
7 Ways to Optimize
Jenkins/Hudson

White Paper

Kohsuke Kawaguchi
CloudBees Architect & Jenkins/Hudson Creator

kkawaguchi@cloudbees.com

Twitter: @kohsukekawa

Hudson/Jenkins is widely recognized

as a core tool for developers, QA

engineers, project managers, release

engineers, DevOps, and managers.

It is also a crucial open source option

for teams using Agile methodology,

in which continuous integration is a

fundamental practice.

While Jenkins is not diffi cult to set

up and confi gure, you will get better

results, support more projects and

save administration time if you know

the tips, tricks and optimal settings

that can make your installation

function most eff ectively. This white

paper, written by the creator and

community lead of the Jenkins/

Hudson project, off ers seven best

practices you can use to ensure

that your continuous integration

environment is optimally confi gured.

Apply these tips to make sure

Jenkins is set up to expand quickly

enough to meet your continuous

integration needs.

1

7 Ways to Optimize Jenkins

www.cloudbees.com

Tips at a Glance

 1. Make sure you have

backups – better late than

never

 2. Plan disk usage – make sure

it’s expandable

 3. For easier installation

and migration, use native

packages if possible

 4. Do distributed builds

 5. Use labels to optimize

resource utilization and

improve manageability

 6. Make your Jenkins URL

short and memorable

 7. Discard old build records to

keep your Jenkins instance

healthy

About the Author

Kohsuke Kawaguchi is the

creator and community lead of

the Jenkins (formerly Hudson)

continuous integration server, as

well as an architect for CloudBees.

He wrote the majority of Jenkins/

Hudson core single-handedly and

has been involved in JAXB, Metro

web services stack, GlassFish v3,

and RELAX NG at Sun Microsys-

tems. Kohsuke is also known for

a large number of open-source

projects, such as args4j,

YouDebug, com4j, Animal

Sniff er, Sorcerer, wagon-svn,

MSV, and Parallel JUnit exten-

sion. Learn more.

Introduction

Jenkins (formerly Hudson) is the world’s most popular open source Continuous Integration soft-

ware, with more than 25,000 sites using it to deliver superior-quality products. Jenkins provides

two critical functions that help teams improve code quality:

 . Continuously build and test

 . Monitor jobs

Jenkins is widely recognized as a core tool for developers, QA engineers, project managers,

release engineers, operations and managers alike. You can set it up to watch for any code

changes in places like SVN and Git; automatically do a build with tools like Ant and Maven; initi-

ate tests; take actions like roll back; and set up alerts to notify you of any issues that arise along

the way. Over the last few years, Jenkins has become the hub of the development lifecycle and

has proven to be an effi cient tool to deliver superior-quality code, increase productivity, and

reduce costs. Teams using Agile methodology, in which continuous integration is a fundamental

practice, will fi nd Jenkins particularly useful.

This paper gives you seven easy techniques you can apply immediately to ensure a smoothly

running Jenkins production server. While Jenkins is not diffi cult to set up and confi gure, you

will get better results, support more projects and save administration time if you know the tips,

tricks and optimal settings that can make your installation function most eff ectively. Even if

you are already running Jenkins, it’s not too late to implement these simple best practices that

ensure reliable, optimized production operation.

#1: Back Up and Restore

Problem
Teams often procrastinate taking backups. When disaster hits, they are left scrambling.

Background
If you’re like me or other typical folks out there, you’ve probably been postponing backups

because you have more important things to worry about. But as you surely know, it’s very

important to have a backup, and better late than never!

In addition to disaster recovery, Jenkins backups are useful insurance against accidental confi gu-

ration changes, which might be discovered long after they were made. A regular backup system

lets you go back in time to fi nd the correct settings.

Solution: Just Do It!
So don’t wait, just do it! Fortunately, it’s easy…

2

7 Ways to Optimize Jenkins

www.cloudbees.com

Backup Planning
Jenkins stores everything under the Jenkins Home directory, $JENKINS_HOME1, so the easi-

est way to back it up is to simply back up the entire $JENKINS_HOME directory. Even if you

have a distributed Jenkins setup, you do not need to back up anything on the slave side.

Another backup planning issue is whether to do backups on live instances without taking Jen-

kins offl ine. Fortunately, Jenkins is designed so that doing a live backup works fi ne – confi gura-

tion changes are atomic, so backups can be done without aff ecting a running instance.

Optimizing Backups
Optimization 1: Back up a subset of $JENKINS_HOME
Although $JENKINS_HOME is the only directory you need to back up, there’s a catch: this

directory can become rather large. To save space, consider what parts of this directory you really

need to back up and back them up selectively.

The bulk of your data, including your job confi guration and past fi led records, lives in the /jobs

directory. The /jobs directory holds information pertaining to all the jobs you create in Jenkins.

Its directory structure looks like this:

 /jobs/*
 – builds (build records)

 – builds/*/archive (archived artifacts)

 – workspace (checked out workspace)

The /builds directory stores past build records. So if you’re interested in confi guration

only, don’t back up the builds. Or perhaps you need to keep build records but can aff ord to

throw away archived artifacts (which are actually produced binaries). You can do this exclud-

ing builds/*/archive; note that these artifacts can be pretty big, excluding them may

introduce a substantial savings.

Finally, the workspace directory contains the fi les that you check out for the version control sys-

tems. Normally these directories can be safely thrown away. If you need to recover, Jenkins can

always perform a clean checkout, so there’s usually no need to back up your workspace.

Optimization 2: Use OS-level Snapshots

If you want maximum consistency in your backups, use the snapshot capability in your fi le

system. Although you can take live backups, they take a long time to run, so you run the risk of

taking diff erent data at diff erent time points… which may or may not be a real concern. Snap-

shots solve this problem.

Many fi le systems let you take snapshots, including Linux Logical Volume Manager (LVM) and

Solaris ZFS (which also lets you take incremental backups). Some separate storage devices also

let you create snapshots at the storage level.

Don’t Back These Up
The following directories contain

bits that can be easily recreated, so

you don’t need to include these in

the backup:

 . /war (exploded war)

 . /cache

(downloaded tools)

 . /tools
(extracted tools)

1 To fi nd the $JENKINS_HOME

location, go to the Confi gure System

menu.

3

7 Ways to Optimize Jenkins

www.cloudbees.com

CloudBees’ enhanced Jenkins product, Nectar, can also help you with snapshots and backups.

Look for more information about Nectar in the Appendix.

Test your Restore!
Nothing is worse than thinking you have a backup and then when disaster hits, fi nding out you

can’t actually recover. So it’s worth testing to make sure you have a proper backup.

The JENKINS_HOME directory is “relocate-able” – meaning you can extract it anywhere and it still

works. Here’s the easiest way to test a restoration:

 1. Copy the backup Home directory somewhere on your machine, such as ~/backup_test
 2. Set JENKINS_HOME as an environment property and point to backup_test; for example,

export JENKINS_HOME=~/backup_test
 3. Run java -jar jenkins.war --httpPort=9999

This sequence of commands will pick up the new JENKINS_HOME with the backup_test
directory. You can use this instance of Jenkins to make sure your backup works. Be sure to specify

a random HTTP port so you don’t collide with the real one – otherwise the server won’t start!

#2: Plan for Disk Usage Growth Up Front

Problem
Running out of disk space as your Jenkins installation consumes more resources.

Background
As you set up Jenkins, the most important disk planning consideration is to prepare for inevitable

disk usage growth. Jenkins disk usage can grow quickly, particularly when you start hosting

multiple jobs.

Solution: Prepare for Disk Usage Growth
Storage is cheap, so make sure you have enough space in the short term. And because it’s hard to

estimate the necessary amount of storage up front, your best bet is to make sure you can grow later,

which often needs some upfront planning. Note that you don’t need to waste money on expensive

SCSI disks, because Jenkins does not require fast disk access. Most of the disk space is used for stor-

ing bits that are rarely accessed. Spend your money on bigger devices, not faster ones.

Spanned Volume on Windows

On NTFS devices (e.g. on Windows), you can create a spanned volume: take an existing volume, add

a new one at the end, and then make the combined volume behave as a single volume. Then it’s

simple to add new disks.

Hands-On Training:

Mastering Continuous
Integration with Jenkins

Become a Jenkins expert, check

out CloudBees’ Jenkins training

courses!

http://cloudbees.com/training.cb

4

7 Ways to Optimize Jenkins

www.cloudbees.com

In this case the only planning you need to do is to put Jenkins in a separate partition when you install it, so you can

convert to a spanned volume later.

LVM Volume Manager

On Linux, the LVM volume manager does something similar, but unlike Windows, you have to confi gure the LVM up front:

set up LVM, create the Volume Group and Logical Volume, and set up a volume in your manager. One you have the fi rst

volume in LVM, you can expand the fi les system and add more disks later2.

Solaris ZFS

Solaris ZFS is much more fl exible and thus very easy to prepare for disk expansion. On ZFS, $JENKINS_HOME should be

on its own fi le system, which allows you to easily create snapshots, backups and other nice things.

Use symlinks

If you already have Jenkins running and cannot use any of the solutions above, use symbolic links (symlinks) to ease your

pain. Simply identify the jobs that take up a lot of disk space, copy those directories into separate volumes, and then

symlink to those directories.

#3: Use Native Packages
Problem
Two, actually: you want to be able to simplify migration of instances to diff erent machines, as well as start Jenkins upon

machine startup.

Background
Java developers aren’t always aware of some of the powerful features in their underlying operating systems, so I want to

mention some highlights that will help with Jenkins. For example, developers tend to ignore the OS-specifi c installation

packages as they start building their Jenkins environment. As the system grows, these packages help ease migrations to

other machines and are also useful to start Jenkins as the machine comes up.

Solution: Use OS-specifi c installation packages over the default
war-based installation.
In addition to the Jenkins war, Jenkins is available as OS-installable packages for Debian, RedHat/CentOS and Suse3. Both

installing and upgrading Jenkins is much easier with these packages. So unless you have to choose a specifi c application

server or have some special requirements on your application server, package-based installation is highly recommended.

It’s also more reproducible, so if you need to move your Jenkins service into another machine, this native package installa-

tion is much easier than going through all the steps of setting up your corresponding application server.

The native packages come with an init script, where a daemon starts up Jenkins after you boot the machine and runs

the Jenkins process.

2 Refer to Linux docs for detailed steps.
3 Windows installer is in the works and hopefully will be available soon.

5

7 Ways to Optimize Jenkins

www.cloudbees.com

Confi guration fi les follow the OS level conventions, and boot-up parameters for Jenkins are located in these fi les:

 . etc/default/Hudson for Debian

 . etc/sysconfi g/Hudson for RPM

#4: Take Advantage of Distributed Builds

Problem
You will eventually outgrow the ability to run builds on just one machine; as well, single systems do not take advantage

of the full power of Jenkins.

Background
I am always surprised at how people make do with a single-system Jenkins, but I can promise you will grow beyond

a single system… the real question is when.

Solution: Do Distributed Builds!
One best practice I can’t recommend enough is to try out Jenkins’ distributed builds. Dealing with the amount of compres-

sion load is not the only reason to use distributed builds. You also need isolation between builds. For example, when your

tests depend on local resources like a local database or particular TCP/IP port, you can’t use the same machine to run tests

that access those resources. And while you can always work around these problems by tweaking your build script and tests

and such, it’s much easier if you have boxes that provide natural isolation.

Another driving factor for distributed builds is that if you’re testing against multiple platforms, you often want to have

more diversity in the environment. This situation inherently calls for multiple systems.

To get started with distributed builds and create Jenkins slaves to connect to your master, do the following:

 1. Choose Manage Hudson, then Manage Nodes (or just click Build Executor Status).

Figure 1: Managing nodes

6

7 Ways to Optimize Jenkins

www.cloudbees.com

 2. Create a new node and name it (e.g. NewSlave, as shown in Figure 2).. The screen in Figure 3 appears. Here you can enter confi guration information for the Jenkins master
to connect to the slave.. The Master will bring up the slave and then start allocating jobs to it.

Figure 2: Creating a new node

Figure 3: Confi guring a new node

And that’s it! Now you have a cluster of machines onto which Jenkins can delegate the load.

Bonus Tip: Slave Reconnectivity
Once you’re doing distributed builds, let the masters launch the slaves if you can. Allow the Jenkins master to proactively

talk to the slave and then bring the instance up. This way there is no intervention from the client side; the master will bring

up the slaves as it allocates jobs or bring the slave online if the slave machine goes down. Jenkins also supports cases

where the slave should initiate connection back to master.

7

7 Ways to Optimize Jenkins

www.cloudbees.com

To set connectivity, specify the “Launch method” option as you confi gure settings for a new

slave (as shown in Figure 3). You have four options:

 . Let Jenkins control this Windows slave as a Windows service: Used on Windows to start

Windows services remotely. Jenkins uses DCOM to start the slave services.

 . Launch slave agents on Unix via SSH: Jenkins remotely logs into the slave machine

from the master and starts the slave.

 . Launch slave via an execution of command on the Master: User needs to write a script

that Jenkins can use after it logs into the slave (typical expectation is that the user will

provide access to slave.jar). This option is used when the master has access to the slave

using SSH or RSH.

 . Launch slave agents via JNLP: Used when slaves have to initiate contact with the mas-

ter. Jenkins uses the JNLP protocol to launch.

#5: Use Labels

Problem
Managing a diverse set of platforms and machines easily, and making machines

interchangeable.

Background
A CI environment is a mixed bag of machines, platforms and operating systems. You need the

utmost fl exibility in managing these machines, you want your build machines to be inter-

changeable, and in general you don’t want to tie builds to a specifi c build machine. But some-

times you need more diversity in the build cluster. Your machines might not be entirely homo-

geneous and you still need a way to identify some subset of them; for example, you might need

a certain job to run on Linux instead of Windows.

Solution: Make use of Labels
A very useful but under-used Jenkins feature is labels. Labels are simply tags you can assign

to nodes to describe their capacities. Some typical useful labels include

 . Operating system

 . 32 vs. 64-bit

 . Additional infrastructure that exists only on certain machines (for example, WebSphere)

 . Machine’s geographical location

Assign labels on the build machines themselves; then on the job side, specify that the job needs

to run in a certain place based on label criteria. Instead of tying jobs to individual build ma-

chines, labels give Jenkins fl exibility to choose where to run the builds, which results in better

resource utilization and promoting manageability.

Save Time with Public

Key Authentication
I also recommend taking ad-

vantage of Jenkins’ SSH public

key authentication. By setting

up the public key mechanism,

you can log in from one system

to another without ever typing

your password. This time-saver is

useful for Jenkins and all kinds of

administration or automated tasks.

For example, if you want to write

a script in these multiple systems,

for example to copy fi les, it’s

imperative you are able to do that

without requiring a password from

the console. Setting up SSH public

key authentication is very easy and

only takes about fi ve minutes, so

do it if you haven’t already.

8

7 Ways to Optimize Jenkins

www.cloudbees.com

Using labels is so easy that even the Marketing team fi gured it out:

 1. Select a Slave machine and choose Confi gure.

 2. Specify a label in the Labels fi eld.

 3. Create a new job, name it and fi ll out any other necessary parameters, and click OK.

 4. Click the checkbox, Restrict where this project can be run (for example amd64, linux and sanfrancisco).

 5. Fill in the Label Expression that matches the label on your Slave machine (or any label).

 6. Click Save and then run the build. It will only run on machines whose labels match the job confi guration.

Figure 4: Confi guring labels

One fi nal reason to use labels: if a machine goes down, Jenkins has the fl exibility to shift the load to another machine with

a compatible label, which gives you time to diagnose and fi x the problem. This way you can increase the level of service

of your cluster to your users without service disruption.

#6: Use a Memorable URL for Jenkins

Problem
Jenkins is most useful if development teams refer to it often. Using an IP address or mangled name for the running

instance of Jenkins makes it hard to remember and inhibits team adoption.

Background
If your users can’t see Jenkins, much of the benefi t is lost. In some places, Jenkins is referred to by IP address, but that’s

hard to remember.

9

7 Ways to Optimize Jenkins

www.cloudbees.com

A Few Solutions:
Invest in an Easy-to-Remember URL

The point of the continuous integration server is to become visible, so if Jenkins has a long URL that is hard to remember,

your team won’t use it as much.

BAD: http://sca12-3530-sca.cloudbees.com:8080/hudson
GOOD: http://jenkins.cloudbees.com

Use the Service Name

Although your machine may already have hosting, you don’t have to use it. In fact, it’s often a bad idea to use the primary

machine name to point to a particular service, because the service might move later to another system. So instead of using

the primary machine name, use the host alias.

If your IT operation guys aren’t helping you create a host alias, you can also use the external dynamic DNS services. Your

hosting will be visible outside, but your machine won’t be, so this method is still secure. Using the Service name makes

your Jenkins relocatable: if you later move Jenkins to a more powerful machine – or are running multiple services on

a single system, and later decide that both services need to move to respective machines – you can execute the move

without disrupting the services.

Run Jenkins on Port 80 with Other Apps

Another useful tip: it’s worthwhile to run Jenkins on the default port (80) instead of a custom port (like 8080) – then you

don’t have to specify the port number. You can do this on Unix systems through Apache reverse proxy.

In reverse proxy, the browser talks to Apache and Apache forwards the HTTP request to Jenkins, which is running on a

custom port like 8080. Another benefi t here is you can run Jenkins as non-root user.

On Windows, it’s harder to share port 80, but now you can install a free IIS7 module called URL Rewrite + ARR, which lets

you achieve the same thing

Don’t Use the Appserver Context Root to Jenkins as a Way to Remember the Jenkins URL

By default in many application servers, if you deploy the Jenkins war, you get a default context-root /Jenkins.

This is redundant – use a virtual host to distinguish multiple apps, not the /Jenkins context path.

10

7 Ways to Optimize Jenkins

www.cloudbees.com

#7: Prevent Build Record Sprawl

Problem
Build records can accumulate quickly. Keeping too many around increases memory usage and impacts startup times.

Background
Keeping build records under control is related to the disk planning we discussed in Tip #1. If possible, it’s best to discard

all build records. Keeping too many negatively impacts the startup time of Jenkins and gradually increases memory usage

over time. Some jobs in some environments really do require you to keep all the build records (for example, if you’re doing

a release of Jenkins, you don’t want to lose those records). But for most jobs, you can throw all the records away. Since

you’re probably running serial continuous integration builds on Jenkins, it’s not useful to have records of all the CI builds

since inception.

Solution: Keep only a subset of build records around
You can set Jenkins up to clean house by checking Discard Old Builds in the Confi gure menu and fi lling in one or both of

this option’s two text boxes. You can choose to throw the old records away if they are more than 30 days old, or you can

choose to keep only the last X records and discard everything else.

Figure 5: Confi guring Jenkins to discard old builds

The whole point of controlling your build records is to avoid unbounded consumption. Sometimes you want to keep some

records for a while so people can look at problems when there are failures… so don’t make the number too low. You really

just need to have a fi xed cap; 50 or 100 is a good number. Note that you can confi gure build record housekeeping on a

per-project basis.

Another way to keep specifi c records is to use the fi ngerprinting feature, which allows you to create an association be-

tween jobs. As you enable fi ngerprinting, you can enable Jenkins to keep a build log of dependencies – this captures all

the upstream build log dependencies.

And there you have it – seven ways you can get the best performance from your Jenkins CI server! Of course, if you want to

save time and money and optimize performance even further, CloudBees will be happy to manage your Jenkins for you in

the cloud with DEV@cloud, or provide ongoing support and enhanced features through our Nectar subscription service...

11

7 Ways to Optimize Jenkins

www.cloudbees.com

Jenkins and CloudBees

CloudBees is the only cloud company focused on servicing the complete develop-to-deploy lifecycle of Java web appli-

cations in the cloud – where customers do not have to worry about servers, virtual machines or IT staff . We are also the

world’s premier experts on Jenkins/Hudson and are dedicated to helping teams make the most of their Jenkins continuous

integration servers.

Nectar, CloudBees’ on-premise, fully-supported enterprise Jenkins package, gives you…

. Ongoing support from the Jenkins experts

. VMware scaling for your Jenkins environment

. Enterprise features that extend Jenkins for large and mission-critical installations

. Seamless rollover to cloud-based Jenkins during peak usage times and easy transition to cloud-based production

deployment, through integration with CloudBees DEV@Cloud and RUN@Cloud (coming soon)

DEV@cloud, aff ectionately known as “Jenkins as a Service,” lets you…

. Scale your Jenkins environment with the power of the Cloud – start building immediately in a fully-tested, robust

environment, and grow when you need to grow

. Ease your Jenkins management overhead – spend your time writing code, not maintaining servers

. Speed your Jenkins builds – access to unlimited build agents whenever you need them

. Save money with on-demand Jenkins Service – only pay for what you use

In addition to providing build capabilities in the cloud, the CloudBees platform also includes RUN@cloud, which lets teams

seamlessly deploy these applications to cloud production.

Please get in touch with us if you’d like more information about Nectar, DEV@cloud, or Jenkins in general – we’d be

delighted to help you!

Phone: +1 617 500 7547

Email: sales@cloudbees.com

Twitter: @CloudBees

12

7 Ways to Optimize Jenkins

www.cloudbees.com

 A P P E N D I X A :

Additional Jenkins/Hudson Resources

Videos on CloudBees Services

http://cloudbees.com/support.cb

Webinar: 7 Ways to Optimize Hudson for Production

In this webinar, Kohsuke covers the best practices in this white paper in even more detail, complete with demos.

http://cloudbees.com/support.cb

Bonus Jenkins Q&A with Kohsuke

http://cloudbees.com/webinars/FAQ-Hudson-7WaysToOptimizeHudson.cb

Jenkins/Hudson Training

“Mastering Continuous Integration with Jenkins” training brings CloudBees’ expertise in Jenkins/Hudson to everyone.

http://cloudbees.com/training.cb

Nectar

Supported and Enhanced Jenkins

http://nectar.cloudbees.com/

DEV@Cloud

Jenkins as a Service

http://www.cloudbees.com/dev.cb

Join the Ecosystem

Sign up here to receive the latest updates and news from the Bee Hive.

http://www.cloudbees.com/company.cb

CloudBees on YouTube

Tune in as the Bees continue to post new videos…

http://www.youtube.com/user/CloudBeesTV

CloudBees Blog

Keep apprised of industry changes and learn the latest tips from the hive…

http://blog.cloudbees.com

CloudBees Subscription Plans

Subscribe to any plan to start using Hudson CI (HaaS) and Forge (Git, SVN and Maven) services.

http://www.cloudbees.com/dev-pricing.cb

13

7 Ways to Optimize Jenkins

www.cloudbees.com

A P P E N D I X B :

Easier backups with CloudBees Nectar

Nectar is CloudBees’ supported Jenkins/Hudson product. In addition to providing premium support to companies who run

mission-critical systems with Jenkins, Nectar delivers additional plug-ins that are available only through CloudBees.

Jenkins backup functionality is one such feature. As mentioned in Tip 1, taking backups is crucial. Nectar’s Backup plug-in

greatly simplifi es the job of doing backups: just create a backup by creating a new type of job called Back up Hudson.

Figure A: Nectar’s Back up Hudson job type

Selecting the Back up Hudson option brings up additional confi guration options on the Job Confi guration page. Here you

can choose to back up job confi gurations, build records, system confi gurations or any combination thereof. You don’t have

to write scripts or cron jobs to perform these backups, as you would if implementing Tip 1 without Nectar. In addition,

since a backup job is a Jenkins job, you can easily relocate the confi guration to a diff erent system if required – no port-

ing of shell scripts! Figure B below shows how to use the Jenkins Build Periodically feature to do a daily backup of all the

confi guration information, which includes Job Confi gurations, Build Records and System Confi guration. We could also have

easily chosen to back up a subset of information as outlined in Tip 1.

14

7 Ways to Optimize Jenkins

www.cloudbees.com

Figure B: Back up confi guration

In addition to premium support and automated back-up capability, Nectar also includes auto-scaling for VMWare and

many other features. Contact CloudBees to learn more!

