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At this conference and in what follows, | propose tespnt the general ideas in the
theory of finite and infinite continuous groups that | dn@eveloped in two memoirs to
the Annales de I'Ecole Normalg904-1905, and 1908). The groups in question will be
the ones that were considered by S. Lie; they argrihgps of analytic transformations
that act on a finite number of variables and are charized by the property that the most
general transformation of the group is the general isolubf a system of partial
differential equations that give the transformed \@eis as unknown functions of the
original variables. The finite and continuous Lie group®iy to that general class
because any system of functionsimariables and a certain number of arbitrary constants
constitutes the general solution of a completely iratelgrsystem. However, the group:

X =f(x), y =f(y),

which was pointed out by Lie himself, whd(&) is an arbitrary analytic function of its
argument,is nota Lie group in the preceding sense. Moreover, only Lieggaever
enter into the applications that one makes of therthef groups to differential systems,
in reality.

The generalization to infinite groups of the structuemti of finite groups that was
due to Lie and was founded upon the consideration of irgimi@ transformations is
shown to be very difficult, which is not to say impilde, despite the works by S. Lie, F.
Engel, Medolaghi, etc., that were dedicated to this questiwhat will explained here
begins with a completely different principle: It isthe defining equations of the grodp
when put into a convenient formthat one may find a point of departure for the theory
that uses the theory of equivalence problems that wasmiessin an earlier conference
and the theory of systems in involution.

The notion ofbstract groupwill not be presented here with the same purity asan th
case of finite group, and this comes down to the difficuitfinding a simple analytical
characterization of the notion of isomorphism. Itresnarkable that, simultaneously,
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Vessiot, in his beautiful works on automorphic functiomsl enyself have been led to the
same new definition of the isomorphism of two Lie growpdefinition that is, moreover,
equivalent to the classical definition in the caseiwtd groups. This definition rests
upon on the notion of therolongationof a group. If one is given a gro@that operates
on n variablesx!, X4, ..., X" then a groupG' will be called a prolongation o if it
operates on the same variabt&sé, ..., X", but at the same time, on other some variables
v', V2, ..., Y’ in such a way that it transforms thevariables amongst themselves in the
same manner as the gro@ Thus, a transformation & corresponds to at least one
transformation of5', so the prolongation is calldtblomorphicif it corresponds to only
one, and in this case there is a bijective correspondeieesen the transformations of
the two groups. In the contrary case, the prolongasi@alledmeromorphic It is clear
that in the former case, there is a holomorphic ispmem — in the classical sense of the
word — betweels andG'; in the latter casé&; is meromorphically isomorphic @'.

Having said this, two grougs; andG; are calledsomorphic(holomorphig if they
admit two similar holomorphic prolongations (i.e., thagve the same number of
variables and are reducible to each other by a changar@bles); if there exists a
holomorphic prolongation d&; that is similar to a meromorphic prolongationGafthen
we say that; is meromorphically isomorphito G; . One proves without difficulty that
two groups that are holomorphically isomorphic to a thind are isomorphic and that if
Gs is holomorphically isomorphic t&; and G, is meromorphically isomorphic tG;
thenG; is meromorphically isomorphic @5 .

The fundamental theorem.
The theorem that is at the basis for the theolyi@froups is the following one:

Any Lie group G admits a holomorphic prolongation that operates on a certain
number r of variables"and is defined as the set of transformations that leave invariant:

1. A certain number of functions of the x

2. r Pfaff forms dJ(x, y, 2 that are linearly independent with respect to the
differentials dxand whose coefficients may depend upon other auxiliary variaples y
finally, the defining equations of the prolongation considered have first.order

The hypotheses that were made on the prolonged group $labwhis prolonged
group is a Lie group; we confirm that one may always asdihat it is defined by a first-
order system of partial differential equations.

We pass on to the proof. By definition, the giveougr, being a Lie group, is
comprised of the set of solutions of a system of gadiféerential equations (viz., the
defining equations) that one may always assume are dfuiion. Letx', >, ..., X be
the initial variables and let}, X2, ..., X" be the transformed variables. To begin with, the
defining equations possibly contain a certain nunmbew of finite relations between the
x and theX, relations that one may assume have been solvedresigect tox"™**, ...,
X"

(1) X"V =R, L)X L XY k=1,2,..n),
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where the coefficientss, are analytic functions off, ..., x% X ..., X" and ofpy

variablesu, upon assuming that the first-order equations may beddor nv - p; of
them as functions op; of the otherx and X. If the system contains second-order
equations then one may write them in the form:

(3) du = Bl (x, X, u V) d¥ (h=1,2, ...p),

upon introducingy, new variables, and so on. We thus have a series of systems (1), (2)
(3), ...; if the groupG is finite then the latter system of equations wilt mtroduce any
new variables.

Before everything else, we remark that equations (1) beagimplified. Indeed,
perform a specific transformation of the group on xhend letX be the transformed
variables. One may naturally pass from thdo theX by a transformation of the group,
and one will have, as a result:

(4)  FO X XY = FRR, L XMXE L X)) k=1,2, ...

These relations become identitiesxin ..., X X%, ..., X" if one replaces th& in them
with their values, or else one will have at least ome-identical relation:

#O¢, XX L XY = 0.

Now, there always exists a transformation of theugrthat takes arbitrarily given values
of the x to arbitrarily given values of th¥', ..., X", which leads to a contradiction. We
add that the functionf“(x, X) are independent when regarded as functions okithe
otherwise, from equations (1), one could deduce at least@néentical relation ix*,
o X9 XL X, which s absurd.

It results from these remarks that if one givesXhexed numerical value¥X, (that
are not too specific) then this will show that théunctionsF*(x, ..., x% X%, ..., X") are
invariants of the group and number v. One may then assume that the variables are
chosen in such a manner that these invariants’&re.., X", in such a way that equations
(1) take the form:

Q) XY =X k=1,...,n=).

Having posed these preliminaries, imagine that one has maddange of
independent variables in the differential system (1), (@) ..., namely, the change that
is defined by a specific transformati8mf the groupG, such as:

(5) X =0 3., XD (@t =x" L =X,
The system (1), (2), (3), ... necessarily preserves tlme storm with these new

independent variables, since if one considers an arbitr@ngfarmationl of the group
that takes the to theX then the transformatioRS™ will take the X to theX, except that
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the new equations that involve the partial derivatives,(...) will be changed. We will
obviously have the following relations, which are deducehf(2):

i (v . Ox" [
(6) a (X X, U)— = a(x X, u).

0x

One may regard these relations as equationis jn.., G™. [One must assume that the
% and thedx*/9x" have been replaced with by their valu#$) and ag*/9x".] In
these equations, we regard #hehe X, and theu asindependenarguments. It is easy to

see that these equationshich are vn in number and have;punknowns u, are
compatible. Indeed, otherwise there would exist at leastrmreidentical relation:

WUx, X, u) =0.

That relation must have meaning no matter what migalevalues are given to the
arguments<, ..., x", X% ..., X" ut, ..., u™. This is impossible: Indeed, there always
exists at least one solution of the system (1), (3), ... in G that corresponds to
arbitrarily given initial values for these + v+ p; quantities. Equations (6) are thus
soluble for thed :

(7) o = ¢f(x, X, u).

One may continue the argument by passing fromt&msa(2) to equations (3), which
will give formulas:

(8) V"= Y% X, u, V),

and so on. We thus have to add equations (7)@rad equations (5). One may likewise
ultimately add the relations: _
X' =X i=1,2, ...

Any transformation S of the group G may thus béopged in one and only one way
to a transformatiork that acts on the variables x, X, u, v, ..., and ftbenmanner itself
by which this prolongation was performed, this praed transformation enjoys the
following properties:

1. It leaves invariant the variableg™, ..., x" X', X3, ..., X".

2. It leaves invariant the differential systgR), (3), etc., of the defining equations
for the group G.

Conversely, take a transformatian that enjoys the preceding properties. The
invariance of thalX, on the one hand, and that of the differentiateays(2), (3), ..., on

the other hand, shows thatleaves invariant the forms = a (x X,u dx); as a result,

any differentialdx' is a linear combination of th#X, and the transformed variabl&s
depend only upon the, X2, ..., X". Z thus defines a well-defined transformat®nf the
x. This transformation belongs to the group (Bdeed, since the transformatibrieaves
the defining equations d& invariant, any transformatiom (x — X) of the groupG
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transforms into another transformati®fx — X) of G; as a result, the transformatién

is equal toT T, so it belongs t@. It is clear that the transformati@nresults from the
prolongation ofSin the way that was constructed above.

The group G may thus be prolonged holomorphicaltg a groupl” that transforms
the variables x, X, u, v, ..., and is defined byitlariance properties that were stated
above.

It now remains for us to show thatis a Lie group and that its defining equations are
of first order. The first property is deduced from theotlgeof equivalence problems. It
is obvious if the defining equations &f are of first order, sincé is the set of
transformations that leave invariant the variab€y, ..., x", X%, ..., X", as well as thes

V+k

forms a)(x, X, u, dx), to which one may add the— n forms W™ = dx
We carry out the proof in the case where the defining emsatfG are of second
order, so they are consequently composed of equationg2f1)3). Since the group
leaves thev forms ¢ invariant, it will leaves their exterior differeniSade) invariant.
Now, each term otd = a (x, X, u dX) contains a differentiadx, so the fornte) may

be written: _
dw = W@,

where ther are linear in thelX, dX, anddu; these formgo, are determined, moreover,

only up to linear combinations of the. For each value of the coefficients of the linear
combinations of theJ that one may add to tle, form a symmetric matrix. Be that as it

may, for any transformatioh of I' one will have:

@ (X, X, T, d¥) = a(x, X, u, dx),
SO:
W@ (X, X, T, d¥, dX d)-w.( x X u dx dX di=0;

therefore one has, for each pair of indigds
@ (X, X,U; a%, dX, d) = @ (x, X,u; d¥, dX dy (moddx).

It is clear thatp; of the formsa, are linearly independent in tlhe. Choose thesp;
forms; each of them may be written:

ch du' + g, dX (mod &) (ch, i are functions o, X, u),

or further, if one refers to the equations (2) and (3):

Gldut = H(x X y ¥y di+y( dX-«')  (moddx).
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The analogous form in terms of the variables X, U, Vv must be equal to the
preceding one (modX), but since the group leaves equations (2) and (3) invariant, and
each of the two forms considered is a linear combinaifathe left-hand sides of these
equations, the two forms will be not omgngruent(moddx"), butequal Letaf (a = 1,

2, ..., p1) denote the; forms thus obtained. One sees thatgtwmip ' leaves invariant
not only the variables’%, ..., x", X, ..., X", but also the n + pPfaff expressions), o,
which are linearly independent in the differentials of the variableX,xy, and have
coefficients that depend upon the auxiliary variables v. Q. E.D.

If the defining equations d& are of third order then one can follow the argument in
the same manner in such a way that the fundamentaktines completely general:

Any Lie group admits a holomorphic prolongatibnthat is defined as the set of
transformations that leave invariant a certain number of variables and aigertimber
of Pfaff expressions that are equal in number to the variables and ararlyine
independent in the differentials of these variables.

We add a very simple, but important, remark: The vaei@ki, ..., X" of G are
transformed amongst themselves by the gfougBince the variableX', ..., XV of I are
invariant, one will not change the manner by wHictransforms<, ..., X by giving the
X' fixed numerical values everywher®©ne may thus assume that the fomsnd o
that are invariant undef no longer contain either the X or the .dXOne thus sees that
the variabless, when added to the variablesn order to form the transformed variables
underl, are nothing but the values that are taken at a fixed (& by the partial
derivatives of the functions of x in the transformations of the group that taket@ (Xo).
The set of variablesx( u) constitutes the analogue offame in the theory of finite
groups.

The structure equations and the second fundamental theorem

We again place ourselves in the case where the defigingtiens ofG, which are
assumed to be in involution, are of second order. We halomorphically prolonge@
to a group in the variables u that is characterized by the invariancext, ..., x" and
then + p; forms ), af. The equations:

vVl — XV+1,

X X" =X,

@ =d, | T = af,

are, in a certain sense, the defining equatiors,dfut written in a manner thagas the
advantage of being completely symmetric in thedgrees of variables-viz., the initial
and transformed onesThese equations thus comprise a system in involutionptoeit
may also consider them to be the defining equationseoftbupl” in the variables, u;
from this viewpoint, one sees that the grdupas defining equations of first order. We
call a Lie groupnormal when its defining equations are of first order, in suevag that
any Lie group admits a normal holomorphic prolongationthdfLie group is finite then
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the normal holomorphic prolongation has h variables, ifr is the number of parameters

in the group andh is the number of its invariants; there are thymrameters when the

group is transitive. Similar things are true for theintransitive group of parameters.
Now take a normal grou@ in n variables{, n — v of whichx**, ..., x" are invariant.

It is characterized by the property of invariance of éhes- v variables and linear

forms d(x, u; dX) (wherea™ = dx"*). The exterior differentiadc), as we have already

remarked, may be written:

dd = '@,

in which thea, are linear in the differentialsdu’, ..., duf, but determined only up to
linear combinations of thedx:; i.e., thedS. Takep of the formsa, that are linearly

independent in thdu* and call them, @, ..., @. The formdd will be an expression
that is constructed in a well-defined manner fromdhand thef. Upon adding linear
combinations withundeterminedcoefficients to thea, one may profit from these
indeterminates to annul the largest possible number efficients of the formsaf.
Having done this, one will have:

(10 ded = &, " +2.¢, fef (G == ).

The remaining constants are obviously invariants, and consequently, functiafis, of
.., X'. This result is the generalization of thecond fundamental theoresfiLie. One
may remark that nothing will prevent us from making a liredstitution of thew with
coefficients that are functions of the group invariargjuations (10) preserve the same
form, but the differentialsix”*?, ..., dX", now become linear combinations of thewith
coefficients that are functions of the invariants.

One must finally take into account the hypothesis by wthiehdefining equations of

G are of first order, which amounts to saying that tfstesn:

(11) X =x X =X W=

is in involution. Now, the exterior differentiatiofi ihese equations gives:
(12) a,0 (@’ -w”) = 0.

The coefficient%\{(p thus form an involutive matrix.From the theory of systems in

involution, one may recognize that this is true by catoudathe charactersi, o, ..., oq

of the system (11) and by looking for the number of abjtpparameters that the most
general integral element mdimensions depends upon. The system will be in invaiutio
if this number of arbitrary parameters is equaloto+ 20> + ...+ rg; ; this number of
arbitrary parameters is, moreover, nothing but the nurabarbitrary parameters that
enter into the solution of the equations:
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a, @’ =0 (=1,2,..n),

where ther” are unknown linear forms iat, ¢, ..., dJ. As for the numbers; they are
obtained in the following manner: One forms the systéaquations ir’:

(13) a,@’=0 (=12 ..n),
(14) a,,w° =0,
(15) ay,@” = 0.

oi is the number of independent equations in (Z8) o is the number of independent
equations in (13) and (14), and so on; finally + & + ...+ o is the number of
independent equations in (13), (14), ..., (15) (whigh, isere). It is important to add that
one has assumed that a linear substitution has beamrmed on thew beforehand such
that the numberss, o1 + o, ... are successively as large as possible.

Equations (10) bear the name of sreicture equationsf the normal groufs.

The second fundamental theorem admits a converse tinabreover, rather obvious:

Let ¢ be n forms that are linear in hdx, ..., dxX* and are linearly independent with
coefficients that are functions of the variables x and some other \@siabl Suppose

that these forms satisfy equations of the f¢h®), where the coefficientaLp, c,‘(p are

n

functions of just the variables™x, ..., X". Suppose, in addition, that the differentials
dx”**, ..., dxX, which are expressed linearly in terms @f, «f, ..., J, involve only
coefficients that are functions of these variables. Finally, supiha@éehe matrix of the

a,is involutive. Under these conditions, there exists a normal groumGatimits the
invariants X**, ..., X", such that equationd0) are the structure equations.

Indeed, the equations:
Xt =x X =X, W=w

obviously form a system in involution, and tRe when considered as functions of #e
thus constitute the general solution to a system ofapalifferential equations of first
order that are in involution.

If the coefficients of the structure equations arestamts then the grouf is
transitive and these coefficients ateucture constants.All transitive groups that have
the same structure equations are similar.

Before going further, we give some examples:

Example 1.— Start with a finite groupX = ax + b, whose defining equations are
obviously:
dX=d} =udx
du=0
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(which gives an equatiadfX / dX’ = 0 of second order). Here, one has:

dat =du dx:@ .
u

The groupl™ that is the prolongation @ to the variableg andu is therefore defined by
the invariance of the forms:

o =u dx a}:%.

Example 2— Let G be the group of two variablesy and an invariang whose finite
equations are:
X=x+ay, Y=y.
The defining equations are:

X=X

Y=y, dX =} = dx + dy;

the groupl” thus coincides witls. In order to get the structure equations, one may thus
replaceX with a fixed number in the form} — for example, zero. One then has:

o =dx—- Zdy dt=-d &
y y
or further:
a}:dx—idy, of = dy,

with:
da}:% dd.  ddd=o0.

Example lll: Let G be the group of homographic transformations of\ar@éble:

X = ax+ b.
cx+d

One knows that the defining equation of the greup i

(1) X' X" = g X"? = 0.

Upon setting:
we have the system:

2) dX=a} =u dx
(3 du=v dx
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:3v3

(4) dv=——adx.

2u
One has:

ded = du dx= du—vdxudx: du—vdxwl;
u u
the form du-vdx is thus invariant; call it:
u
of = %—de.
u u

From this, one deduces that:

dif = -Zavax+Y dudh = (—izdv+lg duja}
u u u u

= {—%(dwv—z dxj+lg(du— vdx}a},
u u u

from which, one obtains the new invariant form:

of = —izdv+l3 du+—1f3 dx.
u u 2 U

From this, one deduces:

46 = L duav+ Y dvar=Y dud= e,
u u 2u

The structure equations are, in turn:

dot = F o,
dof = o,
ded = J 5.

Example IV— Let the groufss be defined by the equations:
X=x+1(X), Y=y,
wheref(y) is an arbitrary analytic function gf The defining equations are:

(1) Y=y,
(2) dX=dx+u dy
One thus has:
o} = dx +u dy, of = dy,
with the structure equations:
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dot = wdy= wd, dat =0,
in which codenotes the forrdu plus an arbitrary multiple afy.

Example V- Let a transitive group be defined by:

X = f(x), y=—Y_,

dy= Xdy+ udx;
y

they are of first order. Giv& the numerical value 1 in their right-hand sides; will
then have:

o=y dx a}:d—;+udx,
with the structure equations:

dat = Fdd, dof = wat {m:d—;(moddx)]

We remark here that the gro@is the holomorphic prolongation of the groXip= f(x),
whose defining equation éX = u dx with:

o =u dx ddt= wd.

The third fundamental theorem.

The question whose answer is the third fundamehtdrem is the following one:
May the coefficientsc,, = - ¢, &, that enter into the defining equations of a normal
group be chosen arbitrarily as functions of theugranvariants? We limit ourselves to
the case where the group is transitive; one wileha few modifications to make in the

case where the group is intransitive.
In summation, the problem is the following one:

Is it possible to find n + p forma), «f that are independent of the n + p variables
that satisfy the equations:
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(10) ded= 8, @ +20, W) (G = ),

where the coefficients are given constants, suchaﬂ),atorm an involutive system?

Indeed, it suffices that one may find forms thats$atinese conditions, and then the
equationse = 0 obviously form, from (10), a completely integrablsteyn, so one may
then suppose that, >, ..., X" are first integrals of the this system, and fromdieverse
of the second fundamental theorem there will indeed exi®rmal groufs that operates
on thesen variables and admits (10) for its structure equationsreMenerally, one may
look for formsc) and @ that are linear itN = n + p given variables, with the reservation
that then + p forms are linearly independent. We call these vaz&fl

If we set:

(16) W= p,dé’, o = qf d&’

then putting the problem into an equation furnishes quadrdgci@xequations:
(1) dp, ddx' = & /@’ +%dmafa)“,

and on the right-hand side of them one supposes thabtins £J and @f have been
replaced by their values (16).

From the general theory of Pfaff system, one mddtta equations (I) the ones that
one deduces by exterior differentiation, taking equatipnsto account. The calculation
gives:

() aLpafdm/’ = aLpaEpwhmﬂw” +(thqkp +% ¢ ¢'¢,)wha}'m” +_; & &l

in which one has naturally assumed that the forhsnd o are replaced by their
expression (16).

One obtains necessary conditions for compatibilityekgressing the possibility of
satisfying equations (Il) upon replacing the fordes” with certain quadratic forms that
are constructed with thed and&” in such a way that:

(17) daf = %yj’ﬂm”w" + 07 W@’ +—;£Lhafa)h.

By identification, one finds the relations:

(18) aay, —d,d,~ 84,/ =0 i,h=1,2 ..ma B=12 ..p);
(19) cua, ~G&, *ta, G~ 405+ 30=0 G hl1=12 ..na=12 ..p);
(20) CLhaIkm+ dk|d:nh+ ékméhl_ é\m‘gllim_ ‘Lj}:‘gphm_ ém‘gpr =0,

i,h,I,m=1,2,...n.
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It is necessary that these equations be compatiblen wbesidered as linear
equations in the unknowng; , &7, & this naturally entails algebraic relations

between the constang, andc,.

Suppose that these relations are verifiedhe system (1) is then in involution. In
order to prove this, one must evaluate the number dfranpiparameters that the most
generaln-dimensional integral element depends upon, calcutateharacters;, S, ...,

S, of the system, and verify that the former number thasvalue that the theory of
system in involutions gives for the charact&rs

In order to make the first evaluation (viz., the numbkarbitrary parameters upon
which the mist generd-dimensional integral element depends), first consideagons
(1. By hypothesis, they are verified by the valueshef df of the form (17), with
values that are determined by the coefficigntd & The most general solution of (II)
will be obtained upon adding the most general fdrtfishat satisfy the equations:

(21) a,N°=0

to the values (17). Now, the equatiodg,af a = 0, in which the unknowns are the

linear formsaf’, admit a general solution that depends ugph 2¢ + ... +rg; arbitrary
parameters, namely:

' = bl t*

where the” are the parameters in question. It is then obviousetizations (21) will be
verified if one sets:

(22) Ne=b" o x,

in which the)/ are formswith arbitrary coefficientghat are linear iruifl, déN. One
thus introducesN(a1 + 20> + ... + rg) arbitrary coefficients in the most general
expressions foda that satisfy equations (II). However, this number rbesteduced by
the fact that there are two termslif. One of them is ind«f and the other one is in
«f ¢}, and the reduction into just one of these terms antbgmas terms diminishes the
number of arbitrary coefficients. One may rigorouslgwiate the number by which one
must reduceN(o1 + 2> + ... +r&) in order to have the exact number of remaining
arbitrary constants. We leave aside this determinaticorder to point just the result:
The numbeH of the arbitrary coefficients (that are independdrthe p, and q) that

enter into the solution of the equations (ll) in tlag, as we have envisioned fit, is:

(N=1)0i+ (@N-3)cs + (N-6)0s + . i[ '('”)}.-

=1

In reality, the numbeH may be greater than the preceding number, sireze tinay
exist solutions of equations (21) that do not tiddeeform (22). One must then write:



Cartan — The structure of infinite groups. 14

H>Z[ I +1)} 3

This still does not give us the number of arbitrparameters that the most gené¥al
dimensional integral element of equations (I) dhddepends upon. In order to obtain it,
we may replace equations (I1) with the equations:

(D) dqf dé! =daf,

where we have replacedaf with the value obtained that involvad arbitrary
parameters. Ani-dimensional integral element will be defined by:

dp, = p,,dé*,
dof = qf, dé*.

One sees immediately that, upon taking the termi€inl& in equations (1) and (l), that
these equations have the form:

Phu = P = -
Qe =G = s

in which the right sides are quantities that ard-defined functions of thep), the g7,

and theH arbitrary parameters that were in question abo@ae thus has%

linear relations ifN® unknowns for fixed values of these arbitrary parameters. As a
result, the total number of arbitrary parameters titne most generall-dimensional
integral element of the system (1), (II) dependsnus:

2 2N . .

N°(N-1) fH> N-(N 1)+2[iN—l('+1)}ai.
2 2 = 2

We pass on to the calculation of the charackrs, ..., Sv-1 of the system. We

shall determine the integeXs, 2; + 2, ... such that one has:

S =2y, S +S22; +3,, ceey
S+S+ ... +50221+5+ .+

In order for the system to be in involution, itnecessary and sufficient that the number

2 -
NEN=D H that we just found, which may not exceed:

-N-1D)S-N-2)%-...- S,
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must be equal to it. Now, this latter number is itked§ than or equal to:
NP—(N=1)5 —(N=2)Zo— ... — Zn1.

We shall prove that this latter number is equal to:

WD Sy 2],

One will then have:
NNy, NOD, iy 1022
2 2 =
>N -N-1)S-N-2)S - ...~ Sw1.

o,

As a result, the system is in involution, and tignsn the equality must be replaced
everywhere by the inequality sign. In will thersué that, on the one han§,= Z;, and
on the other hand, one can be sure that equat@)(ovide the most general solution
to (21).

In order to calculate the numbeérsone forms the left-hand sides of equations (8 an
(I1); they are the only parts of these equationgvimch the differentials of the unknown

functions p,, g enter. One obtains:
Q) dp, d&* = ...
(11 a, do; dff ! o = ...

We will have a numbeX; < § by taking the coefficients afx; in (1), which gives the
n differentials dp ; one will then take&; =n. We will get a numbeE; + 5, < S + S

upon taking the coefficients aff* andd& in (I) and the coefficients al& d& in (I1),
which gives:

dnl, dp,, &, (pdeg - B df),

i.e., at least 2+ ¢ linearly independent solutions. (For exampleviit suffice to set p;

= 1, while the otherp} are zero.) We thus take =n + gi. Upon following through on

this, one finds:
21=n, 22=n+ 0oy, 23=n+ 0+ o,
24=N+ o+ o+ o, vy 2ZN-LENH OB F L+ O,

if one sets:
Oh-1= ... =0ON-1 — 0.

One then easily finds the stated equality:
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NZ—G\I—l)Zl—a\l—z)zz—___—zN_1:w+ . [iN—i(izl)}a.

i
i=1

It is pointless to remark that this third fundanertheorem generalizes that of Lie,
since the classical Lie relations between ¢hereduce to the relations (20), in which one

has suppressed the termsgjp.

The linear stability group; systatic plane element.

If one is given a Lie groufs, which is not necessarily normal, then the set of
transformations of the group that leaves a generic poind fixed forms a subgroug of
G that one calls thstability groupof the point X). If the groupG is finite theng is a Lie
group, but this is not true in general when theugrG is infinite. Be that as it may, the
groupg linearly transforms the vectods that issue from the poink){ and the group that
results from transforming them is a linear grougt thve call thdinear stability groupof
the point k). We shall show that the infinitesimal transfotimas of this group appear in
the structure equations of the gra@p

Start with the original form of the defining equas of the group:

(1) Xyt X" =X,
2) dX = g (x X, U) dX (=12 ..n).

If one fixes the point ¥) and the point X) then formulas (2) indicate how a
transformationT of G takes X) to (X) transforms the vectodx) into the vector dX).

This transformation translates into the linear situtgon S, of the coefficientsa, that is
carried out on the components of the vector @). If we now consider two

transformationd and T’ of G that both takex) to (X) then the transformatiof’ T of G
belongs to the stability group ox)( and the corresponding linear substitution of the

linear stability group is the substitutid®'S. The substitutiorS,' S then generates the
linear stability groupy when one variesi andu’. One may also regard it as being
generated by the substitutio®§' S, whereS, corresponds to fixed numerical values of

u'. The substitution, = S, §* also generate a group, since one has:

S8 =S89 ¥

it is the transform of the groupby & . It is again the linear stability group, but ynl
when one takes the components of the vectgrt¢ be the quantities that result from the
substitution, that is performed on th#X‘ — i.e., the quantitieg)(x, X, uo, dX). We again
denote this group by

Having said this, consider the infinitesimal sitbsibn % ., > of ;. It is the one
that gives thed(x, X, u + du, dx) when it is applied to the quantitie(x, X, u, dx). Now,
one has:
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o

Wé_uk.

WX, X, u+ A, dx) = a(x, X, u, dx) +
However, from the structure equations:

ded = %qhaw v W,

one has:

0 _
- e

upon lettinge” denote the result that follows when one replabésvith 0 in & andduf
with — &, It then results thathe equations of the infinitesimal transformatiaisthe
linear stability group are:

(23) 3 = 8,

with p. parameters & €, ..., e”.
The preceding has implicitly assumed that the gi®ug normal; in this case, if one
expresses the idea that the infinitesimal transfoonati

-
(24) E f_akafk 65’

generate a structure groyg, then one finds equations (18) preciselhe compatibility

of these equations, which is necessary for thectistement of the third fundamental
theorem, thus simply expresses the idea that #msfiormationg23) generate a group

If the groupG is not normal then the preceding results subsistiheu” are then the
forms wthat are invariant under the normal holomorphic prayactf G that presents
itself during the consideration of those defining equation§fthat are of first order.

In any case, the preceding results lead us to a neannoliake a vectord§) whose
components annul thep; forms a af (i = 1, 2, ...,n; @ = 1, 2, ...,p1) that are
introduced in the right-hand sides of equations (23). Afigiiesimal transformation of
yis left invariant, and conversely, any vector that is fiavd undery annuls thesap;
forms. We the name @lstatic systero the Pfaff system:

(25) a, =0 (=1,..ma=1,...p).

The vectors that issue from the poirj &nd satisfy the equations of that system
generate a plane elemdnthat we call thesystatic plane element that is attached to the
point (X). This terminology is explained by the fact that aransformation ofG that
leaves the pointx] fixed simultaneously leaves fixed all of the infinitetgighboring
points to ) that are situated in the plane elemEnhat is associated witkx)(
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From this, it results thdahe systen(25) is completely integrableOne may verify this
by calculation; however, one may also account for thisan intuitive mannerj.
Consider a curveQ) that is tangent at each of its points to the sigsedement that is
associated with that point. Any transformationGthat leaves fixed a poink)(of the
curve will likewise leave fixed the infinitely neighboginpoints, and therefore, in
succession, all of the points @ The locus of points that are invariant under the
transformations of the (nonlinear) stability group of anp¢x) is therefore a manifold
that admits all of the tangents to the systatic etena each of its points. These
manifolds are the integral manifolds of the systatisteay (25), which is therefore
completely integrable.

Naturally, it might happen that the systatic planemelet reduces to the poink)(
itself, in which case, the group is calledasystatic;this will happen when the number of
equations (25) is the numbeiof independent ones.

Essential invariants.

The consideration of the systatic Pfaff system lagdt an important notation: that
of essential invariant.

We first remark that if one makes an arbitrary changgaoiables then a systatic
system remains invariant; this is a simple consequences afebmetric significance.
Having said this, among all of the linear combinationshef equations of this system,
consider the ones that depend upon only the differerdi&fs, ..., dX' of the group
invariants. One may assume that, with a small chasfgeotations, they are the
differentials of a certain number of invariants that eally’, ..., y; we denote the other
invariants of the group b, ..., Z. We finally reserve the lettarto denote the variables
x5, %, ..., X. We may likewise assume that the first integralthefsystatic system ax&
%%, ..., x4 (and the invariantg’, ..., Y).

Having made these conventions, consider the defining egsabibthe groupG,
which is not necessarily normal, and among them, thetiegsa

v =y VAEYd &=,

where the independent variables are xthend the unknown functions are the We
regard the quantities’, ..., X%, y1 ..., Y, which are first integrals of the systatic system,

as constanparameters while the quantities<’, ..., X% are unknown functions of the
other variables™, ..., X, 7', ..., 2. Since the quantities, ) then all become zero,

and, in turn, the quantities, &, as well (by virtue of the equations = @), the exterior

differentiation of the equation&® = ¢ in n unknown functionsx*, X2, ..., X gives

identities, since the formd@ - dc are annulled when one takes the equati@hs
into account. The system considered is thereforetEiely integrable. Let:

(26) X =F(x vy, z A, A% .. A (=12 ..n)

() The proof that follows has been ultimately judged tolgious by E. Cartan.
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be the general solution, in which tAere integration constants.

This result proves that any transformation of the grGumay be put into the form
(26), in which the='" are well-defined functions of their arguments andAhare certain
functions of the first integralg’, X, ..., X% y', ..., ' of the systatic system. One may
add that for agiven transformationS of the groupG the functionsA' are perfectly
determined; one necessarily finds functions that dependupan thex', %, ..., x4, y*,

Vo Y-

This being the case, now give fixed numerical valygdo the v variablesx, and
make the change of variables that is provided by the equations

(27) X=F(xo,Vy,2 & & ..., &),

equations which give thé as well-defined functions of the y, andz Then perform a
well-defined transformatioii of the group on the poink{, y, 2), and let §, y, 2) be the
transformed point (expressed with the new coordinate§)he transformationT
corresponds to well-defined functiodd(x’, ..., x4 y', ..., y), which reduce to well-
defined functionsA'(y) for x = X, . A comparison of formulas (26) and (27) shows that
the coordinates of the transformed point are simplydientitiesA'(y). If one then
applies the same transformatidrio the point Xo, y, z) then one will obtain a new point
(&, y, Z) that has the same valud'sy) of the &

Now, let:

& =4&y.2

be the equations of an arbitrary transformatoof the group (expressed in terms of the
new variables). Give (arbitrary) fixed numerical valtesheé, vy, z, thus there always
exists at least one transformatid®rof the group that takes the poin,(y, 2) (the old
variables) to the pointé(y, 2 (the new variables), and the transformat®htakes the
same point X, Y, 2) to the point €,y, 7). Now, start with the pointxg, y, z). The
transformation will give the point € y, z) and the transformatio®T will give the point
(&, y, z), with the same values of thd and the &'. As a consequence, the

transformationS simultaneously takes the poir, {/, 2) to the point € , y, 2 and the
point (§, y, z) to the point € , y, z). One thus has:

=9y, =4(&Y. 2).
The equalities:

&y, D=9y, 2)

are true no matter what numerical value one givethéoarguments, y, z, z’, so the
functions¢' depend upon only

One may thus perform a change of variables in such a manner that théleag
and y are transformed amongst themselves by the grouph®8.groupG thus presents
itself as the direct product of a groGpn n — s variables withr invariants and a group in
n variables that is transformed identically.
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Now, this is true no matter how one disposes ofzthe?, ..., Z. However, it is
impossible to do more in this sens#ce, as we have said, the systatic system is
invariant under any change of variables; it will thusalsvcontain the equatiody* = 0,

..., dy = 0. If one may eliminate any of the invariagt@s one has eliminated the
invariantsz then the differentials of these invariantsare thus eliminated, and they
obviously may not appear in the left-hand sides of ystaic equations d&, which are
the same as fd®'.

We say thathe invariants y, which are first integrals of the systatidesys are the
essential invariants of the group.

If the group is finite and of orderthen the systatic plane element fills up all space.
There is therefore no systatic system and no easdntiariant: Any finite group is
isomorphic to a transitive grouypwhich is well-known. This theorem is not true for
infinite groups [exampleX = x + f(y), Y =y, wherey is an essential invariant, and
remains an essential invariant for all isomorphic groups].

Example |- Recall the example that was already cited of thegro
X=x+ay, Y=y (v=1,n=1),
with:
dd:%dd, ddf = 0;

there is no systatic system and consequently rengakinvariant. Indeed, upon setting
= &, one has:

§=¢+a Y=y

This group is the direct product of the transitiveup & = & + a with the groupy =Y.

One may see directly that the stability group @& foint &, Yo) reduces to the identity
transformation. The systatic plane element isefoee two-dimensional, and there is no
systatic system.

Example Il.— Take the group:

X=x+ay+hbh, Y=y (v=1,n=2).
One has:
of =dx+udy, o =dy,
with:
dat = du dy= @'dd, daf =0 (@ = du),
and:
da = 0.

The systatic system is formed from the equatidgn= dy = 0, so the invariany is
essential.
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Example Ill.— Let the group be:

X=x+ay+bz Y=y, Z=z (v=1,n=23).
One has:
of =dx- xd?z+u(dy— yizzj of =dy, o =dz,
with:
dat = - wld?z+m1(w2——:a}3j, (a8 = du)
and:

da = 0.
The systatic system is:

o -YLop =dy-Ldz =0;
z z

the invariant y/ z is essentiallndeed, upon setting=x/ z, one has:
§=¢+al +p
z

and all that remains is the essential invanaht.

Bibliography.

This conference presentation contains the substaribe @fst part of the memoir on
the structure of infinite group#Afnales Ecole Normalel904) and part of the memoir
that followed it Annales Ecole Normalel905). The notations have been modified
slightly. The proof of the fundamental theorem is mecas well as everything that
concerns the linear stability group (which was called #ujdint group” in the memoir of
1905) and the theory of essential invariants. The prodfwhaa sketched out at this
conference of the converse of the third fundamental émeds simplified and made more
rigorous by the use of the theorems of Kaehler. Finalg terms “normal group,”
“stability group,” and “systatic plane element” are new.



