting of not more than one point, and it is plain from (6) that
their measures for a non-decreasing sequence. But, under these con.

ditions, the sequence CA'I,CA'Q,... can contain a finite number of
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different members; consequently, there exists a natural number

n(C) such that for n > n(C),

CA, = CA, ¢y
We set

M, = 1&} CA, oy

"1 is a one-sheeted set and also, mod 0, is the set-theoretic lim-

it of the sequence A'I,A'z,... . Consequently, it is measurable,

d ;
" uM, = lim pd;. M

Since for all mod 0 points C € En-!'
e (CA) = pc (CA;_) > pc (CAa)
and for all C € X _,,
pe (CA,) = b (CAn),
it follows that for all mod 0 points C € M/T,

#c(CA) > 1, (CAL),

so that

wty= o (Capdne> § vc(Canduc=udn.
MiT

Mt
But, pA', < a: consequently,’
pd, <pd, <a, (8)
Now, combining (8) with (4) and (7), we obtain:
Il-h'“] =ux,

that is, ”1 is a one-sheeted set of maximal measure. The lemma is

proved.

We now set NG = M and NI = ii' If ”NI > (, then Ni can be con-

sidered as a subspace of the space M, and the decomposition induces

a definite decomposition CJ in Hl' We can apply our lemma again to
L4 among the measurable sets which are one-sheeted with respect
to ;1, there exists a set Mg of maximal measure. Plainly enough
Mg is at the same time a one-sheeted measurable set with respect

to [, and also it has maximal measure if one considers only sub-

sets of Nl'
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Continuing this process, we obtain sets NQ = N} = HQ,HJ, and
so on. If one of the sets “1‘2"" turns out to be a set of meas-
ure zero, then all of the succeeding sets will also be of measure
zero. This occurs if one of the sets NO'NI"" contains no one-
sheeted set of positive measure, for example, if the set itself
has measure zero. In any case, upon admitting sets of measure zero,
we can define all of the sets My Mg, ooo o Finally, we set

-
Mﬂ= nNII: UMn
n n=1
M, has no one-sheeted subsets of positive measure. This is evident
if there are only a finite number of sets of positive measure a-
mong the sets M, Mg,... . Now, if all of the sets M, have posi-
tive measure, then kig uM, = 0 (for the sets M, are pairwise dis-

joint), and since, for every one-sheeted set ACH,, we must have

pA < uM, for all n, it follows that pd = 0.
We summarize the results obtained above in the following way:

To every measurable decomposition [ of the space M, there cor-

responds at least one decomposition of the form
M= M,+ u Mp, (9)

where My, Mg, ... are measurable sets which are one-sheeted with re-
spect to [, where M, is a set of maximal measure among all measu-

rable one-sheeted subsets of the set Hn—l = LJg;in. and HO con-

tains no subset of positive measure which is one-sheeted with re-
spect to L.

No. 3. Decompositions without one-sheeted sets of posttive

measure. In this number, we shall prove the following theorem:

Every measurable decomposition without cne-sheeted sets of

positive measure admits an independent complement.

The proof is based on a series of Lemmas, in which [ always
denotes a measurable decomposition without one-sheeted sets of

positive measure.

Lemma 1. If A is a set of positive measure, then among its
mneasurable subsets, there exists at least one which is not iden-
tical mod 0 with any of its [-subsets (No. 2 of §1).

Proof. Such a subset can be found among the elements of an

arbitrary basis ' = {G;} of the set A (considered as a subspace
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of the space M). In fact, in the opposite case, one can find for
every set G, a [-subset Z, of the set A which is identical mod 0
with G;, and, removing from A the set Lj(ﬁuzg+qazu}. the measure
of which is equal to zero, we find a one-sheeted set of positive

me asure.

Lemma 2. Every measurable set of positive measure admits
measurable subsets of positive measure with arbitrarily small dia-
meter (No. 4 of $3).

Proof. Suppose that the lemma is false; let A be a measurable

set of positive measure such that

infD:B>0; Bc A, pB>0. (10)

We denote the left side of the inequality (10) by €. Then, on the
one hand, for every measurable set BCA.of positive measure,

DB>«, (11)
while on the other hand, there exists a measurable set ByCA of
positive measure such that

DeB, < 2e.

Let By be a measurable subset of the set BO which i1s not identi-
cal mod 0 with any of its {-subsets (Lemma 1). We set 32 = BG'_Bi
and denote by XO the set of those C € M/l, for which the two in-

equalities

#c(CB) >0, pc(CB:) >0 (12)

are valid. In view of the choice of the set BI‘XU is a set of pos-

itive measure, and since for all mod 0 points C € M/,
Pe (CB,) + Be [CBa) = Pe (CBG] < 2z,
there exists a set XC:XO of positive measure such that if
#e (CB) <, (13)
does not hold for all C € X, then
#e(CB:) < (14)
does hold for all C € X. We denote by Z the inverse image of the

set X under the homomorphism Hﬁ. In case (13), we set B = ZBI'

in case (14), we set B = ZB2, and in both cases, we have:

D(B < g,
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which contradicts relation (11), for, in view of (12),

w8 = uc(CBYdu >0
X
Lemma 3. For every measurable set A and every real number

satisfying the inequalities
D:AL0L], (15)

there exists a measurable set B which contains A and which has
mod 0 constant width &,

Proof. We construct a transfinite sequence of measurable sets

B, bhaving the following properties:
a) BI = 4A;
b) for a" > a’, we always have Ba”:jﬁa’ and “Ban > uB
c) DyB, < 6.

In order to satisfy condition a), we must set Bi = A; in view
of inequality (15), condition c) will be satisfied for a = 1 if
we do this. Let us suppose that sets B, which satisfy conditions

a), b), and c) have already been constructed for all a < B.

1) If 8 is a transfinite index of the first kind and BﬁFI is
not a set of constant width @ mod 0, then there evidently exists
a set XCH 'L of positive measure and a positive number € such that
for all C € X,
pe(CB, ) <0 —e. (16)

We denote by Z the inverse image of the set X under the homomor-

Phism Hy. In view of (16),

#(ZB, ) =\ bo(CB, ) i (0= ) p X< X =z,
X )
But E?is means that n(236_1} > 0; in view of Lemma 2, one can find
in ZBﬁ“I a measurable subset Eg of positive measure, the diameter

of which is not larger than €, and we set:
By=8, ,+ E,.

2) If 8 is a transfinite index of the second class, then we
set:

Bgz U Bm-
=<3
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Under constructions 1) and 2), conditions b) and ¢) evident-
ly remain satisfied. In view of b), the transfinite sequence of
numbers pBI,—82,... is strictly monotone and therefore is no more
than countably infinite. Consequently, the process must come to a
halt at some transfinite number 8 of the second number class. But
it can come to a halt only if 8 is a number of the first kind and
Bﬁ‘l is a set of constant width & mod 0. Thus B = Bﬂ'! is a set
of the kind whose existence is asserted by Lemma 3.

Lemma 3°'. For every measurable set A and every real number &
satisfying the inequality

0<0<a4,

there exists a measurable set B contained in A of constant width

8 mod 0.

Proof. Since
deA=1—DzA4,

by a passage to the complement, this lemma leads to Lemma 3.

Lemma 4. For every measurable set A and every natural number
r, one can find r measurable [-sets 21'22""'zr (vhich can always
be chosen pairwise disjoint) and r measurable sets 2‘1,2'2,...,Z'r

of constant width mod ( with respect to [, such that the set

Biss \| ZiZ}
il

contains A and

w8 —A)< -

Proof. We define Zi as the sum of those sets C for which
1
0K e (CA) <+

and Z;, and 1 < i < r, as the sum of those sets C for which

=l cpelCa <+
In order to construct the sets Z'i, we shall consiaer those of the
sets Z; which have positive measure as subspaces of the space 4.
Let {; be the decomposition induced in Z; by the decomposition &
and let A; = Z 4. Since, obviously,
E)QAI4;‘éT-
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it follows from Lemma 3 that there exists a measurable set Z'i i
containing 4; and of constant width i/r mod 0 with respect to §i.
Starting with z.i,i and using Lemma 3, we construct in turn the
sets

Ziod D20 A pa S Tt in i S 2o

and using Lemma 3', sets
2i1C 21y 21 iaC Zh ity e e ZiiCZla

where z-i,j is a set of constant width j/r mod 0 with respect to
{;- Of course, this construction takes place only for those val-
ues of it such that pzi > 0; if pZ; = 0, then by definition,
Z‘i.j =Z;(j=1,2,+v.,r). Finally, we set
Z; = 2.
=1

Since Z"-_,ICZ',;'?C-"CZ',:',, it follows that Z'ICZ"QC.-.CZ‘_”
and since Z;Z*; = z'i,i and z'i,i A;, it follows that
Bu Uizt = 205 e
&Zzlfg&JD&m—A
and that

# (B—A)=Xp(Ziu—A)=

o]

r
a

\eclCi@ii— A du < 3 -uzi=.

Hiz, fusl

I
M-

i

We are now in a position to prove the theorem stated at the
beginning of this No. Let [ be any basis at all of the space M,
We consider all possible pairs (G,p), where G € (F+F}d (See No. 3
of §1) and p is a natural number. We arrange these pairs in a se-
quence HI = (Gi'pl)' ﬁ2 = (GQ'PEJ"" . We next construct a se-
quence Al' Ag,... of finite systems of measurable sets (the union
Lj:zlnn being denoted by £) and a sequence A‘I,A'2,... of finite
systems of measurable sets (the union Ljr=ln'n being denoted by

Z*) such that

a) the system Z*; (see No. 3 of §1) consists of sets which
have mod 0 constant width with respect to {;

c) the systems A, and A, consist of one and the same numbers

of sets; if these sets are respectively Zn I,Zn 2,....2rl q and
3 k] ? n
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z.n,i'z.n,Q""’z.n,qﬂ' then the set

n -
Bn =¥ U kazn.g
o]

contains G,, and
B(Ba—Go) << .
Pa

The construction is carried out inductively.

1) The systems Ay and A*, are constructed on the basis of Lem-
ma 4; it is necessary to set A = Gy, r = py and then 21,k =z,
and z.j,k =Z%.

2) If the systems AI'A2’°'°‘ n—q and A-I'A.2""'A'n—i are al-
ready constructed, then the systems An and A* are constructed in
the following fashion. Let Si 32,...,3 " be the elements of the
decomposition [(Z*,), generated by the union Z= LJJ IA'- of the
systems A'I'A grren, ATy -t The sets S' which have posztxve measure
can be considered as subspaces of the space M. Let {‘ be the de-
composition induced by the decomposition [ on St and let G' = St Qv
Letting A = G*, r = = pp» and applylng Lemma 4, we obtain a system
of measurable Cl-sets 31.22,...,2

Pn
Z‘} CZ‘;‘:”'CZ“‘ of constant width mod 0 with respect to [F,
ﬂ

and a system of measurable sets

such that the set
5 P
Bt= |) ij;
ju=i
contains G? and

W (B —G) < 5,

where pi is the measure in the space S'. Of course, this construc-
tion is vacuous for pSi = 0; in this case, we set Ei = Z'i =
S(j=1,2,++.,p,). We denote by Z‘ the union of all elements C of
the decomposition {, which xntersect 2} if ps‘ > 0, and the en-
tire space M, if ,uS" = 0 (for pS" > (), the measurability of the
set Z‘ follows from the fact that it coincides with the sum of

those sets C for which p.c(czr') > Q). We now set:
Z, =2 i=1,2,....85 i=4L2....p4
Za =2} h=(—=1p,+ji k=12 ....9,=5,D,

Tt is evident that the sequences A,,A*  which we have con-

structed enjoy properties (a) and (b), We shall show that they
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also enjoy property (c). Since BiZDGi, we have

S

b= B otim 3 (G 2er) - § (D) -

u&zu@-q

f==1

and since

B(B'— @) = pS'-pl (B! = G) < 5= b,

it follows that

We set [* = [(Z*). We shall show that [* is the independent
complement of the decomposition {. In fact, in view of (b), the
decompositions { and {* are independent (No. 4 of $3), and they
are also complements of each other, for, in view of c), the unien

of the systems I and Z* enjoys property (2) (see No. 3 of $3).
The theorem is proved.

From the fundamental formula 2¢) of No. 1 of §3, it follows
that a decomposition  evidently does not admit one-sheeted sets
of positive measure if all mod 0 measures ug are continuous. Since
every mod 0 element C* of the independent complement (* is a set
which is one-sheeted with respect to [, the measure of which for
all mod 0 elements C is equal to the measure uo(CC’) of the set
CC' (which consists of exactly one point), the converse is also
true. That is, if there are no one-sheeted sets of positive meas-
ure, the theorem just proved shows that all mod 0 measures pg
must be continuous. In this way, we see that a measurable decox-
position [ does not admit any one-sheeted sets of posttive meas-
ure if and only if all mod 0 measures uc are continuous,

Assembling the results obtained, we see that two decomposi-
tions with continuous measures [p are isomorphic mod 0 if and on-
ly tf the corresponding factor-spaces are isomorphic mod (. But
this assertion is plainly nothing but Theorem (II) (See No. 1)

stated for decompositions with continuous measures pc.

No. 4. Measurable decompositions of general type. In the

general case, the proof of Theorems (I) and (II) is based upon
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properties of the decomposition (9). We break up this proof into

several parts.

A) On HO all mod ( measures we are continuous; on "1’“2""‘
they satisfy for all med 0 points C € M/l the inequalities

Be (CMy) > Be (CMy) > .. ..

We shall denote by CO the decomposition induced in the sub-
space M, of the space M by the decomposition (we assume that
#Ho > 0) and by CO the element of the decomposition {y correspon-
ding to the element C of the decomposition {{CO=HOC). The decom-
position [, has associated with it its canonical system of meas-
ures fg , which, as one can easily see, is connected with the sys-

tem {Mc} by the relation:
pe (Xo) = pc (Cy) ~ug, (Xo) (X =Gy). (17)

Since the set "0 contains no one-sheeted set of positive measure,
it follows from the results of the previous No. that all mod 0
measures (e Are continuous. Consequently, all mod 0 measures

K¢ are continuous on M. By this, the first of our assertions is
proved. In order to prove the second, we denote by X  the set of
those C € M/l for which pc(CM,) < uc(CHpyq), and by Z, the inverse
image of the set X, under the homomorphism H{ and set

M, =Zo Mt Zy Ma i1+

el
= L)Hk.

n
ML is a measurable one-sheeted set lying in the set Nn-i =
k=1

If pcxn > 0, then
\seem)dp = \ weicmydu, + § uccM, 0 du>

MiT Xy Xa
> ueeoyan +§ ue cMyan =  uc M) d,,
X Xy M1
or,
wM, >uM,,

which is impossible. Hence ucxn =04

B) For all mod 0 points C € M/L,

4e CM)=m_(C) (r=0,1,...). (18)
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Indeed, in view of A), for every mod 0 point C € M/L, the sequence
cyi,CHz,... consists of sets each containing not more than one
point, and so arranged that their measures form a non-increasing
furthermore, this sequence contains every set of posi-

sequence;
cive measure which contains only one point. But this means that
the equalities (1B) are valid.

C) The functions m, are measurable (Theorem (I) of No. 1 of
$4) and if Z is the inverse image of a set XCM/L under the homo-
morphisa Hy, then
u (M 2) =\ ma(C) . (19)

X

This theorem, which follows immediately from B), shows that
for subsets of the set M, the measure p is completely determined
by the functions =,.

D) If T{ll'l{a:l = T{m‘:-}, then 7(L') = (L"), (Theorem (1I),
No. 1, §4).

W;'construcc the decompositions (9) corresponding to the de-

compositions [’ and [":

M =M+ UM, M=M+ UM,

and denote by L', and L"g the decompositions induced by the decom-
positions {' and [" in M', and M" 5. Let V be an isomorphic mod 0
mapping of the space M'/L' onto H'/L" carrying my into myu. In
view of the results of the preceding No., there exists an isomor-
phism mod 0, U, of the set H'o onto the U(C'M',) = VC'-M", for an
arbitrary element C' of the decomposition {'. In view of the re-
lations (17), (18), and {19), U can automatically be extended to

be an isomorphism mod 0 of the space M' onto the space H", carry-

ing ' into I*.
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