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Abstract The aim of this note is to show that all the behaviour of a two-wire transmission line can 
be directly derived from the application of ABCD matrix mathematical concepts, avoiding the explicit
use of differential equations. An important advantage of this approach is that the transmission line
modelling arises naturally in the frequency domain. Therefore the consideration of frequency-
dependent parameters can be carried out in a simple way compared with the time-domain. Some
standard examples of transmission lines are analysed through the use of ABCD matrices and a case
study of a balun network is presented.
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Partial differential equations for voltage and current along the line are traditionally
derived from an elementary line section of length Dx using the distributed param-
eter model for a two-wire transmission line. Several physical interpretations can be
obtained from the solution of these equations.1,3,4,8

The concepts of image impedance and ABCD matrix can be used as an alterna-
tive approach to the modelling of the two-wire transmission line, although the oper-
ational advantages and capabilities of the ABCD matrix model as a convenient tool
for solving almost all problems related to the transmission line are not fully stressed.
Indeed, the authors claim that most of the transmission line results which are usually
obtained by other means can more easily be produced when nothing more than the
ABCD matrix model is used. The importance of ABCD matrix modelling in trans-
mission line theory and its indisputable advantages over other tools are presented
and discussed in this paper.

ABCD matrix fundamentals

The approach presented in this section for obtaining the ABCD matrix of a two-wire
transmission line is based on image parameters, i.e. image impedance and image
transfer constant.7

Consider an electrical network having two pairs of terminals, one labelled the
input (sending) terminals and the other the output (receiving) terminals. A pair of
terminals at which the network can be accessed so that the currents in the two ter-
minals are the same is called a port. This condition is assured when each port of a
network is connected to a similar port of another network.6

A two-port network with terminal voltages and currents as specified in Fig. 1 can
be described by an ABCD matrix if it is composed only of linear elements (zero
initial conditions), possibly including dependent sources, but containing no inde-
pendent sources.



The ABCD matrix entries satisfy the linear relationship

(1)

where the voltages Vi and currents Ii represent either the Fourier (Laplace) trans-
forms of vi(t) and ii(t) respectively, or the associated phasors (i = 1, 2).

Let Zsc be the impedance reflected to the input terminals when the output termi-
nals are short-circuited and Zoc the corresponding input impedance when the output
terminals are open-circuited. According to eqn (1), these impedances are given by

(2)

For reciprocal (that is, passive, linear and bilateral) two-port networks, the ABCD
matrix determinant satisfies6

(3)

Furthermore, D = A for symmetric two-port networks.
Alternatively a symmetric reciprocal two-port network can also be described by

two image parameters: the characteristic impedance Z0 and the propagation constant
q. Z0 is the impedance at the input terminals of the two-port network when the output
terminals are matched (terminated by a load impedance Z0). The propagation con-
stant q is the natural logarithm of the ratio (I1/I2) where I1 and I2 are the matched
condition terminal currents.

A two-port network composed by cascading n symmetric reciprocal two-port net-
works, each with the same characteristic impedance Z0 and propagation constants
q1; q2; . . . ; qn, respectively, has an equivalent characteristic impedance Z0 and its
propagation constant q is given by

(4)

The relationships between the ABCD matrix parameters and the image parameters
are obtained by comparing the terminal equations (voltages and currents) for both
models. This procedure yields
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Fig. 1 Two-port linear network.



(5)

and also considering eqn (2)

(6)

(7)

As the following theorem shows, the computation of the parameters Z0 and q
becomes less involved when a symmetric two-port network is split into two sections
so that the right-side section is the mirror image of the left-side section.

Theorem: The image parameters Z0 and q of a reciprocal symmetric two-port
network satisfy

(8)

(9)

where a, b, c and d are the abcd matrix entries of the left-side section of the bisected
two-port network.

Proof: As the right-side section is the mirror image of the left-side section

(10)

yielding A = D = ad + bc, B = 2ab and C = 2cd. Therefore, eqn (8) for Z0 is readily
obtained from eqn (6). From eqn (7) one gets

(11)

and using the identity

(12)

eqn (9) is also proved.
As a result of the theorem,
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(13)

(14)

where zsc and zoc are, respectively, the short-circuit and the open-circuit impedances
of the left-side section of the bisected two-port network. The same result is usually
obtained via Bartlett’s bisection theorem.10

Transmission line fundamentals

Consider a transmission line with length d and parameters r, l, g and c, respectively
the distributed resistance, inductance, conductance and capacitance per unit length.
The line can be divided into n sections of equal length Dx and each one can be rep-
resented by the circuit of lumped parameters shown in Fig. 2.

The symmetrical network shown in the Fig. 2 can be bisected. The short-circuit
and the open-circuit impedances of the left-side section of the bisected network are
given by

(15)

(16)

Equations (15) and (16) can be used to obtain the characteristic impedance z0k and
the propagation constant qk of the kth generic section of length Dx

(17)
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Fig. 2 A transmission line section of length Dx = d/n.



(19)

As Dx approaches zero, eqn (17) shows that zok approaches Z0 and eqn (18) shows
that qk approaches zero. Nevertheless, the number n of sections approaches infinity
so that the product nDx remains constant (the line length d). As the first-order approxi-
mation for qk is gDx, eqn (4) produces q = gd for the line propagation constant.

Equations (19)–(20) summarise the application of the ABCD matrix modelling to
the two-wire transmission line of length d

(20)

It is worthwhile mentioning that eqn (20) is well known and that, traditionally, 
it is obtained from the transmission line differential equations, as for instance in 
Ref. [2]. Another alternative and interesting way to obtain eqn (20) from the Caley-
Hamilton theorem has been presented in Ref. [9].

Transmission line computations

In order to stress the capabilities of the ABCD matrix, the input impedance of a two-
wire transmission line terminated by an impedance Z2 is computed. Equations (1)
and (20) provide the relation

(21)

Note that Zin = Z0 for Z2 = Z0 (matched output) and Zin = Z0 tanh q for Z2 = 0 (short-
circuited output).

When the line is fed by a voltage E the voltage and the current at any distance x
from the source can also be easily computed using the ABCD matrix:

(22)

(23)

(24)

As a numerical example, consider a two-wire transmission line with the 
following parameters: d = 1km; l = 0.55mH/km; c = 24.44nF/km; g = 10nS/km; 
r = 0.2254mW/km. These parameter values have been chosen in order to produce a
distortionless media, thus providing an easy interpretation of the results. Note,
however, that the computation method proposed here also applies to any other
parameter values. For this line the surge impedance and the propagation velocity are
respectively given by
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(25)

The variation of the impedance Zin with the frequency is shown on the right-hand
side of Fig. 3 for a load impedance of 50 W. Although the load impedance is con-
stant, the reflected impedance magnitude varies significantly as is typical for a mis-
matched line. Its maximum is attained at a frequency which corresponds to the
quarter-wavelength condition, i.e. d = 1km implies l = 4km and consequently this
frequency is f = 272750/4 = 68.19kHz. As expected, the phase curve points out 
that the input impedance presents either an inductive or a capacitive characteristic
when the frequency varies. Figure 3 (left) shows the impedance Zin for a load of 
450W. The magnitude of the reflected impedance is 450 W for zero frequency and
attains a minimum of 50 W at 68.19kHz. Again, the reflected impedance can be
capacitive or inductive, being capacitive for low frequency in this case.

The voltage and current profiles along the line (terminated with 450 W) are shown
on the left-hand side of Fig. 4 for f = 136.38kHz, which corresponds to the l /2 con-
dition. Note that the midline voltage is a minimum because the distance from the
load is l /4 and, accordingly, the current is a maximum. The voltage and current pro-
files along the line (terminated with 50W) are shown on the right-hand side of Fig.
4 for f = 136.38kHz. Note that the midline voltage is a maximum and the current is
a minimum in this case.

The frequency responses of the voltage at the load terminals for the line termi-
nated with 50 W, 150W and 450W are as shown in Fig. 5. Note that the frequency
response varies significantly when the load is not matched with the line. This con-
dition should be avoided to prevent distortions when the signal travels down the line.
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Fig. 3 Input impedances of the line terminated with 450 W (left) and 50 W (right) as a
function of the frequency (magnitude in ohms, phase in degrees).



Study case: The balun

The usefulness of the ABCD matrix as a tool for line computation is highlighted
once more in this section by analyzing the balun circuit.5,7 The need for baluns 
(a contraction for balanced to unbalanced ) arises in coupling a transmitter to a
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Fig. 4 Normalized voltage and current profiles along the line terminated with 450 W (left)
and 50W (right) for f = 136.38kHz.

Fig. 5 Load voltage frequency response for the line terminated with 150 W and 450W
(left); 150W and 50W (right).



balanced transmission line as the output circuits of most transmitters have one side
grounded. A non-symmetrical balun is also used for matching two circuits with
different terminal impedances as when a remote source is connected to a 300 W
antenna through a 75 W coaxial cable. Figure 6 shows a balun implemented via 
two identical line sections with the same characteristic impedance Z0, propagation
constant l and length d. As one side is connected to the ground, the two lines 
must have a length such that the balanced end is effectively decoupled from the 
parallel-connected end. This requires a length that is an odd multiple of a quarter
wavelengths.

Now the ABCD matrix is used to demonstrate that the source is matched with the
load when Z1 = Z0/2 and Z2 = 2Z0 and to compute the transfer function of the balun
for different line parameters.

From Fig. 6 one gets

(26)

(27)

(28)

Equation (28) applies when the balun is balanced and parallel-connected ends are
decoupled. 

For this case the ABCD matrix for the balun circuit is given by

(29)

Note that the ABCD matrix determinant is equal to one.
The image impedances Zti and Zri are given by

(30)

The balun output voltage V2 is given by
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Fig. 6 Schematic representation of a balun (balanced-unbalanced) composed by two
parallel transmission lines with characteristic impedance Z0. The balun matches a load Z2

= 2Z0 with a source impedance Z1 = Z0 /2.



(31)

where Zin is given by

(32)

The matching condition Z2 = 2Z0 implies Zin = Z0 /2 and considering eqn (29), V2 =
V exp(q). Therefore, for a lossless balun, the gain is one (absolute value). However,
the matching condition is not always present. As a final example, suppose that a
remote load of 450 W (1km away from the source, for example) is to be driven by
a voltage source (output impedance of 50 W) through a transmission line with char-
acteristic impedance of 150W. A simple way to decrease the mismatch effects is
obtained by arranging two parallel 150 W transmission lines as shown in the balun
scheme (Fig. 6), i.e. using series connection at the load and parallel connection at
the source. Considering the two situations, namely, one single line or two parallel
lines between the source and the load, Fig. 7 shows the voltage responses at the load
terminals as a function of the frequency. As expected, when some arrangement
similar to the balun scheme of Fig. 6 is used the response is less sensitive to mis-
matched conditions.

Conclusion

This paper is mainly aimed at applying the ABCD matrix as sole tool for the simu-
lation of two-wire transmission line characteristics. The authors’ purpose was to
draw special attention to the fact that this approach is very convenient for carrying
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Fig. 7 Voltage frequency responses (normalized at 0 Hz for comparison). The source and
the load impedances are 50 W and 450W, respectively, and the characteristic impedance of

the line is 150 W.



out typical transmission line calculations. Moreover, as shown in this paper, the
ABCD matrix is very easily obtained for a two-wire transmission line from its dis-
tributed parameters per unit length. Some typical transmission line behaviours
related to matched and mismatched load conditions were shown to be quite conve-
niently calculated by using the ABCD matrix as an analysis tool. Its application for
the modelling of a line balance converter (balun) is presented in this paper as a par-
ticular example.
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