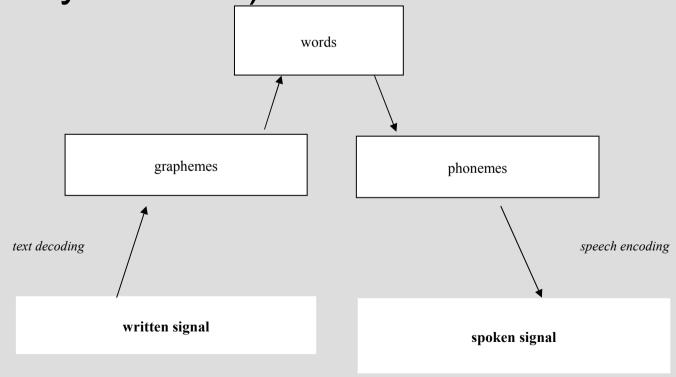
Pioneering Dzongkha Text To Speech Synthesis

Department Of Information and Technology, Bhutan. NECTEC, Thailand.

Overview

- Introduction
- Development
 - Phoneme Design for Dzongkha TTS
 - TTS Design and development
- Evaluation and discussion
- Future prospects
- Conclusion

Introduction

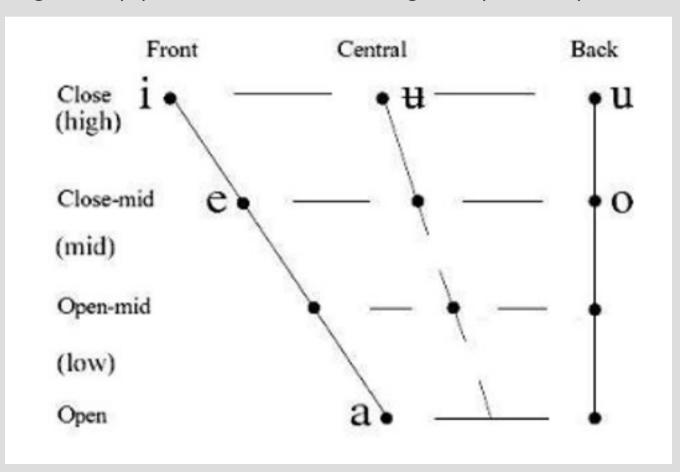

- It consisted of
 - designing a phoneme set
 - building a text processor
 - designing and collecting speech database
 - training HMM under HMM-based speech synthesis system (HTS) toolkit
 - integrating all components in an application.

Introduction(contd.)

- The key features of the TTS
 - Text analysis
 - Speech synthesis
 - Figure 1 below shows these two features
 - Text analysis finds intermediate forms (Syllables in case of Dzongkha TTS)
 - Synthesizing generates speech signals from that intermediate form.

Introduction(contd.)

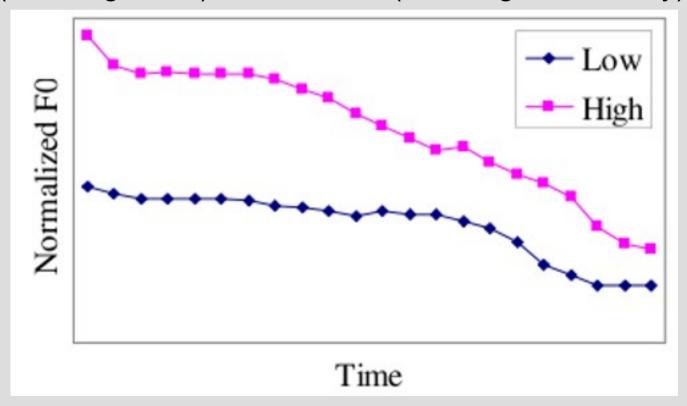
Figure 1: The common form model of TTS (P. Taylor. 2008)


Introduction(contd)

- Dzongkha TTS
 - HMM-based
 - Uses accostics paramaters to generate speech
 - These are synthesized from context dependent HMMmodels
 - HTS version 2.0
 - MCEP (mel-cepstral coefficients)
 - Log F0
 - Duration parameters

Figure 4(a): Dzongkha IPA table(consonants)

Place Manner	Labio	1	Labio- dental	Dent al/alveo lar	Retrofl ex	Palatal	Velar	Laryngal/G Select table c
Stops	Voiceless	P(p) (⁴)		T(t) (5)	Tr (₹)		K(k) ('])	A(구) (예)
	Aspirated	Ph(p ^h) (⁴)		Th(t ^h) (^a)	Thr (^g)		Kh(kʰ) (ཁ)	
	voiced	B(b) (⁴)		D(d) (ጎ)	Dr (۲)		G(g) (୩)	
Fricative s	Voiceless			Sa(s) (མ)		Sh(ፍ) (၅)		Ha(hh) (ጛ)
	Voiced			z(z) (³)		Zh(፮) (୩)		'A(fi) (^q)
Affricativ es	Voiceless			Ts(ts) (ಕೆ)		C(p e) (₂)		
	Aspirated			Tsh(tsʰ) (మ్)		Ch((tɕʰ) (ቆ)		
	Voiced			Dz(dz) ([£])		J(dz) ([£])		
Trill				R(r) (^ҳ)				
Lateral				L(I) (^{rq})				
Approxim ant	W(w) ([#])			Υ(j) (^α)				
Nasals	M(m) (^취)			N(n) (최)		Ny(n) (3)	Ng(ŋ) (⁵)	


Figure 4(b): IPA table for Dzongkha (vowels)

- Representation of spoken Dzongkha
 - Initial consonants
 - Consonant clusters with single consonants
 - Vowels
 - Diphthongs
 - An inherent vowel 'a' is always present with single consonants
 - Some vowels are modified when root letter combines with certain suffices
 - Clusters in Dzongkha is represented by stacking root letter over the subjoined letter

- Dzongkha tone system
 - Two tone system
 - The low tone normally used
 - The high which is the modification of the low tone
 - Modification depends on combination of certain prefixes ('¹' '¹' 'a' 'a'), head letter ('¹' 'a') and subjoined ('a') with root letter.

Figure 5: Normalized F0 contour of the syllable 'lam' showing high tone (meaning monk) and low tone (meaning road or way)

Phoneme design for Dzongkha TTS

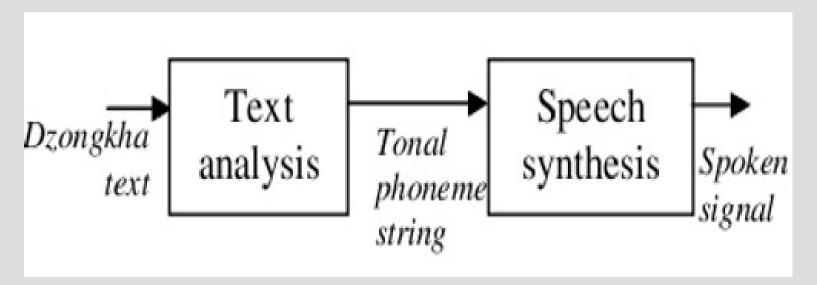
- Observations during transcription
 - 30 initial consonants, 5 initial consonant clusters,
 10 vowels and 10 dipthongs defined
 - single phonemes from figure 4 were employed
 - Four more vowels were observed and defined separately ('aa','ii','uu','oo').
 - Consonant clusters mostly formed by combination with 'r' sound
 - Some suffices are not pronounced ('d' 's' 'hh')
 - Certain suffices modifies the vowel

Phoneme design for TTS

Table 1: Dzongkha phoneme inventory for TTS

Ty	/pe	Symbol (IPA/Computerized)					
Initial	Single	k, kh/kh, g/g, ŋ/ng, tʃ/c, tʃh/ch, dʒ/j,					
consonant	#040 U.S.	n/ny, t, th/th, d, n, p, ph/ph, b, m, ts,					
(Ci)		tsh/tsh, dz, w, 3/zh, z, hh/hh, j/y, 1/r,					
		1, ∫/sh, s, h, ?/@					
	Cluster	d』/dr, tɹ, tʰɹ/thr, lʰ/lhh, hɹ/hr					
Vowel(V)	Single	a, i, u, e, o, ue,					
		a:/aa, i:/ii, u:/uu, o:/oo					
	Diphthong	ai, au, ae, ui, oi, ou, eu, ei, eo, iu					
Final conso	nant (<i>Cf</i>)	g/g, ŋ/ng, n, b, m, 1/r, l, p					
Tone (T)		4/0, 1/1					

Phoneme design for TTS


- Vowel modification with suffices.
- Table 2: Modification of vowel.

Versel	Suffix										
Vowel	g	ng	n	b	m	r	l	p	d	s	hh
a			e n				e l		e	e	
i											
u			ue n				ue l		ue	ue	
e											
0			e n				e l		e	e	

Phoneme design for TTS

- Tonal representation
 - Digit symbol '0' for low
 - Digit symbol '1' for high

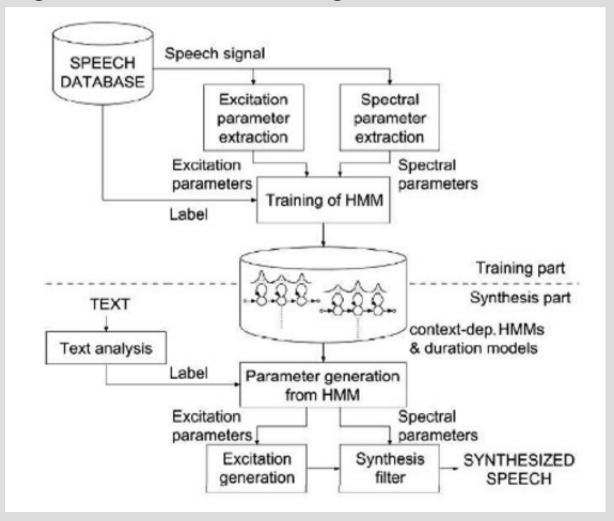
- The system consists of two main modules, text analysis and speech synthesis.
- Figure 6: The proposed system structure.

- Text analysis
 - Implemented using a dictionary based G2P
 - Presence of a syllable marker makes it easier to implement G2P using a look up dictionary
- Dictionary
 - A Dzongkha text corpus of 40,000 sentences were collected
 - Top 4000 distinct syllables occurring were included in the dictionary

- Speech synthesis
 - A corpus of 509 sentence included
 - These had to cover all 53 phonemes including two tones shown above in Table 1.
- The sentence selection
 - Iteratively select a sentence with most distinctive tonal di-phones
 - Stop when all tonal di-phones in text corpus are included

> Table 3: Dzongkha speech corpus statistics.

No. of sentences	509
No. of syllables	5,404
No. of tonal diphones	6,048
No. of distinct tonal diphones	539


- Building synthesizer
 - Mel-Cestrum (MCEP), duration and Log fundamental frequency (Log F0) were extracted from each utterance in the speech corpus
 - By using HTS with HTK and SPTK HMMs can trained in a flat start manner
 - It doesn't require any phoneme boundary tag but only phoneme transcription of each utterances

- A clustering tree designed for Dzongkha phoneme is used in HMM state tying.
- Figure 7: A part of clustering tree used for HMM state tying.

```
QS Left-InitialConsonants { "k_*", "kh_*", "ng", ...
QS Left-FinalConsonants { "p^*", "t^*", "k^*", ...
QS Left-Voiced { "b_*", "d_*", "ng_*" }
QS Left-StopConsonants { "p_*", "t_*", "c_*", ...
QS Left-Nasal { "m_*", "n_*", "h_*" }
QS Left-Fricative { "f_*", "s_*" }
QS Left-Fricative { "f_*", "aa_*", "i_*", "ii_*", ...
QS Left-CloseVowels { "i_*", "ii_*", "v_*", "vv_*"...
QS Right-InitialConsonants { "k_*", "kh_*", "ng", ...
QS Right-FinalConsonants { "p^*", "t^*", "k^*", ...
...
```

- Building the synthesizer
 - Using the training script in the HTS, the HMMs are trained to construct the synthesizer
 - Given trained HMMs, the "hts-engine" command with the toolkit could be evoked to synthesize speech.

Figure 8: HTS toolkit usage.

Evaluation and discussion

- Evaluation
 - based on mean opinion score
 - Fifteen Bhutanese were asked to evaluate
- Score system
 - 1 to 5
 - 1 for worst
 - 5 for best
- Result
 - human speech rated 3.93
 - synthesized rated 3.19

Future prospects

- Enlarging speech corpus with larger di-phone coverage
- More distinct syllables required by the G2P module
- Important prosody generation modules
 - pausing between words and phrases
 - duration and F0 modeling

Conclusion

- Building the first Dzongkha TTS
 - designing a phoneme inventory
 - building a text processor
 - designing and creating the speech database
 - training HMMs under HTS frame work
 - integrating all these into an application
- Yet more work needs to be done to improve speech quality as mentioned in future prospects