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V. A. ROHLIN 

The present work is devoted to the axiomatic description of 

the ordinary measure of Lebesgue or Lebesgue-Stieltjes in terms 

of the abstract theory of measure and to the study of the Lebes­

gue space, its hoaoaorphisas, aeasurable decoapositions, and fac­

tor spaces. which arise when one carries out this axiomatization. 

The work consists of four paragraphs. §l contains general 

definitions and notations, used throughout the entire work. For' 

the most part. these definitions are not new, and are applicable 

not only to Lebesgue ~p~c~s, but~o arbitrary measu~e spaces. §2 

is devoted to the def1n1t10n and structural propert1es of Lebes­

gue spaces. In §3, we set forth the' general theory of measurable 

decompositions, homomorphisms, and factor spaces of Lebesgue 

spaces. Finally in §4. we give a classification of measurable de­

compositions and homomorphisms. 

The principal definitions and theorems of the first three 

paragraphs, in particular, the axiomatic description of a Lebes­

gue space and the theorem on the existence of a canonical system 

of measures, is taken from my unpublished opus Unitary rings and 

dynaaical systeas (University of Moscow, June 1940). In connec­

tion with the matters set forth in Nos. 1, 2, and 4 of §2, I note 

that in 1942, P. R. Halmos and J. v. Neumann [1] published a dif­

ferent axiomatic description of the unit interval from the point 

of view of the abstract theory of measure; their axioms of counta­

bility coincide wit.h those which we take in No. 1 of §2. but the 

place of the axiom of completeness is taken by a different axiom.
1 
J The theorem on isomorphisms (No. 5 of §2) is due to von Neumann 

[2], and the proof given here is a simplified version of von Neu­

mann's proof. Nevertheless, the for.ulation of this theorem given 

in the text is stronger than the formulation of von Neumann, which 

is insufficient for the aim of the present work (the improvement 

consists in the fact that the image UM of the space M is not as­

sumed at the beginning to be a-Lebesgue space). I am indebted to 

A. N. Kolmogorov for the idea of a canonical system of measures 

(No. 1 of §3), who informed me of it in the year 1940. Other re­

sults, closely related to the theorem on the existence of canoni­

cal systems of measures, were published in [3] and [4].· 

The principal results of the present work have appeared 1n 

'Note added iD. proof. As I learned from C9], the indicated results from 1:3] and [4] 
are false. . 
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Doklady Akad. Nauk SSSR [5J. 

§l. General .easurea. 

No. 1. Space III i th a aeasure. Subspaces. It is well known 

that a real-.alued function~, defined on a certain collection n~ 
of subsets of an arbitrary set M, is called completely additive 

if n~ is a Borel field of sets; this means that n~ contains, with 

any two sets, their difference. and with any sequence of sets, 

their union (and consequently, their intersection); for every Se­
quence of pairwise disjoint sets An en 

W 

~ (~An) = 2} !LAn. 
n 

By the term measure, we shall mean throughout this work a non­

negative completely additive function ~, have the following two 

properties: if ACB and ~ = 0, then A €'n~ (consequently AlA = 0); 

ME OJ.< and /'oM = 1. 

Under these circumstances, the basic set M is called a space with 

the measure ~, and its elements -are called' points. Sets of the col­

lection n~ are said to be measurable. Measurable functions and the 
Lebesgue integral are defined in the usual fashion. 

The outer measure ~eA of a set ACM is defined as the lower 

bound of the measures of the measurable sets containing A. Of 

course. this lower bound is always attained; that is, there always 

exists a measurable set B containing A for which ~ = ~eA. Every 

such set B is c~lled a measurable hull of the set A. The measuroole 

hull is defined uniquely up to sets of measure zero. If Band B' 
are two measurable hulls of the set A. then ~(jjB'+BB') = o. • In­

deed, the intersection BB' is again a measurable hull of the set 
A, and for this reason ~(BB') = ~ =, ~'. 

The outer measure ~e in its turn completely defines the meas­

ure~; a subset A of M is measurable if and only if ~eA + ~eA = i; 
and if A is measurable, then pA = ~eA. 

If M is a space with measure. then every subset A of M which 

is not a set of measure zero (~eA > 0) can also be considered as 

a space of the same kind (a subspace of the space M), if we de­

fine in A a measure ~A' taking the sets of the form X = AX, where
A 

-The liD.e ahoye indicates the complementary set: B=M - B. 
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xe0,LL' as measurable, and defining J.LA for such sets by the rela­

tion 

f"AXA = !L.XA (1)
!L. A 

In particular, if A is measurable, then 0J.LA is simply the collec­

tion of those measurable sets of the space M, which -lie-in A, and 

the measure J.LA is defined by the formula J.LAX = J-LX/J.LA. 

No.2. Ho.o.orphis.s. Deco.positions. Factor-spaces. A si~­

valued mapping of the space M into the space M' is called a homo­

morphic mapping, or simply a homomorphism, if the inverse image of 

every measurable set is measurable and has the same measure as its 

image. It is evident that every homomorphism of the space Minto 

the space M' is a homomorphism of M onto a certain subspace of the 

space M'. 

Closely connected with homomorphisms,of the space M are its 

decompositions into disjoin~ subsets, the so-called elements of 

the. decomposition. Sets which are unions of elements of the decom­

position ~, we call ~-sets. With every homomorphism H of, the space 

M, we associate a definite decomposition of this space, namely, 

the decomposition ~H whose elements are the inverse images of 

points under the mapping H; ~H-sets_are the inverse images of sets. 

Conversely, to every decomposition of the space M, there corres­

ponds a definite homomorphism H = H~ of the space M, for which 

~H = ~. In order to construct this homomorphism, we take the ele­

ments C of the decomposition ~ as points of a new space, the fac­

tor space of the space-M with respect to the composition ~, which 

we shall designate as M/~. and which becomes a space with a meas­

ure, if we introduce into it a measure J.L~, defining a set XCM/~ 

to be measurable in M/~ when the ~-set 

z= U C
cEx 

is measurable in M. and setting 

.. 
0=~ 

! 
The homomorphism H~ is the mapping of the space M onto M/~ which­

assigns to every point of the space M that element of the decom­

:' position ~ in which the point lies. It is obvious that the decom-
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position ~H associated with the homomorphism H = H~, is once again 

~. The definition of the measure J.L~ is such that for H~, not only 

is the inverse i.age of every measurable set measurable, but also 

the i.age of every measurable set is measurable. On aCCount of 

this fact, it is possible to assert that if the decomposition ~ 
is generated by some homom~rphism H of the space M into a different 

space M'(~=~H)' then the one-to-one mapping Tn of the factor space 

JI/~ into M', which carries every point C €M/~ into the point of 

the space JI' into which H carries all of the points of the set 

CEM/~, is a homomorphism. It is evident that the homomorphisms 

H, H~ and TH are connected by the relation H=H~TH. 

Starting with the decomposition " we arrive at a collection 

of ~-sets. Conversely, every collection of sets lying in M leads 

to a definite decomposition. Let ~ = {Sa} by an arbitrary system 

of subsets of the set M. We shall agree to designate by the sym­

bol Ra one of the two sets Sa,Sa' and consider all possible sets 
of the form C= nR.. 

where a runs through all possible values. The sets C are disjoint 

and cover M, that is, they generate a definite decomposition, 

which we denote by the symbol ~(~J. The set of all ~(~)-sets coin­

a

to

cides with the set of all sets which can be obtained from the sets 

of the system ~ with the help of all possible set-theoretic opera­

tions (including complementation), repeated as many times as de­

sired. This collection of sets is denoted by the symbol ~. A par­

ticularly important case is that in which RL is the collection of 

all subsets of the space M. This takes place if and only if ~(~) 
is the decomposition of M into individual points. 

The system ~ also induces in eVery subspace A of the space M 
definite system of subsets, namely, the system ~A of all sets of 

the form SA = AS, S € L. In exactly the same way. there corresponds 

every decomposition ~ of the space M a definite decomposition ~A 
of the space A, namely, the decomposition of the space A into the 

aets CA = AC, where C is an element of the decomposition ~. Regard­

ing 'A-sets of the space A as sets in M, we shall call them ~-sub­
aets of the set A. 

_No.3. Syste.s of .easurable sets. A measure J.L' defined on a 

collection of sets n~, is called a part of the measure J.Lw , de­
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fined on the collection of sets D.J.I.'" if D.J.l.ICD.J.I." and J.I.'A = J.I."A 

for all A E.D.J.I." On the other hand, the transition from J.I.' to J.I.", 

as well as the measure J.I." itself, is called an extension of the 

measure J.I.'. 

Let L = {Sal be an arbitrar~ system of~as~rable sets. It 

is plain that among the parts of the measure J.I., defined for all 

sets Sa' there is always a minimal element: this is the common 

part of the family of all such measures. We shall denote it by 

the symbol J.l.L • The measure J.l.L can be obtained in the following 

way. We denote by f the system of sets complementary to the set~ 

of the system L. We agree further to de~~te by S a finite set of 
l 

indices a. If the number of indices in the set S is equal to r, 

then, we shall sometimes write Sr instead of S; in this connec­

tion, the value r = 0 is admissible: SO is the void set. We set: 

DW)= n S~, DW) = n~; ,.>0; 
~ E&' ~E a' 

.D (80) = 0(80) = M. 

.Instead of D(Sl and D(S), we shall also write ~(S) and ~(S). 

The collection of sets of the form ~(S) we shall denote by the 

symbol Ld' In accordance with this, we shall denote the collec­

tion of all sets of the form ~[S)DL(8) by (L+~)d' and the col­

lection of sets of the form 

, 
E= U En, EnE (L: +~)d' 

n-I 

which is the field of sets generated by the system L and the set 

M, by the symbol (L+fl ds ' Furthermore, the collection of sets of 

the form 

£ = UEn. EnE(L: + ~)d' (2)
"...:::.1 

will be designated by the symbol (L+f)~. Finally the collection 

of all sets of the form 

'" E = n En, En E(:E + L)d,
n_1 

is denoted by the symbol (L+f)do-S' For every set A eM, 
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(fLI:),A = Jnf lLE, EE (:E + f)dOl E=:JA, (3) 

thus the measurable hull of the set A with 
respect t~ the meas­

ure J.l.L can always be found in the collection of sets (nf1do-S'and hence a fortiori in the Borel lield ~ generated by the sy~-tem l and the set M. 

Since, for every set 
E ~(L+f)do-' the representation (2) can 

be chosen sa that the 
sets En are pairwise disjoint, it follows 

from (3) that the measure J.l.L , which is not in general defined 

by its values on L, is defined by its values on (L+fJ • Indeed,
dit is already 

defined by its values on Ld' since if these last 
values are known, then the values of the measure J.l. on (L+fJ

L d can be calculated from the easily verified formula: 

, 
flo (D (8) D (8.") = L;(- I)" ~ fIoD (8 + 81l). (4) 

k-U '1kC"'6' 

The numbe~s J.I.Dr(Sl defining, in this fashion, the measure
 

~L' we call them characteristic numbers of the system L. We in­

troduce the following special notation for them:
 

x (8) = XI: (8) = XI: (flo; 8) = fIoD (8). 

X(S) is a function defined on the collection tJ. of all sets S. Its 

values are not entirely arbitrary: if we introduce the function 
w ( S•S) = "'L (S,S) = "1: (J.I.; S,S), set t i ng 

'" (~, §') = L; (-I)~ ~ X(8+ 8"), (5)
k-<J t;JlCal' 

then, l.n view of (4), it turns out that 

or(8, 8):;;;" O.Furthermore, (6) 

X(80
) = I. (7) 

The Borel field 0." , on which the measure J.l.L is defined, wer-L __ 
shall denote in the sequel by the symbol {!L. ·It contains the Bo­

rel field ~ and is contained in its turn in the Borel field {!'L, 
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consisting of all sets of the form 

A' = A+N, AE\8~, !,-N = O. 

It is possible that both fields QL and Q'L are not contained 1n 

!IlL"• 
No.4. The space Mt. Let {a} be an arbitrary countable set 

of indices. For M, we take the set of all possible systems 

"f = ("fa)' where each of the symbols "fa takes two values xa and X'a; 

for Sa ' we take the set of those systems "f = ("fa) for which 
o

"fa = x ' and for L we take the system of all possible Sa' Let-x. 
a a abe an arbitrary real-valued function defined on ~ and satisfying
 

the inequalities (6), where w is defined by formula (5) and con­


di tion (7). We shall show that tbere' exists a measure !J- in II, de­

fined in particular on L, such that 

(8)Xr;, (!'-; 8) = X (8). 

Proof. We define the function !J- on the collection of sets 

(L+~)d by means of the formula: 
(9)

!'- (D (8)·15 (3» = OJ (8, ~). 

by additivity over the field (L+~lds' con­
and extend it further
 

form
sisting of sets of the 

(10)£" EC~ + Y)d.£'7 U £",
"-I 

Such an extension is possible, since for every set L€tL+~lds' 
there exists a representation of the form (10) with pairwise dis­

joint summands; the fact that the result does not,depend upon the 

.choice of the representation (10) follows from the definition (5) 

of the function w. The extended function satisfies all of the con­

ditions of the known theorem on the extension of additive func­

tions and therefore can be extended further to a certain measure 

!J-, which wiil satisfy condition (8). 
condition (8), we shall

The minimal measure !J-. satisfying 
space II with the measureand thedesignate in the sequel by !J-~,
 

!J-X' we shall designate by Mi'
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N~. 5. Types. A homomorphic mapping of the space II into the 

space M' is called an isomorphism if it is one-to-one and if the 

inverse mapping is homomorphic. An isomorphism is also called an 

isomorphic mapping. If there exists an isomorphic ~apping of the 

space II onto II', then the spaces M and M' are_also~~id to be iso­

morphic. This definition carries over also to a wider class of ob­

jects: to systems of spaces and systems of subsets defined there­

on, decompositions, mappings, and functions. Two objects S ahd S', 
defined in the systems {M } and {M~} of spaces with measure, area 
called isomorphic, if there exists a system of isomorphisms Ua' 
connecting the spaces Ma and M'a' which carries S into S'. For ex­

ample, two homomorphisms, a homomorphic mapping H of the space "i 
onto the space "2 and a homomorphic mapping H' of the space M1 .on­

to the space M2 are isomorphic if there exists an isomorphism Vi 
of the space M onto the space M1 and an isomorphism U2 of thei 
space M2 onto the space M2 such that H' = U~Uli. Another example: 

a decomposition ~ of the space II is isomorphic to a decomposition 

~' of the space N', if there exists an isomorphic mapping U of 

the first space onto the second such that for every element C of 

the decomposition ~, the set C' = UC is an element of the decom­

p~sition ~'. It is evident that if the homomorphisms Hand H' are 

isomorphic, then the corresponding decompositions ~H and ~H' are 

also isomorphic. In turn, isomorphism between two decompositions 

~ and " implies an isomorphism of the corresponding factor spaces 

M/~ and II' I~ ' . 
To every specified isomorphism of the space II into the space 

II', there corresponds an imbedding of the first into the second. 

Thus we designate the identification of points of M and M', carry­

ing II into a subspace of the space M'. 

For the theory of measure, the principal concept is not that 

of an isomorphism, but the concept of an isomorphism modulo zero: 

we speak of an isomorphism modulo zero, if upon removing from the 

corresponding spaces appropriate sets of measure zero, we obtain 

an isomorphism. Here we have encountered an expression which we 

ahall constantly use throughout this work. Consider two objects 

Sand S', defined in systems {N } and {M~} of spaces with measure.a 
We shall say that Sand S' are ideptified modulo zero if it is 

poaaibl e to make Sand S' identical by the removal of appropriate 
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sets of measure zero from the spaces Mo. and ,If~. In general, the 

expression modulo zero (mod 0) in assertions concerning the ob­

ject S means that this assertion is true for some object S' which 

is identical with S mod O. 

We shall say that obje~ts which are~isomorphic mod 0 are of 

one and the same type. We shall designate the type of the object 

S by the symbol reS). Properties of an object which are at the 

same time properties of all objects isomorphic to it mod 0, that 

is, properties of the type, are called invariant. 

§2. Lebesgue measure. 

No. 1. Separability. We shall say that the space M is separ­

able, if there exists a countable system r of measurable sets hav­

ing the following two properties: 

(~) For every measurable set AC M, there exists a set B such 

that ACBCM, B is identical wi th A mod 0, and B is an element of 

the Borel field Br generated by r; in other words, ~ = n~ (see 

No. 3 of §l). 

(U) For every- pair of points x,y, EM, there exists a set 

G~r such that either x E.G, y'!-G, or xE,G, Y¢G; in other words, 

~lr) is a decomposition of the space M into individual points, 

and mr is the collection of all subsets of the space M (see No. 2 

of §l). 

Every countable system r of measurable sets satisfying con­

ditions (L) and (M) will be called a basis of the space M. 

As an example of a separable space, we may present the space

Mt (No.4 of §l). The system L serves as a basis for this space. 

If A is a subspace of the space M and r is a basis in M, 
then r A (No. 2 of §l) is a basis in A; consequently, subspaces of 

separable spaces are separable. 

- On~ can infer in a trivial fashion from (Q): 

(~') For every measurable set ACM, there exists- a set BeM 

identical with- A mod 0 which belongs to the Borel field H"' genera­

ted by r; in other words, ~'r = n~. (See No.3 of §l.) 

If M is simply Ii space ·with m~asure~then cond!tion (Q') is 

essentially weaker than condition (Ql; we shall show, however, 

that in a separable space, every countable syste. of aeasurable 
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sets satisfying condition (~') is a basis aod O. 

Indeed, let r' be an arbitrary countable system of measurable 

sets, satisfying condition-(Q'). We take any basis at all in M, 
call it r, and const ruct ~ for every set G€ f, a set G' € Br' which 

is identical with G mod O. We then remove from M the set 

U(GG'+GG'(G€r), which· evidently has measure O. Then II is Con­

verted into a new space, and f' becomes a system of sets in this 

space which, as-one can easily see, is a basis. 

No.2. Coapleteness. Let M be a separable space, and let 

B =B~ be an arbitrary basis in M. We agree to let the symbol A~ 
stand for one of the' two sets B~,B~; in particular. we shall let 

A~(a) stand for that one of these sets which contains the point 
a. Since an intersection of the form 

n A~ (I) 

(~ runs through all possible values) cannot contain more than one 

point, it follows that the intersection 

n Aa(a) 

consists exactly of the 
point a. Consequently, eVery set consist ­

ing of one point. 
and therefore all finite and countable sets,
 

are measurable.
 

If all intersections of the form (1) are non-void, then we 

say that the space M is complete with respect to the basis a. In 
this case, the formula 

A~ = Aa(a) (2) 

establishes a one-to-one correspondence between the 
points of the
 

space II and the systems {A~}. For example, the
 
space M~ (No. 4 of
 

§l) is complete with respect to its basis L.
 

If the space M is not complete with respect to its basis a, 
the question arises as to completing it. A space M with a speci­

- fied basis B, with respect to which M is complete is called the 

completion of the space M with respect to the basis B, if M is a 
pace 

of the space M with outer measure 1 (!J.eM = i.. where !J. is
 

the mellsu;e in the space M), and if the basis ~ induces the basis
 

in M(B=~M)' Since the systems (Ap) are in one-to-one correspon_
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dence with the systems (A~), where A~ = ~~' ~ - ~~' and consequent­

ly with the points of the space ~, and since the characteristic 

numbers of the basis Bare equal to the corresponding characteris­

tic numbers of the basis B, it follows that the space Mwith basis 

Bcan be completely described in terms of the space M and its bas­

is B. In this fashion, the co.pletion is unique in the sense that 

if there is given another completion of M with respect to B, let 

us say the space M' with basis B', then there exists an isomorphic 

mapping of the space Monto M', carrying ~ into 13' and leaving 

the points of M fixed. On the other hand, the co.pletion always' 

exists. As a matter of fact, we set x~ = B~, ;~ = B~, and con­

struct the space MX' taking the characteristic numbers of the bas­

is L equal to the corresponding characteristic numbers of the bas­

is B. The space Mt, defined in this fashion by means of the space 

M with the basis B, will be denoted as M= M(B), its measure as 

~, and its basis L as ~. Formula (2) defines a one-to-one mapping 

of the space M onto a certain part of the space M. Going in turn 

from the collections Bd and Bd (No~ 3 of §l) to the collections 
- "'V "C _ "'" """ 

(B+B)d and (B+B)d' (B+B)dT and (B+B)~, n~ and~, we assure our­

selves that this mapping is an isomorphism, and in this fashion 

we produce an iabedding of the space M in M(B). Under this imbed­

ding, the basis Binduces the basis B in M, and ~e(M) = 1, that 

is, the space M(B) with basis Bis indeed the completion of the 

space M with respect to B. 

In view of the equality ~eM = 1~ only two cases are possible: 

either M covers all of Mmod 0, or M is non-measurable in M. In 

the first case, the pair M, B is identical mod 0 with the pair 

M, ~, that is, /II is co"'plete mod 0 with respect to B. We shall 

show that in the second case, M cannot be complete mod 0 with res­

pect to B. In fact, let M' be such a space and let B' = {B'~} be 

a basis of M' such that M' is complete with respect to B' and the 

pair M', B' is identical mod 0 with the pair /II, B. Then the mapp­

~ng 

Sa -+B; 

of the system B onto the system B' generates an isomorphic mappmg 

a f the space ,If onto the space !ti', carrying the basis B into the 
"" - basis B' and leaving fixed the points which belong to both spaces.

'-: 
But M covers all of M' mod 0; consequently, M covers all of Mma:! O. 

I:
, 
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If the space M is co.plete mod 0 with respect to soae basis, 

then it is coaplete mod 0 with respect to every other basis. 

Proof. Let B = {B~} and r = {Gy} be two arbitrary bases ~n 

M. We unite them into a new basis IT = B + r = {B~,9Y} and we
 

agree to denote the points of the spaces M(B) and Mlr" respec­


tively, by the symbols ~ and T:
 

;;, = (Au) (Aa =- Ba, Ba). 1= (Fy) (Fy = Oy, Oy). 

Then points of the space M(IT) are represented in the form: 

(Aa, F y ) = (a, J). (3) 

Like every measurable subset of M, Gy is the in~ersection
 

of the set M with a certain measurable subset GY of M(B):
 

Oy= MO~. (of) 

Choosing sets C' in some fixed fashion which satisfy the equali ­y 
ties (4), we combine the systems B{B~} and r' = {GY}; then we ob­

tain the system IT' = B + r' = {B~, GY}, which is a basis in the 

space M' = M(B) with exactly the same characteristic numbers as 

the basis IT in M. Consequently, the mapping 

Ba-+Ba• O' y -+0 y 

of the system IT' onto the system IT defines an isomorphism of the 

space M' (IT' ) onto the space M(IT). Under this isomorphism, the 

points of the set M remain invariant, and the set M' goes into 

the set LB of all points (3), for which all of the sets F~, cor­

responding, in view of (4), to sets Fy(Fy = GY if F = Gy and 

Fy =Gy(=MI-ayl if Fy = Gy), the ~. In 
y 

thecontain point fact. 

set M' consists precisely of those points (A~,F~) of the space 

M' (IT') for which the point ~ belongs to all of~the sets FY' 
~ We denote by Dy the element of the basis IT of the space 

M(IT) corresponding to the element G of the basis IT(D is the set 

of those points (3), for which F = 
y

Gy) and by E the· 
y 

set ofy y 
those points (3) for which ~ EG),. Of course, the set D is meas­y 
urable in 'MrrIl; but abo the set Ey is measurable in M(ITl. In 

fact, since the basis B= {B~} of the space M(B) and the subsys­
~ "­

tem of the basis IT of the space M(IT) corresponding to it have 

the same characteristic numbers, it follows that the outer meas­11 
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urI' of~the set Ey in M(TI) is equal to the outer measure of the set 

G'y in M(S); and the same is true of the complements of these sets; 

hence, measurabil~ty of the set GY in ~(S) implies measurability 

of the set E in M(TI).
I y 
l~ 

It follows from the definitions of the sets LS ' Dy , and Ey 
that 

La = U (Dy Ey +D y Ey ), 
y (5) 

1 

where all of the complements are taken in the space M(TI). Sut, 

evidently 

MDy = Oy, 

I 
j-
I. and, in view of (4), we also have 

MEy = Oy; 

consequently, the measurable sets D~y do not intersect+ Dyly 
with the set MCM(il) , which has outer measure 1 in M(il). There­

fore all of these sets have measure O. This means, in view of 

(5) , tha t the set LS covers all of the space M(TI) mod O. 

The proof is now quickly brought to its conclusion: from 

the assertion that M is complete mod 0 with respect to S, we con­

clude in turn that M is identical mod 0 with M(S), with LB (in 

view of the isomorphism constructed above between M(S) and LS)' 

with M(TI), with the set Lr, which is obtained in place of LS if 

we interchange the places of the bases Band r, and finally, 

with M(r) (in view of the isomorphism bet~een M(r) and Lr, analo­

gous to the isomorphism constructed above between M(S) and LS)' 

This implies of course that M is complete mod 0 with respect to r. 
Separable spaces which are complete mod 0 with respect to 

their bases are called Lebesgue spaces; and the corresponding 

measures are called Lebesgue measures. 

No.3. Coapleteness and aeasurability. We have seen, that 

if the space M is separable, then all of its subspaces A are al­

so separable. We shall show that if M is a Lebesgue space, then 

the subspace A is a Lebesgue space if and only if A is aeasurabk 

in lI. 

Proof. We shall show first, that if A is measurable in M, 
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then A is a Lebesgue space. We take an arbitrary basis r = {G~} 

in M and take the system rA as a basis in A (No. 2 of §l). There 

exists a natural mapping of the basis r onto the basis r A: 

O~ ..... AO., 

and to thi~ mapping, there cor~esponds a one-to-one mapping of 

the space M(r) onto the space A(rA). We denote this mapping by 

U. Evidently, 

- - 1 ­
Wl'A (fLA; a, a)~ !LA WI' (ft; a, a) 

(see No. 3 of §l). From this, it easily follows that 

- 1 ­(fLA). (UX) ~ f'A fL. X, 

and, consequently, sets of measure zero go into sets of measure 

zero. Furthermore, the collection Tf (No.3 of §l) goes into the 

collection ~A; and this implies that U carries every measurable 

set into a measurable set. Since M is a Lebesgue space and since 

A is measurable in M, A is measurable in M(rJ, and the image UA 
of the set A is measurable in A(rA). But UA =A; consequently, 

A is measurable in A(rAJ, that is, A is a Lebesgue space. 

We' shall now prove that if A is a Lebesgue space, then A 

is measurable in It!. We may assume without loss of generali ty 

that ~eA = 1, for one may always replace M by the measurable 

hull of the set A, and if A is measurable in this hull, then 

A will be measurable in M as well. Let r be a basis in M. We 

have: 

A eM.:: ifr (f), 

and since ~eA 1 and ~eM = 1, it follows that 

~A=l. 

The space M(rl is complete with respect to the basis r; conse­

quently, M~:l is the completion of the space A with respect to 

the basis induced in A by the basis r (it coincides with rAJ. 
But A is a Lebesgue space; consequently, A is measurable in 

M(rl, and hence in It! also. 

The theorem just proved shows that the property of a set to 
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be .easurable does not depend upon its accidental occurence in 

a Lebesgue space but is actually an intrinsic property of the 

set itself. 

We note. that the proof given above that A is measurable 

1n M if A is a Lebesgue space retains its validity even if M 
is not a Lebesgue space but merely a separable space. Thus, a 

Lebesgue space is a measurable subset of every separable space 

in which it is imbedded, and we obtain the following theorem: 

In order' for a separable space to be a Lebesgue space. it 

is necessary and sufficient that it be absolutely .easurable. 

that is••easurable in every separable space containing it. 

No.4. Construction of a Lebesgue space. Let M be a Lebes­

gue space. Since ~ = 1, there cannot be more than n - 1 points 

with measures exceeding lin, for every n. Consequently. the sets 

consisting of one point which positive measure form a no more 

than count ably infinite collection and can be numbered in a se­

quence 
P" p."." (5' ) 

for which 1-'1'1 ~ JJ.P > •.••2 

We set 

mn(M) = !J.P. (n. = I, 2, ".), 

i if the sequence (5') is infinite, and 
I 

for n~p,,I mn(M) = {!J.:n 

for n.>p 

if it contains only p members. The numbers an(M) are of course 

J invariants of the space M. 

If 

~mn(M)= 1, 
,'-I 

that is, if the space M consists mod a of points of positive 

measure, then we call the measure p. discrete. In this trivial 

case, all 'lets are measurable, and for every ACM, 

p.A = h !J.Pn• 
P,cA 
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If 

m,{M) = 0 (n. = 1, 2, .. ,J, (6) 

that is, if there are no points of positive. measure. then we call 

the measure P. continuous. In this case, as we shall show. the 

space M has the type of the unit interval with ordinary Lebesgue 

.easure. 

First of all, we translate (6) into the language of charac­

teristic numbers. We agree to take the natural numbers 1,2, •.• 

as the indices a and consider the sequence of pairs 

trn={O,. -;;',) (n,=O. 1. 2, ,. ,J, 

(see No.3 of '§ll. in which 00 = Sa = SO, and the pair 71n is ob­

tained from the pair 71 -l by the process of adding the number nn
to one of the sets On-i' Sn-l' It is evident that in such an ad­

missible sequence, the sets on and Sn do not intersect, and their 

union is the set of the first n natural numbers; furthermore, if 

n
1 

< n then Sn C:S and Sn C:Sn • We now set
2

, n1 2 1 2 

wr (!J.; tr,) = wr (!J.; On, S,). 

If the aeasure p. is continuous, then, for every basis
 

~ {GnL we have the following !i.it property:
 

lim wr (!J.; ",,) = O. (7) 
n~ 

for an arbitrary adaissible sequence 711,712"" • Conversely, if 

the relation (7) holds for a certain basis r, and for arbitrary 

adaissible sequences 71 ,712, "" then the aeasure p. is continuous.1
For the proof, it suffices to refer to the formula 

wr(fL; "'nJ = fL (Dr(8,) Dr (an) (trn = (0" ~n)) 

\see No. 3 of §l) and to the sequence of inclusions 

Dr (0,) Dr (3d ::J Dr (0,) Dr (8,) ::J . , . , 

From these. it follows that the left side of relation (7) 1S 

equal to the measure of the intersection 
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n(Dr (81l ) Dr (8 1l», 
,,~l 

which is either void or consists of a single point. 

Let ~(o) be an arbitrary function defined on the collection 

6 of all finite sets of natural numbers and satisfying, in addi­

tion to conditions (6) and (7) of No.3, §l, the condition 

lim w(tt.) =0 (8). i Il-= 

for every admissible sequence ~t'~2"" • We shall designate by 

L the half-open interval (O,tJ of the real line and by A ordin­

ary Lebesgue measure on L. (We use curved parentheses if the end­

point is not included and square brackets if the endpoint is in­

cluded.) We construct a basis A=i\x.= {L } for L such thatn 

'I.A (/.; Il) = x. (8). (9) 

As previously, we shall denote by the symbol ~n pairs (on,Sn) 

for which the intersection of the sets 0n,Sn is void and for 

which the union is one set of the first n natural numbers. We 
first assign to each pair ~n a certain half-open interval J(~n) 

= (a(rrn)'~(~n)J in L. Only one pair ~O corresponds to the value 

n = O. and we shall take J(~O) =L, that is, a(~O) = 0, ~(~O) =t. 
If all of the half-open intervals J(rrn- t ) have already been con­

structed, then we construct the half-open interval J(~n) = 

(a(~n)'~(~n)J, corresponding to an arbitrary pair ~n = (on,Snl, 

in the following fashion. We consider the pair rrn-t into which 

the pair rrn is transformed when we remove from it the number n; 

and we define 
ct (ttll ) =::r. (1<Il_I), ~ (".) = ct("._I) + Ul (".), 

if n E.0 • andn

iJ. ("Ill = ~ (ttll_iJ - W("Il) , ~ (tt,,) = ~ (".-1), 

if a E.8n . From the sets J(rrn ) which have been defined in this 

manner, we define the sets La by means of the formula: 

Lil = U i(",.). 
'. ':j. 
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and 

AJ(-rt.) = w(tt.); 

consequently, the formula 

w" ()..; 8, 8) = Ul (Il, ~) 

is clearly valid for those pairs (0,8) which we have agreed to 

designate as ~n' But then it is also valid for arbitrary pairs 

(0,8), for if the largest of the numbers belonging to the sets 

0, 8, is equal to n, then 

D" (8) D A (8) = U D A (8.) fh (8,,); 
a.::Ja, '.::Ja 
(5 I1 ,6n)-rrn 

in particular, relation (9) is valid. 

It follows from condition (al that A is a basis of the space 

L. We shall show that L is cOMplete mod 0 with respect to A, 
Indeed. every intersection 

UK,,; K" = L., III 
rr·=l 

can be represented in the form 

n i(".), (101 
1l_1 

where rr ,rr2 •••. is a certain admissible sequence. The intersec­t 
tion (10) is void only when the sequence of half-open intervals 

J(rrt)~J(~2):J'" converges to a point which serves as the com­

mon left-hand endpoint of all of these half-open intervals, be­

ginning with a certain one of them. That is, the intersection 

(10) is void for a countable set of sequences K .K2, •.• • Butt 
this means that the space L(~) differs from L only on a count­

able set of points; hence L is measurable 1n LU\') , that is, L 

is comp lete mod 0 wi th respect to 1\. 

We can now summarize the results obtained in the following 

fashion: the unit interval (with the usual ~easurel is a Lebes­

gue space in which there exist bases with arbitrary characteris­

tic au.bers, satisfying condition (8). 
Obviously, Since every one-to-one correspondence between two bases, 

i (",,) = D.\ (81l) D.\ (81l), under which the corresponding characteristic numbers are equal, 
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produces an isomorphic correspondence mod 0 between the points 

of the corresponding Lebesgue spaces, it follows that we have 

proved the theorem stated at the beginning of No.4: every Lebes­

gue space with a continuous measure is isomorphic mod 0 to the 

unit interval. From this theorem it evidently follows that the 

numbers Rn(M) form a complete system of invariants of the. space 

lot: if 

,mn(M) = m,,(Mn) (n = 1, 2, ... ), 

then 
"t" (M') = "t" (iH"). 

Therefore, the Lebesgue space lot is iso.orphic Mod 0 to the 

space consisting of an interval of length 

maiM) = 1-~ mn(M) 
n=l 

with ordinary Lebesgue .easure and a sequence of points with 

.easure Rn (M)(n=1,2, .•• ). 

No.5. MiniAal properties of Lebesgue .easure. 

Le.ma. Let U be a one-to-one mapping of the Lebesgue space 

M into the separable space M'. Suppose that under this aapping, 

the inverse image of every aeasurable set is measurable, and 

that the inverse i.age of a set of Measure zero always has Meas­

ure zero, and that the inverse iaage of a set of positive aeas­

ure always has positive measure. Then M' is a Lebesgue space, 

and the iaage of every measurable set is measurable; in particu­

lar, the image UM of the space M covers mod 0 the entire space 

M' • 

Proof. We shall first prove this lemma under the assumption 

that M' a Lebesgue space. Since U obviously establishes a one-to­

one correspondence between the points of the spaces M and M' 
which have positive measure, we can remove these points at the 

very beginning, and, in view of the results of the preceding No. , 

we may suppose that M and M' are intervals ~ith ordinary Lebes­

gue .easure. Let r' be the set of all intervals in M' having 

rational endpoints. The inverse image J = V-1J' of the interval 

J'€r' is a measurable set, and hence there exists a Borel set 

BJ which contains J and is identical with J mod O. The set 
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U (BI - J) (Ui = J' Ef'),
I 

has measure zero and therefore can be included in a Borel set of 

measure zero, say BO' Let us denote by V the mapping induced by 

the mapping U on the Borel set B = M - BO' If B is regarded as 

a new space. then V is a mapping of B into M' which is identical 

mod 0 wi th U. 

We shall first show that for the Rapping V, the image of 

every measurable set is measurable. Since BJ - J<:B ' the inter­O 
section JB coincides with the intersection BJB and is hence a 

Borel set; in other words, the inverse images under V of all in­

tervals J' E r' are Borel sets. But in this case, V is a Baire 

function: and the i.ages of all Borel sets are also Borel sets.· 

Thus, if A is a Bore 1 set, then its image VA is measurable. If 

A is a set of aeasure zero, then it can be included in a Borel 

set of measure zero, say BA• The image VBA of this latter set, 

according to what we have proved, is measurable; furthermore, 

VBA has measure zero, since its inverse image BA has measure 

zero. However, VACVBA; consequently, the set VA is measurable. 

Finally if A is an arbitrary measurable set, then it can be re­

presented as the union of a certain Borel set Ai and a certain 

set AO of measure zero, and we have: VA = VA 1 + VA O' Hence in 

this case also, VA is measurable. 

We retu.rn now to the mapping U. Since M' - UB = M' - VB, 

and the image VB of the space B is measurable, it follows that 

the set BO = M' - UB is aeasurab le in M; furtherMore, its /Ileas­

ure is equal to zero, for its inverse image U-1B O coincides with 

BO' From this it follows that for every set ACM, the first mem­

ber of the decomposition 

UA =U(BoA) + V (RA) (11) 

1S always measurable (U(BaA)CBiJ). But, if A is measurable in M, 
it follows that BA is measurable in B, and by what has been prov­

ed above, the second member of the dissection (11) is also meas­

urable; hence the entire set UA is measurable. 

We have proved that the image of every measurable set 1S 

measurable. The fact that UM covers mod 0 all ~f M' has already 

• See [6], 39. 
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tacitly been proved by us; we have seen, indeed, that UB covers 

mod 0 all of M'. 

Suppose now that M' is an arbitrary separable space. We con­

struct an arbitrary completion M' of the space M' and shall con­

sider U as a mapping of the space M into ~'. It is not difficult 

to see that this mapping satisfies all of the conditions of the 

lemma. Consequently, the image of every measurable set is measu­

rable in M', and therefore, measurable in M'. Furthermore, UM 

covers mod 0 all of M'. But UMCM'C.M'. Consequently, M' covers 

mod 0 all of M', that is, M' is a Lebesgue space. At the same 

time, we see that UM covers mod 0 all of the space M'. 

As an immediate consequence of the lemma just proved, we 

have: 

Theorem on isomorphisms. A one-to-one homomorphism of a 

Lebesgue space into a separable space is an isomorphism. 

In its turn, the following theorem is easily obtained from 

the theorem on isomorphisms: 

A proper part of a Lebesgue Aeasure cannot be the Aeasure 

on a separable space. A proper extension of the Aeasure on a 

separable space cannot be a Lebesgue Aeasure. 

Proof. Let M be a Lebesgue space with measure ~, and M' a 

separable space into which M is changed if its measure is replac­

ed by a ce·rtain part thereof, ~'. Evidently, the identical map­

ping of M onto M' satisfies all of the conditions of the theo­

rem on isomorphisms. Consequently, n~ =n~, and ~' = ~. 

Finally, from this theorem follows: 

Theorem on bases. Every countable system r of measurable 

subsets of a Lebesgue space which satisfies property OR) (No. 1 

of §2) is a basis. 

Proof. The measure induced by the measure ~ on the collec­

tion ~r (No. 1 of §2) is a separable part of the measure ~. Con­

sequently, ~r = n~, and r is a basis. 

No.6. The ~etric structure associated ~ith a Lebesgue space. 

We set p(A,B) = ~(A13+AB) for any two sets A, BCM which are meas­

urable. The function p satisfies the axiom of symmetry and the 

triangle axiom and will satisfy the axiom of identity. if we 
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agree to understand identity as identity mod O. Going from the 

collection n~ to the collection Q(M) of classes of measurable sets 

which are identical mod 0, we thus obtain a metric space. Union 

and intersection of measurable sets lead to the same operations on 

elements of the collection Q(M). The collection Q(M) with the met. 

ric p. defined in it and with the operations of union and intersec­

tion of elements is a metric structure, which we regard as being. 

associated with the space M. 

We shall not list all of the properties of a metric struc­

ture Q(M) which are necessary for its independent axiomatic defi­

nition, and merely note that the space Q(M) is complete and sepa­

rable in the sense of the theory of metric spaces. Its complete­

nesS is a simple consequence of the Riesz-Fischer theorem, and 

separability of the space M: if r is any basis in M, then the 

field (r+r)ds generated by r is countable and is everywhere dense 

in Q(M). 

By definition, two metric structures Q(M) and Q(M') are iso­

morphic to each other, if there exists a one-to-one correspon­

dence carrying the first of them onto the second -. an isomorphic 

mapping -- which leaves invariant the metric p and the operations 

of union and intersection of elements. To every mapping of the 

space M onto the space M' which is an isomorphism mod 0, there 

corresponds a natural isomorphic mapping of the metric structure 

Q(M) onto the metric structure Q(M'). It turns out that every iso­

AorphisA of the metric structure Q(M) onto the metric structure 

Q(M') is generated in this sense by a Aapping of the space M on­

to the space M' which is an isoaorphisA mod O. 

Proof. Let ~ be an arbitrary isomorphic mapping of the met­

rIC structure Q(M) onto the metric structure Q(M' J. We choose 

any basis r in M and consider the system of elements of the struc­

ture Q(M) which correspond to the sets in r. The images of these 

elements in the structure Q(M') under the mapping ~ are classes 

of measurable sets of the space M'. In each of these classes, we 

select a certain set; in this way, we obtain a certain countable 

system r' of measurable sets of the space ,II', satisfying, evident­

ly, condition (~') and therefore being a basis mod 0 (No. 1 of 

§2). Corresponding characteristic numbers of the systems rand 

r' are equal; consequently, the correspondence between the sys­
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tems rand r' corresponds to an isomorphism mod 0 of the space 

M onto the space .II' (No.2 of §2), and it is easy to convince 

one's self that the isomorphism of Q(M) onto Q(M') engendered 

thereby is actually the original isomorphism Q. 

The argument set forth above shows at the same time that 

any two isollorphisms mod 0 of the space M onto the space M', 

generating one and the same isomorphic mapping of the structure 

Q(M) onto Q(M') are identical mod O. 

No.7. Measures in metric spaces. The goal of the present 

No. is to show that all of the most important measures are ac­

tually Lebesgue measures. Its content tends in the direction of 

the abstract theory of measure, and its results will not be used 

in the present work. 

Let R be a metric space, separable and complete in the sense 

of the theory of metric spaces. Let us suppose that there is in­

troduced into R a certain measure ~. We shall show that if all 

open sets are measurable with respect t~ and form a systeA satis­

fying, condi t ion (~) of No. L §2, then ~ is a Lebesgue measure. 

Proof. We suppose first that R is the unit interval with 

its usual metric, that is, that ~ is a certain Lebesgue-Stieltjes 

measure. Evidently, we are at liberty to assume that there are 

no points of positive measure. We designate by the symbol Ix the 

closed interval with endpoints O,x 'and set f(x) = ~Ix' The func­

tion f produces an isomorphism mod 0 of the space R with measure 

~ onto the unit closed interval with ordinary Lebesgue measure. 

Consequently, ~ is a Lebesgue measure. 

In order to prove the theorem in the general case, we shall 

now show that every measure of the type under consideration is 

isomorphic mod 0 to a certain Lebesgue-Stieltjes measure. for 

this, we note that according to a well-known theorem of the des­

criptive theory of sets', R can be represented as the image of 

a Borel subset of the closed unit interval under a certain one­

to-one and continuous mapping. With the help of this mapping, 

which we designate by U, we transfer the measure ~ from R onto 

the closed unit interval. Then we obtain a measure ~', isomorphic 

mod 0 to the measure ~, and the proof will be completed, if we 

make it cle ar that ).L' 1 S a Lebesgue- St iel tj e s measure, t hat IS, 

that all open subsets of the closed unit interval are measurable 

• See [6]. 35. 
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with respect to ~' and form a system satisfying condition (~) of 

No. L 2. But their measurability follows from the fact that U 

carries every Borel set into a Bore 1 set', and condi tion (Q) is 

fulfilled in view of the fact that U-1 carries every open set 

into an open set. 

§3. Measurable decompositions. 

No.!. Canonical syste ..:of aeasures. Let ~ be an arbitrary 

decomposition of the Lebesgue space M. Let us suppose that by 

means of the introduction of certain measures ).LC' the elements 

C of this decomposition themselves are turned into spaces with 

measure. We shall say that the system {).LC} is canonical with res­

pect to C if 

1) !J.C is a Lebesgue measure for every mod 0 point C of the
 

factor-space M/';
 

2) for every measurable set ACM, a) the set AC is measuralie 

in its space C for every mod 0 point CE.M/C bl !J.CrAC) is a meas­

urable function of the point CEM/" and c) 

f-'A = ~ f-'e (AC) df-',. 
M!C 

It is immediately obvious that if the system {).LC} is canoni­

cal with respect to C then, for every basis r of the space,M, 

the sys tem r C ' cons is t ing of the se ts GC = GG, G Er, serve as a 

basis in the space C, fo'r every mod 0 point CE:M/C This is an 

immediate consequence of Conditions 1) and 2a) and the theorem 

on bases (No.5 of §2), for every system r C evidently satisfies 

condition OIJ!) in its own space. from this theorem, it is not dif­

ficult to infer that a canonical system of measures is defined 

essentially uniquely by its decomposition ~, that is, if any two 

systems of measures {).LC} and {~'C} are canonical with respect to 

" then ).LC, = ~'C for all mod 0 points C E.M/~. Indeed, designating 

by Z the inverse image of the measurable set XC:M/' under the 

homomorphism H~ (No.2 of §ll, we shall have, for every measu~e 

set AcM: 

~ POe (AC) dfL, = ~ f-'e (AZC) df-';;; = fL (AZ) = 
.( .Ifl' 

= ~ ;J.~ IAZC) d/J.;;; = ~ fL~ (AC) dfL;;;' 
M/;;; x 

• See [6], 35. 
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from wnicn it follows tnat ~(AC) = ~'C(AC) for all mod 0 points 

C £ M/~. In orde r to convince one's self of tne truth of our asse1' ­

tion, it is now sufficient to nave A run through the collection 

f d (see No.3 of §l), generated by an arbitrary basis f of the 

space M, 

Having established in this way the uniqueness of a canoni­

cal system of measures, we now turn to the problem of its exis­

tence. 

We agree to call a decomposition ~ measurable, if there 

exists a countable system ~ of measurable sets -- a basis of 

the decomposition t-- such that ~(~) = ~. As an example of a 

measurable decomposition, we offer the decomposi tion of Minto 

the inverse images of points under the mapping defined on Itt by 

a measurable real function or a finite or countably infinite sys­

tem of measurable real functions. As a basis of sucn a decompo­

sition, one can take, for example, the inverse images of open 

intervals with rational endpoints. A different example: the de­

composition ~H (No.2 of §ll, corresponding to tne homomorphism 

H of the space Itt into a different Lebesgue space Itt', i~ always 

measurable, since tne inverse image of an arbitrary basis of the 

space M' is certainly a basis of the decomposition ~H' 

In order for the deco.position ~ to possess a canonical sys­

teO! of .. easures, it is necessary and sufficient that it b,e aeas­

urable. 

Proof of necessity. Let {~C} be a system of measures which 

1S canonical with respect to ~. Let us take in M a basis rand, 

for an arbitrary set A of the collection f d (see No.3 of §l) 
and an arbitrary point x E.C; 

'PA (~= Il-c (AC). 

Since eacn of tne functions ~C(AC) is defined for all mod 0 points 

C€M/~ and since the set of these functions is countable, it fol­

lows that, ignoring a certain ~-set of measure zero, we can con­

sider tha t all of the functions ¢A are defined on the entire 

space ,\{, Let ~' be the measurable decomposition generated by 

these functions. We shall show (and by this the necessity of our 

condition will be proved) that ~ =". 
Let us assume that ~ 1 ~'. Since the functions ¢A are con-
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stant on each element of the decomposition ~, it follows from 

tbis that tnere exists two different elements C and C of thet 2
 
decomposition ~. on which ~ (ACt) =~C2(AC2) for every set
 

A E,fd' But this means tnat tf.e bases f C and f C ' which are in­
t 2 

duced by the basis f in the spaces Ct 'and C2' nave the same char­

acteristic numbers, in virtue of which the spaces C and C them­
t 2 

selves are' connected by a natural isomorphism mod O. The corres­

ponding elements of these spaces are obviously distinct, since 

they lie in different sets of tne decomposition C and further­

more, every set AE.f which contains one of them contains the 

other. The absurdity of this conclusion shows that ~ = ~'. 

We note tnat the reasoning used above does not use property 

2c) of canonical systems of measures. Therefore every decomposi­

tion of a Lebesgue space which satisfies conditions 1), 2a), and 

2b) is aeasurab le, 

Proof of sufficiency. We shall divide this proof into
 

several parts.
 

A) Let f be a certain basis in M, and let A E.fd' We denote 

by Z tne inverse image of a measurable set XCM/~ under tne map­

ping H~. Since, for fixed A, tne function ~(AZ) is a completely 

additiv,e function of the set X, wnich vanishes along with ~~X, 

tnere exists a measuraqle function ¢A defined on M/~ such that 

for every measurable subset X of M/~, 

Il-(AZ) = ~ 'flA (C)d!J.1; II) 
x 

(See [7], p. 168). This function is defined by the set A in an 

essentially unique fasnion. 

We choose a certain fixed function ¢A corresponding to the 

set AEfd , and we set 

<P A (C) = YeA. 

Vc 1S a set function defined for all A E.fd , We wish to extend 

it to a Lebesgue measure. 

B) Let us first suppose that M is complete with respect to 

f. Then the problem of extending the function Vc to a Lebesgue 

measure is none other tnan the problem of constructing the meas­

ure ~X according to the function XIS) = 'AC(S) = vcD(8) (see No. 
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4 of §l and No.2 of §2), and. therefore, is solvable if condit­

ions (6) and (7) of §l are satisfied. But these conditions are 

satisfied for all mod a points CE.MIC for, if we denote the 

func t ion w corresponding to X = XC in vir t ue a f formula (5) of 

§l by the symbol wC and if we use the linearity of the formula 

referred to, then we obtain: 

~ wC(1l,8) dfL:;= fL (D (Il)· D(8).Z):~. o. 
x 

Besides this, 

~ XC (1)0) dfLc = ~ 'c (M) dfLc = fL (MZ) = fL2. 
x x 

Thus, if M is complete with respect to f, then the extension of 

the function Vc to a Lebesgue measure is possible for every mod 

a point C EM/~. But this result retains its validity also in the 

general case. It is not difficult to verify this, going from the 
. ~ ~ 

space M with the basis f to the space M(f) with the basis f and 

from the system L to the system~, consisting of all sets of the 

system L and the set M. 

C) We denote by Me the space into which M is changed when 

we replace the measure ~ by the measure ve' Me is a Lebesgue 

space for every mod a point e EM/~. We shall show that if A is a 

measurable subset of M, then 

a') A is measurable in MC for every mod a poiot e €M/~, 

b') veA is a measurable function of the point C EMIC and 

/c ) for every measurable set XcMIC 

fL (AZ) = ~ "cAdfLc' 
x 

Assertions a'). b'), and c ' ) are evidently true, if A € f d; 

1n view of the linearity of formula (4) of No.3 of §l. they are 

hence valid also if A E If+r')d" If A E W+rl dcr • then A can be re­

presented in the form: 

A = U An. AnE(r,r)d, 
n-l 

where the sets An are pairwise disjoint, and assertion b ' ) fol­

lows from the fo rmul a 
'cA = ~ ,cAn' (2) 

_1 
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while c') follows from (2) and the relations 

fL (AZ) = ~ fL (AnZ) = ~ ~ 'CAndfLC = ~ ( ~ 'cAn) dfLc' 
n-l n_1 X X n~1 

If A E((f+r'ldcr8' then A can be represented in the form 

rI = n An, An E(r~ Dda, 
n=1 

where ,41 ::JA2~ "', and b') follows from the relation 

"eA = lim ,cAn, (3) 
n 

and c / ) follows from (3) and the relations 

f' (AnZ) = \ 'cAndfLC' 0 -< ,cAn -< 1, 
.X I 

the latter of which holds for all mod a points C € M/~. Finally, 

if ,4 is an arbitrary measurable set in M, then there exist sets 

B1 E (r+rl dcrS and B2 e (f+r'ldcrS such that 

B,::J A, fLB, = f'A; B,::J A. I-'B2 =p.I\, 

and we thus have: 

~ ('eE, + 'e B2 ) dfLc = ~ veB,df':; + ~ ',eB,d'(-c = fL(B,Z) + f' (B 2Z)= f"Z. 
x y x 

For this reason, we have. for all mod a points C € MIC 

'eB, + YeB. = 1, 

/that is, a ) is valid. We see also, that for all mod a points 

C E Mle 
YeA = veB" 

from which the validity of b ' ) and c / ) also follows. 

0) The canonical system of measures ~e which we wish to con­

struct is obtained from the family of measures ve in an extreme­

ly simple fashion: ~ is the measure induced by the measure Vc 
in the subspace e of the space MC' Evidently, the proof of the 

present theorem will be completed if we show that fan every mod 

a point C e M/~, the set C is measurable in the space MC and 
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vc;C = 1. 
set A is meas-Let A e (~+~)d and let A' = H~A, Since the 
with respect tourable with respect to ~, it is also measurable 

all mod 0 measures ve, and we have: 

po (AZ) = ~ "t. A, (C) dpo1;!
 
x
 

.,here t , is the characteristic function of the set A', Conse-

A

quently, for all mod 0 points e e M/~, 

(4)v (A) = "t.A' (C),e 

collection (~+~)d is countable, it follows thatand since the
 
(4), corresponding to different sets A e (L+~)d'


all relations
 
all mod 0 points e € M/~. Furthermore, every set
 

are valid for
 

e can be represented in
 the form: 

C = n An, An E (L-t3:)d' 
n=1 

where Ai ::J A2:::> •••. Consequently, if we discard a set of measure
 

zero, it appears, that the set e is measurable wi th respect to
 

ve and
 

VeC = lim veA n = 1,
 
n-xc 

for,	 in view of (4), vcAn = 1 for all n = 1, 2, ., " 

No.2. Factor-spaces and homomorphisms of Lebesgue spaces. 

Let ~ be an arbitrary basis of the measurable decomposition ~. We 

shall show that the sys telll L', into which the system L goes under 

the hOlllolllorphism H (see No. 2 of §1), is a basis of the factor 

space M/~. It is plain that the system L' satisfies condition (~) 
of No.1 of §2. In order to show that it also satisfies condit ­

de £i ned on
ion (13), we denote by~' the part of the measure ,u~' 

No. 3 0 f § 1) .
the coll"ection ~', that is, we set ~' = (/-'~)~' (see 

/-" is just that measure into which the homomorphism H~ carries 

the measure /-'L' and n/-" = ~' IS just that collection into ",hich 

H~ carri~s the collection ~. In the space M/~, we replace the 

measure /-'~ by the measure /-", and obtain a space M', for which 

the system L' serves as a basis. We shall establish (and by this 

our assertion will be proved) that /-" = /-,~. 

For this purpose, we return to the proof, set forth in the 

previous No., that canonical systems of measures exist. It is not 
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difficult to verify that this proof remains valid if we replace 

i~ in the measure ~r, by the measure ~'" Consequently, for every 

measurable subset A of N, the function ~e(Ae) is measurable with 

respect to /-". But if A is a ~-set, then the function ~(Ae) ob­

viouslY coincides with the characteristic function of the set 

H~A,	 in view of which this set itself must be measurable with re­

spect to t.he measure ~'. Thus, all sets of the form H~A, where 

A is	 a measurable ~-set, are measurable with respect to ~', and 

this	 means that /-" = /-,~. 

We shall now show that the factor space of a Lebesgue space 

with respect to a aeasurable deco.position is a Lebesgue space, 

We have already proved that M/~ is a separable space. As a basis 

for M/~, one may take the image of any basis L of the decomposi­

tion ~ under the homomorphism H~, We extend the system L by add­

ing some countable system of measurable sets, obtaining in this 

way a basis r of the space M, and denote by ~ the part of the bas­

is r of the space M= M(r) which corresponds to the system L (see 

No. 2 of §2). Furthermore, we consider the decomposition 

~ = Z(~) of the space M (see No. 2 0 f §l) and the f ac tor- space 

corresponding thereto, M/~. The system ~I, into which the system 
'"	 "" '" L is carried by the homomorphism ~' is a basis of the space ,If/C 
and it is evident that M/~ is complete with respect to ~'. Thus, 
'" '" 
M/~ is a Lebesgue space. But, the decomposition induced in M by 

the decomposition ~, is precisely ~, and if we carry the ele~ent 
e of the decomposition ~ into that element ~ of the decomposition 

~ for which e =MG, then we obtain an i ..bedding of the space M,.~ 
into M/~. This imbedding has",the property that HtM = M/~, and 

since M covers mod 0 all of M, it follows that M/~ covers mod 0 

all of M/~, Consequently, M/~ is a Lebesgue space. 

Suppose now that H is an arbitrary homomorphism of the Le­

besgue space M into the separable space M', We have: 

H=H'HTH' 

where TH is a one-to-one homomorphism of the factor space M/~ in­

to M' (No. 2 of §l). Since the decomposition ~H is measurable, 

M/~H is a Lebesgue space, and, applying the theorem on isomor­

phisms (No.5 of §2), we obtain the following theorem on homo­

morphisms: 
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If H is a homo~orphisM of a Lebesgue space into a separable 

space, then TH is an isoMorp'hisll, so that the hOllollorphiSlls H 

and H~H are isomorphic. 

In particular: 

A homomorphic image of a Lebesgue space in a separable space 

is a Lebesgue space, and 

under a homomorphic mapping H of a Lebesgue space into a 

separab le space, the images of aeasurab le ~H-se ts are measurab le. 

No.3. Operations on decompositions. Let M be an arbitrary 

set and let ~ and ~' be decompositions of M. We agree to write 

(5)~<", /;'>/;, 

if ~ r ~ t and ~ t is a subdecomposition of the decomposition ~ 

(that is, all elements of the decomposition ~, and consequently 

all ~-sets, are ~t-sets). The relation ~ defined in this way 

makes the collection of all decompositions of the set M into a 

partially ordered set, which is a complete structure and which 

we denote by the symbol Z. In this structure, we shall call the 

least upper bound of a system of decompositions its product, and 

the greatest lower bound, as usual, its intersection. The product 

is denoted by the symbol n, and the intersection by the symbol 

n· If {~o.} is an arbitrary system of decompositions, the elements 

of the decomposition n~o. are sets of the form 

c = nC., 
where Co. is an element of the decomposition ~o.' With regard to 

the decomposition n ~o.' we can say that two points x and x lie 

in the same element if and only if there exists a finite sequence 

x t ,x2' ••• ,x of points such that in the chainn 

X, Xl' .X''2J '" I X n• X' 

every neighboring pair of points belong to one and the same ele­

ments of one of the decompositions ~o.' 

The structure Z possesses both a zero and a unit element: 

zero is the decomposition whose sole element is the set M, and 

the unit is the decomposition of the set M into individual points. 

We now suppose that M is a Lebesgue space, and denote by ZM 

the set of all measurable decompositions of the space M. Being 
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a subset of the set Z, ZM is also a partially ordered set; however, 

generally speaking, ZM is not a substructure of the structure Z. 
For, the product of a finite or countably infinite system of measu­

rable decompositions is again a measurable decomposition (in order 

to obtain a basis of the decomposition rr~o.' it is sufficient to 

unite bases of the decompositions ~o.); but the intersection of 

even two measurable decomposi tions can be non-measurable. The set 

ZM is not a structure even if we forget about the operations IT and 

n in the structure Z and try to introduce new operations in ZM' 

using the fact that ZM is a part ially ordered set, for two ele­

ments of this partially ordered set may fail to have a greatest 

lower bound. In order to obtain a structure from ZM' one must go 

over to the classes of decompositions which are identical mod O. 

We shall designate the class of a measurable decomposition by 

the same letter as the decomposition itself, but with underlining. 

The set of all such classes will be denoted by the symbol ~. We 
agree to wri te 

~<5', ~'>~' 

if ~ r ~' and there exist decompositio~s ~ e ~, ~' e ~', such that 

(5) holds. In this way, we make ~ into a partially ordered set.
 

We shall show that ~ is a coaplete structure.
 

We have already seen that the product of an arbitrary finite 

or countably infinite system of measurable decompositions is a 

measurable decomposition. Therefore every finite or countably in­

finite system of classes ~ possesses a least upper bound: this is 

the class of the product n~ , constructed from arbitrary decomposi­
0. 

tions ~o. of the classes 1a.. But one can assert more: every non-

void system of classes ~o. has a least upper bound in~. For the 

proof, we select in each class ~ a certain decomposition o.~' de­

note by P the collection of all ~o.-sets corresponding to all pos­

sible decompositions ~o.; choose in P, using the separability of 

the metric structure Q.w (No.6 of §2), an arbitrary countable sys­

tem L dense in P, and set: ~ = ~.(L). The decomposition ~ is measu­

rable, and we assert that its class ~ is the least upper bound of 

the system of classes ~. That is, 

1\ ~ ~ ~ for all ~; 

2) if ~' ~ ~o. for all a., then ~' ~ ~. 
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In order to prove assertion 1), we consider an arbitrary bas­

is ~a = {Sa~} of the decomposition ~a' Since the system ~ is dense 

in P, it is possible to find, for every set Sa~' a set S~~ of the 

Borel field ~ which is identical with it mod O. It is evident 

that the decompositions ~'a = ~(~Ial, where ~Ia = {S'a~}' belongs 

to the same class !:.a. as ~a' (The decomposition ~'a can differ 

from ~a only on the set 

U (Sa~S~~ + Sa~S~~), 
~ 

which has measure zero.) But ~ ~ ~'a; therefore {~~. 

In order to prove assertion 2), we choose an arbitrary decom­

position ~' in the class {'. Since {' ~ ~a for all a, it follows 

that one can find for every set S e ~ a ~' -set S' which is' iden­

tical with it mod O. It is evident that the decomposition 

~' i = ~(~' l, where ~' is the system of all sets S', belongs to 

the same class { as ~(~' i can differ from ~ only on the set 

U(SS'+SS'), which has measure zero.) But~' ~ ~'i; consequently 

{' ~ I... 
We have proved that in ~, every non-void system of elements 

!:.a. has a least upper bound. From this, it is easy to show that 

every non-void system of elements ~ possesses also a greatest 

lower bound in ~. Indeed, we consider the collection of elements 

~, which satisfy the relation ~ ~ ~a for all a. This collection of 

elements is evidently non-void, for it contains the null class 

(corresponding to the null decomposition of the structure Z). Con­

sequently, it possesses a least upper bound in fM. which will be 

the greatest lower bound of the system {~}. Thus, fM is a genuine 

complete structure. 

The structure ~ has a zero (the null class) and a unit (the 

class of the unit decomposition, which is measurable in view of 

the separability of the space M). Two measurable decom~ositions 

~i and ~2 whose product is identical mod 0 with the unit decompo­

sition will be referred to as mutually complementary. It is plain 

that the decompositions ~i and ~2 are mutually complementary if 

and only if the space Ii has a basis mod 0 (that is, a countable 

system of measurable sets, enjoying property (13' J (No. 1 of §3) 1, 

which consists of ~i-sets and ~Z-sets. 
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Now, let ~ be any decomposition whatsoever of the space M. 

We consider the set of all measurable decompositions ~' that satis­

fy the relation ~' ~ ~. The collection of the corresponding 

classes has a greatest lower bound in ~, which we denote by {i' 

A decomposition ~i belonging to the class {i can be characterized 

mod 0 as the finest of all the measurable decompositions for which 

~ is a subdecomposition. We call it the measurable hull of the de­

composition ~. The measurable hull of a decomposition ~ is defined 

in essentially a unique manner. From the foregoing exposition, it 
follows that it can be found by the formula: 

C1 = ~ (1:),
 

where ~ is an arbitrarily chosen countable
 system of measurable
 
~-sets which is dense in the collection of
 

all measurable '-sets. 

No.4. The product of Lebesgue Spaces. Let M and liZ be 
i 

Lebesgue spaces with measures ~i and ~2' We consider an arbitrary 

function ¢(A i ,A2) of sets Ai e n~i and AZ E n~2' which enjoys the
 
following properties:
 

a) ¢ IS non-negative; 

b) ¢ is completely additive with respect to both of its ar­
guments; 

c) rP(A i .M )2 ~iAt, ¢(,lIi ,A Z) = ~zA2' 

We denote by M the set-theoretic product of the sets M and
 
liZ:
 t 

M=Ml X M 2 , 

and by M the collection of sets of the form 

A = Al X A" . AI E Q ..,. A 2 En",. 

We shall show that there exists a measure ~ for Ii, defined In par­

ticular on M and satisfying the relation
 

1'- (A l X A.) = ep (AI> A z) (51 

for all pairs of sets Ai e n~L and A E n~2'
2 

The process of constructing the measure ~ differs in no way 

from the process of constructing the ordinary measure in the pro­

duct of two spaces. Although this ordinary measure is obtained 

from our general definition only forp(At.A 
Z

) = ~iAi'~zA2' never­
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theless, the well-known proofs which its construction demands em­

ploy only properties a), b), and c), of the function ¢, and not 

the special form of ¢ indicated above. This circumstance releases 

us from the necessity of carrying out detailed proofs. 

We consider the field (M+M1ds; this is the collection of sets 

of the form 

A = UA(n), A(n j EM, 
n-l 

and we extend the function~, defined on M by formula (6), over 

(M+M)ds by the additive law (this is possible, since there exists 

a representation in the form (7) for every A € (M+M)ds with pair­

wise disjoint set A(n); the uniqueness of the extension follows 

from the additivity of the function ¢ with respect to its argu­

ments). The extended function satisfies the conditions of the 

known theorem on the extension of additive functions and there­

fore can be extended in its turn to form a certain minimal meas­

ure, which we shall also designate as ~. We shall call the space 

M with the measure ~ the product of the spaces M and M2 with res­t 
pect to the function ¢. In particular, the ordinary product, cor­

responding to the function ¢(A i ,A2) = ~iAt'~~2' will be called 

the direct product. 

These definitions can be generalized to the case of an arbi­

trary finite or infinite system of spaces M with measures f.l.'J.' •a 
In doing this, it is assumed that ¢ is a function of sets 

A e nf.l. ' defined only for such systems {A } that the sets Aa a aa 
which differ from the corresponding sets M are present only ina 
finite numbers, and satisfying conditions a) and b), and condition 

c) in the following formulation: 

c) if the system {A } is such that A 1 M only for a ;3,a a a 
then ¢({A }) = ~~.a
 

M is the set-theoretic product of the spaces M :
a 

M = IT M~, 

M is the collection of sets of the form 

A. = II A~, 

*Compare [8], III, 4. 
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where only a finite number of the sets A are distinct from the 
a 

corresponding sets Ma , and ~ is the minimum of all measures v for 
which ~;:)M and 

~ (~ A«) =q>({A«}). (tl) 

If we wish that the product M of the spaces M should be a 
a 

Lebesgue space, then we must first of all postulate that the set 

of these spaces should be countable, for if it is uncountable, 

then, barring extremely trivial cases, the space M will not be 

separable. In the case of a countable set of spaces M , the space 
a 

M is always separable, for if r are bases of the spaces "'a' thena
 
the union r of systems of sets
 

A. X II M~ (A«Er«) 
~*« 

is a basis of the space M. In this connection, it is not difficult 

to see that from the completeness of the spaces M with respect to 
a 

their bases r a , one can infer that M is complete with respect to~ 
In this way, the product of a finite or countably infinite sys­

tea of Lebesgue spaces is a Lebesgue space. Furthermore, the meas­

ure f.l. is the only Lebesgue aeasure defined for all sets of the col. 

lection M and satisfying relation (8). As a matter of fact, let fJ.' 

be a different Lebesgue measure defined for all sets of the collec­

tion M and satisfying relation (8). Since the collection n~, con­

tains'M, it contains the system r which has just been constructed; 

and since r enjoys property OR) of No. 1 of §2 in the collection 

M, it follows from the theorem on bases (No. 5 of §2) that ~' is 

completely determined by its values on the collection rdCM. That 
is, fJ.' is determined by property (8). 

Now Ie t 

x = IIx«, x«EM~, 

be an arbitrary point of the space M. We set 

H.x = x•. 

Yo. is a homomorphism of the 
space'" onto the space Mal and the cor­

responding decomposition 
~H is the decomposition of the space '" a.into sets of the form 

x. X II Me. 
e*. 
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By No. 2 of §3, Tn is an isomorphism, and we may id~ntify the 
a 

space Ma with the corresponding factor space M/~a and suppose that 

M is the product of all of its factor-spaces M/~a' This product 

is defined by the relations: 

II C« = n C«' <p({X«}) = ~ (~ Z«), 

where C is understood on the left to be a point of the space M/~~a 
and on the right to be a set in the space M, and X =n~aZa:a 

We now reverse the question. Let Mbe a Lebesgue space and 

let Z = {~a} be a finite or countably infinite system of measur~le 

decompositions of the space M; under what conditions can M be con­

sidered to be the product of the factor-spaces M/~a in the sense 

just described? From the discussion above, it follows that this 

will be the case if and only if all intersections 

nc, ~ 

where C is an arbitrary element of the decomposition ~a' consista 
of exactly one point; that is, if 

a) all of the intersections (9) are non-void; this condition 

we shall express by saying that the system 

b) ~a is the decomposition of M into 

If we are concerned not with an exact 

duct, but merely with 

only that the system 

tem Z' = {~'a}' which 

factor-spaces M'/~'a' 

sult: 

Every finite or 

a resolution mod 0, 

should be identical 

resolves its space 

then we can obtain 

Z is crossed; 

individual points. 

resolution into a pro­

that is, if we. demand 

mod 0 with a certain sys­

M' into the product of 

the following stronger re­

countably infinite syste~ Z, which satisfies 

mod 0 the condition b), resolves mod 0 the space M into the pro­

duct of factor-spaces M/~a' For the proof, it is sufficient to ob­

serve that in a Lebesgue spac~, every finite or countably infinite 

systelll of Illeasurab le decolflpositions is crossed mod 0, Indeed, let 

La be any basis at all of the decomposition ~a' We form the union 

of all of the systems La and extend the countable system of measu­

rable sets obtained in this way to a basis r of the space M. Let 
;X ............ ......
 
La be the part of the basis r of the space M =M(r) which corres­

ponds to the system La; we set Za = ~ (i'a) and Z = {~a}' It i3 evi­

dent that the system Z is crossed in Mand that it induces the 3YS­

-
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if,

the

sects

is 

(Ct 

We

ply the

then

to "

are

constant

tem Z in the space M. Since M is a Lebesgue space it follows thatM 

covers mod 0 all of M, and, consequently, the systems Z and ~ are 
identical mod O. 

We shall call measurable decompositions '1 and '2 independent"
for every measurable ~l-set Zl and every
 

measurable ~2-set Z2'
 

!.L (Z1Z 2) = !.LZ1· floZ2' 

Since, on the oni hand, 

Z
flo (Z1 2) = ~ !.Lc, (C1Z 1Z 2) d!.L', = ~floC, (C1Z ) dflt;,

2
M/~ Ht;~ 

is an element of the decomposition '1)' and, on the other hand, 

floZ1''''ZZ= ~ flZ 1d fLt;" 
Ht;Z, 

it follows that the condition of independence 
can be formulated in 

following fashion also: every measurable 
set '2-set Z2 inter­

all mod 0 spaces C1 in sets having the 
same measure, which 

equal to the measure of the set Z2 in the space M: 

"'c, (C1Z Z) = fLZz. flO) 

For a arbitrary measurable decomposition ~ and an arbitrary 
measurable set A, we set: 

d, A = vrai min fLc (CA), D, A = vrai max floc(CA).CEM" CEM" 

calr" d~A the inner diameter and D,A the outer diameter, or Slm­

d1ameter, of the set A with respect to ~. If d,A = D,A, 
we say that A is a set of constant width mod 0 with respect 

It follows from the foregoing that decomposition~ '1 and '2 

independent if and only if every measurable is a set of 

width mod 0 with respect to this, it is clearly 

'2-set't. For 

sufficient that the sets of the collection (L )d 3hould have con­
2 

stant width mod 0 with respect to ~1 (see No.3 of §O, where 

(l:2)d is any basis at all of the decomposition '2' 

If the decompositions 't and '2 are not only independent, but 

also mutually complementary (No.3 of ·~3J. or, as we shall say, 

independent complement.3 of each other, then there corresponds to 

them a resolution of the space M into the direct product of the 

~is concept is barr01l'ed from the theory of probability; see [81. VI, §l. 



40 V. A. ROHLlN 

factor-spaces M/~1 and M/~Z' In this case, letting the set Zz run 

through the collection (IZ'd' we concluded from the relations (10) 
that the homomorphism H~ induces in all mod 0 spaces C isomor­1 
phic mappings of these s5aces onto the factor-space M/~1' (In 

the case of a resolution mod O. these mappings are isomorphisms 

mod 0.) 

§4. Construction of a measurable decomposition. 

No. L FOrl.ulation of results. In this paragraph, we shall 

give a complete classification of measurable decompositions of a 

Lebesgue space. In view of the theorem on homomorphisms (No. 2 of 

§3), this will give at the same time a complete classification of 

the homomorphisms of these spaces. 

Let ~ be an arbitrary measurable decomposition of the Lebes­

gue space M. Every mod 0 element C of this decomposition, regard­

ed as a Lebesgue space, (No. 1 of §31. 'P0sseses its own invariants 

.1(C), .Z(C) .... (No.4 of §2). We can consider .n as a function 

defined on the factor space M/~. In view of their definition, they 

satisfy mod 0 the following inequalities: 
a> 

mn:>O, mn:>mn+I, 1: mn<, 1. (1 ) 
n=1 

We shall designate the sequence .1 •• Z •••• corresponding in 

this way to the decomposition ~ by the symbol 111~. It is clear 

that the type T(m~) of the sequence 1II~0 is an invariant of the 

decomposition ~: if T(~') = T(~" I, then T(m~,) = T(m~")· The prin­

cipal result of the present paragraph is that: 

(I) the functions an are .easurable; 

(II) if T(m~,) = T(lIl~" I. then T(~') = T(~"); 

(III) for every sequence 111 of aeasurable functions an defin­

ed on a certain Lebesgue space and satisfying mod 0 the inequali­

ties (1), there ezists a aeasurable decoaposition ~ (of a certain 

other Lebesgue space) such that T(1II~) = T(m). 

In other words, the for.ula 

°In acc9rdance with the general definiti!'!i' of No. 5 of §l, the sequence m' of Junc. 
tions "n' defined OIl tbe Lebesgue space jf, and tbe sequence m" of functioos "'no de­

fined on tbe Lebesgue space J/', belong to a single type: 
< (m') = < (m"), 

if there exists aD ia08lorphiam mod. O,x{{ = Ux', of the 8p8ce II' OIlta 1/'. SQch that 
for all n and for all ""'" 0 points z· EM'. 

m: (..c') = m~ (..c"). 
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T(1;)~T(md 

er

ply 

establishes a one-to-one correspondence between types of aeasurab~ 

deco.positions and types of sequences of .easurable functions sat. 

isfying mod 0 the inequalities (1). 

The decomposition ~ assumes an especially simple form when 

the functions an are mod 0 constant, that is, all mod 0 spaces C 

are isomorphic mod 0 among themselves. As an example of such a de­

composition, one may take the decomposition of the direct product 

M=Mt x M 2 (2) 

into sets C = z1 X MZ' where z1 E Mi' In view of (II). every meas­

urable decomposition with functions .n which are constant mod 0 

assumes this form. In other words, if the functions an are con­

stant mod 0, then the decomposition ~ possesses an independent 

complement. Since the converse is obvious, we can assert: in ord­

for the measurable decomposition ~ to admit an independent co.­

pleaen~ it is necessary and sufficient that all mod 0 spaces C 

should be of one and the sa.e type. 

The most important case is that in which the measures being 

considered -- the measure ~~ and all mod 0 measures ~C __ are con­

tinuous. Then, as spaces M1 and M in the product (2), we can sim­Z 
take closed intervals, and we obtain the following theorem: 

if the .easure ~~ and all mod 0 aeasures ~C are continuous, 

then the deco.position ~ is isoaorphic mod 0 to a decomposition 

of the unit square into closed intervals parallel to one of its 
sides. 

In the general case, a measurable decomposition has only' a 

alightly more complex form. We can consider the functions an as 

being defined on a set L of points of the axis %, consisting of 

the interval (0.1 0 ) and a certain sequence of points z1.%Z •••• , 

let us say %k = 1 + 1/k. The measure is defined in the space L 

as ordinary·Lebesgue measure on the interval (0,1 ), and the meas­
0

ure of the point %k is lk' where lk ~ lk+1 and L + Ik~1lk = 1.
O 

We designate as MOO the set of points of the plane %y, bounded on 

the left and right by the lines % = 0 and % = 1 , below by the 
0

line y = 0 and above by the curve 



". 
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'" y =mo(~) =1- ~ m.(x). 
• _1 

We designate as MOk(k=1,2, •.. ) the interval on the line % = 1 + tlk 

included between the line y = 0 and the curve y = .0(%)' Next, we 

set: 

M o = Moo + U Molt. 
It-I 

Next, we denote by M (n=1,2 • ... ) the set of points of the linen
y = 1 + tin which lie over points of the set L. Our space M is ob­

tained by uniting the set MO with the sets M .M2•... :t 
'" 

M=Mo+ U M •. 
~=I (3) 

In order to define the measure ~, we defined by ~OO the ordinary 

plane Lebesgue measure, and by ~Ok(k=1,2, ... ) the ordinary linear 

Lebesgue measure on the line % = t + 11k, and for a set AOCMO' 
we set: 00 

1'0 Ao =fLoo·(Moo Ao) + ~ fLol< (MOll Ao)· 
1<=1 

We consider AO as measurable with respect to ~O if and only if all 

of the intersections MOkAO are measurable with respect to their 

measures ~Ok' Furthermore, we designate as ~n (n=t,2 •... ) the Leb­

esgue-Stieltjes measure defined by the formula: 

1'.1.= ~ m.(~)dA. 
I 

where In is an interval on the line y = t + l/n, and I is the in­

terval on the axis of % which lies under In' Finally, we agree to 

consider those sets AcM as measurable whose intersections with 

all of the spaces Mn (n=O,1,2 • ... ) are measurable with respect to 

the appropriate measures, and we define 

fLA = fLo (Mo A) + ~ fin (Mn A). 
n=1 

It is not difficult to convince one's self that the space M 
with the measure ~ is a Lebesgue space. Our decomposition is a de­

composition of the space M into sets Ca , lying on the vertical 

lines % = a. This decomposition is obviously measurable. The space 

Ca consists of the interval of the line x = a contained between 

the line y = a and the curve y = marx). with ordinary linear Lebes­

gue measure, and the sequence of points Y = 1 + lin of this samen 
line (n=t. 2•... ) with measures IIIn(a). We can identify the factor-
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for

of

space M/~ with the space L. In this way, the sequence m~ corres­
ponding to the decomposition ~ is given by the sequence .1'm2' .... 

Since the numbers In and the functions .n were given arbi­

trarily, the present construction proves Theorea (III). At the 

same time, in the light of Theorem (II), it provides us with a 

measurable decomposition of the most general kind. 

No.2. Rellloval of one-sheeted sets of positive .easure. 

The sets Ml .M2•··· which served us in the preceding No. for Con­

structing the decomposition ~, have the property that they inter­

sect every element of the decomposition ~ in not more than one 

point. Sets of this kind will be referred to as one-sheeted with 

respect to ~. We commence with the construction of a resolution 

the form (3) for an arbitrary decomposition ~. 

Lemma. A.ong the aeasurable sets which are one-sheeted with 

respect to ~, there exists a set of aa%i.al aeasure. 

Proof. We denote by a the least upper bound of measures of 

one-sheeted measurable sets; let Al .A2•... be a sequence of sets 
which 

lim fLA. = <X. (4)
n~oo 

We wish to replace Al ,A 2, ... by another sequente, also enjoying
 

property (4), but, besides this, converging. This replacement is
 

carried out inductively: we set: A'l :: A and if the set A' n-l

l

,
 

is already defined (n=2, 3, •.• ). then we denote by X - the set of
 
n l
 

those C e MIC for which ~C(CAn) > ~C(CA'n-l)' (5)
 

and by Zn-l th~ inverse image of the set X - under the homomor­n l
 
phism H~. We define the set A'n by the formula: A'n =Zn-1 A'n-l +
 
Zn-1An' All of the sets A' n are, clearly enough, one-sheeted meas­


urable sets. For all mod a points C e X - we have: CA'n = CA~_l'
n t ,
 
and in consequence, ~C(CA' n) =~C(CA' n-l); if C e X - • then CA' n
 n l 
=CAn' and this means that ~(CA'n) =~(CAn) > ~(CA'n-l)' There­

fore for all mod 0 points C e M/~, ~(CA'n) ~ ~C(CA'n-l); (6) 

the sets 2n- l and Zn-l are characterized mod 0 by the fact that 

for CCZn_ l , equality obtains in relation (6), while for CCZ _ , 
n lthe strict inequality holds. 

CA' 1,CA'2"" is a sequence of sets of the space C each con­

sisting of not more than one point, and it is plain from (6) that 

their measures for a non-decreasing sequence. But, under these Con­

ditions, the sequence CA' 1,CA' 2"" can contain a finite number of 
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different members; consequently, there exists a natural number 

nrC) such that for n > nrC), 

CA~ = CA~(cr 
We set 

M 1 = U CA~(cr
• C 

M is a o~e-sheeted set and also, mod 0, is the set- theoretic lim­
t 

it of the sequence A' t,A' 2"" • Consequently, it is measurable, 

and (7)
!,-M1 = .l~ool-'A~. 

Since for all mod 0 points C e Xn-t' 

l-'c (CA:) = !'-c (CA~_I) >-!'-c (CA.), 

and for all C e X -n t , 

!'-c (CA~) = l-'c (CA.), 

it follows that for all mod 0 points C e M/~, 

l-'c(CA~) >-l-'c (CA.), 

so that 

fiA~= ~ l-'c(CA~)dfi~>- ~ l-'c(CA")dl-'~ = fiA n · 

MI~ Mit 

But, pA' n < a; consequently, 

(8)f'A n ~ l-'A:~<x, 

Now, combining (8) with (4) and (7), we obtain: 

po/W, = <X, 

that is, M is a one-sheeted set of maximal measure. The lemma is 
t 

proved. 

We now set NO = M and Nt =Mt . If ~t > 0, then Nt can be con­

sidered as a subspace of the space M, and the decomposition induces 

a definite decomposition ~t in Nt. We can apply our lemma again to 

~t; among the measurable sets which are one-sheeted with respect
 

to ~t' there exists a set M2 of maximal measure. Plainly enough
 

M is at the same time a one-sheeted measurable set with respect

2 

to ~, and also it has maximal measure if one considers only sub­

sets of Nt, 
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Continuing this process, we obtain sets N2 = Nt - M2,M3, and 

so on. If one of the sets MiI2"" turns out to be a set of meas­

ure zero, then all of the succeeding sets will also be of measure 

zero. This occurs if one of the sets NO,N t , ... contains no one­

sheeted set of positive measure, for example, if the set itself 

has measure zero. In any case, upon admitting sets of measure zero, 

we can define all of the sets Mt ,M2, ... • Finally, we set 

00 

Mo = n N. = U M •. 
11 n..-I 

M has no one-sheeted subsets of positive measure. This is evident
O 

if there are only a finite number of sets of positive measure a­

mong the sets M ,M2, ••• • Now, if all of the sets M have posi­t n 
tive measure, then lim pJln = 0 (for the sets Mn are pairwise dis-

n-<Xl 

joint), and since, for everyone-sheeted set ACMO' we must have 

!JA ~ pJln for all n, it follows that pA = O. 

We summarize the results obtained above in the following way: 

To every measurable decomposition ~ of the space M, there cor­

responds at least one decomposition of the form 

M = M o+ U M., (9).=, 
where M ,M2, ••• are measurable sets which are one-sheeted with re­t 
spect to ~, where Mn is a set of mazinal measure among all measu­

rable one-sheeted subsets of the set Nn- t = LJk~iMk' and MO con­

tains no subset of positive measure which is one-sheeted with re­

spect to ~' 

No.3. Decompositions without one-sheeted sets of positive 

measure. In this number, we shall prove the following theorem: 

Every measurable decomposition without cne-sheeted sets of 

positive aeasure ad.its an independent complement. 

The proof is based on a series of Lemmas, in which ~ always 

denotes a measurable decomposition without one-sheeted sets of 

positive measure. 

Lemma 1. If A is a set of positive .easure, then among its 

measurable subsets, there ezists at least one which is not iden. 

tical mod 0 with any of its ~-subsets (No.2 of §l). 

Proof. Such a subset can be found among the elements of an 

arbitrary basis r = {G } of the set A (considered as a subspacea 
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of the space II). In fact, in the opposite case, one can find for 
which contradicts relation (II), for, in view of (12), 

every set G a ~-subset Za of the set A which is identical mod 0a 
with Ga , and, removing from A the set U(GaZa+GaZ ), the measurea ..B= ~ fLc(CB)dfL~>O. 
of which is equal to ~ero, we find a one-sheeted set of positive x 

measure. Lemma 3. For every aeasurable set A and every real nuaber 

Lemma 2. Every aeasurable set of positive aeasure adaits satisfying the inequalities 

aeasurable subsets of positive aeasure with arbitrarily saall dia­
D~A~e~l, (15) 

ae ter (No. 4. of §3). 

there e%ists a aeasurable set B which contains A and which hasProof. Suppose that the lemma is false; let A be a measurable
 
mod 0 constant width e.
 

set of positive measure such that 

Proof. We construct a transfinite sequence of measurable sets
InfD~R>O; RcA, I'B>O. (10) 

8 having the following properties:a 

We denote the left side of the inequality (lO) by ~. Then, on the a) B =A;
1 

one hand, for every measurable set BeA.of positive measure, 
b) for a" > a we always have B " ::lB , and JJ.B " > JJ.B ,;a a a(11) a

D~B>e, 
c} D~Ba ~ e. 

while on the other hand, there exists a measurable set BOCA of 
In order to satisfy condition a), we must set B = A; ~n v~ewpositive measure such that 1 

of inequality (15), condition c) will be satisfied for a = 1 ifD~Bo< 2<. 
we do this. Let us Suppose that sets B which satisfy conditions aLet B1 be a measurable subset of the set BO which is not identi ­
a}, b), and c) have already been constructed for all a < ;3. 

cal mod 0 with any of its ~-subsets (Lemma 1). We set 8 2 = BO-B1 
I} If ;3 is a transfinite index of the first kind and B;3-1 1Sand denote by Xo the set of those C e I//~., for which the two in­

not a set of constant width e mod 0, then there evidently existsequalities 
a set XCM/~ of positive measure and a positive number E such thatI'c(CB,) >0, fLc(CB2»O (12) 
for all C e X, 

f'c (CB3_) ~ e- E. 
are valid. In view of the choice of the set Bt,XO is a set of pos­ ( 16) 

itive measure, and since for all mod 0 points C e M/~, 
We denote by Z the inverse image of the set X under the homomor­

"c (CBt! +"c (CBz) "'" f"c (CBo) < 2e, phism H~. In view of (16), 

there exists a set XCX of positive measure such that ifO 
f' (ZB~_J = ~ f"c (C8~_,) dl'; ~ (0 - e) p.tX< /-LeX = p.Z. 

x"c (CR, ) < e, (13) 

But this means that ~rtB;3-1) > 0; in view of Lemma 2, one can finddoes not hold for all C € X. then 
in 213;3-1 a measurable subset E;3 of positive measure, the diameter 

I'c (CB2 ) < € (14} of which is not larger than €, and we set: 

does hold for all C e x. We denote by 2 the inverse iillage of the 
8 3 = B3_ 1 + E•. 

set X under the homomorphism H~. In case (13), we set B = ZB t , 
2} If ;3 is a transfinite index of the second class, then wein case (14.), we set B = ZB , and in both cases, we have;

2 set: 
D~B<e, B. = U 8«. 

«<3 
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Under constructions 1) and 2), condi tions b) and c) evident­

ly remain satisfied. In view of bl, the transfinite sequence of 

numbers pB1.-B2•.•. is strictly monotone and therefore is no more 

than count ably infinite. Consequently. the process must come to a 

halt at some transfinite number ~ of the second number class. But 

it can come to a halt only if ~ is a number of the first kind and 

B~-1 is a set of constant width e mod O. Thus B = B~-1 is a set 

of the kind whose existence is asserted by Lemma 3. 

Lem.a 3'. For every aeasurable set A and every real nuaber e 
satisfying the inequality 

O~6~d,A. 

there exists a aeasurable set B contained in A of constant width 

e mod O. 

Proof. Since 

d,A= I-D,A, 

by a passage to the complement. this lemma leads to Lemma 3. 

Lemma 4. For every aeasurable set A and every natural nuaber 

r, one can find r aeasurable t~sets Z1.Z2•...• Zr (which can always 

be chosen pairwise disjoint) and r aeasurable sets Z·1'Z·2' •••• Z*r 

of constant width mod 0 with respect to t. such that the set 
, . 

B = U ZiZI 
i"".l 

contains A and 
1 

!l.(B-A)~r· 

Proof. We define Z1 as the sum of	 those sets C for which 

J 
O~fLc(CA)~r' 

and Zi' and 1 < i < r. as the sum	 of those sets C for which 

(~-..!.- < fLc (CA) ~ +. 
In order to construct the sets Z*i' we shall consider those of the 

sets Zi which have positive measure as subspaces of the space M. 
Let ti be the decomposition induced in Zi by the decomposition t. 
and let Ai = ZiA. Since, obviously. 

I 
D'IA~r' 
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it follows from Lemma 3 that there exists a measurable set Z*i. i
 

containing Ai and of constant width i/r mod 0 with respect to ti'
 
Starting with Z'i, i and using Lemma 3, we construct in turn the
 

sets
 

Z;.I+I ~ ZI: I. Z;,1+2 ~ Z:.I+I •...• Z;" ~ ZI~ '-1.
 

and using Lemma 3'. sets 

Z;, I-I C Z;. if Z;, 1-2 C Z;. I_I, ••. , ZI: 1 C Zi~ 2. 

where Z*i.j is a set of constant width j/r mod 0 with respect to 

ti' Of course, this construction takes place only for those val­

ues of i such that JiZi > 0; if JiZi = O. then by defini tion. 

Z·· . = Zi(j=1.2••..• r). Finally. we set
t,}	 . ' .

ZI = U ZI,/. 
1=1 

Since Z*i.1CZoi.2C···C.Z·i.r' it follows that Z01CZ·2C . •• CZ· r • 

and since Zizoi = Z·i. i and Z·i.i Ai' it follows that 

,. . ,.. ,. 
B = U ZIZI = U ZI.I ::J U Ai = A 

i-I /,..1 ;-=1 

and that 

fL (B-A) =~fL(Zi,l-AI) = 
i--I 

= ± ~ fLc [C (Z:.;-A ,)] dfL:~ ±+fLZI = +. 
i=l H~ZI	 l::::lll 

We are now in a position to prove the theorem stated at the 

beginning of this No. Let r be any basis at all of the space M. 
We consider all possible pairs (G,p). where G € (r+FJd (See No.3 

of §l) and p is a natural number. We arrange these pairs in a se­

quence TI1 = (G1.P1)' TI2 = (G2'P~) •... • We next construct a se­

quence ~1' ~2"" of finite systems of measurable sets (the union 

U~=1hn being denoted by L) and a sequence h· 1,ho 2, ... of finite 

systems of measurable sets (the union U~=1h'n being denoted by 

LO) such that 

a) the system L'd (see No.3 of §l) consists of sets which 

have mod a constant width with respect to t; 

c) the systems ~n and hO consist	 of one and the same numbersn 
of sets; if these sets are respectively Zn 1.Zn 2••..• Zn q and 

J J J n 
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z· 1. Z ·n 2••••• Z.n q • then the set n J , , n 

qn 

Bn = U Zn,kZ~,k 
k=l 

contains Cn' and 

fJ. (Bn - 0.) < J.. . 
Pn 

The construction is carried out inductively. 

1) The systems h1 and h· 1 are constructed on the basis of Lem­

ma 4; it is necessary to set A = C1 • r = P1 and then Z1.k = Zk 

and Z·1.k = Z·k' 

2) If the systems h1 ,h2•.•.• hn- 1 and h· 1.h·2•...• h· - 1 are al­n 
ready constructed, then the systems An and h· are constructed inn 
the following fashion. Let S1.S2 ••••• S 

sn 
be the elements of the 

decomposition ~(~·n)' generated by the union ~·n = LJj:1A.j of the 

systems A· 1.h· 2•.••• h. - 1• The sets st which have positive measuren 
can be considered as subspaces of the space M. Let ~i be the de­

composition induced by the decomposition ~ on Si and let Ci = SiCn' 

Letting A =Ci • r = P ' and applying Lemma 4, we obtain a systemn 
of measurable ~i-sets Zl.Z~. ....Z~nand a system of measurable .sets 

Z·iCZ·2c"'CZ·~n of constant width mod 0 with respect to ~t. 

such that the set 
Pn 

BI = U Z~Z;I 
i-I 

contains Ci and 

fJ.1(Bi_OI)~ _1 ,
Pn 

where ~i is the measure in the space Si. Of course, this construc­

tion is vacuous for ~i = 0; in. this case, we set ZJ = Z.j 

S(j=1, 2, "',Pn)' We denote by ZJ the union of all elements C of 

the decomposi tion ~ '. which intersect lJ' i f ~l > 0, and the en­

tire space M, if ~t = 0 (for ~l > 0, the measurability of the 

set ZJ follows from the fact that it coincides with the sum of 

those sets C for which ~(Czj) > 0). We now set: 

Zn k = Zj ) i=1,2, ... ,sn; j=1,2""'Pn; 
o 

Z· =Z·.i J k=U-l)Pn+j; k=I,2, .... qn=snPn· n, It J 

It is evident that the sequences ~,A·n which we have con­

structed enjoy properties (a) and (b), We shall show that they 
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enjoy property (c). Since B i ::::lei. we have 

qn $" ( PIt ) $n (' Pn )
Bn = U Zn kZ~ k = U u Z;Z? ~ U U Z~Z~I = 

k-I ' , I_I ;-1 i=1 ;_: J 

'~n s,. 
U BI~ U 0 1 =0", 

I-I I~I 

since 
II-'(BI- 0/) - 1-'5I '1'.l(BI - Ol)~ Ii;; ...5 1, 

follows that $ $ 

n I n J 
... (8n -On)= 2} !J-(Bt-Ol)~- 2} ...SI=p. 

i~1 Pn 1_1 n 

We set ~. = ~(~.). We shall sholl' that ~. is the independent 

co.ple",ent of the deco.position ~. In fact, in view of (b). the 

decompositions ~ and ~. are independent (No.4 of §3), and they 

are also complements of each other. for. in view of c), the union 

of the systems ~ and L· enjoys property (~) (see No.3 of §3). 

The theorem is proved. 

From the fundamental formula 2c) of No. 1 of §3, it follows 

that a decomposition ~ evidently does not admit one-sheeted sets 

of positive measure if all mod 0 measures ~ are continuous. Since 

every mod 0 element C· of the independent complement ~. is a set 

which is one-sheeted with respect to ~, the measure of which for 

all mod 0 elements C is equal to the measure ~C(CC') of the set 

CC' (which consists of exactly one point). the converse is also 

true. That is, if there are no one-sheeted sets of positive meas­

ure, the theorem just proved shows that all mod 0 measures ~C 

must be continuous. In this way. we see that a .easurable deco.­

position ~ does not ad.it anyone-sheeted sets of positive meas­

ure if and only if all mod a ",easures ~ are continuous. 

Assembling the results obtained. we see that t~o deco.posi­

tions with continuous measures ~C are iso.orphic mod 0 if and on­

ly If the corresponding factor-spaces are iSOMorphic mod O. But 

this assertion is plainly nothing but Theorem (II) (See No.1) 

stated for decompositions with continuous measures ~C' 

No.4. Measurable deco.positions of general type, In the 

general case. the proof of Theorems (1) and (II) is based upon 
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properties of the decomposition (9). We break up this proof into
 

several parts.
 

A) On MO all mod 0 aeasures ~C are continuous; on M1 ,M2, ""
 

they satisfy for all mod 0 points C e M/' the inequalities
 

fLc (CMl )::> f-'c (CM2 ) ::> .... 

We shall denote by '0 the decomposition induced in the sub­

space MO of the space M by the decomposition (we assume that 

~O > 0) and by Co the element of the decomposition '0 correspon­

ding to the element C of the decomposition '(CO=MOC). The decom­

position '0 has associated with it its canonical system of meas­

ures ~C, which, as one can easily see, is connected with the sys­

tem {MC? by the relation: 

I'c (Xo) = fLc (Co) . fLc. (Xo) (Xo C Co). (17) 

Since the set MO contains no one-sheeted set of positive measure, 

it follows from the results of the previous No. that all mod 0 

measures ~C are continuous. Consequently, all mod 0 measures 

~ are contfnuous on MO' By this, the first of our assertions is 

proved. In order to prove the second, we denote by X the set ofn 

those C E M/' for which ~C(CMn) < ~(CMn+1)' and by Zn the inverse 

image of the set X under the homomorphism H, and setn 

M~ = Zn M n+ Zn /v1n+l • 

n-1 
M' n is a measurable one-sheeted set lying in the set N = UMk'n- 1 k-t
If ~,Xn > 0, then ­

~ I'c(CM~)dfL,= ~ fLc(CMn)dfL,+ ~ fLc(C,Wn+l)dil,> 
"II, xn X" 

> ~ ilC (CMn) dfJ.< + ~ f'c (Cl\1) dfJ.~ = ~ fJ.c (CM")dfL,, 
>in x. "II, 

or, 

fl.M : > fLMn , 

which is impossible. Hence ~,Xn = O. 

B) For all mod 0 points C e M/', 

!J.c (CM.) = m. (C) (n = 0, 1, ...). (18) 
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Indeed, in view of A), for every mod 0 point C E M/C the sequence 

CM ,CM2, ... consists of sets each containing not more than one
1

point. and so arranged that their measures form a non-increasing 

sequence; furthermore, this sequence contains every set of posi­

tive measure which contains only one point. But this means that 

the equalities (18) are valid. 

C) The functions an are /IIeasurable (Theorem (I) of No.1 of 

is the inverse iaage of a set XCM/' under the hoao­§4) and if Z 
aorphisa Hr.. then 

fl.(M.Z)= ~mn(C)d!J.,. (19) 
x 

This theorem, which follows immediately from B), shows that 

for subsets of the set M , the measure ~ is completely determinedn 
by the functions an' 

0) If r(m,,) = r(m,"), then r(") =r(~"), (Theorem (TI), 

No. L §4). 

We' construct the decompositions (9) corresponding to the de­

compositions ~' and ,": 

., «> 

M' =M~+ U M~, M" = M~' + U M~. 
n=1 n-l 

and denote by" 0 and '''~ the decompositions induced by the decom­

positions ~' and ~" in M' 0 and M" O. Let V be an isomorphic mod 0 

mapping of the space M'/" onto M"/'" carrying m,. into m,,,. In 

view of the results of the preceding No .• there exists an isomor­

phism mod 0, U. of the set M' 0 onto the U(C'M' 0) = YC' 'M" 0 for an 

arbitrary element C' of the decomposition ~'. In view of the re­

lations (17). (18), and (19), U can automatically be extended to 

be an isomorphism mod 0 of the space M' onto the space M", carry­

ing ,. into ~"-



5-4	 V. A. ROHLIN 

Bibliography 

1.	 P. R. Halmos, and J. v. Neumann, Operator Methods in classical 

lIechanics. II, Ann. of Math. (2) 43, 332-350 (1942). 

2.	 J. v. Neumann, Einige Satze iiber .essbare Abbildungen. Ann. of 

Math. (2) 33, 574-586 (1932); p. 582. 

3.	 P. R. Halmos, The deco.position of .easures. Duke Math. J. 8, 

386- 392 (1941). 

4.	 W. Ambrose, P. R. Halmos, S. Kakutani, The decomposition of 

.easures. II, Duke Math. J. 9. 43-47 (1942). 

5.	 V. Rohlin, On the classification of lIeasurable decompositions, 

Doklady Akad. Nauk SSSR (N.S.) 58, 29-32 (1947). 

6.	 F. Hausdorff, Mengenlehre, 3rd.ed., de Gruyter, Berlin and Leip­

zig, 1935. 

7.	 O. Nikodym, Sur une generalisation des inte'grales de M. J. Radon, 

Fund. Math. IS, 131-179 (1930). 

8.	 A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrech­

nung. Springer, Berlin, 1933. 

9.	 P. R. Halmos, On a theorea of Dieudonnf. Proc. Nat. Acad. Sci. 

U.S.A. 35, 38-42 (1949). 

On partial derivatives 
[Izvestiya Akademii Naulc SSSR. Setiya Matemati1:'eskaya 13, 425-446 (1949)] 

G. P. Tolstov 

Ttanslated from 

r. IT. TO.II~TO B 

a qaCTHIlX rrpOH3BOAHbIX 

[H3BeCTHH AKaAeMHH HayK CCCP. 

CepHH	 MaTeMaTHqeCKaH 13, 425-446 (1949)] 

by Edwin Hewitt 

First published by the American Mathematical Society in 1<)52 

as Translation Numbet 69. Reprinted without revision. 

55 


