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 At this conference and in what follows, I propose to present the general ideas in the 
theory of finite and infinite continuous groups that I have developed in two memoirs to 
the Annales de l’École Normale (1904-1905, and 1908).  The groups in question will be 
the ones that were considered by S. Lie; they are the groups of analytic transformations 
that act on a finite number of variables and are characterized by the property that the most 
general transformation of the group is the general solution of a system of partial 
differential equations that give the transformed variables as unknown functions of the 
original variables.  The finite and continuous Lie groups belong to that general class 
because any system of functions in n variables and a certain number of arbitrary constants 
constitutes the general solution of a completely integrable system.  However, the group: 
 

x′ = f(x), y′ = f(y), 
 
which was pointed out by Lie himself, where f(x) is an arbitrary analytic function of its 
argument, is not a Lie group in the preceding sense.  Moreover, only Lie groups ever 
enter into the applications that one makes of the theory of groups to differential systems, 
in reality. 
 The generalization to infinite groups of the structure theory of finite groups that was 
due to Lie and was founded upon the consideration of infinitesimal transformations is 
shown to be very difficult, which is not to say impossible, despite the works by S. Lie, F. 
Engel, Medolaghi, etc., that were dedicated to this question.  What will explained here 
begins with a completely different principle: It is in the defining equations of the group − 
when put into a convenient form − that one may find a point of departure for the theory 
that uses the theory of equivalence problems that was presented in an earlier conference 
and the theory of systems in involution. 
 The notion of abstract group will not be presented here with the same purity as in the 
case of finite group, and this comes down to the difficulty in finding a simple analytical 
characterization of the notion of isomorphism.  It is remarkable that, simultaneously, 
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Vessiot, in his beautiful works on automorphic functions, and myself have been led to the 
same new definition of the isomorphism of two Lie groups, a definition that is, moreover, 
equivalent to the classical definition in the case of finite groups.  This definition rests 
upon on the notion of the prolongation of a group.  If one is given a group G that operates 
on n variables x1, x2, …, xn then a group G′ will be called a prolongation of G if it 
operates on the same variables x1, x2, …, xn, but at the same time, on other some variables 
y1, y2, …, yp, in such a way that it transforms the x variables amongst themselves in the 
same manner as the group G.  Thus, a transformation of G corresponds to at least one 
transformation of G′, so the prolongation is called holomorphic if it corresponds to only 
one, and in this case there is a bijective correspondence between the transformations of 
the two groups.  In the contrary case, the prolongation is called meromorphic.  It is clear 
that in the former case, there is a holomorphic isomorphism – in the classical sense of the 
word – between G and G′; in the latter case, G is meromorphically isomorphic to G′. 
 Having said this, two groups G1 and G2 are called isomorphic (holomorphic) if they 
admit two similar holomorphic prolongations (i.e., they have the same number of 
variables and are reducible to each other by a change of variables); if there exists a 
holomorphic prolongation of G1 that is similar to a meromorphic prolongation of G2 then 
we say that G2 is meromorphically isomorphic to G1 .  One proves without difficulty that 
two groups that are holomorphically isomorphic to a third one are isomorphic and that if 
G1 is holomorphically isomorphic to G2 and G2 is meromorphically isomorphic to G3 
then G1 is meromorphically isomorphic of G3 . 
 
 

The fundamental theorem. 
 

 The theorem that is at the basis for the theory of Lie groups is the following one: 
 
 Any Lie group G admits a holomorphic prolongation that operates on a certain 
number r of variables xi and is defined as the set of transformations that leave invariant: 
 1. A certain number of functions of the x; 
 2. r Pfaff forms ωi(x, y, z) that are linearly independent with respect to the 
differentials dxi and whose coefficients may depend upon other auxiliary variables yr ; 
finally, the defining equations of the prolongation considered have first order. 
 
 The hypotheses that were made on the prolonged group show that this prolonged 
group is a Lie group; we confirm that one may always assume that it is defined by a first-
order system of partial differential equations. 
 We pass on to the proof.  By definition, the given group, being a Lie group, is 
comprised of the set of solutions of a system of partial differential equations (viz., the 
defining equations) that one may always assume are in involution.  Let x1, x2, …, xn be 
the initial variables and let X1, X2, …, Xn be the transformed variables.  To begin with, the 
defining equations possibly contain a certain number n − ν of finite relations between the 
x and the X, relations that one may assume have been solved with respect to Xn−ν+1, …, 
Xn: 
(1)   Xn−ν = Fk(x1, …, xn; X1, …, Xν)  (k = 1, 2, …, n), 
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where the coefficients i
ka  are analytic functions of x1, …, xn; X1, …, Xν and of p1 

variables u, upon assuming that the first-order equations may be solved for  nν − p1 of 
them as functions of p1 of the other x and X.  If the system contains second-order 
equations then one may write them in the form: 
 
(3)    duh = ( , , , )h k

kb x X u v dx  (h = 1, 2, …, p1), 

 
upon introducing p2 new variables v, and so on.  We thus have a series of systems (1), (2), 
(3), …; if the group G is finite then the latter system of equations will not introduce any 
new variables. 
 Before everything else, we remark that equations (1) may be simplified.  Indeed, 
perform a specific transformation of the group on the x and let x  be the transformed 
variables.  One may naturally pass from the x  to the X by a transformation of the group, 
and one will have, as a result: 
 
(4)  Fk(x1, …, xn; X1, …, Xν) = 1 1( , , ; , , )k nF x x X Xν

… …   (k = 1, 2, …, ν). 
 
These relations become identities in x1, …, xn; X1, …, Xν if one replaces the x  in them 
with their values, or else one will have at least one non-identical relation: 
 

ϕk(x1, …, xn; X1, …, Xν) = 0. 
 

Now, there always exists a transformation of the group that takes arbitrarily given values 
of the x to arbitrarily given values of the X1, …, Xν, which leads to a contradiction.  We 
add that the functions Fk(x, X) are independent when regarded as functions of the x; 
otherwise, from equations (1), one could deduce at least one non-identical relation in X1, 
…, Xν, Xν+1, …, Xn, which is absurd. 
 It results from these remarks that if one gives the X fixed numerical values X0 (that 
are not too specific) then this will show that the ν functions Fk(x1, …, xn; X1, …, Xν) are 
invariants of the group and number n – ν.  One may then assume that the variables are 
chosen in such a manner that these invariants are xν+1, …, xn, in such a way that equations 
(1) take the form: 
(1′)     Xn+ν = xn+ν  (k = 1, …, n – ν). 
 
 Having posed these preliminaries, imagine that one has made a change of 
independent variables in the differential system (1), (2), (3), …, namely, the change that 
is defined by a specific transformation S of the group G, such as: 
 
(5)    ix  ≡ ϕk(x1, x2,…, xn)  (ϕν+1 ≡ xν+1, …, ϕn ≡ xn). 
 
The system (1), (2), (3), … necessarily preserves the same form with these new 
independent variables, since if one considers an arbitrary transformation T of the group 
that takes the x to the X then the transformation TS−1 will take the x  to the X, except that 
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the new equations that involve the partial derivatives (u, v, …) will be changed.  We will 
obviously have the following relations, which are deduced from (2): 
 

(6)     ( , , )
k

i
k h

x
a x X u

x

∂
∂

 = ( , , )i
ka x X u . 

 
One may regard these relations as equations in 1u , …, 1pu .  [One must assume that the 
x  and the /k hx x∂ ∂  have been replaced with by their values ϕk(x) and /k hxϕ∂ ∂ .]  In 
these equations, we regard the x, the X, and the u as independent arguments.  It is easy to 
see that these equations, which are νn in number and have p1 unknowns u, are 
compatible.  Indeed, otherwise there would exist at least one non-identical relation: 
 

ψ(x, X, u) = 0. 
 
That relation must have meaning no matter what numerical values are given to the 
arguments x1, …, xn, X1, …, Xn, u1, …, 1pu .  This is impossible: Indeed, there always 
exists at least one solution of the system (1), (2), (3), … in G that corresponds to 
arbitrarily given initial values for these n + ν + p1 quantities.  Equations (6) are thus 
soluble for the u : 
(7)      ku  = ψk(x, X, u). 
 
 One may continue the argument by passing from equations (2) to equations (3), which 
will give formulas: 
(8)      hv  = χk(x, X, u, v), 
 
and so on.  We thus have to add equations (7) and (8) to equations (5).  One may likewise 
ultimately add the relations: 
     iX  = Xi (i = 1, 2, …, ν). 
 
 Any transformation S of the group G may thus be prolonged in one and only one way 
to a transformation Σ that acts on the variables x, X, u, v, …, and from the manner itself 
by which this prolongation was performed, this prolonged transformation enjoys the 
following properties: 
 1. It leaves invariant the variables xν+1, …, xn, X1, X2, …, Xn. 
 2. It leaves invariant the differential system (2), (3), etc., of the defining equations 
for the group G. 
 
 Conversely, take a transformation Σ that enjoys the preceding properties.  The 
invariance of the dXi, on the one hand, and that of the differential system (2), (3), …, on 
the other hand, shows that Σ leaves invariant the forms ωi = ( , , , )i k

ka x X u dx ; as a result, 

any differential idx  is a linear combination of the dxk, and the transformed variables ix  
depend only upon the x1, x2, …, xn.  Σ thus defines a well-defined transformation S of the 
x.  This transformation belongs to the group G.  Indeed, since the transformation Σ leaves 
the defining equations of G invariant, any transformation T (x → X) of the group G 
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transforms into another transformation ( )T x X→  of G; as a result, the transformation S  

is equal to 1T T− , so it belongs to G.  It is clear that the transformation Σ results from the 
prolongation of S in the way that was constructed above. 
 
 The group G may thus be prolonged holomorphically into a group Γ that transforms 
the variables x, X, u, v, …, and is defined by the invariance properties that were stated 
above. 
 
 It now remains for us to show that Γ is a Lie group and that its defining equations are 
of first order.  The first property is deduced from the theory of equivalence problems.  It 
is obvious if the defining equations of Γ are of first order, since Γ is the set of 
transformations that leave invariant the variables xν+1, …, xn, X1, …, Xn, as well as the ν 
forms ωi(x, X, u, dx), to which one may add the n – n forms ων+k = dxν+k. 
 We carry out the proof in the case where the defining equations of G are of second 
order, so they are consequently composed of equations (1), (2), (3).  Since the group Γ 
leaves the ν forms ωi invariant, it will leaves their exterior differentials dωi invariant.  
Now, each term of ωi = ( , , , )i k

ka x X u dx  contains a differential dxi, so the form dωi may 

be written: 
dωi = k i

kω ϖ , 

 
where the ϖk are linear in the dxi, dXi, and duk; these forms i

kϖ  are determined, moreover, 

only up to linear combinations of the ωk.  For each value of i, the coefficients of the linear 
combinations of the ωk that one may add to the ikϖ  form a symmetric matrix. Be that as it 

may, for any transformation Σ of Γ one will have: 
 

( , , , )i kx X u dxω  = ωi(x, X, u, dxk), 
so: 

[ ( , , ; , , ) ( , , ; , , )]k i k i k
k kx X u dx dX du x X u dx dX duω ϖ ϖ− = 0; 

 
therefore one has, for each pair of indices i, k: 
 

( , , ; , , )i k
k x X u dx dX duϖ  = ( , , ; , , )i k

k x X u dx dX duϖ   (mod dxh). 

 
It is clear that p1 of the forms i

kϖ  are linearly independent in the duh.  Choose these p1 

forms; each of them may be written: 
 

ch duh + gk dXi  (mod ωi) (ch, γk are functions of x, X, u), 
 
or further, if one refers to the equations (2) and (3): 
 

[ ( , , , ) ] ( )h k l k k
h l kc du b x X u v dx dXγ ω− + −   (mod dxh). 
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The analogous form in terms of the variables x , X , u , v  must be equal to the 
preceding one (mod dxk), but since the group Γ leaves equations (2) and (3) invariant, and 
each of the two forms considered is a linear combination of the left-hand sides of these 
equations, the two forms will be not only congruent (mod dxk), but equal.  Let ϖα (α = 1, 
2, …, p1) denote the p1 forms thus obtained.  One sees that the group Γ leaves invariant 
not only the variables xν+1, …, xn, X1, …, Xν, but also the n + p1 Pfaff expressions ωi, ϖα, 
which are linearly independent in the differentials of the variables x, X, u, and have 
coefficients that depend upon the auxiliary variables v.  Q. E. D. 
 
 If the defining equations of G are of third order then one can follow the argument in 
the same manner in such a way that the fundamental theorem is completely general: 
 
 Any Lie group admits a holomorphic prolongation Γ that is defined as the set of 
transformations that leave invariant a certain number of variables and a certain number 
of Pfaff expressions that are equal in number to the variables and are linearly 
independent in the differentials of these variables. 
 
 We add a very simple, but important, remark: The variables x1, …, xn of G are 
transformed amongst themselves by the group Γ.  Since the variables X1, …, Xν of Γ are 
invariant, one will not change the manner by which Γ transforms x1, …, xn by giving the 
Xi fixed numerical values everywhere.  One may thus assume that the forms ωi and ϖα 
that are invariant under Γ no longer contain either the X or the dX.  One thus sees that 
the variables u, when added to the variables x in order to form the transformed variables 
under Γ, are nothing but the values that are taken at a fixed point (X0) by the partial 
derivatives of the functions X of x in the transformations of the group that take (x) to (X0). 
The set of variables (x, u) constitutes the analogue of a frame in the theory of finite 
groups. 
 

The structure equations and the second fundamental theorem. 
 

 We again place ourselves in the case where the defining equations of G, which are 
assumed to be in involution, are of second order.  We have holomorphically prolonged G 
to a group in the variables x, u that is characterized by the invariance of xν+1, …, xn and 
the n + p1 forms ωi, ϖα.  The equations: 
 

1xν +  = xν+1, …, nx  = xn, 
iω  = ωi, αϖ = ϖα, 

 
are, in a certain sense, the defining equations of G, but written in a manner that has the 
advantage of being completely symmetric in the two series of variables − viz., the initial 
and transformed ones.  These equations thus comprise a system in involution, but one 
may also consider them to be the defining equations of the group Γ in the variables x, u; 
from this viewpoint, one sees that the group Γ has defining equations of first order.  We 
call a Lie group normal when its defining equations are of first order, in such a way that 
any Lie group admits a normal holomorphic prolongation.  If the Lie group is finite then 
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the normal holomorphic prolongation has r + h variables, if r is the number of parameters 
in the group and h is the number of its invariants; there are thus r parameters when the 
group is transitive.  Similar things are true for the simply transitive group of parameters. 
 Now take a normal group G in n variables xi, n – ν of which xν+1, …, xn are invariant.  
It is characterized by the property of invariance of these n – ν variables and n linear 
forms ωi(x, u; dx) (where ων+k = dxν+k).  The exterior differential dωi, as we have already 
remarked, may be written: 

dωi = k i
kω ϖ , 

 
in which the i

kϖ  are linear in the p differentials du1, …, dup, but determined only up to 

linear combinations of the dxk; i.e., the ωk.  Take p of the forms i
kϖ  that are linearly 

independent in the duk and call them ϖ1, ϖ2, …, ϖp.  The form dωi will be an expression 
that is constructed in a well-defined manner from the ωk and the ϖα.  Upon adding linear 
combinations with undetermined coefficients to the ϖα, one may profit from these 
indeterminates to annul the largest possible number of coefficients of the forms dϖα.  
Having done this, one will have: 
 

(10)   dωi = 
1

2
i k i k
k ka cρ ρ

ρ ρω ϖ ω ω+   ( i
khc  = − i

hkc ). 

 
The remaining constants are obviously invariants, and consequently, functions of xν+1, 
…, xn.  This result is the generalization of the second fundamental theorem of Lie.  One 
may remark that nothing will prevent us from making a linear substitution of the ωi with 
coefficients that are functions of the group invariants.  Equations (10) preserve the same 
form, but the differentials dxν+1, …, dxn, now become linear combinations of the ωi with 
coefficients that are functions of the invariants. 
 One must finally take into account the hypothesis by which the defining equations of 
G are of first order, which amounts to saying that the system: 
 
(11)   1xν +  = xν+1, …, nx  = xn, iω = ωi 
 
is in involution.  Now, the exterior differentiation of these equations gives: 
 
(12)    ( )i k

ka ρ ρ
ρω ϖ ϖ−  = 0. 

 
The coefficients i

ka ρ  thus form an involutive matrix.  From the theory of systems in 

involution, one may recognize that this is true by calculating the characters σ1, σ2, …, σn 
of the system (11) and by looking for the number of arbitrary parameters that the most 
general integral element in n dimensions depends upon.  The system will be in involution 
if this number of arbitrary parameters is equal to σ1 + 2σ2 + …+ rσr ; this number of 
arbitrary parameters is, moreover, nothing but the number of arbitrary parameters that 
enter into the solution of the equations: 
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i k
ka ρ

ρω ϖ  = 0  (i = 1, 2, …, n), 

 
where the ϖρ are unknown linear forms in ω1, ω2, …, ωn.  As for the numbers σ, they are 
obtained in the following manner: One forms the system of equations in ϖρ: 
 
(13)    1

ia ρ
ρϖ = 0  (i = 1, 2, …, n), 

(14)    2
ia ρ

ρϖ = 0, 

     … 
(15)    i

ha ρ
ρϖ = 0. 

 
σ1 is the number of independent equations in (13); σ1 + σ2 is the number of independent 
equations in (13) and (14), and so on; finally σ1 + σ2 + …+ σr  is the number of 
independent equations in (13), (14), …, (15) (which is p, here).  It is important to add that 
one has assumed that a linear substitution has been performed on the ωi beforehand such 
that the numbers σ1, σ1 + σ2, … are successively as large as possible. 
 Equations (10) bear the name of the structure equations of the normal group G. 
 The second fundamental theorem admits a converse that is, moreover, rather obvious: 
 
 Let ωi be n forms that are linear in dx1, dx2, …, dxn and are linearly independent with 
coefficients that are functions of the variables x and some other variables u.  Suppose 
that these forms satisfy equations of the form (10), where the coefficients ika ρ , i

kc ρ  are 

functions of just the variables xν+1, …, xn.  Suppose, in addition, that the differentials 
dxν+1, …, dxn, which are expressed linearly in terms of ω1, ω2, …, ωn, involve only 
coefficients that are functions of these variables.  Finally, suppose that the matrix of the 

i
ka ρ is involutive.  Under these conditions, there exists a normal group G that admits the 

invariants xν+1, …, xn, such that equations (10) are the structure equations. 
 
 Indeed, the equations: 

1xν +  = xν+1, …, nx  = xn, iω = ωi 
 
obviously form a system in involution, and the x , when considered as functions of the x, 
thus constitute the general solution to a system of partial differential equations of first 
order that are in involution. 
 If the coefficients of the structure equations are constants then the group G is 
transitive and these coefficients are structure constants.  All transitive groups that have 
the same structure equations are similar. 
 Before going further, we give some examples: 
 
 Example 1. – Start with a finite group X = ax + b, whose defining equations are 
obviously: 

dX = ω1 = u dx, 
du = 0 

 



Cartan – The structure of infinite groups.                                                  9 

(which gives an equation d2X / dx2 = 0 of second order).  Here, one has: 
 

dω1 = du dx = 1du

u
ω . 

 
The group Γ that is the prolongation of G to the variables x and u is therefore defined by 
the invariance of the forms: 

ω1 = u dx, ω2 = 
du

u
. 

 
 Example 2. – Let G be the group of two variables x, y and an invariant y whose finite 
equations are: 

X = x + ay, Y = y. 
The defining equations are: 
 

Y = y,  dX = ω1 = dx + 
X x

dy
y

−
; 

 
the group Γ thus coincides with G.  In order to get the structure equations, one may thus 
replace X with a fixed number in the form ω1 – for example, zero.  One then has: 
 

    ω1 = dx − 
x

dy
y

  dω1 = −ω1 
dy

y
, 

or further: 

    ω1 = dx − 
x

dy
y

,  ω2 =  dy, 

with: 

dω1 = 
1

y
ω2ω1, dω2 = 0. 

 
 Example III.- Let G be the group of homographic transformations of one variable: 
 

X = 
ax b

cx d

+
+

. 

 
One knows that the defining equation of the group is: 
 

(1)      X′X″ − 
3

2
 X″2 = 0. 

Upon setting: 
X′ = u,  X″ = v, 

we have the system: 
(2)      dX = ω1 = u dx, 
(3)      du = v dx, 
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(4)      dv = 
33

2

v
dx

u
. 

One has: 

dω1 = du dx = 
du vdx

u dx
u

−
 = 1du vdx

u
ω−

; 

 

the form 
du v dx

u

−
 is thus invariant; call it ω2: 

ω2 = 
du v

dx
u u

− . 

From this, one deduces that: 
 

 dω2 = 
2

1 v
dvdx du dx

u u
− +  = 1

2 3

1 v
dv du

u u
ω − + 

 
 

    =  
2

1
2 3

1
( )

v v
dv dx du vdx

u u u
ω

  
− + + −  

  
, 

 
from which, one obtains the new invariant form: 
 

ω2 = 
2

2 3 3

1 1

2

v v
dv du dx

u u u
− + + . 

From this, one deduces: 
 

dω2 = 
2

3 3 4

1 3

2

v v
du dv dvdu du dx

u u u
+ −  = ω3ω2. 

 
The structure equations are, in turn: 
      dω1 = ω2ω1, 
      dω2 = ω3ω1, 
      dω3 = ω3ω2. 
 
 Example IV. – Let the group G be defined by the equations: 
 

X = x + f(x),  Y = y, 
 
where f(y) is an arbitrary analytic function of y.  The defining equations are: 
 
(1)      Y = y, 
(2)      dX = dx + u dy. 
One thus has: 

ω1 = dx + u dy,  ω2 = dy, 
with the structure equations: 
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dω1 = ϖ dy = ϖ ω2,  dω1 = 0, 
 
in which ϖ denotes the form du plus an arbitrary multiple of dy. 
 
 Example V. – Let a transitive group be defined by: 
 

X = f(x), Y = 
( )

y

f x′
, 

 
where f(x) is an arbitrary function of x; f′ (x) is its derivative.  The defining equations are: 
 

      dX = 
y

dx
Y

, 

      dY = 
Y

dy u dx
y

+ ; 

 
they are of first order.  Give Y the numerical value 1 in their right-hand sides; we will 
then have: 

ω1 = y dx, ω2 = 
dy

u dx
y

+ , 

with the structure equations: 
 

dω1 = ω2ω1,  dω2 = ϖ ω1  (mod )
du

dx
y

ϖ 
= 

 
. 

 
We remark here that the group G is the holomorphic prolongation of the group X = f(x), 
whose defining equation is dX = u dx, with: 
 

ω1 = u dx,  dω1 = ϖ ω1. 
 
 

The third fundamental theorem. 
 

 The question whose answer is the third fundamental theorem is the following one: 
May the coefficients i

khc  = − i
hkc , i

ka ρ  that enter into the defining equations of a normal 

group be chosen arbitrarily as functions of the group invariants?  We limit ourselves to 
the case where the group is transitive; one will have a few modifications to make in the 
case where the group is intransitive. 
 In summation, the problem is the following one: 
 
 Is it possible to find n + p forms ωi, ωα that are independent of the n + p variables 
that satisfy the equations: 
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(10)    dωi = 
1

2
i k i k h
k kha cρ

ρω ϖ ω ω+   ( i
hkc  = − i

khc ), 

 
where the coefficients are given constants, such that i

ka ρ  form an involutive system? 

 
 Indeed, it suffices that one may find forms that satisfy these conditions, and then the 
equations ωi = 0 obviously form, from (10), a completely integrable system, so one may 
then suppose that x1, x2, …, xn are first integrals of the this system, and from the converse 
of the second fundamental theorem there will indeed exist a normal group G that operates 
on these n variables and admits (10) for its structure equations.  More generally, one may 
look for forms ωi and ϖα that are linear in N ≥ n + p given variables, with the reservation 
that the n + p forms are linearly independent.  We call these variables ξn. 
 If we set: 
(16)    ωi = ip d λ

λ ξ ,  ωα = q dα λ
λ ξ  

 
then putting the problem into an equation furnishes quadratic exterior equations: 
 

(I)     idpλ ddxλ = 
1

2
i k i k h
k kha cρ

ρω ϖ ω ω+ , 

 
and on the right-hand side of them one supposes that the forms ωi and ϖα have been 
replaced by their values (16). 
 From the general theory of Pfaff system, one must add to equations (I) the ones that 
one deduces by exterior differentiation, taking equations (I) into account.  The calculation 
gives: 

(II)   i h
ka d ρ

ρω ϖ  = 
1 1

( )
2 2

i k h i k k i h l i h h l m
k h kh l hl k kh lma a c a c c c cρ α ρ

ρ ρ ρ ρω ϖ ϖ ω ω ϖ ω ω ω+ + + , 

 
in which one has naturally assumed that the forms ωi and ϖα are replaced by their 
expression (16). 
 One obtains necessary conditions for compatibility by expressing the possibility of 
satisfying equations (II) upon replacing the forms dϖα with certain quadratic forms that 
are constructed with the ωi and ϖρ in such a way that: 
 

(17)    dϖα = 
1 1

2 2
k i k h

k kh
α λ µ α λ
λµ κγ ϖ ϖ δ ω ϖ ε ω ω+ + . 

 
By identification, one finds the relations: 
 
(18) i k i k i

k h k h ka a a a a ρ
β α α β ρ αβγ− −  = 0   (i, h = 1, 2, …, n; α, β = 1, 2, …, p); 

(19) i k i k i k i i
k l kl h k kl h i l hc a c a a c a aρ ρ

β α α α ρ β ρ αδ δ− + − + = 0 (i, h, l = 1, 2, …, n; α = 1, 2, …, p); 

(20) i k i k i k i i i
kh lm kl mh km hl h lm l hm m hlc a c c c c a a aρ ρ ρ

ρ ρ ρε ε ε+ + − − −  = 0, 

        (i, h, l, m = 1, 2, …, n). 
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 It is necessary that these equations be compatible, when considered as linear 
equations in the unknowns αλµγ , k

α
λδ , kh

αε ; this naturally entails algebraic relations 

between the constants i
ka ρ  and i

khc . 

 Suppose that these relations are verified.  The system (I) is then in involution.  In 
order to prove this, one must evaluate the number of arbitrary parameters that the most 
general n-dimensional integral element depends upon, calculate the characters S1, S2, …, 
Sn of the system, and verify that the former number has the value that the theory of 
system in involutions gives for the characters Si . 
 In order to make the first evaluation (viz., the number of arbitrary parameters upon 
which the mist general N-dimensional integral element depends), first consider equations 
(II).  By hypothesis, they are verified by the values of the dϖα of the form (17), with 
values that are determined by the coefficients γ, δ, ε.  The most general solution of (II) 
will be obtained upon adding the most general forms Πα that satisfy the equations: 
 
(21)     i

ka ρ ωk Πρ = 0 

 
to the values (17).  Now, the equations i

ka ρ ωk ϖρ = 0, in which the unknowns are the 

linear forms ϖα, admit a general solution that depends upon σ1 + 2σ2 + … + rσr arbitrary 
parameters, namely: 

ϖα = kbα
λ  tλ ωk, 

 
where the tλ are the parameters in question.  It is then obvious that equations (21) will be 
verified if one sets: 
(22)     Πα = kbα

λ ωk χλ, 

 
in which the χλ are forms with arbitrary coefficients that are linear in dξ1, …, dξN.  One 
thus introduces N(σ1 + 2σ2 + … + rσr) arbitrary coefficients in the most general 
expressions for dϖα that satisfy equations (II).  However, this number must be reduced by 
the fact that there are two terms in Πα.  One of them is in ω1ω2 and the other one is in 
ω2ω1, and the reduction into just one of these terms and analogous terms diminishes the 
number of arbitrary coefficients.  One may rigorously calculate the number by which one 
must reduce N(σ1 + 2σ2 + … + rσr) in order to have the exact number of remaining 
arbitrary constants.  We leave aside this determination in order to point just the result: 
The number H of the arbitrary coefficients (that are independent of the ipλ  and qα

λ ) that 

enter into the solution of the equations (II) in the dϖα, as we have envisioned it, is: 
 

(N – 1) σ1 + (2N – 3) σ2 + (3N – 6) σ3 + … = 
1

( 1)

2

r

i
i

i i
iN σ

=

+ −  
∑ . 

 
 In reality, the number H may be greater than the preceding number, since there may 
exist solutions of equations (21) that do not take the form (22).  One must then write: 
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H ≥ 
1

( 1)

2

r

i
i

i i
iN σ

=

+ −  
∑ . 

 
This still does not give us the number of arbitrary parameters that the most general N-
dimensional integral element of equations (I) and (II) depends upon.  In order to obtain it, 
we may replace equations (II) with the equations: 
 
(II ′)      dq dα λ

λ ξ  = dϖα, 

 
where we have replaced dϖα with the value obtained that involves H arbitrary 
parameters.  Any N-dimensional integral element will be defined by: 
 
      idpλ  = ip d µ

λµ ξ , 

      dqα
λ  = q dα µ

λµ ξ . 

 
One sees immediately that, upon taking the terms in dξλ dξµ in equations (I) and (II′), that 
these equations have the form: 
      i ip pλµ µλ−  = … 

      i iq qλµ µλ−  = …, 

 
in which the right sides are quantities that are well-defined functions of the ipλ , the qα

λ , 

and the H arbitrary parameters that were in question above.  One thus has 
2( 1)

2

N N −
 

linear relations in N3 unknowns for fixed values of these H arbitrary parameters.  As a 
result, the total number of arbitrary parameters that the most general N-dimensional 
integral element of the system (I), (II) depends upon is: 
 

2( 1)

2

N N −
 + H ≥ 

2

1

( 1) ( 1)

2 2

n

i
i

N N i i
iN σ

=

− + + −  
∑ . 

 
 We pass on to the calculation of the characters S1, S2, …, SN−1 of the system.  We 
shall determine the integers Σ1, Σ1 + Σ2, … such that one has: 
 

S1 ≥ Σ1, S1 + S2 ≥ Σ1 + Σ2, …, 
S1 + S2 + … + SN−1 ≥ Σ1 + Σ2 + … + ΣN−1 . 

 
In order for the system to be in involution, it is necessary and sufficient that the number 

2( 1)

2

N N −
 + H that we just found, which may not exceed: 

 
N2 – (N – 1) S1 – (N – 2) S2 − … − SN−1 , 
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must be equal to it.  Now, this latter number is itself less than or equal to: 
 

N2 – (N – 1) Σ1 – (N – 2) Σ2 − … − ΣN−1 . 
 
We shall prove that this latter number is equal to: 
 

2

1

( 1) ( 1)

2 2

n

i
i

N N i i
iN σ

=

− + + −  
∑ . 

One will then have: 

  
2( 1)

2

N N −
 + H  ≥ 

2

1

( 1) ( 1)

2 2

n

i
i

N N i i
iN σ

=

− + + −  
∑  

 ≥ N2 – (N – 1) S1 – (N – 2) S2 − … − SN−1 . 
 
As a result, the system is in involution, and the sign in the equality must be replaced 
everywhere by the inequality sign.  In will then result that, on the one hand, Si = Σi, and 
on the other hand, one can be sure that equations (22) provide the most general solution 
to (21). 
 In order to calculate the numbers Σ, one forms the left-hand sides of equations (I) and 
(II); they are the only parts of these equations in which the differentials of the unknown 
functions ipλ , qα

λ  enter.  One obtains: 

(I)      idp d λ
λ ξ  = … 

(II)     i k
ka dp dq d dρ λ µ

ρ λ µ ξ ξ  = … 

 
 We will have a number Σ1 ≤ S1 by taking the coefficients of dx1 in (I), which gives the 
n differentials 1

idp ; one will then take Σ1 = n.  We will get a number Σ1 + Σ2 ≤ S1 + S2 

upon taking the coefficients of dξ1 and dξ2 in (I) and the coefficients of dξ1 dξ2 in (II), 
which gives: 

1
idp , 2

idp , 1 2 2 1( )i k k
ka p dq p dqρ ρ

ρ − , 

 
i.e., at least 2n + σ1 linearly independent solutions.  (For example, it will suffice to set 1

1p  

= 1, while the other 1
kp  are zero.)  We thus take Σ2 = n + σ1.  Upon following through on 

this, one finds: 
Σ1 = n,  Σ2 = n + σ1,  Σ3 = n + σ1 + σ2, 

Σ4 = n + σ1 + σ2 + σ3 ,  …, ΣN−1 = n + σ1 + σ2 + … + σN−1 , 
 
if one sets: 

σn−1 = … = σN−1 = 0. 
 

One then easily finds the stated equality: 
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N2 – (N – 1) Σ1 – (N – 2) Σ2 − … − ΣN−1 = 
2

1

( 1) ( 1)

2 2

n

i
i

N N i i
iN σ

=

− + + −  
∑ . 

 
 It is pointless to remark that this third fundamental theorem generalizes that of Lie, 
since the classical Lie relations between the i

khc  reduce to the relations (20), in which one 

has suppressed the terms in i
khε . 

 
The linear stability group; systatic plane element. 

 
 If one is given a Lie group G, which is not necessarily normal, then the set of 
transformations of the group G that leaves a generic point (x) fixed forms a subgroup g of 
G that one calls the stability group of the point (x).  If the group G is finite then g is a Lie 
group, but this is not true in general when the group G is infinite.  Be that as it may, the 
group g linearly transforms the vectors dxi that issue from the point (x), and the group that 
results from transforming them is a linear group that we call the linear stability group of 
the point (x).  We shall show that the infinitesimal transformations of this group appear in 
the structure equations of the group G. 
 Start with the original form of the defining equations of the group: 
 
(1)     Xν+1 = xν+1, …, Xn = xn, 
(2)    dXi = ( , , )i k

ka x X u dx   (i = 1, 2, …, n). 

 
If one fixes the point (x) and the point (X) then formulas (2) indicate how a 
transformation T of G takes (x) to (X) transforms the vector (dx) into the vector (dX).  
This transformation translates into the linear substitution Su of the coefficients i

ka  that is 

carried out on the components dxk of the vector (dx).  If we now consider two 
transformations T and T′ of G that both take (x) to (X) then the transformation T′ −1T of G 
belongs to the stability group of (x), and the corresponding linear substitution of the 
linear stability group is the substitution 1u uS S−

′ .  The substitution 1
u uS S−

′  then generates the 

linear stability group γ when one varies u and u′.  One may also regard it as being 
generated by the substitutions 10 uS S− , where S0 corresponds to fixed numerical values of 

u′.  The substitutions Σu = 1
0uS S−  also generate a group, since one has: 

 
1

0uS S−  = 1 1
0 0 0( )uS S S S− − ; 

 
it is the transform of the group γ by S0 .  It is again the linear stability group, but only 
when one takes the components of the vector (dx) to be the quantities that result from the 
substitution S0 that is performed on the dxk – i.e., the quantities ωi(x, X, u0, dx).  We again 
denote this group by γ. 
 Having said this, consider the infinitesimal substitution 1

u u uδ
−

+Σ Σ  of γ.  It is the one 

that gives the ωi(x, X, u + δu, dx) when it is applied to the quantities ωi(x, X, u, dx).  Now, 
one has: 
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ωi(x, X, u + δu, dx) = ωi(x, X, u, dx) + 
l

k

k
u

u

ω δ∂
∂

. 

 
However, from the structure equations: 
 

dωi = 
1

2
i k h i h
kh hc a ρ

ρω ω ω ϖ+ , 

one has: 
l

ku

ω∂
∂

 = i k
ka eρ

ρω , 

 
upon letting eρ denote the result that follows when one replaces dxk with 0 in ϖρ and duk 
with – δuk.  It then results that the equations of the infinitesimal transformations of the 
linear stability group are: 
(23)     δωi = i k

ka eρ
ρ ω , 

with p1 parameters e1, e2, …, 1pe . 
 The preceding has implicitly assumed that the group G is normal; in this case, if one 
expresses the idea that the infinitesimal transformations: 
 

(24)     Eα f = i k
k i

f
a αξ

ξ
∂
∂

 

 
generate a structure group k

α
µγ  then one finds equations (18) precisely.  The compatibility 

of these equations, which is necessary for the direct statement of the third fundamental 
theorem, thus simply expresses the idea that the transformations (23) generate a group. 
 If the group G is not normal then the preceding results subsist, but the ϖα are then the 
forms ω that are invariant under the normal holomorphic projection of G that presents 
itself during the consideration of those defining equations for G that are of first order. 
 In any case, the preceding results lead us to a new notion.  Take a vector (dx) whose 
components annul the np1 forms i k

ka αω  (i = 1, 2, …, n; α = 1, 2, …, p1) that are 

introduced in the right-hand sides of equations (23).  Any infinitesimal transformation of 
γ is left invariant, and conversely, any vector that is invariant under γ annuls these np1 
forms.  We the name of systatic system to the Pfaff system: 
 
(25)    i k

ka αω  = 0 (i = 1, …, n; α = 1, …, p). 

 
 The vectors that issue from the point (x) and satisfy the equations of that system 
generate a plane element E that we call the systatic plane element that is attached to the 
point (x).  This terminology is explained by the fact that any transformation of G that 
leaves the point (x) fixed simultaneously leaves fixed all of the infinitely neighboring 
points to (x) that are situated in the plane element E that is associated with (x). 
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 From this, it results that the system (25) is completely integrable.  One may verify this 
by calculation; however, one may also account for this in an intuitive manner (1).  
Consider a curve (C) that is tangent at each of its points to the systatic element that is 
associated with that point.  Any transformation of G that leaves fixed a point (x) of the 
curve will likewise leave fixed the infinitely neighboring points, and therefore, in 
succession, all of the points of C.  The locus of points that are invariant under the 
transformations of the (nonlinear) stability group of a point (x) is therefore a manifold 
that admits all of the tangents to the systatic element at each of its points.  These 
manifolds are the integral manifolds of the systatic system (25), which is therefore 
completely integrable. 
 Naturally, it might happen that the systatic plane element reduces to the point (x) 
itself, in which case, the group G is called asystatic; this will happen when the number of 
equations (25) is the number n of independent ones. 
 

Essential invariants. 
 

 The consideration of the systatic Pfaff system leads us to an important notation: that 
of essential invariant. 
 We first remark that if one makes an arbitrary change of variables then a systatic 
system remains invariant; this is a simple consequence of its geometric significance.  
Having said this, among all of the linear combinations of the equations of this system, 
consider the ones that depend upon only the differentials dxν+1, …, dxn of the group 
invariants.  One may assume that, with a small change of notations, they are the 
differentials of a certain number of invariants that we call y1, …, yr; we denote the other 
invariants of the group by z1, …, zr.  We finally reserve the letter x to denote the variables 
x1, x2, …, xr.  We may likewise assume that the first integrals of the systatic system are x1, 
x2, …, xq (and the invariants y1, …, yr). 
 Having made these conventions, consider the defining equations of the group G, 
which is not necessarily normal, and among them, the equations: 
 

ky  = yk, hz = zh, iω = ωi, 
 

where the independent variables are the x and the unknown functions are the x .  We 
regard the quantities x1, …, xq, y1, …, yr, which are first integrals of the systatic system, 
as constant parameters, while the quantities 1x , …, qx  are unknown functions of the 
other variables xq+1, …, xν, z1, …, zs.  Since the quantities i k

ka ρω  then all become zero, 

and, in turn, the quantities i k
ka ρω , as well (by virtue of the equations iω = ωi), the exterior 

differentiation of the equations iω = ωi in n unknown functions 1x , 2x , …, xν  gives 
identities, since the forms idω  − dωi are annulled when one takes the equations iω = ωi 
into account.  The system considered is therefore completely integrable.  Let: 
 
(26)   ix  = Fi(x, y, z, A1, A2, …, An)  (i = 1, 2, …, n) 
 
                                                
 (1) The proof that follows has been ultimately judged to be dubious by E. Cartan.  
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be the general solution, in which the A are integration constants. 
 This result proves that any transformation of the group G may be put into the form 
(26), in which the Fi are well-defined functions of their arguments and the Ai are certain 
functions of the first integrals x1, x2, …, xq, y1, y2,…, yr of the systatic system.  One may 
add that for a given transformation S of the group G the functions Ai are perfectly 
determined; one necessarily finds functions that depend only upon the x1, x2, …, xq, y1, 
y2,…, yr. 
 This being the case, now give fixed numerical values 0

kx  to the ν variables xk, and 

make the change of variables that is provided by the equations: 
 
(27)    xi = Fi(x0, y, z, ξ1, ξ2, …, ξν), 

equations which give the ξi as well-defined functions of the x, y, and z.  Then perform a 
well-defined transformation T of the group on the point (x0, y, z), and let (ξ, y, z) be the 
transformed point (expressed with the new coordinates).  The transformation T 
corresponds to well-defined functions Ai(x1, …, xq, y1, …, yr), which reduce to well-
defined functions Ai(y) for x = x0 .  A comparison of formulas (26) and (27) shows that 
the coordinates of the transformed point are simply the quantities Ai(y).  If one then 
applies the same transformation T to the point (x0, y, z′) then one will obtain a new point 
(ξ, y, z′) that has the same values Ai(y) of the ξ. 
 Now, let: 

iξ  = ϕi(ξ, y, z) 
 

be the equations of an arbitrary transformation S of the group (expressed in terms of the 
new variables).  Give (arbitrary) fixed numerical values to the ξ, y, z; thus there always 
exists at least one transformation T of the group that takes the point (x0, y, z) (the old 
variables) to the point (ξ, y, z) (the new variables), and the transformation ST takes the 
same point (x0, y, z) to the point (ξ , y, z).  Now, start with the point (x0, y, z′).  The 

transformation T will give the point (ξ, y, z′) and the transformation ST will give the point 
(ξ , y, z′), with the same values of the ξi and the iξ .  As a consequence, the 

transformation S simultaneously takes the point (ξ, y, z) to the point (ξ , y, z) and the 

point (ξ, y, z′) to the point (ξ , y, z′).  One thus has: 
 

iξ  = ϕi(x, y, z) = ϕi(ξ, y, z′). 
The equalities: 

ϕi(ξ, y, z) = ϕi(ξ, y, z′) 
 

are true no matter what numerical value one gives to the arguments ξ, y, z, z′, so the 
functions ϕi depend upon only z. 
 One may thus perform a change of variables in such a manner that the variables ξ 
and y are transformed amongst themselves by the group G.  The group G thus presents 
itself as the direct product of a group G in n – s variables with r invariants and a group in 
n variables that is transformed identically. 



Cartan – The structure of infinite groups.                                                  20 

 Now, this is true no matter how one disposes of the z1, z2, …, zs.  However, it is 
impossible to do more in this sense, since, as we have said, the systatic system is 
invariant under any change of variables; it will thus always contain the equations dy1 = 0, 
…, dyr = 0.  If one may eliminate any of the invariants y as one has eliminated the 
invariants z then the differentials of these invariants y are thus eliminated, and they 
obviously may not appear in the left-hand sides of the systatic equations of G, which are 
the same as for G′. 
 We say that the invariants y, which are first integrals of the systatic system, are the 
essential invariants of the group. 
 If the group is finite and of order ν then the systatic plane element fills up all space.  
There is therefore no systatic system and no essential invariant: Any finite group is 
isomorphic to a transitive group, which is well-known.  This theorem is not true for 
infinite groups [example: X = x + f(y), Y = y, where y is an essential invariant, and 
remains an essential invariant for all isomorphic groups]. 
 
 Example I. – Recall the example that was already cited of the group: 
 

X = x + ay, Y = y  (ν = 1, n = 1), 
with: 

dω1 = 2 11

y
ω ω , dω2 = 0; 

 
there is no systatic system and consequently no essential invariant.  Indeed, upon setting x 
= ξy, one has: 

ξ  = ξ + a, y  = y. 
 

This group is the direct product of the transitive group ξ  = ξ + a with the group y  = y.  
One may see directly that the stability group of the point (x0, y0) reduces to the identity 
transformation.  The systatic plane element is therefore two-dimensional, and there is no 
systatic system. 
 
 Example II. – Take the group: 
 

X = x + ay + b,  Y = y  (ν = 1, n = 2). 
One has: 

ω1 = dx + u dy, ω2 = dy, 
with: 

dω1 = du dy =  ϖ1ω2,  dω2 = 0 (ϖ1 = du), 
and: 

dϖ1 = 0. 
 
The systatic system is formed from the equation ω2 ≡ dy = 0, so the invariant y is 
essential. 
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 Example III. – Let the group be: 
 

X = x + ay + bz, Y = y,  Z = z (ν = 1, n = 3). 
 

One has: 

ω1 = dx − 
dz dz

x u dy y
z z

 + − 
 

, ω2 = dy, ω3 = dz, 

with: 

dω1 = − 1 1 2 3dz y

z z
ω ϖ ω ω + − 

 
, (ϖ1 = du) 

and: 
dϖ1 = 0. 

The systatic system is: 
2 3y

z
ω ω−  ≡ dy − 

y
dz

z
 = 0; 

 
the invariant y / z  is essential.  Indeed, upon setting ξ = x / z, one has: 
 

ξ = ξ + 
y

a
z

 + b, 

 
and all that remains is the essential invariant y / z. 
  
 

Bibliography.  
 

 This conference presentation contains the substance of the first part of the memoir on 
the structure of infinite groups (Annales École Normale, 1904) and part of the memoir 
that followed it (Annales École Normale, 1905).  The notations have been modified 
slightly.  The proof of the fundamental theorem is precise, as well as everything that 
concerns the linear stability group (which was called the “adjoint group” in the memoir of 
1905) and the theory of essential invariants.  The proof that was sketched out at this 
conference of the converse of the third fundamental theorem is simplified and made more 
rigorous by the use of the theorems of Kaehler.  Finally, the terms “normal group,” 
“stability group,” and “systatic plane element” are new. 
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