
A Self-adjusting Data Structure

for Multidimensional Point Sets�

Eunhui Park and David M. Mount

University of Maryland, College Park MD 20742, USA
{ehpark,mount}@cs.umd.edu

Abstract. A data structure is said to be self-adjusting if it dynamically
reorganizes itself to adapt to the pattern of accesses. Efficiency is typ-
ically measured in terms of amortized complexity, that is, the average
running time of an access over an arbitrary sequence of accesses. The
best known example of such a data structure is Sleator and Tarjan’s
splay tree. In this paper, we introduce a self-adjusting data structure for
storing multidimensional point data. The data structure is based on a
quadtree-like subdivision of space. Like a quadtree, the data structure
implicitly encodes a subdivision of space into cells of constant combina-
torial complexity. Each cell is either a quadtree box or the set-theoretic
difference of two such boxes. Similar to the traditional splay tree, ac-
cesses are based on an splaying operation that restructures the tree in
order to bring an arbitrary internal node to the root of the tree. We
show that many of the properties enjoyed by traditional splay trees can
be generalized to this multidimensional version.

Keywords: Geometric data structures, quadtrees, self-adjusting data
structures, amortized analysis.

1 Introduction

The development of efficient data structures for geometric search and retrieval
is of fundamental interest in computational geometry. The continued interest in
geometric data structures is motivated by the tension between the various desir-
able properties such a data structure should possess, including efficiency (in space
and query time), generality, simplicity, efficient handling of updates, and accu-
racy (when approximation is involved). Partition trees, including the quadtree
and its many variants, are among the most popular geometric data structures.
The quadtree defines a hierarchical subdivision of space into hypercube-shaped
cells [24]. The simplicity and general utility of quadtree-based data structures is
evident in the wide variety of problems to which they have been applied, both
in theory and practice.

Our focus here stems from the study of dynamic data structures for storing
multidimensional point sets. Through path compression (see e.g., [5,9,16]), com-
pressed quadtrees can store an arbitrary set of n points in R

d in linear space.

� This work has been supported by the National Science Foundation under grant
CCF-1117259 and the Office of Naval Research under grant N00014-08-1-1015.

L. Epstein and P. Ferragina (Eds.): ESA 2012, LNCS 7501, pp. 778–789, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Self-adjusting Data Structure for Multidimensional Point Sets 779

(Throughout, we assume that d is a constant.) Since a compressed quadtree may
have height Θ(n), it is desirable to consider ways of maintaining balance within
the tree. Examples of such approaches include the randomized skip quadtree of
Eppstein et al. [14] and our own quadtreap data structure, which, respectively,
generalize the skip list data structure [23] and the treap data structure [25] to
a multidimensional setting. It also includes Chan’s data structures [7, 8], which
are based on ordering the points according to the Morton ordering. These data
structures all support efficient insertion and deletion and can answer approx-
imate proximity queries, such as approximate nearest neighbor searching and
approximate range searching.

The above data structures guarantee O(log n) time (possibly randomized) to
access each node of the tree, and so are efficient in the worst case. When access
patterns may be highly skewed, however, it is of interest to know whether the
data structure can achieve even higher degrees of efficiency by exploiting the
fact that some nodes are much more likely to be accessed than others. A natural
standard for efficiency in such cases is based on the entropy of the access distri-
bution. Entropy-optimal data structures for point location have been proposed
by Arya et al. [1, 2] and Iacono [19]. These data structures are static, however,
and cannot readily be generalized to other types of search problems.

A commonly studied approach for adaptive efficiency for one-dimensional data
sets involves the notion of a self-adjusting data structure, that is, a data structure
that dynamically reorganizes itself to fit the pattern of data accesses. Although
many self-adjusting data structures have been proposed, the best-known example
is the splay tree of Sleator and Tarjan [26, 29]. This is a binary search tree that
stores no internal balance information, but nonetheless provides efficient dynamic
dictionary operations (search, insert, delete) with respect to amortized time,
that is, the average time per operation over a sequence of operations. Sleator
and Tarjan demonstrated that (or in some cases conjectured that) the splay
tree adapts well to skewed access patterns. For example, rather than relating
access time to the logarithm of the number of points in the set, it is related
to a parameter that characterizes the degree of locality in a query. Examples of
measures of locality include the working set bound [26], static and dynamic finger
bounds [10,11,26], the unified bound [6,17,26], key-independent optimality [20],
and the BST model [12]. Numerous papers have been devoted to the study of
dynamic efficiency of data structures (see, e.g., [13, 15, 22, 28, 30]).

Given the fundamental importance of the splay-tree to the storage of 1-
dimensional point sets and the numerous works it has inspired, it is remarkable
that, after decades of study, there are no comparable self-adjusting data struc-
tures for storing multidimensional point sets. In this paper we propose such a
data structure, called the splay quadtree. Like the splay tree, the splay quadtree
achieves adaptability through a restructuring operation that moves an arbitrary
internal node to the root of the tree. (In our tree, data is stored exclusively at
the leaf nodes, and so it is not meaningful to bring a leaf node to the root.) Each
node of our tree is associated with a region of space, called a cell, which is either
a quadtree box or the set-theoretic difference of two quadtree boxes. As seen in

780 E. Park and D.M. Mount

other variants of the quadtree, such as the BBD tree [3, 4] and quadtreap [21],
this generalization makes it possible to store an arbitrary set of n points in a
tree of linear size and logarithmic height.

Although there are complexities present in the multidimensional context that
do not arise in the 1-dimensional context, we show how to define a generaliza-
tion of the splaying operation of [26] to the splay quadtree. We show that the
fundamental properties of the standard splay tree apply to our data structure as
well. In particular, we show that the amortized time of insertions and deletions
into a tree of size n is O(log n). We also present multidimensional generaliza-
tions of many of the results of [26], including the Balance Theorem, the Static
Optimality Theorem, the Working Set theorem, and variants of the Static Fin-
ger Theorem for a number of different proximity queries, including box queries
(which generalize point-location queries), approximate nearest neighbor queries,
and approximate range counting queries.

The rest of the paper is organized as follows. In Section 2, we present some
background material on the BD tree, the variant of the quadtree on which the
splay quadtree is based. In Section 3, we present the splaying operation and
analyze its amortized time. In Section 4, we present and analyze algorithms for
point insertion and deletion. Finally, in Section 5, we present the various search
and optimality results. Due to space limitations, a number of proofs and figures
have been omitted. They will appear in the full version of the paper.

2 Preliminaries

We begin by recalling some of the basic elements of quadtrees and BD-trees. A
quadtree is a hierarchical decomposition of space into d-dimensional hypercubes,
called cells. The root of the quadtree is associated with a unit hypercube [0, 1]d,
and we assume that (through an appropriate scaling) all the points fit within this
hypercube. Each internal node has 2d children corresponding to a subdivision of
its cell into 2d disjoint hypercubes, each having half the side length.

It will be convenient to consider a binary variant of the quadtree. Each de-
composition step splits a cell by an axis-orthogonal hyperplane that bisects the
cell’s longest side. If there are ties, the side with the smallest coordinate index is
selected. Although cells are not hypercubes, each cell has constant aspect ratio.
Henceforth, we use the term quadtree box in this binary context.

If the point distribution is highly skewed, a compressed quadtree may have
height Θ(n). One way to deal with this is to introduce a partitioning mecha-
nism that allows the algorithm to “zoom” into regions of dense concentration.
In [3, 4] a subdivision operation, called shrinking, was proposed to achieve this.
The resulting data structure is called a box-decomposition tree (BD-tree). This
is a binary tree in which the cell associated with each node is either a quadtree
box or the set theoretic difference of two such boxes, one enclosed within the
other. Thus, each cell is defined by an outer box and an optional inner box. Al-
though cells are not convex, they have bounded aspect ratio and are of constant
combinatorial complexity.

A Self-adjusting Data Structure for Multidimensional Point Sets 781

O

L R

ORL

B
C

The spay quadtree is based on a decom-
position method that combines shrinking and
splitting at each step. We say that a cell of a
BD-tree is crowded if it contains two or more
points or if it contains an inner box and at
least one point. Let B denote this cell’s outer
box, and let C be any quadtree box contained
within B, such that, if the cell has an inner box, C contains it. We generate a cell
O = B \C. We then split C by bisecting its longest side forming two cells L and
R. By basic properties of quadtree boxes, the inner box (if it exists) lies entirely
inside of one of the two cells. We make the convention, called the inner-left con-
vention, that the inner box (if it exists) lies within L. We generate a node with
three children called the left, right, and outer child, corresponding to the cells L,
R, and O, respectively. We allow for the possibility that C = B, which implies
that the outer child’s cell is empty, which we call a vacuous leaf. Our algorithms
will maintain the invariant that the left and right children separate at least two
entities (either two points or a point and inner box). It follows from the analysis
given in [21] that the size of the tree is linear in the number of points.

As shown in [21], the tree can be restructured through a local operation, called
promotion, which is analogous to rotation in binary trees. The operation is given
any non-root internal node x and is denoted by promote(x). Let y denote x’s
parent. There are three cases depending on which child x is (see Fig. 1). Note
that promotion does not alter the underlying subdivision of space.

(a)

promote(y)

promote(x)

A
B

C
D

E

A

y

x

B C

D E

w

A
y

x

w
C D E

B

y

D E

(b)

promote(x)

A B

D C

E

A

x

B C
w

A
y

x

w
C D E

B

Fig. 1. (a) Left and outer promotions (b) right promotion

Left Child: This makes y the outer child of x, and x’s old outer child becomes
the new left child of y (see Fig. 1(a)).

Outer Child: This is the inverse of the left-child promotion, where the roles of
x and y are reversed (see Fig. 1(a)).

782 E. Park and D.M. Mount

Right Child: To maintain the convention that a cell has only one inner box,
this operation is defined only if x’s left sibling node does not have an inner
box (node D in Fig. 1(b)). Letting y denote x’s parent, promote(x) swaps x
with its left sibling and then performs promote(x) (which is now a left-child
promotion).

It is easily verified that promotion can be performed in O(1) time and preserves
the inner-left convention. We say that a promotion is admissible, if it is either a
left or outer promotion or if it is a right promotion under the condition that the
left child has no inner box.

3 Self-adjusting Quadtrees

Like the standard splay tree [26], our self-adjusting quadtree, or splay quadtree,
maintains no balance information and is based on an operation, called splaying,
that moves an arbitrary internal node to the root through a series of promotions.
This operation is described in terms of primitives, called basic splaying steps.

3.1 Basic Splaying Steps

Let us begin with some definitions. Let x be internal, non-root node, and let
p(x) denote its parent. If p(x) is not the root, let g(x) denote x’s grandparent.
Define rel(p(x), x) to be one of the symbols L, R, or O depending on whether x
is the left, right, or outer child of p(x), respectively. If p(x) is not the root, we
also define str(x) to be a two-character string over the alphabet {L,R,O} whose
first character is rel(g(x), p(x)) and whose second character is rel(p(x), x). The
basic splaying step is defined as follows.

Basic Splay(x):
zig : If p(x) is the root, perform promote(x) (see Fig. 2(a)).
zig-zag : If p(x) is not the root, and str(x) ∈ {LO,RO,OL}, do promote(x),

and then promote(x) (see Fig. 2(b) for the case str(x) = LO).
zig-zig : Otherwise, perform promote(p(x)) and then perform promote(x)

(see Fig. 2(c) for the case str(x) = LL).

Note that basic splaying may not be applicable to a node because it would result
in an inadmissible promotion. We say that a basic splaying step is admissible
if all of its promotions are admissible. We will show later that our splaying
algorithm performs only admissible promotions.

3.2 Splaying Operation

As mentioned earlier, the splay quadtree is based on an operation that modifies
the tree so that a given internal node becomes the root. We start with a defi-
nition. Let T be a splay quadtree, let u be a node of T , and let t be T ’s root.

A Self-adjusting Data Structure for Multidimensional Point Sets 783

(a)

A

y

x

B C

D E A
y

x

C D E

B

(b)

x

y

E A

B
z

F GD C

(c)

A

x

B
z

y

C D

E F G

z

F G
y

D E

A

x

B C

A

y

x

B C

D E

z

F G

Fig. 2. The basic splaying operations: (a) zig, (b) zig-zag, and (c) zig-zig, where (before
promotion) y = p(x) and z = g(x)

Letting 〈u = u1, u2, . . . , un = t〉 denote the path from u to t, the path sequence
seqT (u) is defined

seqT (u) = rel(un, un−1) . . . rel(u3, u2)rel(u2, u1).

Let ε denote the empty string. Using the terminology of regular expressions, this
sequence can be thought of as a string in the language {L,R,O}∗. Thus, after
splaying u, we have seqT (u) = ε.

In the standard binary splay tree [26], rotations are performed bottom-up
along the access path. In our case, we will need to take care to avoid inadmissible
promotions. We perform the splaying operation in three phases, each of which
transforms the path sequence into successively more restricted form. Due to
space limitations, the details of the algorithm and its analysis are presented in
the full version. Here is a high-level overview of the process.

Phase 1: Initially, the path sequence is arbitrary, that is, seqT (u) ∈ {L,R,O}∗,
which can be represented by {{O,L}∗R}∗{O,L}∗. This phase compresses
each substring of the form {O,L}∗ to a substring consisting of at most one
such character by an appropriate sequence of zig-zig or zig-zag steps. The
output has the form {{O,L, ε}R}∗{O,L, ε}.

Phase 2: In this phase, we transform seqT (u) such that the sibling node of any
right child on the path does not have an inner box. After Phase 1, we have
seqT (u) ∈ {{O,L, ε}R}∗{O,L, ε}, which can be equivalently represented as
{OR,LR,R}∗{O,L, ε}. Here, we consider the case where the sequence starts
with OR, that is, str(x) = OR. Thus, since x’s parent, p(x) is an outer child,
and the left child of p(x), which is a sibling node of x, has an inner box, we
cannot perform a right-child promotion at x. To solve this, we transform
seqT (u) to {LR,R}∗{OL∗, O, L, ε} by removing the OR substrings through
zig-zig steps.

784 E. Park and D.M. Mount

Fig. 3 shows an example of a zig-zig step for such an OR substring. Let y
denote x’s parent. First, we perform promote(y). Before promote(y), x’s left
sibling (labeled w1 in Fig. 3) may have an inner box. But, after promote(y),
x’s new sibling node, z, does not have an inner box. Thus, now promote(x) is
admissible. We perform promote(x). By the right-child property, prior to this
zig-zig step, z’s children, A and B, and x’s children, E and F do not have
inner boxes. After the operation, the right-child property still holds since x’s
children, E and F , and z’s children, A and B, do not have inner boxes. The
inner-left convention is still preserved, since prior to the operation, the inner
box consisting of the union of A and B’s cells in Fig 3 lies in y’s left child
(labeled w1 in Fig. 3), and after the operation, the inner box consisting of
the union of E and F ’s cells lies in y’s left child (labeled w2 in Fig. 3).

x

y

D

E F G
w2

z

A B C
w1

x

z

y

G D

A B C

E F

promote(x)

w1w1

w2

A

z

B
x

y

C D

E F G

promote(y)

w1

w2

Fig. 3. A zig-zig splaying for an OR substring

Note that x’s old outer child (labeled w2 in Fig. 3) becomes to the left child
of x’s new outer child, y after the zig-zig step. Thus, if str(x) is OR, and
u is x’s outer child, the value of str(u) after zig-zig step is OL. This occurs
recursively. Therefore, seq(u) = {OR,LR,R}∗{O,L, ε} is transformed to a
sequence of the form {LR,R}∗{OL∗, O, L, ε} by removing OR.

Phase 3: After Phase 2, the path sequence has been modified so that all right-
child transitions precede outer-child transitions. Since inner boxes are gen-
erated only by outer-child transitions, it follows that promotions performed
on any right-child nodes of the current path are admissible. This phase com-
pletes the process (thus brining u to the root) by a series of basic splaying
steps (zig-zag if str(x) ∈ {RO,OL} and zig-zag otherwise).

Let us now analyze the amortized time of splaying. As in [26], we will employ a
potential-based argument. We assign each node x a non-negative weight w(x).
We define x’s size, s(x), to be the sum of the weights of its descendants, including
x itself, and we define its rank, r(x), to be log s(x). (Unless otherwise specified,
all logs are taken base 2.) We also define the potential Φ of the tree to be the sum
of the ranks of all its nodes. The amortized time, a, of an operation is defined
to be t+ Φ′ − Φ, where t is the actual time of the operation, Φ is the potential
before the operation, and Φ′ is the potential after the operation. It is easily
verified that our splay operations satisfy the general splay properties described
by Subramanian [27], and therefore, by the analysis presented there we have:

A Self-adjusting Data Structure for Multidimensional Point Sets 785

Lemma 1. The amortized time to splay a tree with root t at a node u is at most
O(r(t) − r(u)) = O(log s(t)/s(u)).

4 Updates to Splay Quadtrees

The insertion of a point q into a splay quadtree can be performed by a straight-
forward modification of the incremental insertion process presented in [21]. This
algorithm first determines the leaf node x containing q by a simple descent of
the tree. It then generates a new node u to separate q from x’s current contents
and replaces x with u. The leaf containing q becomes the right child of u. After
insertion, we splay u.

The deletion process is complimentary but more complex. We first find the
leaf node containing q. Let u be this node’s parent. As in [21], we apply a
restructuring procedure to the subtree rooted at u so that the tree structure
would be the same as if the point q had been the last point to be inserted. After
restructuring, we delete q by simply “undoing” the insertion process. We then
splay q’s parent node. The analysis is similar to that of [26]. Details will appear
in the full version.

Lemma 2. Given a splay quadtree T containing an n-element points set, inser-
tion or deletion of a point can be performed in O(log n) amortized time.

5 Search and Optimality Results

In this section, we present theorems related to the complexity of performing
various types of geometric searches on splay quadtrees. We provide generaliza-
tions to a number of optimality results for the standard splay tree, including the
Balance Theorem, the Static Optimality Theorem, the Working Set theorem,
and variants of the Static Finger Theorem. As in [26], our approach is based on
applying Lemma 1 under an appropriate assignment of weights to the nodes.

We first discuss theorems related to the search time for accessing points. These
theorems are essentially the same as those proved in [26] for 1-dimensional splay
trees. Given a query point q, an access query returns the leaf node of T whose
cell contains q. (Thus, it can be thought of as a point location query for the
subdivision of space induced by T .) An access query is processed by traversing
the path from the root to the leaf node containing q, and splaying the parent of
this leaf.

The working set property states that once an item is accessed, accesses to
the same item in the near future are particularly efficient [26]. Through the
application of an appropriate weight assignment, similar to one used in [26] we
obtain the following.

Theorem 1. (Working Set Theorem) Consider a set P of n points in R
d. Let

q1, . . . , qm be a sequence of access queries. For each access qj (1 ≤ j ≤ m), let
tj be the number of different cells accessed before qj since its previous access, or
since the beginning of the sequence if this is qj’s first access. The total time to
answer m queries is O(

∑m
j=1 log(tj + 1) +m+ n logn).

786 E. Park and D.M. Mount

Two additional properties follow as consequences of the above theorem (see, e.g.,
Iacono [18]):

Theorem 2. (Balance Theorem) Consider a set P of n points in R
d and a splay

quadtree T for P . Let q1, . . . , qm be a sequence of access queries. The total time
to answer these queries is O((m + n) logn+m).

Theorem 3. (Static Optimality Theorem) Given a subdivision Z, and the em-
pirical probability pz for each cell z ∈ Z, the total time to answer m access
queries is O(m · entropy(Z)).

In traditional splay trees, the static finger theorem states that the running times
of a series of accesses can be bounded by the sum of logarithms of the distances
of each accessed item to a given fixed key, called a finger. In the 1-dimensional
context, the notion of distance is based on the number of keys that lie between
two items [26]. Intuitively, this provides a measure of the degree of locality among
a set of queries with respect to a static key. Generalizing this to a geometric
setting is complicated by the issue of how to define an appropriate notion of
distance based on betweenness. In this section, we present a number of static
finger theorems for different queries in the splay quadtree.

In general, our notion of distance to a static finger is based on the number
of relevant objects (points or quadtree cells) that are closer to the finger than
the accessed object(s). Define the distance from a point p to a geometric object
Q, denoted dist(p,Q), to be the minimum distance from p to any point of Q.
Let b(f, r) denote a ball of radius r centered at a point f . Our first static-finger
result involves access queries.

Theorem 4. Consider a set P of n points in R
d, for some constant d. Let

q1, . . . , qm be a sequence of access queries, where each qj (1 ≤ j ≤ m) is a point
of P . If f is any fixed point in R

d, the total time to access points q1, . . . , qm is
O
(∑m

j=1 logNf (qj) +m + n logn
)
, where Nf (qj) is the number of points of P

that are closer to f than qj is.

This theorem extends the static finger theorem for the traditional splay trees
of [26] to a multidimensional setting. However, it is limited to the access of
points that are in the given set. In a geometric setting, it is useful to extend this
to points lying outside the set. The simplest generalization is to point location
queries in the quadtree subdivision, that is, determining the leaf cell that contains
a given query point. More generally, given a quadtree box Q, a box query returns
the smallest outer box of any node of a splay quadtree that contains Q. (Point
location queries arise as a special case corresponding to an infinitely small box.)

Our next result establishes a static finger theorem to box queries (and so
applies to point location queries as well). Given a query box Q, starting from
the root of the tree, we descend to the child node that contains Q until no such
child exists. We then return the outer box of the current node, and if the current
node is an internal node, we splay it, otherwise, we splay its parent node.

The following theorem establishes the static finger theorem for box queries.

A Self-adjusting Data Structure for Multidimensional Point Sets 787

Theorem 5. Consider a set P of n points in R
d and a splay quadtree T for P .

Let Q1, . . . , Qm be a sequence of box queries. If f is any fixed point in R
d, the

total time to answer these queries is O
(∑m

j=1 logNf(Qj) +m+ n logn
)
, where

Nf (Qj) is the number of leaf cells overlapping the ball b(f, dist(f,Qj)) in the
subdivision induced by T .

Theorem 5 expresses the time for a series of box queries based on the number of
leaf cells. In some applications, the induced subdivision is a merely a byproduct
of a construction involving a set of P of points. In such case, it is more natural to
express the time in terms of points, not quadtree cells. Given a set of box queries
that are local to some given finger point f , we wish to express total access time
as the function of the number of points of P in an appropriate neighborhood
of f . As before, our analysis is based on quadtree leaf cells that are closer to f
than the query box. The problem is that such leaf cells may generally contain
points are very far from f , relative to the query box. To handle this, we allow
a constant factor expansion in the definition of local neighborhood. Consider a
ball containing the closest points of all given boxes from f (see Fig. 4(a)). Given
a point set P , a finger point f , any constant c, and the box queries Q1, . . . , Qm,
the working set Wbox with respect to P , f , c, and the box queries is defined:

Wbox(P, f, c,Q1, . . . , Qm)= {p : p ∈ b(f, rbox(1+c))∩P, rbox= max
j

dist(f,Qj)}.

f

Q1

Q2

Q3
Q4

(1 + c)rb f (1 + c)rb

rb

> crb/d

(a) (b)

rb

Fig. 4. (a) Working set, (b) the leaf cells overlapping a ball

Theorem 6. Let Q1, . . . , Qm be the sequence of box queries. For any point
f ∈ R

d and any positive constant c, the total time to answer these queries is
O(m log(|Wbox|+ (1c)

d−1) + n logn).

We will also analyze the time for answering approximate nearest neighbor. First,
we consider approximate nearest neighbor queries using splay quadtrees. Let q be
the query point, and let ε > 0 be the approximating factor. We apply a variant
of the algorithm of [4]. We use a priority queue U and maintain the closest point

788 E. Park and D.M. Mount

p to q. Initially, we insert the root of the splay quadtree into U , and set p to
a point infinitely far away. Then we repeatedly carry out the following process.
First, we extract the node v with the highest priority from the queue, that is,
the node closest to the query point. If the distance from v’s cell to q exceeds
dist(q, p)/(1+ ε), we stop and return p. Since no subsequent point in any cell to
be encountered can be closer to q than dist(q, p)/(1 + ε), p is an ε-approximate
nearest neighbor. Otherwise, we descend v’s subtree to visit the leaf node closest
to the query point. As we descend the path to this leaf, for each node u that is
visited, we compute the distance to the cell associated with u’s siblings and then
insert these siblings into U . If the visited leaf node contains a point, and the
distance from q to this point is closer than p, we update p to this point. Finally,
we splay the parent of this leaf node.

Consider any sequence of m approximate nearest neighbor queries, q1, . . . , qm.
The working set for these queries can be defined to be

Wann(P, f, c, q1, . . . , qm)

= {p : p ∈ b(f, rann(1 + c)) ∩ P, rann = max
j

(dist(f, qj) + dist(qj ,NN(qj))}.

The following theorem shows that the time to answer these sequence of queries
can be related to the size of this working set.

Theorem 7. Let q1, . . . , qm be a sequence of ε-approximate nearest neighbor
queries. For any point f ∈ R

d and any positive constant c, the total time to

answer all these queries is O
(
m
(
1
ε

)d
log

(|Wann|+
(
1
c

)d−1)
+ n logn

)
.

References

1. Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for pla-
nar point location. ACM Trans. Algorithms, 3, article: 17 (2007)

2. Arya, S., Malamatos, T., Mount, D.M., Wong, K.-C.: Optimal expected-case planar
point location. SIAM J. Comput. 37, 584–610 (2007)

3. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory
Appl. 17, 135–163 (2001)

4. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal al-
gorithm for approximate nearest neighbor searching. J. Assoc. Comput. Mach. 45,
891–923 (1998)

5. Bern, M.: Approximate closest-point queries in high dimensions. Inform. Process.
Lett. 45, 95–99 (1993)

6. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theo. Comp. Sci. 382, 86–96 (2007)

7. Chan, T.: A minimalist’s implementation of an approximate nearest neighbor al-
gorithm in fixed dimensions (2006),
http://www.cs.uwaterloo.ca/~tmchan/pub.html (unpublished manuscript)

8. Chan, T.M.: Closest-point problems simplified on the ram. In: Proc. 13th Annu.
ACM-SIAM Sympos. Discrete Algorithms, pp. 472–473 (2002)

9. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proc.
24th Annu. IEEE Sympos. Found. Comput. Sci., pp. 226–232 (1983)

http://www.cs.uwaterloo.ca/~tmchan/pub.html

A Self-adjusting Data Structure for Multidimensional Point Sets 789

10. Cole, R.: On the dynamic finger conjecture for splay trees. Part 2 The proof. SIAM
J. Comput. 30, 44–85 (2000)

11. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for
splay trees. Part 1: Splay sorting log n-block sequences. SIAM J. Comput. 30, 1–43
(2000)

12. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: The geometry of binary
search tree. In: Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp.
496–505 (2009)

13. Elmasry, A.: On the sequential access theorem and deque conjecture for splay trees.
Theo. Comp. Sci. 314, 459–466 (2004)

14. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic
data structure for multidimensional data. Internat. J. Comput. Geom. Appl. 18,
131–160 (2008)

15. Georgakopoulos, G.F.: Chain-splay trees, or, how to achieve and prove log logN-
competitiveness by splaying. Inform. Process. Lett. 106, 37–43 (2008)

16. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical So-
ciety, Providence (2011)

17. Iacono, J.: Alternatives to splay trees with O(log n) worst-case access times. In:
Proc. 12th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 516–522 (2001)

18. Iacono, J.: Distribution-sensitive data structures. PhD thesis, Rutgers, The state
University of New Jersey, New Brunswick, New Jersey (2001)

19. Iacono, J.: Expected asymptotically optimal planar point location. Comput. Geom.
Theory Appl. 29, 19–22 (2004)

20. Iacono, J.: Key-independent optimality. Algorithmica 42, 3–10 (2005)
21. Mount, D.M., Park, E.: A dynamic data structure for approximate range searching.

In: Proc. 26th Annu. Sympos. Comput. Geom., pp. 247–256 (2010)
22. Pettie, S.: Splay trees, Davenport-Schinzel sequences, and the deque conjecture. In:

Proc. 19th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 1115–1124 (2008)
23. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun.

ACM 33, 668–676 (1990)
24. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco (2006)
25. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16, 464–497 (1996)
26. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. Assoc. Comput.

Mach. 32, 652–686 (1985)
27. Subramanian, A.: An explanation of splaying. J. Algorithms 20(3), 512–525 (1996)
28. Sundar, R.: On the deque conjecture for the splay algorithm. Combinatorica 12,

95–124 (1992)
29. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5,

367–378 (1985)
30. Wang, C.C., Derryberry, J., Sleator, D.D.: o(log log n)-competitive dynamic binary

search trees. In: Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp.
374–383 (2006)

	A Self-adjusting Data Structure for Multidimensional Point Sets
	Introduction
	Preliminaries
	Self-adjusting Quadtrees
	Basic Splaying Steps
	Splaying Operation

	Updates to Splay Quadtrees
	Search and Optimality Results

