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Abstract

What is the point at which the sum of (euclidean) distances to four
fixed points in the plane is minimised? This extension of the celebrated
location question of Fermat about three points was solved by Fagnano and
others around 1750, giving the following simple geometric answer: when
the fixed points form a convex quadrangle it is the intersection point of
both diagonals, and otherwise it is the fixed point in the triangle formed
by the three other fixed points.

We show that the first case extends and generalizes to general metric
spaces, while the second case extends to any planar norm, any ellipsoidal
norm in higher dimensional spaces, and to the sphere.

1 Introduction

Around four centuries ago, Fermat [8, p153] asked to find a point minimising the
sum of distances to three fixed points in the (euclidean) plane, thereby unknow-
ingly initiating the family of minisum location problems. Although Fermat’s
original question was fully answered within the same century by many schol-
ars, including illustrious names like Torricelli, Ricci, Cavalieri, Viviani, Renieri,
(see the authorative survey [13]), it remains still vigorously studied under many
different points of view and extensions, see e.g. [12], [4], [13]. The simplest
extension to four instead of three fixed points, which we will call the 4-point
Fermat location problem, has the following well-known complete answer (using
the classification of [13]).

Theorem 1 The sum of euclidean distances to four fixed points p, q, r, s in the
plane is minimised at

(Floating Case) the point of intersection of the diagonals, when the fixed
points form a convex quadrangle,
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(Absorbed Case) otherwise the fixed point which belongs to the (closed) tri-
angle formed by the three other fixed points.

Proof

(Floating Case) The following extremely simple proof (notations adapted)
involving only the triangle inequality goes back to Fagnano in 1775 [7,
Solution per simplicem Geometriam. (Fig. XIV.), p295], as opposed to
the one and half page proof involving differential calculus (‘Infinitorum
Methodum’) [7, p293–295]:

Let u ∈ [p, r] ∩ [q, s] and x ∈ R2. Note that d(p, r)(= d(p, u) + d(u, r)) ≤
d(p, x)+d(x, r); and similarly d(q, s)(= d(q, u)+d(u, s)) ≤ d(q, x)+d(x, s),
therefore d(p, u) + d(r, u) + d(q, u) + d(s, u) ≤ d(p, x) + d(r, x) + d(q, x) +
d(s, x)

(Absorbed Case) This case was apparently not considered by Fagnano [7], (as
erroneously suggested in [3, p104]) probably because no simple geometric
proof was available. The following proof slightly shortens the arguments
in [3, p111]:

Let s ∈ conv(p, q, r), and consider any point x in the plane. In case
x 6∈ conv(p, q, r) we may separate x strictly from conv(p, q, r) by a line L.
The orthogonal projection of x on L is then strictly closer to each p, q, r, s
than x, and hence x cannot be optimal. It is therefore sufficient to show
that s yields at least the same objective value as any x ∈ conv(p, q, r).
For any such x an adequate renaming of p, q, r yields s ∈ conv(p, q, x),
and hence the halfline ps intersects [x, q] in a point y. Then y ∈ [x, q] and
s ∈ [py] and it follows that d(p, s) + d(q, s) ≤ d(p, s) + d(s, y) + d(y, q) =
d(p, y) + d(q, x) − d(x, y) ≤ d(p, x) + d(q, x). Summing with the triangle
inequality d(r, s) ≤ d(r, x) + d(x, s) and the fact d(s, s) = 0 we obtain the
result.

2

In this note we offer new proofs for each of both cases which allow to gener-
alise these results for other distance measures like general metrics and norms,
and going beyond several such extensions already known.

2 Extensions of the floating case

The simplicity of the argument of Fagnano for showing the absorbed case
strongly suggests that the result should extend to much more general situa-
tions. We start by stating a trivial lemma, which turns out to be a basic result
needed in this section.

Lemma 2 Let the objective function of an optimisation problem

(P ) : min{ f(x) x ∈ S }
be a positively weighted sum of objectives fi (i ∈ I), i.e. f(x) =

∑
i∈I wifi(x)

with all wi > 0. If the subproblems

(Pi) : min{ fi(x) x ∈ S }
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(i ∈ I) have a common optimal solution x∗ ∈ S, then the optimal solution set
opt(P ) of (P ) equals the intersection of the optimal solution sets opt(Pi) of all
(Pi).

Proof For any y 6∈ ∩i∈I opt(Pi) and any x ∈ ∩i∈I opt(Pi) we have fi(y) ≥
fi(x) = fi(x∗) for all i ∈ I, with at least one strict inequality. Therefore
f(y) =

∑
i∈I wifi(y) >

∑
i∈I wifi(x) = f(x) = f(x∗), and the conclusion

follows. 2

2.1 General metric distance

Let (X, d) be any metric space. The metric segment between two points a, b ∈ X
was defined by Menger [16] as the set of points at which the triangle inequality
on a, b is in fact an equality:

[a, b]d
def= { c ∈ X d(a, c) + d(c, b) = d(a, b) }

Note that because of the triangle inequality for d this definition implies that
x 6∈ [a, b]d is equivalent to d(a, x) + d(x, b) > d(a, b).

For any finite set P ⊂ X, consider the (generalized) Fermat-problem to
minimise the sum of distances function

FP (x) def=
∑

p∈P
d(x, p)

The set of minimisers of FP will be called the median set of P , denoted by
med(P ).

Lemma 3 2-point Fermat problem.
For any pair a, b in a metric space X, d we have

[a, b]d = med({ a, b })

Proof For any c ∈ [a, b]d and x 6∈ [a, b]d we have

d(c, a) + d(c, b) = d(a, c) + d(c, b) = d(a, b) < d(a, x) + d(x, b) = d(x, a) + d(x, b)

2

The following theorem was obtained in [11] (slightly extended to weighted
situations), and also in [15] for normed spaces.

Theorem 4 If P can be partitioned into a set of pairs { pi, p′i } (i ∈ I), such
that ⋂

i∈I
[pi, p′i]d 6= ∅

then this intersection is exactly the median set of P .

Proof This is a direct application of lemmas 2 and 3. 2 In particular
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Corollary 5 4-point Fermat problem.
For any 4-point set P = {p, q, r, s} in a metric space X, d with [p, q]d∩ [r, s]d 6= ∅
we have

med(P ) = [p, q]d ∩ [r, s]d

Proof 2

This gives the full answer to the 4-point Fermat problem, provided we may
construct these metric segments. In the next subsections we consider a number
of cases where this applies.

2.2 Network

On an (undirected) network with shortest path distance the metric segment
[a, b]d for two points a and b is clearly the union of all shortest paths between a
and b.

Theorem 6 Let P = { p, q, r, s } be a set of four points on an undirected net-
work. If some shortest path connecting p and q meets a shortest path connecting
r and s, then the median set of P consists of all points common to any such
pair of shortest paths.

Note that when all four fixed points are nodes, it follows that the median
set in this case always consists of a union of edges and vertices, and thus always
contains a vertex, in accordance with Hakimi [9].

2.3 Sphere distance

In [14], Fagnano’s result was obtained for four points on a same hemisphere,
by way of an analytical reasoning. Lemma 2 allows to obtain a much more
complete answer on the sphere, as follows. We call two points on the sphere
diametrical when they are the extreme points of a sphere’s diameter.

On the sphere with great circle distance one easily sees that the metric
segment between any two non-diametrical points is the smallest great circle arc
connecting them. For two diametrical points the metric segment is the whole
sphere.

Therefore we obtain following floating case on the sphere

Theorem 7 Consider the Fermat problem on the sphere with 4 fixed points.

• If these are two by two diametrical, then the median set is the whole sphere.

• If there is one pair of diametrical fixed points, then the median set consists
of the smaller great circle arc connecting the two other fixed points.

• If there are no diametrical points, but the fixed points come in two pairs,
whose smaller connecting great circle arcs meet, then the median set is
exactly the intersection between these two circle arcs. This median set can
thus be either a great circle arc, if all fixed points lie on a same great circle,
or a single point otherwise.
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2.4 Norm distance

Evidently in the planar euclidean distance case, metric segments are simply line-
segments, the ’diagonals’, which, if they meet, always meet at a single point.
This is the classical floating case result of Fagnano. But this result is valid more
generally, and can be made much more precise in case of norm distances.

Consider any Minkowski norm ν with unit ball B ⊂ Rn, and let dν be
the metric derived from ν by dν(x, y) def= ν(y − x). B is then a convex set,
symmetric with respect to the origin. For an in depth treatment of the geometry
of Minkowski spaces see [23]. A complete characterization of the metric segments
for such metric spaces may either be obtained by way of duality arguments, see
e.g. [15], or by the following geometrical construction fully detailed in [2, p7–12]

For any b on B’s boundary, i.e. with ν(b) = 1, the face B(b) of B at b is
defined as follows:

B(b) def= { a, a′ ∈ B b ∈]a, a′[ } ∪ { b } (1)

i.e. the largest subset of B’s boundary for which b belongs to its relative interior.
Evidently, B(b) = { b } if and only if b is an extreme point of B, i.e. b does not
lie on any open segment of B. For example, when ν is a round norm, i.e. with
strictly convex B, like any `p norm with 1 < p < +∞, e.g. the euclidean norm
(p = 2), then B(b) = { b } for any b with ν(b) = 1. For block norms, i.e. with
a polyhedral unit ball B, the extremality face at b is the smallest face of B to
which b belongs; e.g. for the rectangular (or Manhattan) norm `1 and b = (0, 1)
we have B(b) = { b }, but for b = (0.8, 0.2) we have B(b) = [(0, 1), (1, 0)].

0 1

1

a3

a2

a1

a4

Figure 1: An example of a norm

A somewhat less trivial example is given by the ball shown in figure 1. The
faces at the given points are B(ai) = { ai } for i = 1, 2, 3, while B(a4) =
[(1, 0), (1, 1)].

For any x 6= 0, we define further its ν-linearity cone as

L(x) def= R+B(
x

ν(x)
) = { λa λ ≥ 0, a ∈ B(

x

ν(x)
) }

which is always a closed convex cone. Note also that, because of symmetry of
ν we always have L(x) = −L(−x).

For the euclidean norm the `2-linearity cone L(x) is always the halfline from
the origin through x, because all boundary points of the unit circle are extreme
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points. For the rectangular norm the `1-linearity cone L(x) is the halfline from
the origin through x for any x on some axis, but when x is interior to a quadrant
L(x) is this whole (closed) quadrant. For the norm shown in figure 1, L(x) is
the halfline from the origin through x = (x1, x2) as soon as x1x2 ≤ 0, but
L(a4) = { x = (x1, x2) 0 ≤ x2 ≤ x1 }.

For the metric d derived from ν the metric segments are constructed by

[x, y]d = (x+ L(y − x)) ∩ (y + L(x− y)) (2)

This always contains the segment [x, y] while when ν is strictly convex we always
have [x, y]d = [x, y].

Using these facts together with theorem 4 we obtain

Corollary 8 If P forms a convex quadrangle, then the median set is the inter-
section of the metric segments on the diagonal pairs of P .

Fagnano’s floating case result holds for any norm distance in Rn. The in-
tersection point of the diagonals (if it exists) is the unique minimiser of FP if
and only if the direction of both diagonals define extreme points of the norm’s
unit ball.

The two last parts of this result are given in [3, p110].

p

q
r s

Figure 2: A 4-point Fermat problem with the norm of figure 1

But corollary 5 is often even stronger. Figure 2 shows a 4-point Fermat
problem with the norm of figure 1. Observe that no diagonals meet, so strictly
speaking Fagnano’s result does not apply. However, the depicted metric seg-
ments [p, q]ν (parallelogram) and [r, s]ν (horizontal segment) do meet, so by
corollary 5 their intersection (thick segment) is the median set.

3 Extensions and limits of the absorbed case

The absorbed case result considers points belonging to the (closed) triangle
formed by the other points. Here the notion of convex hull is invoked, a concept
which, in its classical form, calls for a vector space setting. Therefore we start
by considering a real vector space Rn equipped with a norm.

3.1 Norm distance

Let us first recall the notion of weakly efficient point in the context of location
theory. A point x is weakly efficient with respect to the set of points A and
distance measure d, when there exists no other point y such that d(a, y) < d(a, x)
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for all a ∈ A. The set of all weakly efficient points w.r.t. A, denoted by WE(A)
(the distance measure having been fixed), has been studied by many authors,
in particular for norm distances in location theory (see e.g. [6]), but also in the
much more general setting of convex analysis (see e.g. [20]).

We will also need the following simple lemma.

Lemma 9 Let ν be any norm on Rn. If the origin 0 lies in the convex hull of
k nonzero vectors of ν’s unit ball, their sum always has ν-norm ≤ k − 2.

Proof Let pi ∈ Rn (i = 1, . . . , k) with 0 < ν(pi) ≤ 1 and 0 ∈ conv(p1, . . . , pk).
This means there exist λi ≥ 0 for i = 1, . . . , k, with

∑k
i=1 λi = 1 and

∑k
i=1 λipi =

0. After a suitable renumbering we have λ1 = maxi=1,...,k λi, hence λ1 > 0 and
1 − λi

λ1
≥ 0 for all i. From the first inequality it follows that λ1 = ν(λ1p1) =

ν(−∑k
i=2 λipi) ≤

∑k
i=2 λiν(pi) =

∑k
i=2 λi. We then have

ν(
k∑

i=1

pi) = ν(p1 +
k∑

i=2

pi)

= ν(
k∑

i=2

(1− λi
λ1

)pi)

≤
k∑

i=2

(1− λi
λ1

)ν(pi)

≤
k∑

i=2

(1− λi
λ1

)

= k − 1−
∑k
i=2 λi
λ1

≤ k − 1− λ1

λ1

= k − 2

2

Theorem 10 Consider the Fermat problem FP where P = { p, q, r, s } ⊂ Rn,
and distance d derived from a norm ν. If s ∈WE(p, q, r) then s minimises FP .

Proof Since FP is a convex function it is sufficient to show that 0 is a
subgradient of FP at s (see [10] for the general theory of subgradients and [18]
for their application in Fermat-Weber problems). The subdifferential of FP at s
is obtained as follows: ∂FP (s) =

∑
a∈P ∂da(s), where da(x) = d(a, x) = ν(x−a).

Now ∂ds(s) = { u ∈ Rd ν0(u) ≤ 1 }, the unit ball for the dual norm ν0 of ν.
It follows that optimality of s is equivalent to finding subgradients π ∈ ∂dp(s),
ξ ∈ ∂dq(s) and ρ ∈ ∂dr(s) such that ν0(−π − ξ − ρ) ≤ 1.

But s ∈ WE(P ′), where P ′ def= { p, q, r }. It follows (see e.g. [20]) that
0 ∈ conv(∪a∈P ′∂da(s)), in other words there exist π ∈ ∂dp(s), ξ ∈ ∂dq(s) and
ρ ∈ ∂dr(s) such that 0 ∈ conv(π, ξ, ρ). But any subgradient to a norm has dual
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norm ≤ 1, hence we also have ν0(π) ≤ 1, ν0(ξ) ≤ 1 and ν0(ρ) ≤ 1, and by
application of lemma 9 we have ν0(−π − ξ − ρ) = ν0(π + ξ + ρ) ≤ 1. 2

A norm on Rn is called ellipsoidal (see [17]) if its unit ball is an ellipsoid, or,
equivalently, if it is of the form ν(x) = `2(Ax) where A is some regular linear
transformation of Rn, i.e. if it defines an inner product space.

We obtain the following corollary, the first part of which was already obtained
by Cieslik [3, p.110] and Swanepoel [21].

Corollary 11 The absorbed case result holds for any norm in R2, or any ellip-
soidal norm in Rn.

Proof With the same notation as in previous theorem we have s ∈ conv(P ′).
It is known that for any norm in R2 (see [22]) or any ellipsoidal norm in Rn
(see [17]) we have s ∈WE(P ′). The result then follows from previous theorem.
2

For dimension > 2 and non-ellipsoidal norms, WE(P ′) may contain points
outside conv(P ′), see e.g. the example for the `p-norm (p 6= 2) given in [17].
Theorem 10 would still apply in such cases.

It is well known that for round norms (i.e. with strictly convex unit balls)
any Fermat-Weber problem with non collinear fixed points has a unique optimal
solution. It follows that for planar round norms corollaries 8 and 11 give a
complete answer to the 4-point Fermat problem.

For planar norms which are not round we may obtain a full solution to the
4-point Fermat problem by observing

• in the convex quadrangle case theorem 8 gives a complete solution

• in the triangle including point s case, theorem 11 tells us that s is an op-
timal solution, and [5] shows that the median set is an elementary convex
set. We may deduce that the median set is thus the elementary convex
set containing s.

In higher dimensions, however, the two cases do not cover all possibilities,
so, even when restricting attention to ellipsoidal norms, the 4-Fermat problem
is not yet fully solved. Even in euclidean 3-space no constructive method seems
to exist, see [13] for details.

In [1] it is shown that any normed space of dimension ≥ 3 in which for any
3-point Fermat problem FP some median exists in conv(P ), is necessarily ellip-
soidal. In the same vein we conjecture the following somewhat more geometrical
property

Conjecture 12 If in Rn (n > 2) equipped with a norm ν, the absorbed case
result always holds, then ν is ellipsoidal.

3.2 Metric space

In [13, p68] it is suggested that the absorbed case (and the floating case) may
be proven by the triangle inequality only. However, if the triangle inequality
would suffice for a proof, the absorbed case would hold for any metric defined
on the plane, which is not the case, as shown by following counterexample.
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Example 1 Consider the plane folded down at a right angle along its first axis, with
metric inherited by embedding in the euclidean R3. This is more formally defined as
follows by the embedding

e : R2 → R3 : (x1, x2) 7−→
�

(x1, x2, 0) when x2 ≥ 0
(x1, 0, x2) when x2 < 0

and the distance measure on R2 defined by d(x, y) = ‖e(x)− e(y)‖.
Consider the points p = (0,−10), q = (10, 10), r = (−10, 10) and s = (0, 0) ∈

conv(p, q, r). Then f(s) = d(p, s) + d(q, s) + d(r, s) + d(s, s) = 10 + 20
√

2 ≈ 38.3. But
at the point x = (0, 1) we have f(x) =

√
101 + 2

√
181 + 1 ≈ 38.0 < f(s).

It may be observed that our proof of the absorbed case heavily relies on
convexity of the norm. Also the proof in the classical planar euclidean case
involved some convexity arguments, in particular linear separation between a
point and the convex hull of P , and equality of the triangle inequality along a line
segment. Now if convexity of the distance to fixed points is needed, according
to Witzgall [24] this calls for a metric derived from a norm. Therefore we
conjecture

Conjecture 13 If in R2 equipped with a metric d, the absorbed case result
always holds, then d is derived from some norm.

3.3 Sphere distance

The stereographic projection arguments used in [14] may quite easily be ex-
tended to prove the following absorbed case result on the sphere (one may won-
der why this case was not considered there, but only the floating case, which
may be solved more completely using much simpler means).

Theorem 14 If three fixed points contained in a hemisphere form a convex
spherical triangle containing the fourth fixed point, then the corresponding 4-
Fermat problem on the sphere is optimised at this fourth fixed point.

3.4 Network

One might be tempted to try extending these results to networks but it is
not clear by what notion the ‘triangle’ should be replaced. Simply negating
the intersecting shortest path situation of theorem 6, and using as proxy for
the triangle the ‘shortest path-closure’ of the fixed points, i.e. the smallest
subset of the network containing all fixed points and any shortest path between
any pair of points of this subset, is bound to fail, as shown by the following
counterexample.

Let the network consist of K5, a complete 5-node graph, and call one of the
nodes a, the other four being the fixed points of P . Let all edges at a have
length 2, and all remaining edges length 3. Clearly all shortest paths between
two nodes consist of single edges. It follows that P cannot be split into two
pairs with intersecting shortest paths. Also, the shortest path closure of P
consists of the (complete) subgraph K4(P ) induced by P . By the well-known
node-optimality theorem an optimal solution to FP is found at some node of
the network, and one easily checks that the only solution is found at a, which
is not part of K4(P ).
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4 Not much hope in case of asymmetry

We have shown that both results of Fagnano may be extended, the first to
general metric spaces, the second to planar normed spaces.

It may be seen that all arguments make extensive use of the symmetry
of the distance measure. Therefore further extensions to asymmetric distance
situations as discussed in [18] or in more general settings in [19] seem out of
question.

First, the notion of metric segment is unrelated to Fermat-problems for
asymmetric distance. The only possible extension here would be replacing it
by the median set of a 2-point Fermat problem, which for asymmetric distances
might contain none of the fixed points themselves. Therefore there seems to be
no relation between diagonals and their possible intersection with median sets.

Second, asymmetric gauge Fermat problems may have median sets which
lie totally outside the convex hull of the fixed points, so an absorbed case type
result seems also out of reach.
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convex analysis, Springer.

10



[11] Juel H. and Love R.F., (1983), The solution of location problems with
certain existing facility structures, INFOR 21, 145–150.

[12] Krarup J. and Vajda S., (1997), On Torricelli’s geometrical solution to
a problem of Fermat, IMA Journal of Mathematics Applied in Business
& Industry 8, 215–224.

[13] Kupitz Y.S. and Martini H., (1997) Geometric aspects of the gener-
alized Fermat-Torricelli problem, In Intuitive geometry, Bolyai Society,
Mathematical Studies 6, 55–127.

[14] Litwhiler D.W. and Aly A.A. (1980), Steiner’s problem and Fagnano’s
result on the sphere, Mathematical Programming 18, 286–290.

[15] Martini H., Swanepoel K.J. and Weiß G. (2002), The Fermat-
Torricelli problem in normed planes and spaces, Journal of Optimization
Theory and Applications 115, 283-314.

[16] Menger K. (1928), Untersuchungen über allgemeine Metrik I, II, III,
Mathematische Annalen, 100, 75–163.

[17] Plastria F., (1984), Localization in single facility location, European
Journal of Operational Research, 18, 215–219.

[18] Plastria F., (1992), On destination optimality in asymmetric distance
Fermat-Weber problems, Annals of Operations Research, 40, 355–369.

[19] Plastria F., (2001), Asymmetric distances, semidirected networks and
majority in Fermat-Weber problems, Locator: ePublication of Location
Analysis, 2 (2001) 15–62,
http://www.mathematik.uni-dortmund.de/iam/locator/v2n2-plastria.pdf
http://www.ent.ohiou.edu/ sola/v2n2-plastria.pdf

[20] Plastria F. and Carrizosa E., (1996) Geometrical characterization of
weakly efficient points, Journal of Optimisation Theory and Applications,
90, 1, 217–223.

[21] Swanepoel K.J., (2000), Balancing unit vectors, Journal of Combina-
torial Theory, Series A, 89, 105–112.

[22] Thisse J.-F., Ward J.E. and Wendell R.E., (1984), Some properties
of location problems with block and round norms, Operations Research,
32, 1309–1327.

[23] Thompson A.C.(1996), Minkowski geometry, Cambridge University
Press

[24] Witzgall,C. (1965), On convex metrics, Journal of Research of the Na-
tional Bureau of Standards - B. Mathematics and Mathematical Physics,
69B, 3, 175-177.

11


