Murray Hill,

Summary

The Fourier reconstruction may be
viewed simply in the spatial domain as the
sum of each line integral times a weighting
function (to be chosen) of the distance from
the line to the point of reconstruction.
Ramachandran's linear interpolation, thought
is merely the choice
A modi-
fied welghting function simultaneously

to be an approximation,
of a particular weighting function.
achleves accuracy, simplicity, low computation
time, as well as low sensitivity to noise.
Using a simulated phantom, we com-
pare the Fourier algorithm and a search
algorithm, very similar but not identical to
one described by Eicmnssf‘ieldlL
tions,

under his condi-
The search algorithm required 12
iterations to obtain a reconstruction of
accuracy and resolution comparable to that of
the Fouriler reconstruction, and was more
sensitive to noise. To speed the search
algorithm by using fewer lterations leaves
decreased resolution in the reglon just in-
glde the skull which could mask a subdural
hematoma.

This is a corrected and expanded
version of the short report.5 In this ver-
slon our search reconstructions are of
ﬁ'omparable guality to the Fourier reconstruc=-
‘tions. Our earlier less accurate search
constructions were the result of an error.
Introduction

Let f(x,y) be the linear attenua-
on coefficient at (x,y) in one fixed plane

etlon of an object. Suppose the integrals

Po(L) = [ rds (1)

L
g certain lines L in the plane are meas-
d through x-ray transmission along L.
can we obtain a good estimate,
ction, f(x,y) of f(x,y)?

oI recon-

: Reconstruction algorithms are of
0 types:
An explicit formula is given for I(x,

y)
in terms of the known Pf(L}.l’2’6’?’lO’ll
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(b)

A search is made for a function P whose
projection integrals PF(L} agree with
Pf(L) in (1), using iterative
relaxation.”” "’
In each of the cases (a) and (b) the
final reconstruction T is in principle given

by a formula, typically a linear sum of P_(L)
with certain weights.

£
In each case machine

limitations preclude using these weights
directly.

We first study and generalize (§2a)
an algorithm of type (a) proposed by
Ramachandran™ and based on the Fourier inver-
sion formula. This algorithm is particularly
simple and elegant and can be viewed in the
spatial domain as follows: To reconstruct f
at a point Q = (x,y) each Pf(L} is multiplied,
or welghted, by 9(d) where ¢ is a weighting
function of the distance d = d(Q,L) from @ to
L, and the result added over all lines L.

Thus the weight given to each Pf(L) in (1) in
the reconstruction at Q depends only on the
distance d from L to Q and not on the slope
of L. The lines L are arranged in sets of n
views with m parallel lines in each view. We
see in §2a that good reconstructions will be
obtained when the Fourier transform-$ of o
satisfies ¢(w) = |w| for |w| < O where O 1is
larger than the essential bandwidth of the
pilcture f to be reconstructed.

As observed by Ramachandran,6
choosing 9 to be piecewise linear between ray
spacing distances results in a large savings
in computation time because of a simultaneous
The linear

as a computa-

linear interpolation (§2a).
interpolation was proposed in

tional shortecut, How-

sacrificing accuracy.
ever, we show plecewise-linearity of ¢ actually
involves no sacrifice in accuracy because
P(w) = |w| for |w| ¢ O is achievable simul-
taneously with piecewise-linearity of o.

The simplicity of the Fourier
algorithm (with any given weight function o)
allows a theoretical calculation (§3) of the

noise variance in the reconstruction. Using



this we propose in §3 a modified welght func-
tion @ which yields a 6 db reduction in noilse,
with the same computation cost, although giv-
Wwith actual

as shown in

ing up some spatial resolution.

data, a compromise would be made,
§3, between noise reduction and spatial reso-
lution by choosing the value of the constant
a in (27).

chosen after experimentation with actual data.

The best value of o can only be

The Fourier reconstruction process
can be viewed
the following: For each of the n projections
(or views), take the Hilbert transform dif-
ferentiate 1t,
then take
n backprojections. This observation 1is used
in Appendix I to show that if f(x,y) = 1 for
(x,y) inside an ellipse and 1s zero outside
the elllpse,

(§2a) as an approximation to

form the backprojection, and
(one half of ) the average of these

the above average using the
exact Hilbert transforms of the projections
of the ellipse gives & perfect reconstruction
inside the ellipse and osclllates infinitely
outside. This explains the observed fact

and Fig. 8 that the error in the Fourler
reconstruction of an ellipse is small inside
the ellipse and large outside the ellipse.
Since the
mated by a superposition of ellipses

skull is reascnably well approxl-
as in
Fig. 1, we would expect the Fourier method

to give small overshoot in the subdural
region as 1s seen in Fig. 8. The oscillations
in the reconstruction outside the skull are
not important and can be truncated away.

The oscillatlons outside the interior
ellipses are small because the density of

the interior tissues ia nearly constant.

We chose a particular F(x;¥);

Figs. 1, 2, and Table 1, which we consider

a reasonable model of a section of the skull.
Since f is the superposition of ellipses
which have simply computable projectlons we
computed the Pf(L) directly. The Fourier
reconstruction based on only 5000 different
lines is shown in Figs. 53, 4, 5.

The reconsbtructions are displayed
in several pictorial modes for different
purposes. The line display (Figs. 4, 8, 9,
10) is most useful to compare accuracy and
resolution. The global clues of the photo-
displays (Plates 5, 6, 7)
in extracting information in the presence of
nolse.

are most valuable

Ellipses are more simply analyzable
(Appendix 1) but not special to the Fourier

method; any f(x,¥) with comparable bandwidth
will be reconstructed as well. The Fourier
reconstruction (Fig. 6\ of a rectangle, which
is less smooth and 80O has larger high fre-

is of

An attempt was made

gquency components than an ellipse,
comparable accuracy.
(Figs. 7!
of the p-function since any picture f is a
The
reconstruction of the p-function gives the

to view the Fouriler reconstruction
superposition of p-function pictures.

point-spread or Green's function of the
algorithm.

We study one gearch method, gilven in
detail in §2b and patterned closely after an
interesting and practical method described by
Hounsfield, but not identical to it. We
generated the simulated proje tions under
conditions imitating those of ', i.e., with the
same numbers of projections (180x160) and
unknowns (80x80). We also gupposed as in* a
water bag surrounding the head, which has the
effect of reducing by unity the densities
jnside the head (Table 1) and which among
other advantages, allows T =0 as a good
initial value to start the iteratlon,
f‘ollowingu We further added” a subdural
nematoma of density .05 over that of water
(1.0) Just inside the skull (Plate 2) to test
the reconstructions in this important reglon.

The projection data was generated
according to the requirements of ' (see
detailed discussion in §2c) and the same data
formed the inputs to both algorithms. The
search reconstructions after various iterations
are seen in Figs. 9, 10 and Plates 1=4. The
Fourier reconstruction from the same data 1s
given in Figs. 8 and Plate 2.

The pictures show that after about
12 iterations the search method produces &
reconstruction of essentially equivalent
accuracy and resolution as that of the Fourier
reconstruction.** However, with fewer itera-
tions of the search method, considerably
lower resolution 1s obtained in the region
just inside the skull.
toma is not visible in the search reconstruc-
tion with 8 or fewer jterations although it

is visible in the Fourier reconstruction.

The subdural hema-

*guggested by J. B. Kruskal.

**Inb erroneous search reconstructions were
given due to our programming error.




We compared the reconstructions by

s with independent Gaussian pseudo=
lae added to each of the projections
it was found (Table 2) that a savings
in noise sensitivity over the
Ramachandran method was obtained
.search method with 12 iterations.
ith the modifiled Fourier algorithm,
Hows that a savings of 4 db (a

“ 1, in absorbed dose) over the search
4h 12 iterations 1is obtained with-
resolution. The reconstructions
noise levels are displayed in

:6, 7. More detailed discussion

in §3.

" The computation times for the two
der the conditions stated is about
g for the Fourier method and about
s per jteration of the search

our Honeywell 6400 machine. our
tion of the search method takes

e as long as the method described
we make a double pass through the
quares for each projection ray as
4n §2b. Thus with only 5 itera-

% a1lowing for more efficient pro-
‘and special purpose machines, the
on time seems consistent with the
cussed for of about 4.8 minu?es for
ation search reconstruction.

as mentioned above 12 iterations

to be required for attaining full
in the subdural region. It is

to point out that the search method
to an 80x80 reconstruction whereas
r method could use a much finer
\correspcndingly less granularity.

. Thus there seems to be no advantage
he search method over the Fourier
le the latter indicates 4 db lower
asitivity (in the modified form) with
g factor of ten savings in computa-
. These conclusions are consistent
e of studies made earlier under more
onditions by Herman and Rowland,9

'1th, Peters, and Bates.lo

The figures and plates are dis-
detail in §5.

§2a. Ramachandran's Algorithm and its
Modifications

Let P(t,8) denote the integral of

f along the line L(t,8), it.e.,

: Ff(L(t,e}j = fds (2)
“L(t,8)

P(t,0)

where L(t,8) is the 1ine whose normal through

the origin makes angle 8 with the positive

x-axis and has length t, —-= < t & vy 1.8,
L(t,8) is the line
x cos @ + vy sin 8 = t. (3)

The basis of the Fourier algorithm is that

the Fourler transform

Plw,0) = | eTCR(t,0)at ()

[
-0

of P(t,0) 1is equal to the two-dimensicnal

Fourier transform of f in polar-coordinates.

i.e.,
?:’(u\,-g'j: = ’f(-:n,fj] (5)
where
f(m,@]
- ] jf(x,y,)e“im(x cos B+y sin H)dxdy. (6)

If P(L) is known for all lines L, then T is

given by (5) and (6) and the Fourier inver-

sion formula then gives f as

£(x,y)
T e
g | dsk ?(m,oﬁelm(x cos f+y sin ﬁllml&n
b Jo e (7)

where the |w| comes from the Jacoblan of the

transformation into polar coordinates.

The inner integral in (7), with
t = x cos B + y sin 6 as in (3

[=:]

-

Q(t,8) = %? } ﬁim:ﬂ)imleimtdw (8)

o0
is the derivative of the Hilbert transform
of.P,lg’Ch'V because multiplying by

|w| = io(-1 sgn @) in frequency corresponds
to taking a derivative (iw) along with a
Hilbert transform (-1 sgn w). The recon-
struction at (x,y) by (7) is thus one-half

the average of the back-projections,
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Q(x cos 8 + ¥ sin 0,68), over the values of ©.

If @(t) is an even function for which
3(w) = lwl (9)

for small w, say for || < Q, end if P(w,0)
is small for |w] > Q which would be the case
when f is smooth (by (5)) then we have

approximately,
00

i

Q(t,0) = 5= } B (,0)d () d (10)
= P(1,0)9(t-1)dT. (11)

If P(t,8) is known only for
'r=tk=Ka,1&=:O, +1, i?,...;F):GJ:‘j-n—/n,

J = 0,1, 401 where a 1is the ray spacing
distance between parallel rays in each view
and n is the number of views, we replace

integrals in (7) and (11)

the approximate reconstruction

py sums and obtaln
formula fm,
depending on ¢, given by

n-1 =
fm(x,y} = 5}— E: E:i%tk}ej}m(x cos

n
J=0 k==
+ y sin Gj—tk]

(12)
is finite, |k|<V/a,
5> 1 as we shall
0 for |t| > 1.
Thus if m rays cover the unit circle in each
a = 2/m.

The function @(d) in (12) is the
weight assigned to the line L(t Gj) in
reconstructing at = X coOs Sj
-t

Note the sum on k in (12)
1f KLy} = +y°
assume, since then P(t,8) =

0 for x2

view,

K?
(x,y), where d
ijs the distance from the
reconstruction point (x,y) to L = L(tk,ej}.
We have seen that 9 must satisfy (9)
lw| < O if £y
tions f of approximate pandwidth O, 1.e., if
?(w,0) is small for lw] > O.

+ sin 7]
y j

for
is to be close to f for func-

In computing f$, a great savings is

poesible 1if p(t) is linear for

£, < t <ty k=0,x1,... - (13)
Thus choosing, for example,
9(0) = b/ (me®); 9(ka) = b/ (ral (1P-1)),
T, (A (14)

and linear in the intervening intervals glves

(sizéma/?;)g_ (15)

- |2 w8
p(w) = ‘a sin =
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gince (9) holds for small |w| << 1/, fg in
(12) will accurately reconstruct functions f
of essential pandwildth O << 1/a.
1inear in the intervening intervals, the com-

putation time of (12) 1s lowered because the

Since 9 is

sums
e
N
iy
K==

can be computed and stored.

Pt ,Qj\m{tt-tk), |t] < L/a (16)

k
The quantities
(16) represent what is to be back projected
in the jt
exactly on the line L(tl’ej)'
(x,y), lies petween two such rays but by the
linearity of 9,
(12) is obtained by linear interpolation

petween the values of (16) for the two rays
the linear

view when the (%,¥) point lies

In general

the exact value required in

adjacent to (x,¥)- Moreover,
interpolation 1is done simultaneously for the

whole sum.

A rough estimate of the number of
basic operations {multiplications) used in
(12) is as follows:

compute the quantities

for each of n views we
(16) (n°
and then back-project over K2 points,
This gives
which 1s consistent

operations)
allowing
gsay U operations for each point.
= n{m2+QK2) operations,
with experience. If linear interpolation is
not uaed,l (12) requires an2 evaluations of
¢ which is much larger and better reconstruc-
tions are not obtained. Two fast Fourier

transforms could be used to perform the con-
volution in (16),
somewhat decreased accuracy unless aliasing is
avoided (which

1n eny case not much time is

which however leads to

in turn increases the computa-
tion cost).
actually saved with the fast Fourlier trans-
form since the pack-projecting must be done
ig at least

anyway and this as time-consuming

as computing (16). This was also mentioned
0

in6 see however
The particular choice of @ used in6
was oscilllatory and leads to somewhat more
oscillations in the reconstruction than is
desirable.

amplification factor (83).

It also has & somewhat larger

nolse

In §3 we give the nolse amplifica-
tion factor for a general weight function @,

and give a medified @,

T(t,) =

namely

Mo (t,)+ .3¢(tL+1)+-.3¢(t£_l} (17)



" purther decreases (by 6 db) the effect

£ ge in the reconstruction by essentially
8 ing a spatial averaging (with some
m- of spatial resolution).
S We remark that replacing the line
als (1) by averages ((19) below) over
16) of width w > 0 is equivalent to replac-
by a smoothed version f* and using line
(1) for f*. This decreases the
| dth of f and produces smoother recon-
A Particular Search Algorithm
R 4 In the search method3’u’8 we attempt
' gonstruct a function T using relaxation
ch
> |Po(S) - Pg(S)| 1is small (18)
- i Pf(S) is the average of Pf(L) over the
ln S of width w,
£ P.(S) = f [ £ (19)
J
S
e : We seek a function T(x,y) constant
) ch of an 80xB0 grid of squares contain-
wing the support of f. Starting with some
es al T (which we took to be T=0as in’)
it gtrip 1s considered in turn. On the
is t pass through the grid the current value
of e integral (19) for the given strip
uc= examination is computed, weighting each
ire by 1ts area of intersection with the
= f strip. This area of intersection is
: mined if we know both the distance d
g is | il the center of the square to the center
ita- fie of the strip S and the slope of the
tor 1ine of S. Because of time limita-
8- we do not compute this area but approx-
ne it using the nearest value of d in a
ming e look up of 80 values computed before-
ed for each view (slope of S) and stored on
. These 80 values are read in at the
in6 the 160 projection values are read in
e each view. On the second pass through
8 ‘grid, the difference between the current
e of the integral of T for the given
p, computed above on the first pass
lca- gh the grid, and the stored true value
' P, is assigned to each square of the grid
dghted according to the area of intersec-
(17) of § with the square, using the weights

efore. On each pass only those squares
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are visited for which d is small. The next

strip is then considered. Passing through
all the strips, arranged in 180 views with
160 strips/view, constitutes one iteration.
In' the welghts seem to be independent of the
We have not attempted to see if this

We used a pseudo-random

view.
makes a difference.
ordering of the views as suggested in ,
taking 37° between consecutive views.

ing the number of rays or the widths did not

Vary-

cause unstable changes 1in the reconstructions.

An Experimental Comparison of the

§2c.
Methods of &ea and 3<b

We used f of Figs. 1, 2 and Table 1
except that a subdural hematoma of density
(1.05) was added just inside the skull
(Plate 2). We also supposed a water bag to
surround the head which has the effect (after
a subtraction) of reducing each of the densi-
ties of f in Table 1 by unity. The water bag
ig used in ' and permits £f = 0 to be a good
initial approximation to the reduced densi-
ties and a starting value for the iteration.
The 180x160 = 28,800 projection integrals
(19) were computed exactly using 160 strips
in each view placed over & circle of radius
/2 about the origin of Fig. 1 and of width
equal to 1/2 the ray-spacing distance. Thus
the strips do not overlap but only half-
cover the circle of radius.?.

Both methods §§2a,b were applied to
the same data. Reconstructions by the search
method after various numbers of iterations
are seen in Figs. 9, 10 and Plates 1-4, and
may be compared with the Fourier reconstruc-
tion Fig. B and Plate 2. Metric distances
between the matrix of reconstructed values
and the original function [ are given in
Table 2 for the various iterations of the
search method, and for the Fourier method

with @ as in (14) and in (17).

We see from Table 2 that the Fourier
method without noise filtering is only
slightly closer in each metric to the origi-
nal than any of the 16 search iterations.

We stopped at 16 iterations, when the changes
(Table 2) become very small. The distance
between the Fourier without noige filtering
and the later iterations of the search is

quite small (Table 2). Noise filtering



increases the distance from the original

picture.

In any linear method, the effect of
additive noilse in the projections can be 1lso-
andard
19) and

The empirilcal

lated by inputting pseudo-random st
normal variates as the projections (
computing the reconstructions.
root mean square of the reconstructed values
will give the numerical factor by which noise
in the projections 1is increased or decreased
by the given method. Because of the simpli-
this factor can

20) and

city of the Fourier method,
also be determined theoretically (
(25) below, and the empirical and theoretical
values agree to reasonable accuracy. We know
obtain the factors
Table 3 gives these

of no way to theoretically
for the search method.
noise amplification factors for the Fourier
and search methods after various iterations;
!
the 80x80 reconstruction values, Ay

{s the average of the absolute values of
is their
root mean square, and A3 is the maximum of

their absolute values.

We see from Table 3 that the 12th
{teration of the search method has 20%
smaller noise amplification factor A, than
the Fourier method with no noise filtering.
With noise filtering the Fourier method has
50% smaller noise amplification than the 12th
iteration of the search method, which 1s &
The 4th iteration of the
the same value of AQ

savings of 4 db.
gearch method has about
as the Fourier method ¥ with the weight Tunc-
tion 9 (noise-fillter) of §3. We see (Plate 29
that even the 8th iteration however, leaves

decreased resolution in the subdural region.
The amplification factors A3
for the search method than for the Fourier

method.

are rather larger

We obtalned the reconstructions of
phantom by both methods with the

(19) having additive
standard deviation o.

the original
projection integrals
Gaussian noise with In
each case the noise and picture were recon-
structed separately and then combined for
(o .0005, .001, .002,

to save computation costs;

various o values

LO0U here we are

exploiting the linearity of the methods. The
resulting reconstructions are given in
Plates 5-7.
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It should be pointed out that the
deviceu was appropriately designed for the
search method; in designing a device for the
Fourier method several purely mechanical
changes would be recommended :

(a) red than 180;

I and

Fewer views are requi
go would suffice and as Figs.
& show even 50 would do.

(b) The output array of 80xB0 which 1is
about maximal under present computer
1imitations with the search method
could be increased to 100x100 easily
or even to 200x200 without increas-
ing memory (computation time would
increase but would still be less
than that of the search method) .
The water bag is not required for
the computation, although it does
have another advantage mentioned
inLl in that it, together with a
plastic ringu which squares off the
circular water bag, provides a
small range over which the measure-
If the water

bag is omitted, the need to use

ments need be linear.

additional rays to cover & circle
of radius /2 is also avoidable in
Fourier method however.

§3.

Measurement Requirements and the Effect
‘of Noise

The inputs to the Fourier algorithm
are the numbers Pf(L) in (1).
Pf(L} is imperfectly obtained because there

are st

In practice

atistical fluctuations in the number of

and detected.

this effect by assuming independent
2

photons emitted, transmitted,
We model
variables with common varlance o
each Pf(L).

In Appendix II we attempt to relate

Gausslan
added to
g to the T and D of photons
emitted and d

obtaining in (A21], 02
13, v. 263

expected numbers

etected in each measurement,

= 4/ 1og2(ﬁ/f}, see

also
gince the reconstruction formula

(12) is linear and simple we can compubte the

theoretical standard deviation, Tt in the

We will obtain

ol

o) ol
[: . a I|

9 = Pmn |

—a

reconstruction f@'
ma(u}du

where n is the number of views and m is the

number of rays/view which pass through the




er

1y

e

ite

]

he

:
3
{
|

unit circle (on which f .is assumed
supported).

To prove (20) suppose that

Q4 = PlE.05) + ofl (21)

‘e J k]
is used in (12 in place of P(tk,sj] where

nkj are independent with zerc mean and unit
variance. The reconstruction (12) has mean
f¢(x,y) as in (12) and variance 03 given by
2 a2 = % 2
Op = E;E E: rl g 9(x cos Qj
J=0 k= | v gin 6, - t.) (22)
J k
since the errors anj are uncorrelated. Since
the average over z of the sums
o oo
a $1 wz(z~tkl = j mg{uidu (23)
== -—c

we obtain (20), since a = 2/m.
For the weight 9 in (14), a cal-

culation shows

o0
¢2(u1du - a3 (24)
so that
= & EI%i (25)
O i

Tt is clear from (20) that other
choices of 9 will lead to reconstruction
formulas that are less effected by neise.
Indeed reducing

% n
o N
9" (u)du = F;J'F

s

laﬁ{m)lgduj (26)
-0 —0

will reduce the noise amplification factor

Um/q in (20).

inconsistent with keeping ®(w) = |w| for

o] < @ in (9).

noise less, but does not permit accurate

However, this reduction is
Reducing O magnifies the

reconstruction of pictures f of bandwidth Q.
The original tomographic reconstruction

method merely averages Pf(s) over all strips
§ which pass through the point (x,y). The
variance of the reconstruction is then only
ce/n, much smaller than (25) since m is large,
but the reconstruction with no noise is poor
because this method gives [approximately)the
right side of (7) with the factor | w]

replaced by unity, i.e., (9) fails.

We next consider changing @
glightly to affect some noise reduction. We
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will change ¢ by taking as & new weighting

function

p(t) = ap(tl + po(tra + Byp(t-a) (27)

where ¢ is as in (14). So long as

a+ 28 =1 (28)
we will have ¢(w) = |o| for small . Also P
is piecewise linear between tk = ka. A cal-
culation shows
o
I 32(t1at = a3 (3a"-Lap+5d’ /3 (29)
o
which is minimized by setting o = .36, B = .32
for which og/a; - .147. 1In Plates 5, 6, 7
we used a = .4, p = .3 as in (17) which gives
cg = .153$ (30)

o : - s
where o is glven by (25), Note that
)

the use of  (in (17)) instead of 9

(in (14)) in (12) is essentially performing =z
spatial averaging or low pass filtering since
convolving P{tk,ﬂj} with m(tk+l} instead of
w(tk) amounts to moving the head cne ray-
spacing distance. Thus f5 is roughly equiva-
lent to averaging the reconstruction f$ over
a circle of about a ray-spacing distance a.
This somewhat spoils the resolution as is
clear from Plate 7 but saves a factor of

1/.15 = 6.7 db in noise.

The quantities ¢ and I are dimen-
sionless and give the theoretical determina-
tion of the noise amplificatlion factors found
empirically in §2c. For the experiment
described in §2¢, o = 1, n = 180, and

m = 1604/7 since this value of m is the number
of rays which cross the unit circle on which

f is supported. The second column of the last
2 rows in Table 3 are obtained with these
values from (25) and (30). The first column
of the last 2 rows is the mean of the absolute
value of a normal random variable whose
standard deviation is the second column and SO

is (Q/W)l/e times the second.

We simulated a divergent beam using
the average of 15 line integrals passing
through a focal point and filling at egqual
angles a sector about the line [ for each
Pf(LL
sector of spread with the focal point situated

It was found that even with a Le



on the line L(1,8), tangent to the unit cir-
cle in Fig. 1, for rays in the direction 8,

completely acceptable reconstructions result
In fact,
introduces smoothing of the reconstruction.

using (12}. the divergent beam

The explanation for this fortunate stability
is that using divergent beams is the same as
rotating the head through a (4°) angle as
each measurement is taken, or equivalently
averaging the reconstructions of the section
in all the rotated positions.
spatial averaging produces smoothing.

Of course thils
(Simi-
larly, using a parallel beam of nonzeroc width
as in (19) is the same as translating the head
and averaging the reconstructions of the
translations, again producing smoothing.) It
may be difficult to move the focal spot of
the x-ray source along a line tangent to the
unit circle because at the point of tangency
it is too close to the head. Instead, moving
the focal spot along L(2,6), i.e., along a
line tangent to the circle of radius 2 (10

em further away) about the origin produced
essentially as little distortion with a 2°
Thus distortion due to

divergent beams seems to present no serious

sector of spread.

problem.

Simulation showed that the Fourier
algorithm is stable under uniform 1% errors
ka + .Ol-a-uk
where u, are independent and uniformly dis-

in centering t, (i.e., tR =

tributed on (-1,1) pseudo-random numbers) and
under uniform 10% errors in centering aj

(i.e., QJ = (j+.luj)w/n, with Uy as before.

A source of error not analyzed 1is
that due to nonmonochromaticity of the
photons in the beam.

Tt should be mentioned that although
various ad hoc sampling theory ldeas sug-
gested ways of choosing in advance the
parameters n = number of views and m = number
of rays/view, we were unable to achieve suf-
ficiently satisfying quantitative agreement
with the estimates obtained. Instead n = 50,
m = 100 were found empirically to produce
good results for reconstructing such f as in

36, m =
It appears as indicated by the

Fig. 1 although n = 100 also works
quite well.
mathematics of Appendix I that further in-

creasing n and m, once large enough, does
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not produce large changes in the reconstruc-
tion inside the skull as indicated in compar-

ing Fig. 4 and Fig. 8.
§4.

Discussion of Figures

Figure 1 represents the particular
simulated head section f(x,y) used to test the
Fourier algorithm. The skull was taken to
have density 2 and is slightly thicker at the
forehead while the interior density varies
very little, between 1.0 (water) in the
ventricles, 1.02 in the gray matter, to 1.03
All of the

shapes are ellipses with centers, orientations,

and 1.04 in the various tumors.
axes, and gray levels given in Table 1. In

the comparison §2c of the Fourier and search
algorithms, a blood clot was added just inside
the skull centered at (.56,-.4) with major

and minor axes, .2 and .03 with inclination
g = 39° and density 1.05.
then reduced by unity relative to a water bag

The densities were

of density 1.0 surrounding the head.

Figure 2 is a perspective plot
80x80 of f(x,y) truncated at levels .9 and
1.1 for ease of comparison with later recon-
structions. The effect of the truncation is

discussed further in Fig. 5 below.

Figure 3 gives the reconstruction
by the modified Ramachandran algorithm, (12)
and (14), from 5000 projection integrals
(n = 50 views; m = 100 lines/view). Instead
of line integrals (1), strips as in (19) were
2/m)

essentially the same

used which were abutting (width w = a =
in each view. However,
reconstruction is obtained using line

integrals (1).

Figure 4 gives (a more quantitative

view of) the reconstruction of Fig. 3 plotted
along the horizontal line y = -.605 which
goes through the centers of the three small

tumors (density (1.03)) of Fig. 1. The di-
ameter of the small circular tumor is 4.6 mm
on the human scale, considering the diameter
of the unit cirele to correspond to 20 cm.
Again we have truncated at levels .9 and 1.1.
Note the quantitative accuracy of the

reconstruction.

Figure 5 shows the effect of the
truncation at levels .9 and 1.1 in the earlie

figures. Here we see the Fourier




gtruction of Fig. 3 without truncation.

he variations within the skull are only
of height of the skull and are hidden.

.hicker forenead appears nigner on the

Figure Ga 1is the Fourier reconstruc-

a rectangle centered at the origin
ented parallel to the axes with north-
rner at (.69, .92), along the line

The projection arn
j= 0.1, .00 with n = 50,
used instead of strips.
truction
t of

gles wWere 93 =

Jr/n,
|00 with lines
obable reason that the recons
e rectangle 18 not as good as tha
1ipse of Fig. L4 is that the rectangle

msy,

tion using 9 in
Fig.
§2c, using 180 views,
coverl
scheme ofd.
plot somewhat spol

Figure 8 1is the Fourier reconstruc-
(14) of the head section of

1 with a water bag added as described 1n

with 160 rays/view
jus /2 as in the

ng a circle of rad
ig 80 point

The granularity of th
1e the display but the
ne skull is orders of

accuracy interior to t
This is

magnitude pbetter than that outside.
discussed 1in pappendix I. The reconstruction
in Figs. 4 and 8 are along essentially the
game line, ¥V = -.60, 1In Fig. It only 5000

integrals were used and no water bag.

Figure 9 is the search reconstruc-

{terations using the same date
The recon-

tion after 4 e

as in Fig. 8 along the same line.

Ideai re bandwidth than the (smoother)
4 ?;eg, In Fig. 6b the reconstruction is struction is gignificantly pbetter outside the
'r, here n = 90, m = 160. skull but of lesser guality inside. The skull
Ye Figure 78 shows the point spread is considerably thickened.
ag ion for the algorithm (12) with ¢ as in Figure 10 is the search reconstruc-
) when projection integrals (19) over tion after 12 jterations along the same line
ng strips with width w = a are used. as in Figs. 8 and 9. The reconstruction is of
ptted is fm(x,y} when f is 2 g-function at lesser guality outside the skull but has
" point (x',y') = (.1, .23) as a function improved inside.
e x=x" +1,¥y=Y" That is, we S€€ In the plates, thne original head
Reconstruction of a b-function centered sections and reconstructions appear in an
: ,1» .23) 5‘10“%23\(“0;130”“1‘ ray emas 80x80 photo-display. This display is obtained
2) f:sfzzzci;i; ;fB&LE‘ hisewe Zi:i zhei . by & photodensitometer with 256 nominal gray
3 by i pio= levels to convert the 80x80 matrix of numbers,
- f eloment at (x’,y’) produces in the e runcated at levels O = white and .1 = black
- bnstruction ab (Xfy}' Noto tﬁat using & and is similar to the nethod of = using & CRT.
ction at (x',¥y") and strip integrals
) j means that in each view exactly one 9993;35EEEE—££EHLED§—fEEEEEE§
i the projection strip integrals (19) has a From Plate 2 it is clear that 8
*blero value (1/w]). iterations (upper right) of the search recon-
Although Fig. 7a does have the struction gives reasonable reconstructions
tive .arance of our idea of a s-function as it inside the skull but the subdural region has
tted Buld with a perfect reconstruction ey 1ow resclution. The Fourler method (lower
Bee 100k at fw(x’+r cos 0, y'+r sin 9) as left) is of slightly better quality overall
Yl bpig. 70 Cikh ¥ = L1 BE B punetion of B and has better resolution in the subdural
A- g 0 ¢ 2m we See that although the amplitude region.
) Pe e Green's function is small its oscill- Later (12-16) iterations (Plate b
sor tions are quite wild. Moreover, as T shows that the final search reconstruction
B jereases the frequency of oscillations {lower 1eft) and Fourier reconstruction
.2 soreases roughly proportionately. Thus the (lower right) are not much different.
orithm (12 ] does require smoothness of f Tt appears from Plates 5 and 6 that
the oscillations to ecancel out in the the search and Fourier unfiltered reconstruc-
he onstruction of a smooth superposition f of tions are about equally sensitive to nolse.
arlier ctions. Similar results hold for points Plate 7 shows significant nolse
reduction with only moderate 1088 of spatial

Bher than (.1, -23).



resolution in the filtered Fourier

reconstruction.
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APPENDIX T

We show in this appendix that the deriva-
tive of the Hilbert transform Q(t,8) in (8) of
an ellipse is constant inside the support of
the projection of the ellipse and has infinite
singularities at the outside edges of the
support. This explains the phenomenon (see
§1) particularly apparent in Fig. 8 of the
much greater overshoot outside than inside
the ellipse in the Fourler reconstruction
(see §2a) where an approximate derivative of

the Hilbert transform operation is used.

The projection P(t) = P(t,6) of an

ellipse of density one centered at the origin

is i Fey

Q{ag-taﬁl/“ v Jt] € -
P(t) = (A1) §
0 5 [tl > a

where a = a(f) is the half-width of the pro-

Jection in direction €. We will show that

T(t) = §Q(t,8), the derivative of the Hilbert
transform of P is given by
2 , 1t < a
G(t] - a o _1/2 (AQ)
o-t|t] (£2-a2)712 | |t] > a
2
It follows fromlh’Ch‘v, that if
$(z) is a function analytic in the upper-half
plane, Im z » 0, tending to zero sufficiently
fast as Im z — = and
P(t) = Re @(t+1-0) (A3)
then the Hilbert transform H(t) satisfies
H(t) = Im o(t+1.0) (gh}

Since the analytic funcfion

2_,2y1/2

olz) = 2((a -z + 1z) (25)

satisfies (A3) where P is given by (Al) and
tends to zero as z — iw, we have from {Auﬁ,

» 1t < a

]
—
S8
ny
-
oy

the Hilbert transform of P,

(47)

The derivative of
Q(t) = H'(t)

thus satisfies (A2).

For any f, formula (12) is essen-
tially the same as (it would be the same from
(10} and (11 if m — « and g(w' = |w| for

hu| < () —=m),



(AB)

g Q(x cos 6.+y sin 8_,8,)
deriva- { J 3’

n (8) of ig

ort of 4§

us from (A2} if 3y a(ej' is the half-

width of the projection of an ellipse f of

infinite -
L density one we have
the
1 s o -1/2
(see fcp(x,y‘_l $1-23 [tjl{tj—aj) (A9)
" the
&side re the sum is over those values of J where
don ‘ ty = tJ.(SJ = X cos 6+ sin 6 (A10)
bk tisfies
:d;f - 651 > Loyl (A11)
. (x,y) is inside the ellipse (All) holds
FRsEes r no value of j and so from (A3)
: f¢(x,y} &= 1L (Al2)
(A1) 8 e, essentially exact reconstruction holds.
instead (x,y) is outside the ellipse and
1% Pees | or near a line
that
H1bart X cos 9j+y sin Bj = iaj (A13)
f@(x,y} is very large and negative. Of
= ! se fm remains bounded since (A8) is only
(A2) ¥ roximate when o(w) < |w| for large w as
& be the case, but for any good 9, we
£ if d expect large osclllations outside the
per-half ipse and accurate reconstruction inside
teiently ¢ ellipse (as indeed is the case in Fig. 8).
z : For an object such as the skull
(a3) % ch 1s nearly a superposition cof ellipses,
Fiug : It not exactly, we would expect to obtain
od reconstructions inside the skull because
(A%) lipses are not special to the general
gory (2)-(12). 1Indeed for a rectangle,
(A5) iich is really gquite far from an ellipse,
\1) and g probably much more bandwidth, similar
n (A4, ults obtain (Figs. 6),.
a APPENDIX 1T
(A6) We attempt to relate ¢ in (21) to
5 gured gquantities. We suppose that each
orm of P, gurement is made through a common length A
(AT) inhomogeneous material whose attenuation
efficient p = p (x,y!) is close to that of
water, oo for a given photon energy. To
il al in dimensionless quantities we set

same from
5 = 2L/, -

r

(A1L)

raf =

o =

w| for
re L measures length alcng the line L in
) of length A, so that s is dimensionless
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and -1 ¢ s ¢ 1.
is dimensionlessly given by

i

Ho

Further the function f in (1)

-1 (A15)

and corresponds to the reduced densities in
§2c.

If D and E are the measured numbers
of detected and omitted photons in each mea-

surement then

Q = x=— log(D/E) - 2 (A16)
(L
W
is an estimate of Po(L) = [ £ as. 1Indeed »
is given by the normal approximation
D=T + ﬂ\/ﬁ (A1T)

where D is the average of D and N is standard

normal. Thus

n
[

MLy

log[p('l " -l—-nﬂ = B (118)
pE o

with p the probability of an emitted photon
being detected given by

p=D/E=exp[- | uat] (A19)
Thus from (All4), (Al5), (Al8), and (Al9) for
large D and T,
. o]
Q = j f ds + ~—iﬂ—; (A20)
A, Nah
and we see that o in (21) is given by
|'1:: = u’ p __.- LL-- P ] (J(l
ﬁ(}uw)‘ D(log D/E)"
We have used the approximation p = My to
obtain
A, = j p odt = log D/E (A22)
in (A21). Note that the factor of 2 in (A1lE8)

is due to s having a range of 2, -1

8 of

5

in dimensionless units.

In an earlier version of this paper

e

an incorrect fomula for o
instead of (A21).

as 1/D was given

We have been asked to give the

simple Fortran program below which calculates

f¢(x,y1 in (12, with @ as in (14). 1In it the
quantity PHI(K+1) is actually o(K.a)-a/2n.
The reconstruction is stored in the Z array

where Z(1i,j) =
NX=NY=80,

m(ci,cj1 where for i=1,...,



¢y = - XPOS + 1-2-XPOS/NX, 170 PHI(K+1)=C2/(K*K-.25)
180 10 CONTINUE
The numbers PROJ(K) are read from a file; 1Q0* ¥HHXXXXFKEH XN RALIHHLLIH A IAAX
. - 200 DO 20 J=1,N
after the jth call to thHe file the number 210 THETAJ=(J-1)*PIN
P(t, ,6.) = PROJ(K) where t, = -l+k.a, 220  COSTHTAJ=COS (THETAJ)
(%0 4) ( ere Tk 530 SINTHTAJ=SIN(THETAJ)
k=1,...,m = 2/a = 100 and GJ = jw/n, n=50 2lo COSDELOA=COSTHTAJ*DELTA/A

250 READ(12) (PROJ(K),K=1,M)

views. The convolution (or approximate Y- Rat i SRV IS SRS St PR

Hilbert transform) 1s stored in CONV for each 270 DO 30 KR=1,M

280 CONV(KR)=0

) , . 290 DO 40 K=1,M
polation. The truncation 470-500 of z to the 300 KABS=IABS(KR-K)+
310 CONV{KR}=CONV(KR
320 40 CONTINUE

Note that we are using mixed 330 30 CONTINUE

340! T R R
integer and real modes so that e.g., in step 350 DO 51 I¥=1,NY

360 Y1=-YPOS+2*YPOS*IY/NY
370 R=(-XPOS*COSTHTAJ+SINTHTAJ*Y1+1)/A

view. Steps 350-430 perform the linear inter-
1
)

range .9 and 1.1 could be omitted. +PROJ (K ) *PHI(KABS)

4o, L is the integer part of R; this is

needed in the interpolation step 420. -COSDELCA
10 DIMENSION PHI (100),PROJ(100),CONV(100) 380 DO 50 I=1,NX
20 DIMENSION Z(80,80) Egg Ezg‘COQDELOA

30 XP0OS=.99

Lo  YPOS=.00 410 1IF(L.LE.O.OR.L.GE.M) GO TC 50

420 Z(I,IY)=Z(I,IY '+(L+1-R)*CONV(L)+(R-L)

= L
ég Ei:gg *CONV(L+1)

70  PI=3.14159265 AEO 50 CONTINUE

80 N=50 4o 51 CONTINUE

90  M=100 450 20 CONTINUE

100 A=2./M 460 DO 60 J=1,NY

110 PIN=PI/N 470 DO 61 I=1,NX

120 C2=-1/(2*PI*A*N) 480 ZEI,J)zAMAXl .9,2(1,7))
130 DELTA=2*XPOS/NX b9o 2(1,J)=AMIN1(1.1,Z2(I,J)
lho***+*4m!4!rw**t**f******** 500 61 CONTINUE

150 PHI(1J=?/(PI*A*N} 510 WRITE(13) (Z(I,J),Ifl,NX)
160 DO 10 K=1,M-1 520 60 CONTINUE

TABLE 1
Elllpses  Center Major Axis Minor Axis Theta  Gray Level
a (0,0) .69 .92 0 2
b (0,-.0184) L6624 .874 0 -.98
o (.22,0) i b .31 -18° -.02
d (-.22,0) .16 L1 18° -.02
) (0,.35) .21 .25 0 .01
f (0,.1) .oU6 .0l6 0 .01
g (0;-.1) L0l6 .06 0 .01
h (-.08,-.605) .ol6 .023 0 .01
i (0,-.605) .023 .023 0 .01
J (.06,-.605) .023 . 046 0 .01

The function f(x,y) as in Fig. 1 is the sum of the values of
the gray levels of those ellipses a - J (with centers and
axes above whose major axes makes an angle theta with the x
axis measured counterclockwise) for which (x,y) 1s inside
the ellipse.
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FILTERED FOURIER RECONSTRUCTION
NOISE/SIGNAL IN PROJECTIONS

Plate 7. The Fourier reconstruction under the same con-

ditions with noise filtering. Note that the

standard deviation g = .0005 1s omitted. Here

L, o.

o = .001, .002, .OC



