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The following notations and terminology are used in this manual. The Glossary defines all terms with special meanings.

# The pound symbol (#) has either of two meanings, depending on the context. When used
with a signal name, the symbol means that the signal is active low. When used in an
instruction, the symbol prefixes an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context in which italics are
used distinguishes between two possible meanings.
Variables in registers and signal names are commonly represented by x and y, where x
represents the first variable and y represents the second variable. For example, in register
Px.y, x represents the variable that identifies the specific port, and y represents the register
bit variable [7:0]. Variables must be replaced with the correct values when configuring or
programming registers or identifying signals.

XXXX Uppercase X (no italics) represents an unknown value or a “don’t care” state or condition.
The value may be either binary or hexadecimal, depending on the context. For example,
2XAFh (hex) indicates that bits 11:8 are unknown; 10XXb in binary context indicates that
the two Least Significant Bits are unknown.

Assert and Deassert The terms Assert and Deassert refer to the act of making a signal active (enabled) and
inactive (disabled), respectively. The active polarity (high/low) is defined by the signal
name. Active–low signals are designated by a pound symbol (#) suffix; active–high signals
have no suffix. To assert RD# is to drive it low; to assert ALE is to drive it high; to deassert
RD# is to drive it high; to deassert ALE is to drive it low.

Instructions Instruction mnemonics are shown in upper case to avoid confusion. You may use either
upper case or lower case.

Logic 0 (Low) An input voltage level equal to or less than the maximum value of VIL or an output voltage
level equal to or less than the maximum value of VOL. See Product Datasheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value of VIH or an output
voltage level equal to or greater than the minimum value of VOH. See Product Datasheet
for values.

Numbers Hexadecimal numbers are represented by a string of hexadecimal digits followed by the
letter h. Decimal and binary numbers are represented by their customary notations: i.e. 255
is a decimal number and 1111 1111 is a binary number. In most cases of binary numbers,
the letter b is added for clarity.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word registers, and 31:0 for
double word (dword) registers. Bit 0 is the least significant bit and 7, 15 or 31 are the most
significant bits. An individual bit is represented by the register name, followed by a period
and the bit number. For example, PCON.4 is bit 4 of the Power Control register. In some
discussions, bit names are used. For example, the name of PCON.4 is POF, the Power Off
flag.

Register Names Register names are shown in upper case. For example, PCON is the Power Control register.
If a register name contains a lowercase character, it represents more than one register. For
example, CCAPMx (x = 0, 1, 2, 3, 4) represents the five registers: CCAPM0 through
CCAPM4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this device but they may
be used in future implementations. Pay attention to the recommendations when
manipulating theses bits.

Conventions



TSC80251

Rev. E – 20 December, 2000 
2

Set and Clear The terms Set and Clear refer to the value of a bit or the act of giving it a value. If a bit
is Set, its value is “1”; setting a bit gives it a “1” value. If a bit is Clear, its value is “0”;
clearing a bit gives it a “0” value.
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1.1. 8/16–bit microcontroller

In the world of 8/16–bit microcontrollers, the C51 Architecture has become an industry standard for embedded
applications. For over 15 years, Atmel Wireless & Microcontrollers has been a leading provider of this microcontroller
family. This unsurpassed experience is the driving force as Atmel takes this proven family to the next level of
performance: the TSC80251 family!

This new C251 Architecture at its lowest performance level (binary mode), is binary code compatible with the 80C51
microcontrollers, hence, attaining an increase in performance has never been easier.

Due to a 3–stage pipeline, the CPU–performance is increased by a factor 5, using existing C51 code without
modifications.
Using the new C251 instruction set, which you will find in this document (See Chapter 5), the performance will increase
up to 15 times at the same clock rate. This performance enhancement is based on the 16–bit instruction bus, allowing
for more powerful instructions and additional internal instruction bus, 8–bit and 16–bit data busses.
The 24–bit address bus will allow to access up to 16 Mbytes in a single linear memory space. Please see each individual
TSC80251 Product Design Guide for the effective addressable memory range.

Programming flexibility and C–code efficiency are both increased through a Register–based Architecture, the
64–Kbyte extended stack space combining with the new instruction set.
C251 C–compilers are some of the most efficient available (nearly no overhead), coupled with the final codesize which
could be a factor of 3 down when compared with the C51 C–compilers.

All technical information in this document about core features are related to the core revision A and core revision D.

1.2. TSC80251 Derivatives

Atmel Wireless & Microcontrollers is developing a full family of application specific TSC80251 derivatives. Please
see the Design Guide of each product for further information.

These products are designed to help you getting high–performance products to market faster.
Due to the high instruction throughput, the TSC80251 derivatives are focussing on all high–end 8–bit to 16–bit
applications.

TSC80251 derivatives are also used in mid–range and lower–end microcontroller applications, where a very low
operation frequency is needed, without decreasing the level of CPU–power.
This feature is ideal for today portable applications and EMC sensitive systems.

Introduction
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Typical applications for this family are:

� Automotive:
� Airbag
� ABS
� Gearbox
� Climate control
� Car radio
� Car navigation

� Communication:
� Cordless phones
� Cellular phones
� High speed modems
� High–end feature phones
� ISDN phones
� Line cards
� Network termination

� Computer:
� High–end monitors
� DVD–ROM
� Magtape card & smart card readers
� Barcodes readers
� Computer telephony
� Force feedback joysticks

� Industrial:
� Process monitoring control & readouts
� Air conditioning systems
� Automation

Atmel’s TSC80251 derivatives are designed around the C251 core, using standard peripherals dedicated to a targetted
range of applications.

Here is a selection of peripheral blocks:
� Serial interfaces:

� UART (Universal Asynchronous Receiver Transmitter)
� I2C (Inter–Integrated Circuit)
� SPI (Serial Protocol Interface)
� µWire (Synchronous Serial Interface)

� Special Functions:
� PCA: Programmable Counter Array (5�16–bit modules)
� High–speed output
� Compare/Capture I/O
� 8–bit Pulse Width Modulator (PWM)
� ADC (Analog to Digital Converter)
� Smart sensor interfaces with PMU (Pulse Measurement Unit)

� Control functions:
� Watchdog Timer
� Timers/Counters
� Power monitoring and management
� Interrupt handler

� Memories:
� RAM
� ROM
� EPROM/OTPROM

Most of TSC80251 derivatives are available as ROMless, OTPROM, EPROM and Mask ROM version. For any special
request, refer to sales representative.
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1.3. TSC80251 Documentation

The following documentation and starter tools are available to allow the full evaluation of the Atmel’s TSC80251
derivatives:

� “TSC80251 Programmer’s Guide”
Contains all information for the programmer (Architecture, Instruction Set, Programming).

� “TSC80251 Design Guide”
Contains all product specific data and a summary of available application notes.

� Application Notes
� “TSC80251 Product Starter Kit”

This kit enables the product to be evaluated by the designer.
Its contents is:
� C–Compiler (limited to 2 Kbytes of code)
� Assembler
� Linker
� Product Simulator
� TSC80251 Product Evaluation Board with ROM–Monitor
� EPROM and ROMless samples of the available derivatives
� Please visit our WWW for updated versions in ZIP format.

� World Wide Web
Please contact our WWW for possible updated information at http://www.atmel–wm.com

� Technical support: micro@atmel–wm.com
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2.1. Microcontroller Architecture

The TSC80251 family of 8/16–bit microcontrollers is a high performance upgrade of the widely used 80C51
microcontrollers. It extends features and performance while maintaining binary code compatibility, so the impact on
existing hardware and software is minimal.

The C251 Architecture core contains:

� 24–bit linear addressing and up to 16 Mbytes of memory

� a register file based CPU with registers accessible as bytes, words, and double words

� a page mode for accelerating external instruction fetches

� an instruction pipeline

� an enriched instruction set, including 16–bit arithmetic and logic instructions

� a 64–Kbyte extended stack space

� a minimum instruction–execution time of two clocks (vs. 12 clocks for 80C51 microcontrollers)

� binary–code compatibility with 80C51 microcontrollers

Several benefits are derived from these features :

� preservation of code written for 80C51 microcontrollers

� a significant increase in core execution speed in comparison with 80C51 microcontrollers at the same clock rate

� support for larger programs and more data

� increased efficiency for code written in C language

Architectural Overview
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Figure 2.1. is a functional block diagram of TSC80251 microcontrollers. The core, which is common to all TSC80251
microcontrollers, is described in the next paragraph. Each derivative in the family has its own on–chip peripherals, I/O
Ports, external bus, size of on–chip RAM, type and size of on–chip ROM.
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Figure 2.1. TSC80251 Product Block Diagram

2.2. Microcontroller Core

The TSC80251 microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, the bus interface
and the peripheral interface (See Figure 2.1. ). The CPU contains the instruction sequencer, ALU, register file and data
memory interface (See Figure 2.2. ).

2.2.1. CPU

The TSC80251 fetches instructions from on–chip code memory two bytes at a time or from external memory one byte
at a time. The instructions are sent over the 16–bit instruction bus to the CPU. You can configure the TSC80251 to
operate in page mode for accelerated instruction fetches from external memory. In page mode, if an instruction fetch
is to the same 256–byte “page” as the previous fetch, the fetch requires one state (two clocks) rather than two states
(four clocks). For information regarding the page or non–page mode selection, see Product Design Guide.

The TSC80251 register file has 40 registers, which can be accessed as bytes (8–bit data), words (16–bit data) and double
words (32–bit data). As in the C51 Architecture, registers 0-7 consist of four banks of eight registers each, where the
active bank is selected by the Program Status Word (PSW) for fast context switches (See “Programming” chapter).
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The TSC80251 CPU is a pipeline machine. When the pipeline is full and code is executing from on–chip code memory,
an instruction can be completed every state time. When the pipeline is full and code is executing from external memory
(with no wait states and no extension of the ALE signal) an instruction can be completed every two state times.

ALU
Register

File

Data
Memory
Interface

Instruction Sequencer

SRC1

SRC2 8

8

16
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24

8

24

code address

address

data

Figure 2.2. Central Processor Unit Block Diagram
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2.2.2. Clock and Reset Unit

The timing source for the TSC80251 microcontroller can be an external oscillator or an internal oscillator with an
external crystal/resonator. The basic unit of time in TSC80251 is the state time (or state), which is two oscillator
periods. The state time is divided into phase P1 and phase P2 (See Figure 2.3. ).

P1 P2

State 1 State 2 State 3 State 4 State 5 State 6

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

P1 P2

Phase 1 Phase 2

XTAL1

TOSC

2 TOSC = State Time

Figure 2.3. Clocking Definitions

The TSC80251 peripherals operate on a peripheral cycle, which is six state times (this peripheral cycle is not a
characteristic of the C251 Architecture). A one–clock interval in a peripheral cycle is denoted by its state and phase
(SxPy). For simplicity purpose, XTAL1 signal has been used in this figure. In fact this is the prescaler output that drives
the core. The clock prescaler being a software programmable device, the effective core clock can be dynamically
adapted to the application speed and power consumption needs.

The reset unit places the TSC80251 into a known state. A chip reset is initiated by asserting the RST pin or allowing
the Watchdog Timer to time out when the TSC80251 has one.

2.2.3. Interrupt Handler Unit

The Interrupt Handler Unit can receive interrupt requests from many sources: internal peripheral sources, external
sources and TRAP instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the normal
flow of instructions and branches to a routine that services the source that requested the interrupt. You can enable or
disable the interrupts individually (except for TRAP and NMI which cannot be disabled) and you can chose among
one to four priority levels for each interrupt.
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TSC80251 microcontrollers have three address spaces: a memory space, a Special Function Register (SFR) space and
a register file. This chapter describes these address spaces as they apply to all TSC80251 microcontrollers. It also
discusses the compatibility of the C251 Architecture and the C51 Architecture in terms of their address spaces.

1.1. C251 Architecture Address Spaces

Figure 3.1. shows the three address spaces: i.e. memory space, SFR space and register file for TSC80251
microcontrollers. The address spaces are depicted as being 8–byte wide with addresses increasing from left to right
and from bottom to top (See Figure 3.1. ).

Memory Address Space
           16 Mbytes

SFR Space
512 bytes

Register File space
  64 bytes

FF:FFFFh

00:0007h00:0000h

S:1FFh

S:007hS:000h

3Fh

07h00h

Figure 3.1. Address Spaces for TSC80251 Microcontrollers

It is convenient to view the unsegmented, 16–Mbyte memory space as consisting of 256 64–Kbyte regions, numbered
00: to FF:.

Note :
The memory space in the C251 Architecture is unsegmented. The 64– Kbyte “region” 00:, 01:, ..., FF: are introduced only as a convenience for
discussions. Addressing in the C251 Architecture is linear; there are no segment registers.

TSC80251 microcontrollers can have up to 64–Kbytes of on–chip code memory in region FF:. On–chip data RAM
begins at location 00:0000h. The first 32 bytes (00:0000h-00:001Fh) provide storage for a part of the register file.The
sizes of the on–chip code memory and on–chip RAM depend on the particular device.

The register file has its own address space (See Figure 3.1. ). The 64 locations in the register file are numbered
decimally from 0 to 63. Locations 0-7 represent one of four, switchable register banks, each having 8 registers. The
32 bytes required for these banks occupy locations 00:0000h-00:001Fh in the memory space. Register file locations
8-63 do not appear in the memory space and are new hardware resources of the C251 Architecture.

The SFR space can accommodate up to 512 8–bit Special Function Registers with addresses S:000h-S:1FFh. Some
of these locations may be unimplemented in a particular device. In the C251 Architecture, the prefix “S:” is used with
SFR addresses to distinguish them from the memory space addresses 00:0000h-00:01FFh.

Address Spaces
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1.2. C51 Architecture Address Spaces

Figure 3.2. shows the address spaces of the C51 Architecture. Internal data memory locations 00h-7Fh can be
addressed directly, indirectly by register addressing mode and bit addressing mode for data locations 20h–2Fh. Internal
data locations 80h-FFh can only be addressed indirectly. Directly addressing these locations accesses the SFRs. The
64–Kbyte code memory has a separate memory space. Data in the code memory can be accessed only with the MOVC
instruction. Similarly, the 64–Kbyte external data memory can be accessed only with the MOVX instruction.

The register file (registers R0-R7) comprises four, switchable register banks, each having 8 registers. The 32 bytes
required for the four banks occupy locations 00h-1Fh in the on–chip data memory.

Code
(MOVC)

External Data
(MOVX)

Internal Data
(indirect)

Internal Data
(direct, indirect)

SFRs
(direct)

FFFFh

0000h

FFFFh

0000h

FFh

80h

FFh

80h

7Fh

00h
07hR0–R7

R0–R7

R0–R7

R0–R7

20h
2Fh

30h

bit addressable

register addressable

08h
0Eh

0Fh
17h

18h
1Fh

Figure 3.2. Address Spaces for the C51 Architecture

1.3. C51 Architecture mapping to C251 Architecture Address Spaces

The 64–Kbyte code memory for 80C51 microcontrollers maps into region FF: of the memory space for TSC80251
microcontrollers. Assemblers for TSC80251 microcontrollers assemble code for 80C51 microcontrollers into region
FF:, and data accesses to code memory (MOVC) are directed to this region. The assembler also maps the interrupt
vectors to region FF:. This mapping is transparent to the user; code executes just as with a 80C51 micro without
modification.
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Table 3.1. Address Mappings

C51 Architecture C251 Architecture
Memory Type

Size Location Data Addressing Location

Code 64 Kbytes 0000h-FFFFh Indirect using MOVC FF:0000h-FF:FFFFh

External Data 64 Kbytes 0000h-FFFFh Indirect using MOVX 01:0000h-01:FFFFh

128 bytes 00h-7Fh Direct, Indirect 00:0000h-00:007Fh
Internal Data

128 bytes 80h-FFh Indirect 00:0080h-00:00FFh

SFRs 128 bytes S:80h-S:FFh Direct S:0080h-S:0FFh

Register 8 bytes R0-R7 Register 00:0000h–00:001Fh

The 64–Kbyte external data memory for 80C51 microcontrollers is mapped into the memory region specified by bits
16–23 of the data pointer DPX, i.e., DPXL, which is accessible as register file location 57 and also as SFR at S:084h.
The reset value of DPXL is 01h, which maps the external memory to region 01: as shown in Figure 3.3. You can change
this mapping by writing a different value to DPXL. A mapping of the C51 Architecture external data memory into any
64–Kbyte memory region in the C251 Architecture provides complete runtime compatibility because the lower 16
address bits are identical in both architectures.

The 256 bytes of on–chip data memory for 80C51 microcontrollers (00h–FFh) are mapped to addresses
00:0000h–00:00FFh to ensure complete runtime compatibility. In the C51 Architecture, the lower 128 bytes (00h–7Fh)
are directly and indirectly addressable; however the upper 128 bytes are accessible by indirect addressing only. In the
C251 Architecture, all locations in region 00: are accessible by direct, indirect, and displacement addressing.

The 128–byte SFR space for 80C51 microcontrollers is mapped into the 512–byte SFR space of the C251 Architecture
starting at address S:080h, as shown in Figure 3.3. This provides complete compatibility with direct addressing of
80C51 microcontroller SFRs (including bit addressing). The SFR addresses are unchanged in the new Architecture.
In the C251 Architecture, SFRs, A, B, DPL, DPH and SP, as well as the new DPXL and SPH, reside in the register file
for high performance. However, to maintain compatibility, they are also mapped into the SFR space at the same
addresses as in the C51 Architecture.
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08h

00h

C51 Architecture
SFRs

C51 Architecture
Internal Data Memory

C51 Architecture Code
Memory

FFFFh

0000h

FFFFh

0000h

FFh

00h

FFh

80h

R7

R0

Memory Address Space
           16 Mbytes

SFR Space
512 Bytes

Register File
  64 Bytes

C51 Architecture External
Data Memory

C51 Architecture

Register File.

FF:0000h

02:0000h

01:0000h

00:0000h

S:100h

S:000h

S:1FFh

S:07Fh

3Fh

Figure 3.3. Mappings C51 Architecture to C251 Architecture Address Spaces

Figure 3.4. TSC80251 Memory Space

1.4. TSC80251 Register File

The TSC80251 register file consists of 40 byte locations: 0-31 and 56-63, as shown in Figure 3.5. These locations are
accessible as bits, bytes, words and dwords. Several locations are dedicated to special registers; the others are
general–purpose registers.

Register file locations 0-7 actually consist of four switchable banks of eight registers each, as illustrated in
Figure 3.6. The four banks are implemented as the first 32 bytes of on–chip RAM and are always accessible as locations
00:0000h-00:001Fh in the memory address space. Only one of the four banks is accessible via the register file at a given
time. The accessible, or “active”, bank is selected by bits RS1 and RS0 in the PSW register, as shown in Table 3.2. This
bank selection can be used for fast context switches.

Register file locations 8-31 and 56-63 are always accessible. These locations are implemented as registers in the CPU.
Register file locations 32-55 are reserved and cannot be accessed.

Table 3.2. Register Bank Selection

PSW Selection Bits
Bank Address Range

RS1 RS0

Bank 0 00h-07h 0 0

Bank 1 08h-0Fh 0 1

Bank 2 10h-17h 1 0

Bank 3 18h-1Fh 1 1
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1.4.1. Byte, Word and Dword Registers

Depending on its location in the register file, a register is addressable as a byte, a word, or a dword, as shown in the
right side of Figure 3.5. A register is named for its lowest numbered byte location. For instance:

� R4 is the byte register consisting of location 4.

� WR4 is the word register consisting of registers 4 and 5.

� DR4 is the dword register consisting of registers 4, 5, 6, and 7.

Locations R0-R15 are addressable as bytes, words or dwords. Locations 16-31 are addressable only as words or dwords.
Locations 56-63 are addressable only as dwords. Registers are addressed only by the names shown in Figure 3.5. ,
except for the 32 registers that comprise the four banks of registers R0-R7, which can also be accessed as locations
00:0000h-00:001Fh in the memory space (see Figure 3.6. ).

0 1 2 3 4 5 6 7

DR0 DR4
DR8 DR12

DR16 DR20
DR24 DR28

8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

56 57 58 59 60 61 62 63

Locations 32-55 are Reserved

Register File

Banks 0-3

R0 R1 R2 R3 R4 R5 R6 R7
R8 R9 R10 R11 R12 R13 R14 R15

Note :R10 = B
R11 = A

Byte Registers

WR0 WR2 WR4 WR6
WR8 WR10 WR12 WR14

WR16 WR18 WR20 WR22
WR24 WR26 WR28 WR30

Word Registers

DR56 = DPX DR60 = SPX

Dword Registers

0 1 2 3 4 5 6 7

Figure 3.5. Register File in Byte, Word, and Dword Register Views
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0 1 2 3 4 5 6 7

Register File

00h 07h
08h 0Fh
10h 17h
18h 1Fh

00:0020h

FF:FFFFh

8

63

Memory Address Space

Banks 0-3PSW bits RS1:0 select one bank
to be accessed via the register file.

Banks 0-3
accessible
in memory
address space

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

 

Figure 3.6. Register File Locations 0-7

1.4.2. Dedicated Registers

The register file has four dedicated registers :

� R10 is the B–register.

� R11 is the accumulator (A).

� DR56 is the extended data pointer, DPX.

� DR60 is the extended stack pointer, SPX.

These registers are located in the register file; however, R10, R11 and some bytes of DR56 and DR60 are also accessible
as SFRs. The bytes of DPX and SPX can be accessed in the register file only by addressing the dword registers. The
dedicated registers in the register file and their corresponding SFRs are illustrated in Figure 3.7. and listed in
Table 3.3. 

Table 3.3. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs

Name Mnemonic Reg. Location Mnemonic Address

Stack Pointer – – 60 – –
(SPX) – – 61 – –

Stack Pointer, High SPH DR60 62 SPH S:BEh

Stack Pointer, Low SP

DR60

63 SP S:81h

Data Pointer – – 56 – –
(DPX) Data Pointer, Extended Low DPXL 57 DPXL S:84h

DPTR Data Pointer, High DPH DR56 58 DPH S:83h

Data Pointer, Low DPL

DR56

59 DPL S:82h

Accumulator (A Register) A R11 11 A S:E0h

B Register B R10 10 B S:F0h
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1.4.2.1. Accumulator and B Register

The 8–bit accumulator (A) is byte register R11, which is also accessible in the SFR space as A at S:0E0h (See
Figure 3.7. ). The B register, used in multiplies and divides, is register R10, which is also accessible in the SFR space
as B at S:0F0h. Accessing A or B as a register is one state faster than accessing them as SFRs.

Instructions in the C51 Architecture use the accumulator as the primary register for data moves and calculations.
however, in the C251 Architecture, any of registers R1-R15 can serve for these tasks. As a result, the accumulator does
not play the central role that it has in 80C51 microcontrollers.

1.4.2.2. Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (See Figure 3.7. ). The lower three bytes of DPX (DPL, DPH
and DPXL) are accessible as SFRs. DPL and DPH comprise the 16–bit data pointer DPTR. While instructions in the
C51 Architecture always use DPTR as the data pointer, instructions in the C251 Architecture can use any word or dword
register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:-FF:) that maps into the 64–Kbyte external data
memory space in the C51 Architecture. In other words, the MOVX instruction addresses the region specified by DPXL
when it moves data to and from external memory. The reset value of DPXL is 01h.

1.4.2.3. Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (See Figure 3.7. ). The byte at (location 63) is the 8–bit stack pointer,
SP, in the C51 Architecture. The byte at location 62 is the stack pointer high, SPH. The two bytes allow the stack to
extend to the top of memory region 00:. SP and SPH can be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL, ECALL, LCALL) and
returns (ERET, RET, RETI) also use the stack pointer. To preserve the stack, do not use DR60 as a general–purpose
register.

SPH SP

DPXL DPH DPL

60 61 62 63

56 57 58 59

SPH

SP

DPXL

DPH

DPL

B

A

Stack Pointer, High

Stack Pointer

Data Pointer Extended, Low

Data Pointer, High

Data Pointer, Low

DR60 = Extended Stack Pointer, SPX

DR56 = Extended Stack Pointer, DPX

S:BEh

S:81h

S:84h

S:83h

S:82h

S:F0h

S:E0h

Register File SFRs

B A

R10

R11

Figure 3.7. Dedicated Registers in the Register File and their Corresponding SFRs
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1.5. Special Function Registers (SFRs)

The Special Function Registers (SFRs) reside in their associated on–chip peripherals or in the core. SFR addresses are
preceded by “S:” to differentiate them from addresses in the memory space. Unoccupied locations in the SFR space
are unimplemented, i.e., no register exists. If an unimplemented SFR location is read, it returns an unspecified value.

Note :
SFRs may be accessed only as bytes; they may not be accessed as words or dwords.

Table 3.4. Core SFRs

Mnemonic Name Address

A � Accumulator S:E0h

B � B register S:F0h

PW Program Status Word S:D0h

PSW1 Program Status Word 1 S:D1h

SP Stack Pointer - LSB of SPX S:81h

SPH � Stack Pointer high - MSB of SPX S:BEh

DPTR � Data Pointer (2 bytes) –

DPL � Low Byte of DPTR S:82h

DPH � high Byte of DPTR S:83h

DPXL � Data Pointer, Extended Low S:84h

IE0 Interrupt Enable Control 0 S:A8h

IE1 Interrupt Enable Control 1 S:B1h

IPL0 Interrupt Priority Control Low 0 S:B8h

IPL1 Interrupt Priority Control Low 1 S:B3h

IPH0 Interrupt Priority Control High 0 S:B7h

IPH1 Interrupt Priority Control High 1 S:B2h

Note:
� These SFRs can also be accessed by their corresponding registers in the register file (See
   Table 3.3. 
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The instruction set for the C251 Architecture is a superset of the instruction set for the C51 Architecture. This chapter
describes the addressing modes and summarizes the instruction set, which is divided into data instructions, bit
instructions, and control instructions. (Chapter 5, “Instruction Set Reference” contains an opcode map and the detailed
description of each instruction.)

Notes:
1 The instruction execution times given in Chapter 5 are for code executing from on–chip code memory and for data that is read from and
written to on–chip RAM. Execution times are increased by executing code from external memory, accessing peripheral SFRs, accessing data in
external memory, using a wait state, or extending the ALE pulse.
2 For some instructions, accessing the port SFRs, Px (x = 0, 1, 2, 3) increases the execution time. These cases are noted individually in the
tables in Chapter 5.

1. Source Mode or Binary Mode Opcodes
Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction set of the C251
Architecture. Depending on the application, one mode or the other may produce more efficient code. The mode is
established during device reset based on the value of the SRC bit in configuration byte CONFIG0. For information
regarding the configuration bytes, see the Product Design Guide.

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for the C251 Architecture.
One of these modes must be selected when the chip is configured. Depending on the application, binary mode or source
mode may produce more efficient code. This section describes the binary and source modes and provides some
guidelines for selecting the mode for your application.

The C251 Architecture has two types of instructions:
� Instructions that originate in the C51 Architecture
� Instructions that are unique to the C251 Architecture

Figure 4.1. shows the opcode map for the binary mode. Area I and area II make up the opcode map for the instructions
that are unique to the C251 Architecture. Note that some of these opcodes are reserved for future instructions. The
opcode values for areas II and III are identical (06H–FFH). To distinguish between the two areas in binary mode, the
opcodes in area III are given the prefix A5H (the A5H instruction is not implemented in the native C51 Architecture).
The area III opcodes are thus A506H–A5FFH.

 Figure 4.2. shows the opcode map for source mode. Areas II and III have switched places (compare with Figure 4.1. ).
In source mode, opcodes for instructions in area II require the A5F escape prefix while opcodes for instructions in area
III (C251 Architecture) do not.

To illustrate the difference between the binary–mode and source–mode opcodes, Table 4.1. shows the opcode
assignments for three sample instructions.

Table 4.1. Examples of Opcodes in Binary and Source Modes

Instruction Opcode

Binary Mode Source Mode

DEC A 14H 14CH

SUBB A, R4 9CH A59CH

SUB R4, R4 A59CH 9CH

1.1. Selecting Binary Mode or Source Mode

If you have code that was written for a C51 microcontroller and you want to run it unmodified on a C251
microcontroller, choose binary mode. You can use the object code without reassembling the source code. You can also

Programming
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assemble the source code with an assembler for the C251 Architecture and have it produce object code that is
binary–compatible with C51 microcontrollers. The remainder of this section discusses the selection of binary mode
or source mode for code that may contain instructions from both architectures.
An instruction with a prefixed opcode requires one more byte for code storage, and if an additional fetch is required
for the extra byte, the execution time is increased by one state. This means that using fewer prefixed opcodes produces
more efficient code.
If a program uses only instructions from the C51 Architecture, the binary–mode code is more efficient because it uses
no prefixes. On the other hand, if a program uses many more new instructions than instructions from the C51
Architecture , source mode is likely to produce more efficient code. For a program where the choice is not clear, the
better mode can be found by experimenting with a simulator.

0H FH6H5H
0H

FH

0H

FH

FH6H

I II III

C51 Architecture C51 Architecture C251 Architecture

A5H Prefix

Figure 4.1. Binary Mode Opcode Map

0H FH6H5H
0H

FH

0H

FH

FH6H

I III II

C51 Architecture C251 Architecture C51 Architecture

A5H Prefix

Figure 4.2. Source Mode Opcode Map

2. 4.1. Programming Features of the C251 Architecture
The instruction set for TSC80251 microcontrollers provides the user with new instructions that exploit the features of
the C251 Architecture while maintaining compatibility with the instruction set for 80C51 microcontrollers. Many of
the new instructions can operate on either 8–bit (byte), 16–bit (word) or 32–bit (dword) operands (In comparison with
8–bit and 16–bit operands, 32–bit operands are accessed with fewer addressing modes.). This capability increases the
ease and efficiency of programming TSC80251 microcontrollers in a high–level language such as C.
The instruction set is divided into “Data Instructions”, “Bit Instructions” and “Control Instructions”. Data instructions
process 8–bit, 16–bit and 32–bit data; bit instructions manipulate bits; and control instructions manage program flow.

2.1. Data Types
Table 4.2. lists the data types that are addressed by the instruction set. Words or dwords (double words) can be stored
in memory starting at any byte address; alignment on two–byte or four–byte boundaries is not required. Words and
dwords are stored in memory and the register file in big endian form.
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Table 4.2. Data Types

Data Type Number of Bits

Bit 1

Byte 8

Word 16

Dword (Double Word) 32

2.1.1. Order of Byte Storage for Words and Double Words

TSC80251 microcontrollers store words (2 bytes) and double words (4 bytes) in memory and in the register file in big
endian form. In memory storage, the most significant byte (MSB) of the word or double word is stored in the memory
byte specified in the instruction; the remaining bytes are stored at higher addresses, with the least significant byte (LSB)
at the highest address. Words and double words can be stored in memory starting at any byte address. In the register
file, the MSB is stored in the lowest byte of the register specified in the instruction. The code fragment in
Figure 4.3. illustrates the storage of words and double words in big endian form.

2.2. Register Notations

In register–addressing instructions, specific indices denote the registers that can be used in that instruction. For
example, the instruction ADD A,Rn uses“Rn” to denote any one of R0, R1, ..., R7; i.e., the range of n is 0-7. The
instruction ADD Rm,#data uses “Rm” to denote R0, R1, ..., R15; i.e., the range of m is 0-15. Table 4.3. summarizes
the notation used for the register indices. When an instruction contains two registers of the same type (e.g., MOV
Rmd,Rms) the first index “d” denotes “destination” and the second index “s” denotes “source”.

2.3. Address Notations

In the C251 Architecture, memory addresses include a region number (00:, 01:, ..., FF:). SFR addresses have a prefix
“S:” (S:000h-S:1FFh). The distinction between memory addresses and SFR addresses is necessary, because memory
locations 00:0000h-00:01FFh and SFR locations S:000h-S:1FFh can both be directly addressed in an instruction.

200h 201h 202h 203h

A3h B6h

0 1 2 3 4 5 6 7

A3h B6h 00h 00h C4h D7h

WR0 DR4

Contents of register file and memory after execution: MOV WR0, #A3B6h
MOV 00:0201h, WR0
MOV DR4, #0000C4D7h

Figure 4.3. Word and Double-word Storage in Big Endian Form
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Table 4.3. Notation for Byte Registers, Word Registers, and Dword Registers

Register Type
Register
Symbol

Destination
Register

Source
Register Register Range

Ri – – R0, R1

Rn – – R0-R7
Byte

Rm Rmd Rms R0-R15

Word WRj WRjd WRjs WR0, WR2, WR4, ..., WR30

Dword DRk DRkd DRks DR0, DR4, DR8, ..., DR28,DR56, DR60

Instructions in the C51 Architecture use 80h-FFh as addresses for both memory locations and SFRs, because memory
locations are addressed only indirectly and SFR locations are addressed only directly. For compatibility, software tools
for TSC80251 controllers recognize this notation for instructions in the C51 Architecture. No change is necessary in
any code written for 80C51 microcontrollers.

For new instructions in the C251 Architecture, the memory region prefixes (00:, 01:, ..., FF:) and the SFR prefix (S:)
are required. Also, software tools for the C251 Architecture permit 00: to be used for memory addresses 00h-FFh and
permit the prefix S: to be used for SFR addresses in instructions in the C51 Architecture.

2.4. Addressing Modes

The C251 Architecture supports the following addressing modes:

� Register addressing
The instruction specifies the register that contains the operand.

� Immediate addressing
The instruction contains the operand.

� Direct addressing
The instruction contains the operand address.

� Indirect addressing
The instruction specifies the register that contains the operand address.

� Displacement addressing
The instruction specifies a register and an offset. The operand address is the sum of the register contents (the base
address) and the offset.

� Relative addressing
The instruction contains the signed offset from the next instruction to the target address (the address for transfer
of control, e.g., the jump address).

� Bit addressing
The instruction contains the bit address.

3. Program Status Words

The Program Status Word (PSW) register and the Program Status Word 1 (PSW1) register contain four types of bits
(see Figure 4.8. and Figure 4.9. ):

� CY, AC, OV, N and Z are flags set by hardware to indicate the result of an operation.

� The P bit indicates the parity of the accumulator.

� Bits RS0 and RS1 are programmed by software to select the active register bank for registers R0-R7.

� F0 and UD are available to the user as general–purpose flags.
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The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not affected by a write.
Individual bits can be addressed with the bit instructions (“Bit Instructions”). The PSW and PSW1 bits are used
implicitly in the conditional jump instructions (“Conditional Jumps”).

The PSW register is identical to the PSW register in 80C51 microcontrollers. The PSW1 register exists only in
TSC80251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are identical to the corresponding bits in PSW,
i.e., the same bit can be accessed in either register. Table 4.4. lists the instructions that affect the CY, AC, OV, N and
Z bits.

Table 4.4. The Efffects of Instructions on the PSW and PSW1 Flags

Instruction Flags Affected (1)
Instruction

Type Instruction
CY OV AC (2) N Z

ADD, ADDC, SUB, CMP X X X X X

INC, DEC X X

Arithmetic MUL, DIV (3) 0 X X X

DA X X X

ANL, ORL, XRL, CLR A, CPL A, RL, RR, SWAP X X

Logical RLC, RRC, SRL, SLL, SRA (4) X X X

Program CJNE X X X
Control

DJNE X X

Notes :
1. X = the flag can be affected by the instruction. 0 = the flag is cleared by the instruction.
2. The AC flag is affected only by operations on 8–bit operands.
3. If the divisor is zero, the OV flag is set, and the other bits are meaningless.
4. For SRL, SLL and SRA instructions, the last bit shifted out is stored in the CY bit.
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4. Data Instructions

Data instructions consist of arithmetic, logical, and data–transfer instructions for 8–bit, 16–bit and 32–bit data. This
section describes the data addressing modes and the set of data instructions.

4.1. Data Addressing Modes

This section describes the data addressing modes, which are summarized in two tables: Table 4.6. for the instructions
that are native to the C51 Architecture and Table 4.6. for the data instructions unique to the C251 Architecture.

Notes:

� References to registers R0-R7, WR0-WR6, DR0 and DR4 always refer to the register bank that is currently selected
by the PSW and PSW1 registers. Registers in all banks (active and inactive) can be accessed as memory locations
in the range 00h-1Fh.

� Instructions from the C51 Architecture access external memory through the region of memory specified by byte
DPXL in the extended data pointer register, DPX (DR56). Following reset, DPXL contains 01h, which maps the
external memory to region 01:. You can specify a different region by writing to DR56 or the DPXL SFR.

4.1.1. Addressable Registers

Both Architectures address registers directly.

� C251 Architecture
In the register addressing mode, the operand(s) in a data instruction are in byte registers (R0-R15), word registers
(WR0, WR2, ..., WR30) or dword registers (DR0, DR4, ..., DR28, DR56, DR60).

� C51 Architecture
Instructions address registers R0-R7 only.

4.1.2. Immediate Addressing

� C251 Architecture
In the immediate addressing mode, the instruction contains the data operand itself. Byte operations use 8–bit
immediate data (#data); word operations use 16–bit immediate data (#data16). Dword operations use 16–bit
immediate data in the lower word and either zeros in the upper word (denoted by #0data16) or ones in the upper
word (denoted by #1data16). MOV instructions that place 16–bit immediate data into a dword register (DRk), place
the data either into the upper word while leaving the lower word unchanged, or into the lower word with a sign
extension or a zero extension.
The increment and decrement instructions contain immediate data (#short = 1, 2, or 4), which specifies the amount
of the increment/decrement.

� C51 Architecture
Instructions use only 8–bit immediate data (#data).

4.1.3. Direct Addressing

� C251 Architecture
In the direct addressing mode, the instruction contains the address of the data operand. The 8–bit direct mode
addresses on–chip RAM (dir8 = 00:0000h-00:007Fh) as both bytes and words, and addresses the SFRs (dir8 =
S:080h-S:1FFh) as bytes only. The 16–bit direct mode addresses both bytes and words in memory (dir16 =
00:0000h-00:FFFFh).

� C51 Architecture
The 8–bit direct mode addresses 256 bytes of on–chip RAM (dir8 = 00h-7Fh) as bytes only and the SFRs (dir8 =
80h-FFh) as bytes only.
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Table 4.5. Addressing Modes for Data Instruction in the C51 Architecture

Mode
Address Range of

Operand

Assembly
Language
Reference

Comments

Register 00h-1Fh R0-R7 (Bank
selected by PSW)

Immediate Operand in Instruction #data = #00h-#FFh

00h-7Fh dir8 = 00h-7Fh On-chip RAM
Direct

SFRs dir8 = 80h-FFh
or SFR mnemonic

SFR address

00h-FFh @R0, @R1 Accesses on-chip RAM or the lowest 256
bytes of external data memory (MOVX)

Indirect
0000h-FFFFh @DPTR,

@A+DPTR
Accesses external data memory (MOVX)

0000h-FFFFh @A+DPTR,
@A+PC

Accesses region FF : of code memory
(MOVC)

4.1.4. Indirect Addressing

In arithmetic and logical instructions that use indirect addressing, the source operand is always a byte, and the
destination is either the accumulator or a byte register (R0-R15). The source address is a byte, word or dword. The two
architectures do indirect addressing via different registers:

� C251 Architecture
Memory is indirectly addressed via word and dword registers :
� Word register (@WRj, j = 0, 2, 4, ..., 30)

The 16–bit address in WRj can access locations 00:0000h-00:FFFFh.
� Dword register (@DRk, k = 0, 4, 8, ..., 28, 56, and 60)

The 24 least significant bits can access the entire 16–Mbyte address space. The upper eight bits of DRk must
be 0. (If you use DR60 as a general data pointer, be aware that DR60 is the extended stack pointer register SPX.)

� C51 Architecture
Instructions use indirect addressing to access on–chip RAM, code memory, and external data RAM.
� Byte register (@Ri, i = 0, 1)

Registers R0 and R1 indirectly address on–chip memory locations 00h-FFh and the lowest 256 bytes of external
data RAM.

� 16–bit data pointer (@DPTR or @A+DPTR)
The MOVC and MOVX instructions use these indirect modes to access code memory and external data RAM.

� 16–bit program counter (@A+PC)
The MOVC instruction uses this indirect mode to access code memory.
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Table 4.6. Addressing Modes for Data Instruction in the C251 Architecture

Mode
Address Range of

Operand
Assembly Language

Reference Comments

Register 00:0000h-00:001Fh R0-R15, WR0-WR30,
DR0-DR28, DR56, DR60

R0-R7, WR0-WR6, and DR4 are
in the register bank currently
selected by the PSW and PSW1

Immediate 2 bits N.A. (Operand is in
the instruction)

#short = 1, 2, or 4 Used only in increment and
decrement instructions

Immediate 8 bits N.A. (Operand is in
the instruction)

#data8 = #00h-#FFh

Immediate 16 bits N.A. (Operand is in
the instruction)

#data16 = #0000h-#FFFFh

00:0000h-00:007Fh dir8 = 00:0000h-00:007Fh On-chip RAM
Direct, 8 address bits

SFRs dir8 = S:080h-S:1FFh (2)
or SFR mnemonic

SFR address

Direct, 16 address bits
00:0000h-00:FFFFh dir16 = 00:0000h-00:FFFFh

Indirect, 16 address
bits

00:0000h-00:FFFFh @WR0-@WR30

Indirect, 24 address
bits

00:0000h-FF:FFFFh @DR0-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be 00h

Displacement, 16
address bits

00:0000h-00:FFFFh @WRj +dis16 =
@WR0 +0h through
@WR30 +FFFFh

Offset is signed; address wraps
around in region 00:

Displacement, 24
address bits

00:0000h-FF:FFFFh @DRk +dis24 =
@DR0 +0h through @DR28
+FFFFh,
@DR56 +(0h-FFFFh),
@DR60 +(0h-FFFFh)

Offset is signed, upper 8 bits of
DRk must 00h

Notes:

1. These registers are accessible in the memory space as well as in the register file.
2. The C251 Architecture supports SFRs in locations S:000h-S:1FFh.

4.1.5. Displacement Addressing

Several move instructions use displacement addressing to move bytes or words from a source to a destination.
Sixteen–bit displacement addressing (@WRj+dis16) accesses indirectly the lowest 64 Kbytes in memory. The base
address can be in any word register WRj. The instruction contains a 16–bit signed offset which is added to the base
address. Only the lowest 16 bits of the sum are used to compute the operand address. If the sum of the base address
and a positive offset exceeds FFFFh, the computed address wraps around within region 00: (e.g. F000h + 2005h
becomes 1005h). Similarly, if the sum of the base address and a negative offset is less than zero, the computed address
wraps around the top of region 00: (e.g., 2005h + F000h becomes 1005h).

24–bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16–Mbyte address space. The base
address must be in DR0, DR4, ..., DR24, DR28, DR56, or DR60. The upper byte in the dword register must be zero.
The instruction contains a 16–bit signed offset which is added to the base address.
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4.2. Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the C251 Architecture. The ADD and SUB instructions (see
Table 5.19) operate on byte and word data that is accessed in several ways :
� as the contents of the accumulator, a byte register (Rn), or a word register (WRj)
� in the instruction itself (immediate data)
� in memory via direct or indirect addressing

The ADDC and SUBB instructions are the same as those for 80C51 microcontrollers.

The CMP (compare) instruction (see Table 5.20) calculates the difference of two bytes or words and then writes to flags
CY, OV, AC, N, and Z in the PSW and PSW1 registers. The difference is not stored. The operands can be addressed
in a variety of modes. The most frequent use of CMP is to compare data or addresses preceding a conditional jump
instruction.

Table 5.21 lists the INC (increment) and DEC (decrement) instructions. The instructions for 80C51 microcontrollers
are supplemented by instructions that can address byte, word, and dword registers and increment or decrement them
by 1, 2, or 4 (denoted by #short). These instructions are supplied primarily for register–based address pointers and loop
counters.

The C251 Architecture provides the MUL (multiply) and DIV (divide) instructions for unsigned 8–bit and 16–bit data
(Table 5.22). Signed multiply and divide are left for the user to manage through a conversion process. The following
operations are implemented :
� eight–bit multiplication: 8 bits x 8 bits → 16 bits
� sixteen–bit multiplication: 16 bits x 16 bits → 32 bits
� eight–bit division: 8 bits / 8 bits → 16 bits (8–bit quotient, 8–bit remainder)
� sixteen–bit division: 16 bits / 16 bits → 32 bits (16–bit quotient, 16–bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or the accumulator and
B register (A, B). For 8–bit register multiplies, the result is stored in the word register that contains the first operand
register. For example, the product from an instruction MUL R3,R8 is stored in WR2. Similarly, for 16–bit multiplies,
the result is stored in the dword register that contains the first operand register. For example, the product from the
instruction MUL WR6,WR18 is stored in DR4.

For 8–bit divides, the operands are byte registers. The result is stored in the word register that contains the first operand
register. The quotient is stored in the lower byte, and the remainder is stored in the higher byte. A 16–bit divide is
similar. The first operand is a word register, and the result is stored in the double word register that contains that word
register. If the second operand (the divisor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1
are meaningless.

4.3. Logical Instructions

The C251 Architecture provides a set of instructions that perform logical operations. The ANL, ORL, and XRL (logical
AND, logical OR, and logical exclusive OR) instructions operate on bytes and words that are accessed via several
addressing modes (see Table 5.23). A byte register, word register, or the accumulator can be logically combined with
a register, im–mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that operate on the
accumulator, TSC80251 microcontrollers have three shift commands for byte and word registers :
� SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0.
� SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0.
� SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged.

4.4. Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These instructions include the
move instructions (see Table 5.24) and the exchange, PUSH, and pop instructions (see Table 5.24). Instructions that
move only a single bit are listed with the other bit instructions in Table 5.26.
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MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the C251 Architecture. MOV
can transfer a byte, word or dword between any two registers or between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator or from the
accumulator to memory. The external memory is in the region specified by DPXL, whose reset value is 01h.

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accumulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents of an 8–bit register
to the lower byte of a 16–bit register. The upper byte is filled with the sign bit (MOVS) or zeros (MOVZ). The MOVH
(Move to high Word) instruction places 16–bit immediate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or memory location. The
XCHD (Exchange Digit) instruction interchanges the lower nibble of the accumulator with the lower nibble of a byte
in on–chip RAM. XCHD is useful for BCD (binary coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it (POP) in reverse order.
PUSH can push a byte, a word or a dword onto the stack, using the immediate, direct or register addressing modes.
POP can pop a byte or a word from the stack to a register or to memory.

5. Bit Instructions
A bit instruction addresses a specific bit in a memory location or SFR. There are four categories of bit instructions:
� SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, clear or complement any

addressable bit.
� ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or Logical Complement).

These instructions allow anding and oring of any addressable bit or its complement with the CY flag.
� MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.
� Bit–conditional jump instructions execute a jump if the bit has a specified state. The bit–conditional jump

instructions are classified with the control instructions.

5.1. Bit Addressing

The bits that can be individually addressed are in the on–chip RAM and the SFRs (see Table 4.7. ). The bit instructions
that are unique to the C251 Architecture can address a wider range of bits than the instructions from the C51
Architecture.

There are some differences in the way the instructions from the two Architectures address bits. In the C51 Architecture,
a bit (denoted by bit51) can be specified in terms of its location within a certain register, or it can be specified by a
bit address in the range 00h-7Fh. The C251 Architecture does not have bit addresses as such. A bit can be addressed
by name or by its location within a certain register, but not by a bit address.

Table 4.8. illustrates bit addressing in the two Architectures by using two sample bits:
� RAMBIT is bit 5 in RAMREG, which is location 23h. (“RAMBIT” and “RAMREG” are assumed to be defined

in user code.)
� IT1 is bit 2 in TCON, which is an SFR at location 88h.

Table 4.7. Bit-addressable Locations

Bit-addressable Locations
Architecture

On-chip RAM SFRs

C251 Architecture 20h-7Fh All defined SFRs

C51 Architecture 20h-2Fh SFRs with addresses ending in 0h or 8h: 80h, 88h, 90h, 98h, ..., F8h

Table 4.9. lists the addressing modes for bit insructions, and Table 5.26 summarizes the bit instructions. “bit” denotes
a bit that is addressed by a new instruction in the C251 Architecture, and “bit51” denotes a bit that is addressed by an
instruction in the C51 Architecture.
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Table 4.8. Two Samples of Bits Addressing

Location Addressing Mode C51 Architecture C251 Architecture

Register Name RAMREG.5 RAMREG.5

Register Address 23h.5 23h.5
On-chip RAM

Bit Name RAMBIT RAMBIT

Bit Address 1Dh NA

Register Name TCON.2 TCON.2

Register Address 88.2h S:88.2h
SFR

Bit Name IT1 IT1

Bit Address 8A NA

Table 4.9. Addressing Modes for Bit Instructions

Architecture Variants Bit Address Memory/SFR Address Comments

Memory NA 20h.0-7Fh.7
C251 (bit)

SFR NA All defined SFRs

Memory 00h-7Fh 20h.0-7Fh.7
C51 (bit)

SFR 80h-F8h XXh.0-XXh.7, where XX =
80, 88, 90, 98, ..., F0, F8

SFRs are not defined at all
bit-addressable locations

6. Control Instructions

Control instructions “instructions that change program flow” include calls, returns, and conditional and unconditional
jumps (see Table 5.27). Instead of executing the next instruction in the queue, the processor executes a target
instruction. The control instruction provides the address of a target instruction either implicitly, as in a return from a
subroutine, or explicitly, in the form of a relative, direct, or indirect address.

TSC80251 microcontrollers have a 24–bit program counter (PC), which allows a target instruction to be anywhere in
the 16–Mbyte address space. however, as discussed in this section, some control instructions restrict the target address
to the current 2–Kbyte or 64–Kbyte address range by allowing only the lowest 11 or lowest 16 bits of the program
counter to change.
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6.1. Addressing Modes for Control Instructions

Table 4.10. lists the addressing modes for the control instructions.

� Relative addressing:
The control instruction provides the target address as an 8–bit signed offset (rel) from the address of the next
instruction.

� Direct addressing:
The control instruction provides a target address, which can have 11 bits (addr11), 16 bits (addr16), or 24 bits
(addr24). The target address is written to the PC.
� addr11: Only the lower 11 bits of the PC are changed; i.e., the target address must be in the current 2–Kbyte

block (the 2–Kbyte block that includes the first byte of the next instruction).
� addr16: Only the lower 16 bits of the PC are changed; i.e., the target address must be in the current 64–Kbyte

region (the 64–Kbyte region that includes the first byte of the next instruction).
� addr24: The target address can be anywhere in the 16–Mbyte address space.

� Indirect addressing:
There are two types of indirect addressing for control instructions:
� For the instructions LCALL @WRj and LJMP @WRj, the target address is in the current 64–Kbyte region. The

16–bit address in WRj is placed in the lower 16 bits of the PC. The upper eight bits of the PC remain unchanged
from the address of the next instruction.

� For the instruction JMP @A+DPTR, the sum of the accumulator and DPTR is placed in the lower 16 bits of
the PC, and the upper eight bits of the PC are FF:, which restricts the target address to the code memory space
of the C51 Architecture.

Table 4.10. Addressing Modes for Control Instructions

Description
Address Bits

Provided Address Range

Relative, 8-bit relative address (rel) 8 –128 to +127 from first byte of next instruction

Direct, 11-bit target address (addr11) 11 Current 2 Kbytes

Direct, 16-bit target address (addr16) 16 Current 64 Kbytes

Direct, 24-bit target address (addr24)
�

24 00:0000h-FF:FFFFh

Indirect (@WRj) � 16 Current 64 Kbytes

Indirect (@A +DPTR) 16 64-Kbyte region specified by DPXL (reset value = 01h)

Note:
� These modes are not used by instructions in the C51 Architecture.
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6.2. Conditional Jumps

The C251 Architecture supports bit–conditional jumps, compare–conditional jumps, and jumps based on the value of
the accumulator. A bit–conditional jump is based on the state of a bit. In a compare–conditional jump, the jump is based
on a comparison of two operands. All conditional jumps are relative, and the target address (rel) must be in the current
256–byte block of code. The instruction set includes three kinds of bit–conditional jumps :

� JB (Jump on Bit): Jump if the bit is set.

� JNB (Jump on Not Bit): Jump if the bit is clear.

� JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

Compare–conditional jumps test a condition resulting from a compare (CMP) instruction that is assumed to precede
the jump instruction. The jump instruction examines the PSW and PSW1 registers and interprets their flags as though
they were set or cleared by a compare (CMP) instruction. Actually, the state of each flag is determined by the last
instruction that could have affected that flag.

The condition flags are used to test one of the following six relations between the operands :

� equal (=), not equal (�)

� greater than (>), less than (<)

� greater than or equal (�), less than or equal (�)

For each relation there are two instructions, one for signed operands and one for unsigned operands (see Table 4.11. ).

Table 4.11. Compare-conditional Jump Instructions

Operand RelationOperand
Type

� � � � � �

Unsigned JG JL JGE JLE

Signed
JE JNE

JSG JSL JSGE JSLE

6.3. Unconditional Jumps

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the program counter. AJMP, LJMP,
and EJMP jump to direct or indirect addresses.

� NOP (No Operation) is an unconditional jump to the next instruction.

� SJMP (Short Jump) jumps to any instruction within –128 to 127 of the next instruction.

� AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the current 2–Kbyte block
of memory. The address can be direct or indirect.

� LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the current 64–Kbyte region.

� EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16–Mbyte address space. The address
can be direct or indirect.
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6.4. Calls and Returns

The C251 Architecture provides relative, direct, and indirect calls and returns.

� ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack and then changes
the lower 11 bits of the PC to the 11–bit address specified by the instruction. The call is to an address that is in the
same 2–Kbyte block of memory as the address of the next instruction.

� LCALL (Long Call) pushes the lower 16 bits of the next–instruction address onto the stack and then changes the
lower 16 bits of the PC to the 16–bit address specified by the instruction. The call is to an address in the same
64–Kbyte block of memory as the address of the next instruction.

� ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then changes the 24
bits of the PC to the 24–bit address specified by the instruction. The call is to an address anywhere in the 16–Mbyte
memory space.

� RET (Return) pops the top two bytes from the stack to return to the instruction following a subroutine call (ACALL
or LCALL). The return address must be in the same 64–Kbyte region.

� ERET (Extended Return) pops the top three bytes from the stack to return to the address following a subroutine
call (ECALL). The return address can be anywhere in the 16–Mbyte address space.

� RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation of RETI depends
on the INTR bit in the CONFIG1 configuration byte (see Product Design Guide):
� For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following order : PC.7:0,

PC.15:8. The RETI instruction pops these two bytes and uses them as the 16–bit return address in region FF:.
RETI also restores the interrupt logic to accept additional interrupts at the same priority level as the one just
processed.

� For INTR = 1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the following order: PSW1,
PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes and then returns to the specified 24–bit
address, which can be anywhere in the 16–Mbyte address space. RETI also clears the interrupt request line. (see
the note in Table 4.10. regarding compatibility with code written for 80C51 microcontrollers.)

The TRAP instruction which causes a non maskable interrupt call is useful for the development of emulation of a
TSC80251 microcontroller.

Note:
A simple RET instruction also returns execution to the interrupted program. In previous implementations this inappropriately allowed the system
to operate as though an interrupt service routine is still in progress. The C251 Architecture allows use of both RETI and RET instructions for
interrupt completion. However, for code expected to run properly on both 80C51 and TSC80C251 microcontrollers, only the execution of a RETI
instruction is considered proper completion of the interrupt operation.
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7. Interrupt Processing

7.1. Interrupt Request

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and lasts until the execution
of the first instruction in the interrupt service routine (see Figure 4.4. ). Response time is the amount of time between
the interrupt request and the resulting break in the current instruction stream. Latency is the amount of time between
the interrupt request and the execution of the first instruction in the interrupt service routine. These periods are dynamic
due to the presence of both fixed-time sequences and several variable conditions. These conditions contribute to total
elapsed time.

Response Time

Ending Instruction PUSH PSW1, PC CALL ISR

Latency

OSC

State
Time

External
Interrupt
Request

Interrupt Vector Cycle

Poll INT0#

Context Switch Request

Figure 4.4. Interrupt Process

Both response time and latency begin with the interrupt request. The subsequent minimum fixed sequence comprises
the interrupt sample, poll, context switch request and interrupt vector cycle operations. The variables consist of (but
are not limited to): specific instruction in use at request time, internal versus external interrupt source requests, internal
versus external program operation, stack location, presence of wait states, page-mode operation and call pointer length.

7.2. Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a time generates a context
switch and a vector cycle to an ISR. There are three causes of blocking conditions with hardware-generated vectors:

� An interrupt of equal or higher priority level is already in progress (defined as any point after the flag has been set
and the RETI of the ISR has not executed).

� The current polling cycle is not the final cycle of the instruction in progress.

� The instruction in progress is RETI

� The instruction in progress is any write/read–modify–write to interrupt enable or interrupt priority level registers
(see the Product Design Guide).

Any of these conditions blocks calls to ISR. Condition two ensures the instruction in progress completes before the
system vectors to the ISR. Condition three ensures at least one more instruction of the interrupted routine executes
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before the system vectors to additional interrupts. Condition four insures interrupt requests are polled and prioritized
consistently.

Note:
If the interrupt flag for a level-triggered external interrupt is set but denied for one of the above conditions and is clear when the blocking
condition is removed, then the denied interrupt is ignored. In other words, blocked interrupt requests are not buffered for retention.
Furthermore, if several interrupts are pending, the interrupt actually served will be the one selected by the last polling cycle when the blocking
condition disappears, hence blocking the other ones.

7.3. Interrupt Vector Cycle

When an interrupt vector cycle is initiated following a context switch request, the CPU breaks the instruction stream
sequence, resolves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the stack.
The CPU then reloads the PC with a start address for the appropriate ISR. The number of bytes pushed to the stack and
the call pointer length depend upon the INTR bit in the configuration register (see CONFIG1 in the Product Design
Guide). A processor status word (PSW1) may also be pushed to the stack according to the INTR bit.

7.4. Interrupt Service Routine

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs the processor the
interrupt routine is completed. It pops PC address bytes off the stack (as well as PSW1 for INTR = 1), and execution
resumes at the suspended instruction stream.

With the exception of TRAP, the start addresses of consecutive interrupt service routines (ISR) are eight bytes apart.
If consecutive interrupts are used (IE0 and TF0, for example, or TF0 and IE1), the first interrupt routine (if more than
eight bytes long including RETI instruction) must execute a jump to some other memory location. This prevents
overlap of the start address of the following interrupt routine but slightly increase the ISR overhead.

8. Interrupt Times

To have a system supporting heavy duty operation, the maximum latency has to be considered. Though the average
performance rather depends on the average latency which is more difficult to predict. This section explains how to
compute the maximum time and to estimate the average time.

8.1. Interrupt Response Time

Response time is defined as the start of a dynamic time period when a source requests an interrupt and lasts until a break
in the current instruction execution stream occurs (see Figure 4.5. ). Response time (and therefore latency) is affected
by two primary factors: the incidence of the request relative to the four-state-time sample window and the completion
time of instructions in the response period (i.e., shorter instructions complete earlier than longer instructions).

Note:
External interrupt signals require one additional state time in comparison to internal interrupts. This is necessary to sample and latch the pin
value prior to a poll of the interrupts. The sample occurs in the first half of the state time and the poll/request occurs in the second half of the next
state time. Therefore, this sample and poll/request portion of the minimum/maximum fixed response and latency time is two/five states for internal
interrupts and three/six states for external interrupts. External interrupts should remain active for more than four state times to guarantee
interrupt recognition when the request occurs immediately after a sample has been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the poll state, the interrupt is not resampled and polled for another
three states. After the second sample is taken and the interrupt request is recognized, the interrupt controller requests
the interrupt vector cycle. The programmer must also consider the time to complete the instruction at the moment the
context switch request is sent to the execution unit. If 9 states of a 10-state instruction have completed when the context
switch is requested, the total response time is 6 states, with an interrupt vector cycle immediately after the final state
of the 10-state instruction (see Figure 4.5. ).
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OSC

State
Time

INT0# Interrupt
Request

Response Time = 6

PUSH PC

Poll INT0#

Context Switch Request

10–State
Instruction

1 2 3 4 5 6

Figure 4.5. Response Time Example 1

Conversely, if the external interrupt requests service in the state just prior to the next sample, response is much quicker.
One state asserts the interrupt request, one state samples, and one state requests the context switch. If at that point the
same instruction conditions exist, one additional state time is needed to complete the 10-state instruction prior to the
interrupt vector cycle (see Figure 4.6. ). The total response time in this case is four state times. The programmer must
evaluate all pertinent conditions for accurate predictability.

Response Time = 4

Poll INT0#

Context Switch Request

10–State
Instruction

PUSH PC

OSC

State
Time

INT0# 1 2 3 4

Figure 4.6. Response Time Example 2



TSC80251

Rev. E – 20 December, 2000 
4.18

8.2. Interrupt Latency Time

8.2.1. Minimum Fixed Interrupt Time

Each interrupt is sampled and polled every four state times (see Figure 4.5. ). One additional state time is required for
a context switch request. For code branches to jump locations in the current 64-Kbyte memory region (compatible with
C51 Architecture), the interrupt vector cycle time is 11 states. Therefore, the minimum fixed poll and request time is
13 states (1 poll states + 1 request state + 11 states for the interrupt vector cycle = 13 state times).

Therefore, this minimum fixed period rests upon five assumptions:

� The interrupt request is coincident with its polling cycle.

� The source request is an internal interrupt with high enough priority to take precedence over other potential
interrupts.

� The context switch request is coincident with internal execution and needs no instruction completion time before
the interrupt vector cycle.

� The program uses an internal stack location.

� The ISR is in on-chip code memory.

8.2.2. Worst Case Latency Variables

Worst-case latency calculations assume that the longest C251 Architecture instruction used in the program must fully
execute prior to a context switch. The delay from instruction completion time is reduced by one state with the given
assumption that the first instruction state overlaps the context switch request state (therefore, 16-bit DIV is 21–1 = 20
states for latency calculations). The calculations add fixed and variable interrupt times (see Table 4.12. ) to this
instruction time to predict latency. The worst-case latency (both fixed and variable times included) is expressed by a
pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

Table 4.12. Interrupt Latency Variables

Variable
Polling
Time

External
Interrupt

>64K
Jump to
ISR (1

External
Execution (2)

External
Stack

2–byte push (3)

External
Stack

4–byte push (3)

Number
of States
Added

0 to 3 1 8 N1+2 2 � (N2+2) 4 � (N2+2)

Notes:
1. <64K / >64K means inside/outside the 64-Kbyte memory region where code is executing.
2. N1 is the number of wait states for external code fetch, add the number states to fetch possible additional bytes and complete the first
instruction according to the information provided in SECTION 5.2.
3. N2 is the number of wait states for external stack accesses.

8.2.3. Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR and the stack are located
within the same 64-Kbyte memory region (compatible with memory maps for 80C51 Microcontrollers). Further
assume INT0# has made the request one state prior to the poll state. Also assume there are seven states yet to complete
in the current 21-state DIV instruction when INT0# requests service. As shown in Figure 4.7. , the completion of the
current instruction is the limiting factor for this assumption. The actual response time is seven states while the best case
response time is two states for internal interrupts with one more state for external interrupts.
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Latency calculations begin with the minimum fixed latency of 13 states: two states best case response time and 11 states
best case context switch time. From Table 4.12. , one state is added for an INT0# request from external hardware; two
states are added for external execution; and four states for an external stack with 2–byte push (64–Kbyte pointers).
Three states are further added for the current instruction to complete. Finally one state is added for the interrupt request
has been made one state before the poll state. The actual latency is 24 states. Maximum latency calculations predict
43 states for this example due to inclusion of total DIV instruction time (less one state). Average latency calculations
estimate 23 states, assuming an average execution time of three states per instruction in the interruptible routines: the
average completion time is half of the average execution time. Minimum latency calculations predict 20 states when
there is no delay for polling or instruction completion.

Table 4.13. Actual vs. Predicted Latency Calculations

Latency Factors Actual Minimum Maximum Average

Base Case Minimum Fixed Time 13 13 13 13

INT0# External Request 1 1 1 1

External Execution 2 2 2 2

External Stack 2–byte Push 4 4 4 4

Completion Time for Current (DIV
instruction)

3 0 20 1.5

Polling Time 1 0 3 1.5

TOTAL 24 20 43 23

Note:
This computation does not include the possible additional states to actually complete the first instruction of the ISR.
It further assumes the average execution time is three states per instruction for the interrupted routines.
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Figure 4.7. Latency Time Example
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PSW (S:D0h)
Program Status Word register

CY AC FO RS1 RS0 OV UD P

7 6 5 4 3 2 1 0

Bit
Number

Bit
Mnemonic Description

7 CY Carry flag
The carry flag is set by an addition (ADD, ADDC) if there is a carry out of the MSB.
It is set by a subtraction (SUB, SUBB) or compare (CMP) if a borrow is needed for
the MSB. The carry flag is also affected by some rotate and shift instructions, logical
bit instructions and bit move instructions, and the multiply (MUL) and decimal
adjust (DA) instructions (see Table 4.4. ).

6 AC Auxiliary Carry flag
The auxiliary flag is affected only by instructions that address 8-bit operands. The
AC flag is set if an arithmetic instruction with an 8-bit operand produces a carry out
of bit 3 (from addition) or a borrow into bit 3 (from subtraction). Otherwise it is
cleared. This flag is useful for BCD arithmetic (see Table 4.4. ).

5 FO Flag 0
This general-purpose flag is available to the user.

4 RS1 Register Bank Select bit 1
This bit selects the memory locations that comprise the active bank of the register
file (registers R0-R7).
RS1 Bank Address
0 0 00h-07h
0 1 08h-0Fh
1 2 10h-17h
1 3 18h-1Fh

3 RS0 Register Bank Select bit 0
This bit selects the memory locations that comprise the active bank of the register
file (registers R0-R7).
RS0 Bank Address
0 0 00h-07h
1 1 08h-0Fh
0 2 10h-17h
1 3 18h-1Fh

2 OV Overflow flag
This bit is set if an addition or subtraction of signed variables results in an overflow
error (i.e., if the magnitude of the sum or differnecce is too great for the seven LSBs
in 2’s-complement representation). The overflow flag is also  set  if a multiplication
product overflows one byte or if a division by zero is attempted.

1 UD User-definable flag
This general-purpose flag is available to the user.

0 P Parity bit
This bit indicates the parity of the accumulator. It is set if an odd number of bits in
the accumulator are set. Otherwise, it is cleared. Not all instructions update the
parity bit.

Reset Value = 0000 0000b

Figure 4.8. Program Status Word register (PSW)



TSC80251

Rev. E – 20 December, 2000 4.21

PSW1 (S:D1h)
Program Status Word 1 register

CY AC N RS1 RS0 OV Z –

7 6 5 4 3 2 1 0

Bit
Number

Bit
Mnemonic Description

7 CY Carry flag
Identical to the CY bit in the PSW register (see Figure 4.8. ).

6 AC Auxiliary Carry flag
Identical to the AC bit in the PSW register (see Figure 4.8. ).

5 N Negative flag
This bit is set if the result of the last logical or arithmetic operation was negative,
i.e., bit15 = 1. Otherwise it is cleared.

4 RS1 Register Bank Select bit 1
Identical to the RS1 bit in the PSW register (see Figure 4.8. ).

3 RS0 Register Bank Select bit 0
Identical to the RS0 bit in the PSW register (see Figure 4.8. ).

2 OV Overflow flag
Identical to the OV bit in the PSW register (see Figure 4.8. ).

1 Z Zero flag
This flag is set if the result of the last logical or arithmetic operation is zero.
Otherwise it is cleared.

0 – Reserved
The value read from this bit is indeterminate.
Do not set this bit.

Reset Value = 0000 0000b

Figure 4.9. Program Status Word 1 register (PSW1)
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This chapter contains reference material for the instructions in the C251 Architecture. It includes an opcode map, a
summary of the instructions –with instruction lengths and execution times– and a detailed description of each
instruction. It contains the following tables:

Table 1through Table 5describe the notation used for the instruction operands.

Table 6bounds the minimum number of states per instruction.

Table 22and Table 23comprise the opcode map for the instruction set.

The following tables list the instructions with their lengths in bytes and their execution times:

� Add and Subtract Instructions, Table 7
� Increment and Decrement Instructions, Table 8
� Compare Instructions, Table 9
� Logical Instructions, Table 10and Table 11
� Multiply, Divide and Decimal-adjust Instructions, Table 12
� Move Instructions, Table 13to Table 15
� Bit Instructions, Table 16
� Exchange, Push and Pop Instructions, Table 17
� Control Instructions, Table 18to Table 21

Table 24through Table 33contain supporting material for the opcode map.

Notes:

1. The instruction execution times given in this appendix are for code executing from on-chip code memory and for data that is read from and
written to on-chip RAM. Execution times are increased by executing code from external memory, accessing peripheral SFRs, accessing data in
external memory, using a wait state, or extending the ALE pulse.

2. For some instructions, accessing the Port SFRs, Px, x = 0-3, increases the execution time.

Instruction Set Reference
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9. Notation for Instruction Operands

Table 1 to Table 5 provide Notation for Instruction Operands.

Table 1Notation for Direct Addressing

Direct Address Description C251 C51

dir8 A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address
(80h-FFh). It is a byte (default), word or double word depending on the other operand.

� �

dir16 A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing. �

Table 2Notation for Immediate Addressing

Immediate
Address Description C251 C51

#data An 8-bit constant that is immediately addressed in an instruction. � �

#data16 A 16-bit constant that is immediately addressed in an instruction. �

#0data16
#1data16

A 32-bit constant that is immediately addressed in an instruction. The upper word is filled
with zeros (#0data16) or ones (#1data16).

�

#short

vv

A constant, equal to 1, 2, or 4, that is immediately addressed in an instruction.
Binary representation of #short (’00’ is 1, ’01’ is 2, ’10’ is 4 and ’11’ is reserved). �

Table 3Notation for Bit Addressing

Direct Address Description C251 C51

bit51 A directly addressed bit (bit number= 00h-FFh) in memory or an SFR. Bits 00h-7Fh are the
128 bits in byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bits in the
16 SFRs with addresses that end in 0h or 8h, S:80h, S:88h, S:90h,..., S:F0h, S:F8h.

�

bit

yyy

A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.
Binary representation of a bit number (0–7) whitin a byte. �

Table 4Notation for Destination in Control Instructions

Direct Address Description C251 C51

rel A signed (two’s complement) 8-bit relative address. The destination is –128 to +127 bytes
relative to the next instruction’s first byte.

� �

addr11 An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next
instruction’s first byte.

�

addr16 A 16-bit target address. The target can be anywhere within the same 64-Kbyte region as the
next instruction’s first byte.

�

addr24 A 24-bit target address. The target can be anywhere within the 16–Mbyte address space. �
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Table 5Notation for Register Operands

Register Description C251 C51

@Ri A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1. �

Rn
n
rrr

Byte register R0-R7 of the currently selected register bank.
Byte register index: n= 0-7.
Binary representation of byte register index n.

�

Rm
Rmd
Rms
m, md, ms
ssss
SSSS

Byte register R0-R15 of the currently selected register file.
Destination byte register.
Source byte register.
Byte register index: m, md, ms= 0-15.
Binary representation of byte register index m or md.
Binary representation of byte register index ms.

�

WRj

WRjd
WRjs
@WRj

@WRj +dis16

j, jd, js
tttt
TTTT

Word register WR0, WR2, ..., WR30 of the currently selected register file.
Destination word register.
Source word register.
A memory location (00:0000h-00:FFFFh) addressed indirectly through word register
WR0-WR30, is the target address for jump instructions.
A memory location (00:0000h-00:FFFFh) addressed indirectly through word register
(WR0-WR30) + 16–bit signed (two’s complement) displacement value.
Word register index: j, jd, js= 0-30.
Binary representation of word register index j/2 or jd/2.
Binary representation of word register index js/2.

�

DRk

DRkd
DRks
@DRk

@DRk +dis16

k, kd, ks
uuuu
UUUU

Dword register DR0, DR4, ..., DR28, DR56, DR60 of the currently selected register file.
Destination dword register.
Source dword register.
A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register
DR0-DR28, DR56 and DR60, is the target address for jump instruction.
A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register
(DR0-DR28, DR56, DR60) + 16–bit (two’s complement) signed displacement value.
Dword register index: k, kd, ks= 0, 4, 8..., 28, 56, 60.
Binary representation of dword register index k/2 or kd/2.
Binary representation of dword register index ks/2.

�

Table 5.1.  defines the symbols (–, �,1, 0, ?) used to indicate the effect of the instruction on the flags in the PSW and
PSW1 registers. For a conditional jump instruction, “!” indicates that a flag influences the decision to jump.

Table 5.1. Flag Symbols

Symbol Description

– The instruction does not modify the flag.

�
The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: the state of the flag before the instruction executes influences the decision to jump or not jump.
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10. Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its
length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two con-
current processes limiting the effective instruction throughput:
� Instruction Fetch
� Instruction Execution

Table 7to Table 21assume code executing from on–chip memory, then the CPU is fetching 16–bit at a time and this
is never limiting the execution speed.

If the code is fetched from external memory, a pre–fetch queue will store instructions ahead of execution to optimize
the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited de-
pending on the average size of instructions (for the considered section of the program flow). The maximum average
instruction throughput is provided by Table 6depending on the external memory configuration (from Page Mode with-
out wait state to Non–Page Mode with the maximum number of wait states). If the average size of instructions is not
an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer val-
ues.

Note:

For instructions addressing an I/O Port (Px, x= 0-3), the pre–fetch process is disturbed and some wait states are added as highlighted by
footnotes in Table 7to Table 21Adding the corresponding number of wait states to the actual lenght of each of these instructions provides the
equivalent average instruction sizes to account for the pre–fetch disturbance.

Table 6Minimum Number of States per Instruction for given Average Sizes

Average size of Page Mode Non–Page Mode (states)
Instructions

(bytes)

Page Mode
(states) 0 Wait State 1 Wait State 2 Wait States 3 Wait States 4 Wait States

1 1 2 3 4 5 6

2 2 4 6 8 10 12

3 3 6 9 12 15 18

4 4 8 12 16 20 24

5 5 10 15 20 25 30

If the average execution time of the considered instructions is larger than the number of states given by Table 6, this
larger value will prevail as the limiting factor. Otherwise, the value from Table 6 must be taken. This is providing a
fair estimation of the execution speed but only the actual code execution can provide the final value.
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10.1. Size and Execution Time for Instruction Families

Table 7Summary of Add and Subtract Instructions

Add ADD <dest>, <src> dest opnd ← dest opnd + src opnd
Subtract SUB <dest>, <src> dest opnd ← dest opnd – src opnd
Add with Carry ADDC <dest>, <src> (A) ← (A) + src opnd + (CY)
Subtract with Borrow SUBB <dest>, <src> (A) ← (A) – src opnd – (CY)

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

A, Rn Register to ACC 1 1 2 2

A, dir8 Direct address to ACC 2 1(2) 2 1(2)

ADD
A, @Ri Indirect address to ACC 1 2 2 3

A, #data Immediate data to ACC 2 1 2 1

Rmd, Rms Byte register to/from byte register 3 2 2 1

WRjd, WRjs Word register to/from word register 3 3 2 2

DRkd, DRks Dword register to/from dword register 3 5 2 4

Rm, #data Immediate 8-bit data to/from byte register 4 3 3 2

WRj, #data16 Immediate 16-bit data to/from word register 5 4 4 3

DRk, #0data16 16-bit unsigned immediate data to/from dword register 5 6 4 5

ADD / SUB Rm, dir8 Direct address (on–chip RAM or SFR) to/from byte
register

4 3(2) 3 2(2)

WRj, dir8 Direct address (on–chip RAM or SFR) to/from word
register

4 4 3 3

Rm, dir16 Direct address (64K) to/from byte register 5 3(3) 4 2(3)

WRj, dir16 Direct address (64K) to/from word register 5 4(4) 4 3(4)

Rm, @WRj Indirect address (64K) to/from byte register 4 3(3) 3 2(3)

Rm, @DRk Indirect address (16M) to/from byte register 4 4(3) 3 3(3)

A, Rn Register to/from ACC with carry 1 1 2 2

ADDC /
A, dir8 Direct address (on–chip RAM or SFR) to/from ACC

with carry
2 1(2) 2 1(2)

SUBB
A, @Ri Indirect address to/from ACC with carry 1 2 2 3

A, #data Immediate data to/from ACC with carry 2 1 2 1

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
4. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).
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Table 8Summary of Increment and Decrement Instructions

Increment INC <dest> dest opnd ← dest opnd + 1
Increment INC <dest>, <src> dest opnd ← dest opnd + src opnd
Decrement DEC <dest> dest opnd ← dest opnd – 1
Decrement DEC <dest>, <src> dest opnd ← dest opnd – src opnd

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

A ACC by 1 1 1 1 1

INC Rn Register by 1 1 1 2 2INC
DEC dir8 Direct address (on–chip RAM or SFR) by 1 2 2(2) 2 2(2)

@Ri Indirect address by 1 1 3 2 4

INC Rm, #short Byte register by 1, 2, or 4 3 2 2 1INC
DEC WRj, #short Word register by 1, 2, or 4 3 2 2 1

INC DRk, #short Double word register by 1, 2, or 4 3 4 2 3

DEC DRk, #short Double word register by 1, 2, or 4 3 5 2 4

INC DPTR Data pointer by 1 1 1 1 1

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 9Summary of Compare Instructions

Compare CMP <dest>, <src> dest opnd – src opnd

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

Rmd, Rms Register with register 3 2 2 1

WRjd, WRjs Word register with word register 3 3 2 2

DRkd, DRks Dword register with dword register 3 5 2 4

Rm, #data Register with immediate data 4 3 3 2

WRj, #data16 Word register with immediate 16-bit data 5 4 4 3

DRk, #0data16 Dword register with zero-extended 16-bit immediate
data

5 6 4 5

CMP DRk, #1data16 Dword register with one-extended 16-bit immediate data 5 6 4 5

Rm, dir8 Direct address (on–chip RAM or SFR) with byte register 4 3(1) 3 2(1)

WRj, dir8 Direct address (on–chip RAM or SFR) with word
register

4 4 3 3

Rm, dir16 Direct address (64K) with byte register 5 3(2) 4 2(2)

WRj, dir16 Direct address (64K) with word register 5 4(3) 4 3(3)

Rm, @WRj Indirect address (64K) with byte register 4 3(2) 3 2(2)

Rm, @DRk Indirect address (16M) with byte register 4 4(2) 3 3(2)

Notes:
1. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
2. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
3. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).
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Table 10Summary of Logical Instructions (1/2)

Logical AND(1) ANL <dest>, <src> dest opnd ← dest opnd Λ src opnd
Logical OR(1) ORL <dest>, <src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR(1) XRL <dest>, <src> dest opnd ← dest opnd ∀  src opnd
Clear(1) CLR A (A) ← 0
Complement(1) CPL A (A) ← ∅  (A)
Rotate Left RL A (A)n+1 ← (A)n, n= 0..6

(A)0 ← (A)7
Rotate Left Carry RLC A (A)n+1 ← (A)n, n= 0..6

(CY) ← (A)7
(A)0 ← (CY)

Rotate Right RR A (A)n–1 ← (A)n, n= 7..1
(A)7 ← (A)0

Rotate Right Carry RRC A (A)n–1 ← (A)n, n= 7..1
(CY) ← (A)0
(A)7 ← (CY)

Binary Mode Source Mode
Mnemonic <dest>, <src>(2) Comments

Bytes States Bytes States

A, Rn register to ACC 1 1 2 2

A, dir8 Direct address (on–chip RAM or SFR) to ACC 2 1(3) 2 1(3)

A, @Ri Indirect address to ACC 1 2 2 3

A, #data Immediate data to ACC 2 1 2 1

dir8, A ACC to direct address 2 2(4) 2 2(4)

dir8, #data Immediate 8–bit data to direct address 3 3(4) 3 3(4)

Rmd, Rms Byte register to byte register 3 2 2 1
ANL WRjd, WRjs Word register to word register 3 3 2 2
ORL
XRL Rm, #data Immediate 8-bit data to byte register 4 3 3 2XRL

WRj, #data16 Immediate 16-bit data to word register 5 4 4 3

Rm, dir8 Direct address to byte register 4 3(3) 3 2(3)

WRj, dir8 Direct address to word register 4 4 3 3

Rm, dir16 Direct address (64K) to byte register 5 3(5) 4 2(5)

WRj, dir16 Direct address (64K) to word register 5 4(6) 4 3(6)

Rm, @WRj Indirect address (64K) to byte register 4 3(5) 3 2(5)

Rm, @DRk Indirect address (16M) to byte register 4 4(5) 3 3(5)

CLR A Clear ACC 1 1 1 1

CPL A Complement ACC 1 1 1 1

RL A Rotate ACC left 1 1 1 1

RLC A Rotate ACC left through CY 1 1 1 1

RR A Rotate ACC right 1 1 1 1

RRC A Rotate ACC right through CY 1 1 1 1

Notes:
1. Logical instructions that affect a bit are in Table 16.
2. A shaded cell denotes an instruction in the C51 Architecture.
3. If this instruction addresses an I/O Port (Px, x= 0–3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If this instruction addresses an I/O Port (Px, x= 0–3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
5. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
6. If this instruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).
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Table 11Summary of Logical Instructions (2/2)
Shift Left Logical SLL <dest> <dest>0 ← 0

<dest>n+1 ← <dest>n, n= 0..msb–1
(CY) ← <dest>msb

Shift Right Arithmetic SRA <dest> <dest>msb ← <dest>msb
<dest>n–1 ← <dest>n, n= msb..1
(CY) ← <dest>0

Shift Right Logical SRL <dest> <dest>msb ← 0
<dest>n–1 ← <dest>n, n= msb..1
(CY) ← <dest>0

Swap SWAP A A3:0 � A7:4

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

Rm Shift byte register left through the MSB 3 2 2 1
SLL

WRj Shift word register left through the MSB 3 2 2 1

Rm Shift byte register right 3 2 2 1
SRA

WRj Shift word register right 3 2 2 1

Rm Shift byte register left 3 2 2 1
SRL

WRj Shift word register left 3 2 2 1

SWAP A Swap nibbles within ACC 1 2 1 2

Note:
1. A shaded cell denotes an instruction in the C51 Architecture.

Table 12Summary of Multiply, Divide and Decimal-adjust Instructions

Multiply MUL AB (B:A) ← (A)×(B)
MUL <dest>, <src> extended dest opnd ← dest opnd × src opnd

Divide DIV AB (A) ← Quotient ((A) ⁄ (B))
(B) ← Remainder ((A) ⁄ (B))

Divide DIV <dest>, <src> ext. dest opnd high ← Quotient (dest opnd ⁄ src opnd)
ext. dest opnd low ← Remainder (dest opnd ⁄ src opnd)

Decimal-adjust ACC DA A IF [[(A)3:0 > 9] ∨ [(AC)= 1]]
for Addition (BCD)       THEN (A)3:0 ← (A)3:0 + 6 !affects CY;

IF [[(A)7:4 > 9] ∨ [(CY)= 1]]
      THEN (A)7:4 ← (A)7:4 + 6

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

AB Multiply A and B 1 5 1 5

MUL Rmd, Rms Multiply byte register and byte register 3 6 2 5

WRjd, WRjs Multiply word register and word register 3 12 2 11

AB Divide A and B 1 10 1 10

DIV Rmd, Rms Divide byte register and byte register 3 11 2 10

WRjd, WRjs Divide word register and word register 3 21 2 20

DA A Decimal adjust ACC 1 1 1 1

Note:
1. A shaded cell denotes an instruction in the C51 Architecture.
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Table 13Summary of Move Instructions (1/3)

Move to High word MOVH <dest>, <src> dest opnd31:16 ← src opnd
Move with Sign extension MOVS <dest>, <src> dest opnd ← src opnd with sign extend
Move with Zero extension MOVZ <dest>, <src> dest opnd ← src opnd with zero extend
Move Code MOVC A, <src> (A) ← src opnd
Move eXtended MOVX <dest>, <src> dest opnd ← src opnd

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

MOVH DRk, #data16 16-bit immediate data into upper word of dword register 5 3 4 2

MOVS WRj, Rm Byte register to word register with sign extension 3 2 2 1

MOVZ WRj, Rm Byte register to word register with zeros extension 3 2 2 1

A, @A +DPTR Code byte relative to DPTR to ACC 1 6(3) 1 6(3)
MOVC

A, @A +PC Code byte relative to PC to ACC 1 6(3) 1 6(3)

A, @Ri Extended memory (8-bit address) to ACC(2) 1 4 1 5

A, @DPTR Extended memory (16-bit address) to ACC(2) 1 3(4) 1 3(4)
MOVX

@Ri, A ACC to extended memory (8-bit address)(2) 1 4 1 4

@DPTR, A ACC to extended memory (16-bit address)(2) 1 4(3) 1 4(3)

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. Extended memory addressed is in the region specified by DPXL (reset value= 01h).
3. If this instruction addresses external memory location, add N+1 to the number of states (N: number of wait states).
4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).

Table 14Summary of Move Instructions (2/3)

Move(1) MOV <dest>, <src> dest opnd ← src opnd

Binary Mode Source Mode
Mnemonic <dest>, <src>(2) Comments

Bytes States Bytes States

A, Rn Register to ACC 1 1 2 2

A, dir8 Direct address (on–chip RAM or SFR) to ACC 2 1(3) 2 1(3)

A, @Ri Indirect address to ACC 1 2 2 3

A, #data Immediate data to ACC 2 1 2 1

Rn, A ACC to register 1 1 2 2

Rn, dir8 Direct address (on–chip RAM or SFR) to register 2 1(3) 3 2(3)

MOV Rn, #data Immediate data to register 2 1 3 2

dir8, A ACC to direct address 2 2(3) 2 2(3)

dir8, Rn Register to direct address 2 2(3) 3 3(3)

dir8, dir8 Direct address to direct address 3 3(4) 3 3(4)

dir8, @Ri Indirect address to direct address 2 3(3) 3 4(3)

dir8, #data Immediate data to direct address 3 3(3) 3 3(3)

@Ri, A ACC to indirect address 1 3 2 4

@Ri, dir8 Direct address to indirect address 2 3(3) 3 4(3)

@Ri, #data Immediate data to indirect address 2 3 3 4

DPTR, #data16 Load Data Pointer with a 16-bit constant 3 2 3 2

Notes:
1. Instructions that move bits are in Table 16.
2. Move instructions from the C51 Architecture.
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. Apply note 3 for each dir8 operand.
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Table 15Summary of Move Instructions (3/3)

Move(1) MOV <dest>, <src> dest opnd ← src opnd

Binary Mode Source Mode
Mnemonic <dest>, <src>(2) Comments

Bytes States Bytes States

Rmd, Rms Byte register to byte register 3 2 2 1

WRjd, WRjs Word register to word register 3 2 2 1

DRkd, DRks Dword register to dword register 3 3 2 2

Rm, #data Immediate 8-bit data to byte register 4 3 3 2

WRj, #data16 Immediate 16-bit data to word register 5 3 4 2

DRk, #0data16 zero-ext 16bit immediate data to dword register 5 5 4 4

DRk, #1data16 one-ext 16bit immediate data to dword register 5 5 4 4

Rm, dir8 Direct address to byte register 4 3(3) 3 2(3)

WRj, dir8 Direct address to word register 4 4 3 3

DRk, dir8 Direct address to dword register 4 6 3 5

Rm, dir16 Direct address (64K) to byte register 5 3(4) 4 2(4)

WRj, dir16 Direct address (64K) to word register 5 4(5) 4 3(5)

DRk, dir16 Direct address (64K) to dword register 5 6(6) 4 5(6)

Rm, @WRj Indirect address (64K) to byte register 4 3(4) 3 2(4)

Rm, @DRk Indirect address (16M) to byte register 4 4(4) 3 3(4)

WRjd, @WRjs Indirect address (64K) to word register 4 4(5) 3 3(5)

WRj, @DRk Indirect address (16M) to word register 4 5(5) 3 4(5)

dir8, Rm Byte register to direct address 4 4(3) 3 3(3)

MOV dir8, WRj Word register to direct address 4 5 3 4

dir8, DRk Dword register to direct address 4 7 3 6

dir16, Rm Byte register to direct address (64K) 5 4(4) 4 3(4)

dir16, WRj Word register to direct address (64K) 5 5(5) 4 4(5)

dir16, DRk Dword register to direct address (64K) 5 7(6) 4 6(6)

@WRj, Rm Byte register to indirect address (64K) 4 4(4) 3 3(4)

@DRk, Rm Byte register to indirect address (16M) 4 5(4) 3 4(4)

@WRjd, WRjs Word register to indirect address (64K) 4 5(5) 3 4(5)

@DRk, WRj Word register to indirect address (16M) 4 6(5) 3 5(5)

Rm, @WRj+dis16 Indirect with 16–bit dis (64K) to byte register 5 6(4) 4 5(4)

WRj, @WRj+dis16 Indirect with 16–bit dis (64K) to word register 5 7(5) 4 6(5)

Rm, @DRk+dis16 Indirect with 16–bit dis (16M) to byte register 5 7(4) 4 6(4)

WRj, @DRk+dis16 Indirect with 16–bit dis (16M) to word register 5 8(5) 4 7(5)

@WRj+dis16, Rm Byte register to indirect with 16–bit dis (64K) 5 6(4) 4 5(4)

@WRj+dis16, WRj Word register to indirect with 16–bit dis (64K) 5 7(5) 4 6(5)

@DRk+dis16, Rm Byte register to indirect with 16–bit dis (16M) 5 7(4) 4 6(4)

@DRk+dis16, WRj Word register to indirect with 16–bit dis (16M) 5 8(5) 4 7(5)

Notes:
1. Instructions that move bits are in Table 16.
2. Move instructions unique to the C251 Architecture.
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If this instruction addresses external memory location, add N+2 to the number of states (N: number of wait states).
5. If this instruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).
6. If this instruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).
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Table 16Summary of Bit Instructions

Clear Bit CLR <dest> dest opnd ← 0
Set Bit SETB <dest> dest opnd ← 1
Complement Bit CPL <dest> dest opnd ← ∅ bit
AND Carry with Bit ANL CY, <src> (CY) ← (CY) ∧  src opnd
AND Carry with Complement of Bit ANL CY, /<src> (CY) ← (CY) ∧ ∅ src opnd
OR Carry with Bit ORL CY, <src> (CY) ← (CY) ∨ src opnd
OR Carry with Complement of Bit ORL CY, /<src> (CY) ← (CY) ∨ ∅ src opnd
Move Bit to Carry MOV CY, <src> (CY) ← src opnd
Move Bit from Carry MOV <dest>, CY dest opnd ← (CY)

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

CY Clear carry 1 1 1 1

CLR bit51 Clear direct bit 2 2(3) 2 2(3)

bit Clear direct bit 4 4(3) 3 3(3)

CY Set carry 1 1 1 1

SETB bit51 Set direct bit 2 2(3) 2 2(3)

bit Set direct bit 4 4(3) 3 3(3)

CY Complement carry 1 1 1 1

CPL bit51 Complement direct bit 2 2(3) 2 2(3)

bit Complement direct bit 4 4(3) 3 3(3)

CY, bit51 And direct bit to carry 2 1(2) 2 1(2)

CY, bit And direct bit to carry 4 3(2) 3 2(2)

ANL
CY, /bit51 And complemented direct bit to carry 2 1(2) 2 1(2)

CY, /bit And complemented direct bit to carry 4 3(2) 3 2(2)

CY, bit51 Or direct bit to carry 2 1(2) 2 1(2)

CY, bit Or direct bit to carry 4 3(2) 3 2(2)

ORL
CY, /bit51 Or complemented direct bit to carry 2 1(2) 2 1(2)

CY, /bit Or complemented direct bit to carry 4 3(2) 3 2(2)

CY, bit51 Move direct bit to carry 2 1(2) 2 1(2)

CY, bit Move direct bit to carry 4 3(2) 3 2(2)

MOV
bit51, CY Move carry to direct bit 2 2(3) 2 2(3)

bit, CY Move carry to direct bit 4 4(3) 3 3(3)

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x= 0–3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses an I/O Port (Px, x= 0–3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
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Table 17Summary of Exchange, Push and Pop Instructions

Exchange bytes XCH A, <src> (A) � src opnd
Exchange Digit XCHD A, <src> (A)3:0 � src opnd3:0
Push PUSH <src> (SP) ← (SP) +1; ((SP)) ← src opnd;

(SP) ← (SP) + size (src opnd) – 1
Pop POP <dest> (SP) ← (SP) – size (dest opnd) + 1;

dest opnd ← ((SP)); (SP) ← (SP) –1

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

A, Rn ACC and register 1 3 2 4
XCH

A, dir8 ACC and direct address (on–chip RAM or SFR) 2 3(3) 2 3(3)

A, @Ri ACC and indirect address 1 4 2 5

XCHD A, @Ri ACC low nibble and indirect address (256 bytes) 1 4 2 5

dir8 Push direct address onto stack 2 2(2) 2 2(2)

#data Push immediate data onto stack 4 4 3 3

#data16 Push 16-bit immediate data onto stack 5 5 4 5
PUSH

Rm Push byte register onto stack 3 4 2 3

WRj Push word register onto stack 3 5 2 4

DRk Push double word register onto stack 3 9 2 8

dir8 Pop direct address (on–chip RAM or SFR) from stack 2 3(2) 2 3(2)

Rm Pop byte register from stack 3 3 2 2
POP

WRj Pop word register from stack 3 5 2 4

DRk Pop double word register from stack 3 9 2 8

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 18Summary of Conditional Jump Instructions (1/2)

Jump conditional on status Jcc rel (PC) ← (PC) + size (instr);
IF [cc] THEN (PC) ← (PC) + rel

Binary Mode(2) Source Mode(2)

Mnemonic <dest>, <src>(1) Comments
Bytes States Bytes States

JC rel Jump if carry 2 1/4(3) 2 1/4(3)

JNC rel Jump if not carry 2 1/4(3) 2 1/4(3)

JE rel Jump if equal 3 2/5(3) 2 1/4(3)

JNE rel Jump if not equal 3 2/5(3) 2 1/4(3)

JG rel Jump if greater than 3 2/5(3) 2 1/4(3)

JLE rel Jump if less than, or equal 3 2/5(3) 2 1/4(3)

JSL rel Jump if less than (signed) 3 2/5(3) 2 1/4(3)

JSLE rel Jump if less than, or equal (signed) 3 2/5(3) 2 1/4(3)

JSG rel Jump if greater than (signed) 3 2/5(3) 2 1/4(3)

JSGE rel Jump if greater than or equal (signed) 3 2/5(3) 2 1/4(3)

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. States are given as jump not-taken/taken.
3. In internal execution only, add 1 to the number of states of the ‘jump taken’ if the destination address is internal and odd.
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Table 19Summary of Conditional Jump Instructions (2/2)

Jump if bit JB <src>, rel (PC) ← (PC) + size (instr);
IF [src opnd= 1] THEN (PC) ← (PC) + rel

Jump if not bit JNB <src>, rel (PC) ← (PC) + size (instr);
IF [src opnd= 0] THEN (PC) ← (PC) + rel

Jump if bit and clear JBC <dest>, rel (PC) ← (PC) + size (instr);
IF [dest opnd= 1] THEN
dest opnd ← 0
(PC) ← (PC) + rel

Jump if accumulator is zero JZ rel (PC) ← (PC) + size (instr);
IF [(A)= 0] THEN (PC) ← (PC) + rel

Jump if accumulator is not zero JNZ rel (PC) ← (PC) + size (instr);
IF [(A) ≠ 0] THEN (PC) ← (PC) + rel

Compare and jump if not equal CJNE <src1>, <src2>, rel (PC) ← (PC) + size (instr);
IF [src opnd1 < src opnd2] THEN (CY) ← 1
IF [src opnd1 ≥ src opnd2] THEN (CY) ← 0
IF [src opnd1 ≠ src opnd2] THEN (PC) ← (PC) + rel

Decrement and jump if not zero DJNZ <dest>, rel (PC) ← (PC) + size (instr); dest opnd ← dest opnd –1;
IF [∅ (Z)] THEN (PC) ← (PC) + rel

Binary Mode(2) Source Mode(2)

Mnemonic <dest>, <src>(1) Comments
Bytes States Bytes States

bit51, rel Jump if direct bit is set 3 2/5(3)(6) 3 2/5(3)(6)
JB

bit, rel Jump if direct bit of 8-bit address location is set 5 4/7(3)(6) 4 3/6(3)(6)

bit51, rel Jump if direct bit is not set 3 2/5(3)(6) 3 2/5(3)(6)
JNB

bit, rel Jump if direct bit of 8-bit address location is not set 5 4/7(3)(6) 4 3/6(3)

bit51, rel Jump if direct bit is set & clear bit 3 4/7(5)(6) 3 4/7(5)(6)

JBC bit, rel Jump if direct bit of 8-bit address location is set and
clear

5 7/10(5)(6) 4 6/9(5)(6)

JZ rel Jump if ACC is zero 2 2/5(6) 2 2/5(6)

JNZ rel Jump if ACC is not zero 2 2/5(6) 2 2/5(6)

A, dir8, rel Compare direct address to ACC and jump if not equal 3 2/5(3)(6) 3 2/5(3)(6)

A, #data, rel Compare immediate to ACC and jump if not equal 3 2/5(6) 3 2/5(6)
CJNE

Rn, #data, rel Compare immediate to register and jump if not equal 3 2/5(6) 4 3/6(6)

@Ri, #data, rel Compare immediate to indirect and jump if not equal 3 3/6(6) 4 4/7(6)

Rn, rel Decrement register and jump if not zero 2 2/5(6) 3 3/6(6)
DJNZ

dir8, rel Decrement direct address and jump if not zero 3 3/6(4)(6) 3 3/6(4)(6)

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. States are given as jump not-taken/taken.
3. If this instruction addresses an I/O Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If this instruction addresses an I/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
5. If this instruction addresses an I/O Port (Px, x= 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
6. In internal execution only, add 1 to the number of states of the ‘jump taken’ if the destination address is internal and odd.
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Table 20Summary of unconditional Jump Instructions

Absolute jump AJMP <src> (PC) ← (PC) +2; (PC)10:0 ← src opnd
Extended jump EJMP <src> (PC) ← (PC) + size (instr); (PC)23:0 ← src opnd
Long jump LJMP <src> (PC) ← (PC) + size (instr); (PC)15:0 ← src opnd
Short jump SJMP rel (PC) ← (PC) +2; (PC) ← (PC) +rel
Jump indirect JMP @A +DPTR (PC)23:16 ← FFh; (PC)15:0 ← (A) + (DPTR)
No operation NOP (PC) ← (PC) +1

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

AJMP addr11 Absolute jump 2 3(2)(3) 2 3(2)(3)

addr24 Extended jump 5 6(2)(4) 4 5(2)(4)
EJMP

@DRk Extended jump (indirect) 3 7(2)(4) 2 6(2)(4)

@WRj Long jump (indirect) 3 6(2)(4) 2 5(2)(4)
LJMP

addr16 Long jump (direct address) 3 5(2)(4) 3 5(2)(4)

SJMP rel Short jump (relative address) 2 4(2)(4) 2 4(2)(4)

JMP @A +DPTR Jump indirect relative to the DPTR 1 5(2)(4) 1 5(2)(4)

NOP No operation (Jump never) 1 1 1 1

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add 3 to the number of states if the destination address is external.

Table 21Summary of Call and Return Instructions

Absolute call ACALL <src> (PC) ← (PC) +2; push (PC)15:0;
(PC)10:0 ← src opnd

Extended call ECALL <src> (PC) ← (PC) + size (instr); push (PC)23:0;
(PC)23:0 ← src opnd

Long call LCALL <src> (PC) ← (PC) + size (instr); push (PC)15:0;
(PC)15:0 ← src opnd

Return from subroutine RET pop (PC)15:0
Extended return from subroutine ERET pop (PC)23:0
Return from interrupt RETI IF [INTR= 0] THEN pop (PC)15:0

IF [INTR= 1] THEN pop (PC)23:0; pop (PSW1)
Trap interrupt TRAP (PC) ← (PC) + size (instr);

IF [INTR= 0] THEN push (PC)15:0
IF [INTR= 1] THEN push (PSW1); push (PC)23:0

Binary Mode Source Mode
Mnemonic <dest>, <src>(1) Comments

Bytes States Bytes States

ACALL addr11 Absolute subroutine call 2 9(2)(3) 2 9(2)(3)

@DRk Extended subroutine call (indirect) 3 14(2)(3) 2 13(2)(3)
ECALL

addr24 Extended subroutine call 5 14(2)(3) 4 13(2)(3)

@WRj Long subroutine call (indirect) 3 10(2)(3) 2 9(2)(3)
LCALL

addr16 Long subroutine call 3 9(2)(3) 3 9(2)(3)

RET Return from subroutine 1 7(2) 1 7(2)

ERET Extended subroutine return 3 9(2) 2 8(2)

RETI Return from interrupt 1 7(2)(4) 1 7(2)(4)

TRAP Jump to the trap interrupt vector 2 12(4) 1 11(4)

Notes:
1. A shaded cell denotes an instruction in the C51 Architecture.
2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add 5 to the number of states if INTR= 1.
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10.2. Opcode Map and Supporting Tables

Table 22Instructions for 80C51 Microcontrollers

Bin x0 x1 x2 x3

Src x0 x1 x2 x3

0 NOP AJMP addr11 LJMP addr16 RR A

1 JBC bit51, rel ACALL addr11 LCALL addr16 RRC A

2 JB bit51, rel AJMP addr11 RET RL A

3 JNB bit51, rel ACALL addr11 RETI RLC A

4 JC rel AJMP addr11 ORL dir8, A ORL dir8,#data

5 JNC rel ACALL addr11 ANL dir8, A ANL dir8,#data

6 JZ rel AJMP addr11 XRL dir8, A XRL dir8,#data

7 JNZ rel ACALL addr11 ORL CY,bit51 JMP @A+DPTR

8 SJMP rel AJMP addr11 ANL CY,bit51 MOVC A,@A+PC

9 MOV DPTR,#data16 ACALL addr11 MOV bit51,CY MOVC A,@A+DPTR

A ORL CY,bit51 AJMP addr11 MOV CY,bit51 INC DPTR

B ANL CY,bit51 ACALL addr11 CPL bit51 CPL CY

C PUSH dir8 AJMP addr11 CLR bit51 CLR CY

D POP dir8 ACALL addr11 SETB bit51 SETB CY

E MOVX A, @DPTR AJMP addr11 MOVX A,@RI

F MOV @DPTR,A ACALL addr11 MOVX @RI,A

Bin x4 x5 x6–x7 x8–xF

Src x4 x5 A5x6–A5x7� A5x8–A5xF�

0 INC A INC dir8 INC @Ri INC Rn

1 DEC A DEC dir8 DEC @Ri DEC Rn

2 ADD A,#data ADD A,dir8 ADD A,@Ri ADD A,Rn

3 ADDC A,#data ADDC A,dir8 ADDC A,@Ri ADDC A,Rn

4 ORL A,#data ORL A,dir8 ORL A,@Ri ORL A,Rn

5 ANL A,#data ANL A,dir8 ANL A,@Ri ANL A,Rn

6 XRL A,#data XRL A,dir8 XRL A,@Ri XRL A,Rn

7 MOV A,#data MOV dir8,#data MOVX @Ri,data MOV Rn,#data

8 DIV AB MOV dir8,dir8 MOV dir8,@Ri MOV dir8,Rn

9 SUBB A,#data SUBB A,dir8 SUBB A,@Ri SUBB A,Rn

A MUL AB Escape MOV @Ri,dir8 MOV Rn,dir8

B CJNE A,#data,rel CJNE A,dir8,rel CJNE @Ri,#data,rel CJNE Rn,#data,rel

C SWAP A XCH A,dir8 XCH A,@Ri XCH A,Rn

D DA A DJNZ dir8,rel XCHD A,@Ri DJNZ Rn,rel

E CLR A MOV A,dir8 MOV A,@Ri MOV A,Rn

F CPL A MOV dir8,A MOV @Ri,A MOV Rn,A

� x takes the values found in Bin and Src column.
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Table 23New Instructions for the C251 Architecture

Bin A5x8� A5x9� A5xA� A5xB�

Src x8� x9� xA� xB�

0 JSLE rel MOV Rm, @WRj +dis16 MOVZ WRj, Rm INC R, #short (1)

MOV reg, ind

1 JSG rel MOV @WRj +dis16, Rm MOVS WRj, Rm DEC R, #short (1) MOV ind,
reg

2 JLE rel MOV Rm, @DRk +dis24

3 JG rel MOV @DRk +dis24, Rm

4 JSL rel MOV WRj, @WRj +dis16

5 JSGE rel MOV @WRj +dis16, WRj

6 JE rel MOV WRj, @DRk +dis24

7 JNE rel MOV @DRk +dis16, WRj MOV op1, reg (2)

8 LJMP @WRj
EJMP @DRk

EJMP addr24

9 LCALL @WRj
ECALL @DRk

ECALL addr24

A Escape Bit Instructions (3) ERET

B TRAP

C PUSH op1 (4)

MOV DRk, PC

D POP op1 (4)

Bin A5xC� A5xD� A5xE� A5xF�

Src xC� xD� xE� xF�

0 SRA reg

1 SRL reg

2 ADD Rmd, Rms ADD WRjd, WRjs ADD reg, op2* ADD DRkd, DRks

3 SLL reg

4 ORL Rmd, Rms ORL WRjd, WRjs ORL reg, op2*

5 ANL Rmd, Rms ANL WRjd, WRjs ANL reg, op2*

6 XRL Rmd, Rms XRL WRjd, WRjs XRL reg, op2*

7 MOV Rmd, Rms MOV WRjd, WRjs MOV reg, op2* MOV DRkd, DRks

8 DIV Rmd, Rms DIV WRjd, WRjs

9 SUB Rmd, Rms SUB WRjd, WRjs SUB reg, op2* SUB DRkd, DRkd

A MUL Rmd, Rms MUL WRjd, WRjs

B CMP Rmd, Rms CMP WRjd, WRjs CMP reg, op2* CMP DRkd, DRks

Notes :
� x takes the values found in Bin and Src column.
1. R = Rm/WRj/DRk.
2. op1, op2 are defined in Table 24
3. See Table 26and Table 27
4. See Table 28
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Table 24Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

Oper Rmd, Rms x C md ms

Oper WRjd, WRjs x D jd/2 js/2

Oper DRkd, DRks x F kd/4 ks/4

Oper Rm, #data x E m 0 #data

Oper WRj, #data16 x E j/2 4 #data (high) #data (low)

Oper DRk, #data16 x E k/4 8 #data (high) #data (low)

MOVH DRk(h), #data16
MOV DRk, #1data16
CMP DRk,#1data16

7
7
B

A
E
E

k/4 C #data (high) #data (low)

Oper Rm, dir8 x E m 1 dir8 addr

Oper WRj, dir8 x E j/2 5 dir8 addr

Oper DRk, dir8 x E k/4 D dir8 addr

Oper Rm, dir16 x E m 3 dir16 addr (high) dir16 addr (low)

Oper WRj, dir16 x E j/2 7 dir16 addr (high) dir16 addr (low)

Oper DRk, dir16 (1) x E k/4 F dir16 addr (high) dir16 addr (low)

Oper Rm, @WRj x E j/2 9 m 0

Oper Rm, @DRk x E k/4 B m 0

Note :

1. For this instruction, the only valid operation is MOV.

Table 25High Nibble, Byte 0 of Data Instructions

x Operation Notes

2 ADD reg, op2

9 SUB reg, op2

B CMP reg, op2 (1)

4 ORL reg, op2 (2) All data addressing modes are supported.

5 ANL reg, op2 (2)

6 XRL reg, op2 (2)

7 MOV reg, op2

8 DIV reg, op2 Two modes only:

A MUL reg, op2
reg, op2 = Rmd, Rms
reg, op2 = Wjd, Wjs

Notes :

1. The CMP operation does not support DRk, direct16.

2. For the ORL, ANL and XRL operations, neither reg nor op2 can be DRk.
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All of the bit instructions in the C251 Architecture (See Table 23) have opcode A9, which serves as an escape byte
(similar to A5). The high nibble of byte 1 specifies the bit instruction, as given in Table 26

Table 26Bit Instructions

Instruction Byte 0(x) Byte 1 Byte2 Byte 3

BitInstr (dir8) A 9 x 0 bit dir8_addr rel_addr

Table 27Byte 1 (High Nibble) for Bit Instructions

x Bit Instruction

1 JBC bit

2 JB bit

3 JNB bit

7 ORL CY, bit

8 ANL CY, bit

9 MOV bit, CY

A MOV CY, bit

B CPL bit

C CLR bit

D SETB bit

E ORL CY, /bit

F ANL CY, /bit

Table 28PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

PUSH #data16 C A 0 6 #data16 (high) #data16 (low)

PUSH #data C A 0 2 #data

PUSH Rm C A m 8

PUSH WRj C A j/2 9

PUSH DRk C A k/4 B

MOV DRk, PC C A k/4 1

POP Rm D A m 8

POP WRj D A j/2 9

POP DRk D A k/4 B
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Table 29Control Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

ACALL addr11 addr[10:9] 1 1 addr[7:0]

AJMP addr11 addr[10:8] 0 1 addr[7:0]

EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]

ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]

LJMP @WRj 8 9 j/2 4

LCALL @WRj 9 9 j/2 4

EJMP @DRk 8 9 k/4 8

ECALL @DRk 9 9 k/4 8

ERET A A

JE rel 8 8 rel

JNE rel 7 8 rel

JLE rel 2 8 rel

JG rel 3 8 rel

JSL rel 4 8 rel

JSGE rel 5 8 rel

JSLE rel 0 8 rel

JSG rel 1 8 rel

TRAP B 9
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Table 30Displacement/Extended MOVs Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

MOV Rm, @WRj +dis16 0 9 m j/2 dis[15:8] dis[7:0]

MOVWRk, @WRj +dis16 4 9 j/2 k/2 dis[15:8] dis[7:0]

MOV Rm, @DRk +dis24 2 9 m k/4 dis[15:8] dis[7:0]

MOV WRj, @DRk +dis24 6 9 j/2 k/4 dis[15:8] dis[7:0]

MOV @WRj +dis16, Rm 1 9 m j/2 dis[15:8] dis[7:0]

MOV @WRj +dis16, WRk 5 9 j/2 k/2 dis[15:8] dis[7:0]

MOV @DRk +dis24, Rm 3 9 m k/4 dis[15:8] dis[7:0]

MOV @DRk +dis24, WRj 7 9 j/2 k/4 dis[15:8] dis[7:0]

MOVS WRj, Rm 1 A j/2 m
MOVZ WRj, Rm 0 A j/2 m

MOV WRjd, @WRjs 0 B js/2 8 jd/2 0

MOV WRj, @DRk 0 B k/4 A j/2 0

MOV @WRjd, WRjs 1 B js/2 8 jd/2 0

MOV @DRk, WRj 1 B k/4 A j/2 0

MOV dir8, Rm 7 A m 3 dir8 addr

MOV dir8, WRj 7 A j/2 5 dir8 addr

MOV dir8, DRk 7 A k/4 D dir8 addr

MOV dir16, Rm 7 A m 1 dir16 addr (high) dir16 addr
(low)

MOV dir16, WRj 7 A j/2 7 dir16 addr (high) dir16 addr
(low)

MOV dir16, DRk 7 A k/4 F dir16 addr (high) dir16 addr
(low)

MOV @WRj, Rm 7 A j/2 9 m 0

MOV @DRk, Rm 7 A k/4 B m 0

Table 31Shift Instructions

Instruction Byte 0(x) Byte 1

1 SRA Rm 0 E m 0

2 SRA WRj 0 E j/2 4

3 SRL Rm 1 E m 0

4 SRl WRj 1 E j/2 4

5 SLL Rm 3 E m 0

6 SLL WRj 3 E j/2 4
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Table 32INC/DEC Instructions

Instruction Byte 0(x) Byte 1

1 INC Rm, #short 0 B m 00 vv

2 INC WRj, #short 0 B j/2 01 vv

3 INC DRk, #short 0 B k/4 11 vv

4 DEC Rm, #short 1 B m 00 vv

5 DEC WRj, #short 1 B j/2 01 vv

6 DEC DRk, #short 1 B k/4 11 vv

Table 33Encoding for INC/DEC Instructions

vv #short

00 1

01 2

10 4
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11. Instruction Descriptions

This section describes each instruction in the C251 Architecture.
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ACALL <addr11>

Function:

Absolute call

Description:

Unconditionally calls a subroutine at the specified address. The instruction increments the 3–byte PC twice to obtain
the address of the following instruction, then pushes bytes 0 and 1 of the result onto the stack (byte 0 first) and
increments the stack pointer twice. The destination address is obtained by successively concatenating bits 15-11 of the
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start
within the same 2–Kbyte “page” of the program memory as the first byte of the instruction following ACALL.

FLAGS :
CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer (SP) contains 07h and the label ”SUBRTN” is at program memory location 0345h. After executing
the instruction ACALL SUBRTN at location 0123h, SP contains 09h; on–chip RAM locations 09h and 08h contain
01h and 25h, respectively; and the PC contains 0345h.

[Encoding]

a10 | a9 | a8 | 1 1 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ACALL
(PC) ← (PC) + 2 
(SP) ← (SP) + 1 
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1 
((SP)) ← (PC.15:8) 
(PC.10:0) ← page address
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ADD <dest>,<src>

Function:

Add

Description:

Adds the source operand to the destination operand, which can be a register or the accumulator, leaving the result in
the register or accumulator. If there is a carry out of bit 7 (CY), the CY flag is set. If byte variables are added, and if
there is a carry out of bit 3 (AC), the AC flag is set. For addition of unsigned integers, the CY flag indicates that an
overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV flag is set. When adding
signed integers, the OV flag indicates a negative number produced as the sum of two positive operands, or a positive
sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 bit)

Four source operand addressing modes are allowed: register, direct, register–indirect and immediate.

FLAGS :
CY AC OV N Z

� � � � �

Example:

Register 1 contains 0C3h (11000011B) and register 0 contains 0AAh (10101010B). After executing the instruction
ADD R1,R0 register 1 contains 6Dh (01101101B), the AC flag is clear, and the CY and OV flags are set.

ADD A,#data

[Encoding]

2  4 immed. data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ADD
(A) ← (A) + #data

ADD A,dir8

[Encoding]

2 5 addr7–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ADD
(A) ← (A) + (dir8)
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ADD A,@Ri

[Encoding]

2 0 1 1 i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADD
(A) ← (A) + ((Ri))

ADD A,Rn

[Encoding]

2 1 rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADD
(A) ← (A) + (Rn)

ADD Rmd,Rms

[Encoding]

2 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rmd) ← (Rmd) + (Rms)

ADD WRjd, WRjs

[Encoding]

2 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(WRjd) ← (WRjd) + (WRjs)
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ADD DRkd,DRks

[Encoding]

2 F uuuu UUUU

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(DRkd) ← (DRkd) + (DRks)

ADD Rm,#data

[Encoding]

2 E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) ← (Rm) + #data

ADD WRj,#data16

[Encoding]

2 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(WRj) ← (WRj) + #data16

ADD DRk,#0data16

[Encoding]

2 E uuuu 8 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(DRk) ← (DRk) + #data16
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ADD Rm,dir8

[Encoding]

2 E ssss 1 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) ← (Rm) + (dir8)

ADD WRj,dir8

[Encoding]

2 E tttt 5 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(WRj) ← (WRj) + (dir8)

ADD Rm,dir16

[Encoding]

2 E ssss 3 addr15–
addr12

addr11–addr8 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) ← (Rm) + (dir16)

ADD WRj,dir16

[Encoding]

2 E tttt 7 addr15–
addr12

addr11–addr8 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(WRj) ← (WRj) + (dir16)
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ADD Rm,@WRj

[Encoding]

2 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) ← (Rm) + ((WRj))

ADD Rm,@DRk

[Encoding]

2 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) ← (Rm) + ((DRk))
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ADDC A,<src>

Function:

Add with carry

Description:

Simultaneously adds the specified byte variable, the CY flag and the accumulator contents, leaving the result in the
accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if there is a carry out of bit 3 (AC), the AC flag
is set. When adding unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV flag is set. When adding
signed integers, the OV flag indicates a negative number produced as the sum of two positive operands, or a positive
sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 bit)

Four source operand addressing modes are allowed: register, direct, register–indirect and immediate.

FLAGS :
CY AC OV N Z

� � � � �

Example :

The accumulator contains 0C3h (11000011B), register 0 contains 0AAh (10101010B) and the CY flag is set. After
executing the instruction ADDC A,R0 the accumulator contains 6Eh (01101110B), the AC flag is clear and the CY
and OV flags are set.

ADDC A,#data

[Encoding]

3 4 immed. data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ADDC
(A) ← (A) + (CY) + #data

ADDC A,dir8

[Encoding]

3 5 addr7–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ADDC
(A) ← (A) + (CY) + (dir8)
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ADDC A,@Ri

[Encoding]

3 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADDC
(A) ← (A) + (CY) + ((Ri))

ADDC A,Rn

[Encoding]

3 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADDC
(A) ← (A) + (CY) + (Rn)
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AJMP addr11

Function:

Absolute jump

Description:

Transfers program execution to the specified address, which is formed at run time by concatenating the upper five bits
of the PC (after incrementing the PC twice), opcode bits 7-5, and the second byte of the instruction. The destination
must therefore be within the same 2–Kbyte “page” of program memory as the first byte of the instruction following
AJMP.

FLAGS :
CY AC OV N Z

_ _ _ _ _

Example :

The label ”JMPADR” is at program memory location 0123h. After executing the instruction AJMP JMPADR at
location 0345h the PC contains 0123h.

[Encoding]

a10 | a9 | a8 | 0 1 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

AJMP 
(PC) ← (PC) + 2
(PC.10:0) ← page address



TSC80251

Rev. E – 20 December, 2000 
5.32

ANL <dest>,<src>

Function:

Logical–AND

Description:

Performs the bitwise logical–AND (Λ) operation between the specified variables and stores the results in the
destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the register or accumulator, the
source can use register, direct, register–indirect or immediate addressing; when the destination is a direct address, the
source can be the accumulator or immediate data.

Note :
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :
CY AC OV N Z

_ _ _ � �

Example :

Register 1 contains 0C3h (11000011B) and register 0 contains 55h (01010101B). After executing the instruction ANL
R1, R0 register 1 contains 41h (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits in any RAM location or
hardware register. The mask byte determining the pattern of bits to be cleared would either be an immediate constant
contained in the instruction or a value computed in the register or accumulator at run time. The instruction ANL
P1,#01110011B clears bits 7, 3, and 2 of output Port 1.

ANL dir8,A

[Encoding]

5 2 addr7–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(dir8) ← (dir8) Λ (A)



TSC80251

Rev. E – 20 December, 2000 5.33

ANL dir8,#data

[Encoding]

5 3 addr7–addr0 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(dir8) ← (dir8) Λ #data

ANL A,#data

[Encoding]

5 4 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(A) ← (A ) Λ #data

ANL A,dir8

[Encoding]

5 5 addr7–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(A) ← (A ) Λ (dir8)

ANL A,@Ri

[Encoding]

5 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

ANL
(A) ← (A ) Λ ((Ri))
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ANL A,Rn

[Encoding]

5 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ANL
(A) ← (A ) Λ (Rn)

ANL Rmd,Rms

[Encoding]

5 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rmd) ← (Rmd) Λ (Rms)

ANL WRjd,WRjs

[Encoding]

5 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(WRjd) ← (WRjd) Λ (WRjs)

ANL Rm,#data

[Encoding]

5 F ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rm) ← (Rm) Λ #data
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ANL WRj,#data16

[Encoding]

5 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(WRj) ← (WRj) Λ #data16

ANL Rm,dir8

[Encoding]

5 E ssss 1 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rm) ← (Rm) Λ (dir8)

ANL WRj,dir8

[Encoding]

5 E tttt 5 addr7–addr4 addr3–addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(WRj) ← (WRj) Λ (dir8)

ANL Rm,dir16

[Encoding]

5 E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rm) ← (Rm) Λ (dir16)
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ANL WRj,dir16

[Encoding]

5 E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(WRj) ← (WRj) Λ (dir16)

ANL Rm,@WRj

[Encoding]

5 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rm) ← (Rm) Λ ((WRj))

ANL Rm,@DRk

[Encoding]

5 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(Rm) ← (Rm) Λ ((DRk))
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ANL CY,<src-bit>

Function:

Logical–AND for bit variables

Description:

If the boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY flag in its current state.
A slash (”/”) preceding the operand in the assembly language indicates that the logical complement of the addressed
bit is used as the source value, but the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

FLAGS :
CY AC OV N Z

� _ _ _ _

Example :

Set the CY flag if, and only if, P1.0 = 1, ACC. 7 = 1 and OV = 0:

MOV CY,P1.0 ; Load carry with input pin state

ANL CY,ACC.7 ; AND carry with accumulator bit 7

ANL CY,/OV ; AND with inverse of overflow flag

ANL CY,bit51

[Encoding]

8 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(CY) ← (CY) Λ (bit51)

ANL CY,/bit51

[Encoding]

B 0 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(CY) ← (CY) Λ ∅  (bit51)
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ANL CY,bit

[Encoding]

A 9 8 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(CY) ← (CY) Λ (bit)

ANL CY,/bit

[Encoding]

A 9 F 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(CY) ← (CY) Λ ∅  (bit)
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CJNE <dest>,<src>,rel

Function:

Compare and jump if not equal.

Description:
Compares the magnitudes of the first two operands and branches if their values are not equal. The branch destination
is computed by adding the signed relative displacement in the last instruction byte to the PC, after incrementing the
PC to the start of the next instruction. If the unsigned integer value of <dest–byte> is less than the unsigned integer
value of <src–byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be compared with any directly
addressed byte or immediate data and any indirect RAM location or working register can be compared with an
immediate constant.

FLAGS :
CY AC OV N Z

� _ _ � �

Example :

The accumulator contains 34h and R7 contains 56h. After executing the first instruction in the sequence

CJNE R7,#60h,NOT_EQ ;R7 = 60h ; . . . . . .

NOT_EQ:  JC REQ_LOW  ; IF R7 < 60h

;R7 > 60h

; . . .  . . .

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag, this instruction
determines whether R7 is greater or less than 60h.

If the data being presented to Port 1 is also 34h, then executing the instruction, WAIT: CJNE A,P1,WAIT clears the
CY flag and continues with the next instruction in the sequence, since the accumulator does equal the data read from
Port 1. (If some other value was being input on Port 1, the program loops at this point until the Port 1 data changes to
34h.)

CJNE A,#data,rel

[Encoding]

B 4 immed data rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

(PC) ← (PC) + 3
IF [(A) ≠ #data]
THEN 

(PC) ← (PC) + relative offset
IF [(A) < #data] 
THEN 

(CY) ← 1
ELSE 

(CY) ← 0
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CJNE A,dir8,rel

[Encoding]

B 5 addr7-addr0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

(PC) ← (PC) + 3
IF [(A) ≠ (dir8)]
THEN

(PC) ← (PC) + relative offset
IF [(A) < (dir8)]
THEN

(CY) ← 1
ELSE 

(CY) ← 0

CJNE @Ri,#data,rel

[Encoding]

B 011i immed data rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

(PC) ← (PC) + 3
IF [((Ri)) ≠ #data] 
THEN

(PC) ← (PC) + relative offset
IF [((Ri)) < #data]
THEN

(CY) ← 1
ELSE 

(CY) ← 0

CJNE Rn,#data,rel

[Encoding]

B 1rrr immed data rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

(PC) ← (PC) + 3
IF [(Rn) ≠ #data]
THEN

(PC) ← (PC) + relative offset
IF [(Rn) < #data]
THEN

(CY) ← 1
ELSE 

(CY) ← 0
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CLR A

Function:

Clear accumulator

Description:

Clears the accumulator (i.e., resets all bits to zero).

FLAGS :
CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 5Ch (01011100B). The instruction CLR A clears the accumulator to 00h (00000000B).

[Encoding]

E 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

CLR 
(A) ← 0
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CLR bit

Function:

Clear bit

Description:

Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

FLAGS : Only for instructions with CY as the operand.
CY AC OV N Z

� _ _ _ _

Example :

Port 1 contains 5Dh (01011101B). After executing the instruction CLR P1.2 Port 1 contains 59h (01011001B).

CLR bit51

[Encoding]

C 2 bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CLR 
(bit51) ← 0

CLR CY

[Encoding]

C 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

CLR 
(CY) ← 0
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CLR bit

� If this instruction addresses a Port (Px, x = 0-3), add 2 states.

[Encoding]

A 9 C 0 yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CLR 
(bit) ← 0
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CMP <dest>,<src>

Function:

Compare

Description:

Subtracts the source operand from the destination operand. The result is not stored in the destination operand. If a
borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative value is subtracted from a
positive value, or a positive result when a positive value is subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16 or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

FLAGS :
CY AC OV N Z

� � � � �

Example :

Register 1 contains 0C9h (11001001B) and register 0 contains 54h (01010100B). The instruction CMP R1,R0 clears
the CY and AC flags and sets the OV flag.

CMP Rmd,Rms

[Encoding]

B C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(Rmd) - (Rms)

CMP WRjd,WRjs

[Encoding]

B D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP
(WRjd) - (WRjs)
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CMP DRkd,DRks

[Encoding]

B F uuuu UUUU

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(DRkd) - (DRks)

CMP Rm,#data

[Encoding]

B E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(Rm) - #data

CMP WRj,#data16

[Encoding]

B E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP
(WRj) - #data16

CMP DRk, #0data16

[Encoding]

B E uuuu 8 immed data hi immed data hi

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP (DRk) - #0data16
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CMP DRk,#1data16

[Encoding]

B E uuuu C immed data hi immed data hi

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(DRk) - #1data16

CMP Rm,dir8

[Encoding]

B E ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(Rm) - (dir8)

CMP WRj,dir8

[Encoding]

B E tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(WRj) - (dir8)

CMP Rm,dir16

[Encoding]

B E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(Rm) - (dir8)
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CMP WRj,dir16

[Encoding]

B E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(WRj) - (dir16)

CMP Rm,@WRj

[Encoding]

B E tttt 9 ssss 0000

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP 
(Rm) - ((WRj))

CMP Rm,@DRk

[Encoding]

B E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP
(Rm) - ((DRk))
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CPL A

Function:

Complement accumulator

Description:

Logically complements (∅ ) each bit of the accumulator (one’s complement). Clear bits which are set and set bits which
are cleared.

FLAGS :
CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 5Ch (01011100B). After executing the instruction CPL A the accumulator contains 0A3h
(10100011B).

[Encoding]

F 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

CPL 
(A) ← ∅ (A)
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CPL bit

Function:

Complement bit

Description:

Complements (∅ ) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL can operate on the CY or
any directly addressable bit.

Note:
When this instruction is used to modify an output pin, the value used as the original data is read from the output data latch, not the input pin.

FLAGS : Only for instructions with CY as the operand.
CY AC OV N Z

� _ _ _ _

Example :

Port 1 contains 5Bh (01011101B). After executing the instruction sequence CPL P1.1 CPL P1.2 Port 1 contains 5Bh
(01011011B).

CPL bit51

[Encoding]

B 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

CPL 
(bit51) ← ∅ (bit51)

CPL CY

[Encoding]

B 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

CPL 
(CY) ← ∅ (CY)
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CPL bit

[Encoding]

A 9 B 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CPL 
(bit) ← ∅ (bit)
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DA A

Function:

Decimal–adjust accumulator for addition

Description:

Adjusts the 8–bit value in the accumulator that resulted from the earlier addition of two variables (each in packed–BCD
format), producing two 4–bit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is set, six is added to the
accumulator, producing the proper BCD digit in the low nibble. This internal addition sets the CY flag if a carry out
of the lowest 4 bits propagated through all higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set or if the upper four bits now exceed nine (1010XXXX-1111XXXX), these four bits are
incremented by six, producing the proper BCD digit in the high nibble. Again, this sets the CY flag if there was a carry
out of the upper four bits, but does not clear the carry. The CY flag thus indicates if the sum of the original two BCD
variables is greater than 100, allowing multiple–precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the decimal conversion by adding
00h, 06h, 60h or 66h to the accumulator, depending on initial accumulator and PSW conditions.

Note :
DA A cannot simply convert a Hexadecimal number in the accumulator to BCD notation, nor does DA A apply to decimal subtraction.

FLAGS :

CY AC OV N Z

� _ _ 3 3

Example :

The accumulator contains 56h (01010110B), which represents the packed BCD digits of the decimal number 56.
Register 3 contains 67h (01100111B), which represents the packed BCD digits of the decimal number 67. The CY flag
is set. After executing the instruction sequence ADDC A,R3.

DA A the accumulator contains 0BEh (10111110B) and the CY and AC flags are clear. The Decimal Adjust instruction
then alters the accumulator to the value 24h (00100100B), indicating the packed BCD digits of the decimal number
24, the lower two digits of the decimal sum of 56, 67, and the carry–in. The CY flag is set by the Decimal Adjust
instruction, indicating that a decimal overflow occurred. The true sum of 56, 67 and 1 is 124. BCD variables can be
incremented or decremented by adding 01h or 99h. If the accumulator contains 30h (representing the digits of 30
decimal), then the instruction sequence:

ADD A, #99h.

DA A
leaves the CY flag set and 29h in the accumulator, since 30 + 99 = 129. The low byte of the sum can be interpreted
to mean 30 - 1 = 29.
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DA A

[Encoding]

D 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]

THEN (A.3:0) ← (A.3:0) + 6
AND

IF [[(A.7:4) > 9] V [(CY) = 1]]
THEN (A.7:4) ← (A.7:4) + 6
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DEC byte

Function:
Decrement

Description:

Decrements the specified byte variable by 1. An original value of 00h underflows to 0FFh. Four operands addressing
modes are allowed: accumulator, register, direct or register–indirect.

Note :
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

Register 0 contains 7Fh (01111111B). On–chip RAM locations 7Eh and 7Fh contain 00h and 40h, respectively. After
executing the instruction sequence:

DEC @R0
DEC R0
DEC @R0

register 0 contains 7Eh and on–chip RAM locations 7Eh and 7Fh are set to 0FFh and 3Fh, respectively.

DEC A

[Encoding]

1 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DEC 
(A) ← (A) - 1

DEC dir8

[Encoding]

1 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DEC
(dir8) ← (dir8) - 1
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DEC @Ri

[Encoding]

1 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

DEC
((Ri)) ← ((Ri)) - 1

DEC Rn

[Encoding]

1 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

DEC 
(Rn) ← (Rn) - 1
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DEC <dest>,<src>

Function:
Decrement

Description:

Decrements the specified variable at the destination operand by 1, 2 or 4. An original value of 00h underflows to 0FFh.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

Register 0 contains 7Fh (01111111B). After executing the instruction sequence DEC R0,#1 register 0 contains 7Eh.

DEC Rm,#short

[Encoding]

1 B ssss  00vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DEC 
(Rm) ← (Rm) - #short

DEC WRj,#short

[Encoding]

1 B tttt 01vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DEC 
(WRj) ← (WRj) - #short

DEC DRk,#short

[Encoding]

1 B uuuu 11vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DEC 
(DRk) ← (DRk) - #short
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DIV <dest>,<src>

Function:
Divide

Description:

Divides the unsigned integer in the register by the unsigned integer operand in register addressing mode and clears the
CY and OV flags.

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8–bit quotient is stored in the higher byte of
the word where Rmd resides; the 8–bit remainder is stored in the lower byte of the word where Rmd resides. For
example: register 1 contains 251 (0FBh or 11111011B) and register 5 contains 18 (12h or 00010010B). After executing
the instruction DIV R1,R5 register 0 contains 13 (0Dh or 00001101B); register 1 contains 17 (11h or 00010001B), since
251 = (13 x 18) + 17; and the CY and OV bits are clear (See Flags).

FLAGS : The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag
is set if the quotient is zero.:

CY AC OV N Z

0 � � � �

Exception: if <src> contains 00h, the values returned in both operands are undefined; the CY flag is cleared, OV flag
is set, and the rest of the flags are undefined.

FLAGS :

CY AC OV N Z

0 ? 1 ? ?

DIV Rmd,Rms

[Encoding]

8 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DIV (8–bit operands)
(Rmd) ← remainder (Rmd) / (Rms)
if <dest>md = 0,2,4,..,14
(Rmd+1) ← quotient (Rmd) / (Rms)
(Rmd-1) ←  remainder (Rmd) / (Rms)
if <dest> md = 1,3,5,..,15
(Rmd) ← quotient (Rmd) / (Rms)    
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DIV WRjd,WRjs

[Encoding]

8 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DIV (16–bit operands)
(WRjd) ← remainder (WRjd) / (WRjs)
if <dest> jd = 0, 4, 8, ... 28
(WRjd+2) ← quotient (WRjd) / (WRjs)
(WRjd-2) ← remainder (WRjd) / (WRjs))
if <dest> jd = 2, 6, 10, ... 30 
(WRjd) ← quotient (WRjd) / (WRjs

For example, for a destination register WR4, assume the quotient is 1122h and the remainder is 3344h. Then, the results
are stored in these register file locations: 

Location 4 5 6 7

Contents 33h 44h 11h 22h
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DIV AB

Function:
Divide

Description:

Divides the unsigned 8–bit integer in the accumulator by the unsigned 8–bit integer in register B. The accumulator
receives the integer part of the quotient; register B receives the integer remainder. The CY and OV flags are cleared.

Exception: if register B contains 00h, the values returned in the accumulator and register B are undefined; the CY flag
is cleared and the OV flag is set.

FLAGS :

CY AC OV N Z

0 � � � �

For division by zero:

FLAGS :

CY AC OV N Z

0 ? 1 ? ?

Example :

The accumulator contains 251 (0FBh or 11111011B) and register B contains 18 (12h or 00010010B). After executing
the instruction DIV AB the accumulator contains 13 (0Dh or 00001101B); register B contains 17 (11h or 00010001B),
since 251 = (13 x 18) + 17; and the CY and OV flags are clear.

DIV A B

[Encoding]

8 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DIV 
(A) ← quotient (A)/(B)
(B) ← remainder (A)/(B)
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DJNZ <byte>,<rel-addr>

Function:
Decrement and jump if not zero

Description:

Decrements the specified location by 1 and branches to the address specified by the second operand if the resulting
value is not zero. An original value of 00h underflows to 0FFh. The branch destination is computed by adding the signed
relative–displacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the
following instruction.

The location decremented may be a register or directly addressed byte.

Note :
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The on–chip RAM locations 40h, 50h, and 60h contain 01h, 70h, and 15h, respectively. After executing the following
instruction sequence:

DJNZ 40h,LABEL1
DJNZ 50h,LABEL2
DJNZ 60h,LABEL

on–chip RAM locations 40h, 50h, and 60h contain 00h, 6Fh, and 15h, respectively, and program execution continues
at label LABEL2. (The first jump was not taken because the result was zero.)

This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate
time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

TOGGLE : MOV R2, #8
CPL P1.7
DJNZ R2, TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three states:
two for DJNZ and one to alter the pin.
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DJNZ dir8,rel

[Encoding]

D 5 addr7-addr0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DJNZ
(PC) ← (PC) + 3
(dir8) ← (dir8) - 1
IF [[(dir8) > 0] or [(dir8) < 0]]
THEN
(PC) ← (PC) + rel

DJNZ Rn,rel

[Encoding]

D 1rrr rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DJNZ 
(PC) ← (PC) + size(instr)
(Rn) ← (Rn) - 1
IF [[(Rn) > 0] or [(Rn) < 0]]
THEN
(PC) ← (PC) + rel
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ECALL <dest>

Function:
Extended call

Description:

Calls a subroutine located at the specified address. The instruction adds four to the program counter to generate the
address of the next instruction and then PUSHes the 24–bit result onto the stack (high byte first), incrementing the stack
pointer by three. The 8 bits of the high word and the 16 bits of the low word of the PC are then loaded, respectively,
with the second, third and fourth bytes of the ECALL instruction. Program execution continues with the instruction
at this address. The subroutine may therefore begin anywhere in the full 16–Mbyte memory space.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer contains 07h and the label ”SUBRTN” is assigned to program memory location 123456h. After
executing the instruction ECALL SUBRTN at location 054321h, SP contains 0Ah; on–chip RAM locations 08h, 09h
and 0Ah contain 05h, 43h and 21h, respectively; and the PC contains 123456h.

ECALL addr24

[Encoding]

9 A addr23- addr16 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ECALL
(PC) ← (PC) + size(instr)
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← (addr.23:0)
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ECALL @DRk

[Encoding]

9 9 uuuu 8

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ECALL
(PC) ← (PC) + size(instr)
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← ((DRk))
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EJMP <dest>

Function:
Extended jump

Description:

Causes an unconditional branch to the specified address by loading the 8 bits of the high order and 16 bits of the low
order words of the PC with the second, third, and fourth instruction bytes. The destination may be therefore be anywhere
in the full 16–Mbyte memory space.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The label ”JMPADR” is assigned to the instruction at program memory location 123456h. The instruction is EJMP
JMPADR

EJMP addr24

[Encoding]

8 A addr23- addr16 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

EJMP
(PC)← (addr.23:0)

EJMP @DRk

[Encoding]

8 9 uuuu 8

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

EJMP 
(PC) ← ((DRk))
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ERET

Function:
Extended return

Description:

POPs byte 2, byte 1, and byte 0 of the 3–byte PC successively from the stack and decrements the stack pointer by 3.
Program execution continues at the resulting address, which normally is the instruction immediately following
ECALL.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer contains 0Bh. On–chip RAM locations 08h, 09h and 0Ah contain 01h, 23h and 49h, respectively.
After executing the instruction ERET the stack pointer contains 08h and program execution continues at location
012349h.

ERET

[Encoding]

A A

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ERET
(PC.7:0) ← ((SP))
(SP) ← (SP) - 1
(PC.15:8) ← ((SP))
(SP) ← (SP) - 1
(PC.23:16) ← ((SP))
(SP) ← (SP) - 1
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INC <Byte>

Function:
Increment

Description:

Increments the specified byte variable by 1. An original value of 0FFh overflows to 00h. Three addressing modes are
allowed for 8–bit operands: register, direct, or register–indirect.

Note :
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

Register 0 contains 7Eh (011111110B) and on–chip RAM locations 7Eh and 7Fh contain 0FFh and 40h, respectively.
After executing the instruction sequence:

INC @R0
INC R0
INC @R0

register 0 contains 7Fh and on–chip RAM locations 7Eh and 7Fh contain 00h and 41h, respectively.

INC A

[Encoding]

0 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

INC
(A) ← (A) + 1

INC dir8

[Encoding]

0 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

INC 
(dir8) ← (dir8) + 1
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INC @Ri

[Encoding]

0 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

INC
((Ri) ← ((Ri)) + 1

INC Rn

[Encoding]

0 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

INC 
(Rn) ← (Rn) + 1
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INC <dest>,<src>

Function:
Increment

Description:

Increments the specified variable by 1, 2 or 4. An original value of 0FFh overflows to 00h.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

Register 0 contains 7Eh (011111110B). After executing the instruction INC R0,#1 register 0 contains 7Fh.

INC Rm,#short

[Encoding]

0 B ssss 00vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

INC
(Rm) ← (Rm) + #short

INC WRj,#short

[Encoding]

0 B tttt 01vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

INC
(WRj) ← (WRj) + #short

INC DRk,#short

[Encoding]

0 B uuuu 11vv

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

INC 
(DRk) ← (DRk) + #shortdata pointer
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INC DPTR

Function:
Increment data pointer

Description:

Increments the 16–bit data pointer by one. A 16–bit increment (modulo 216 ) is performed; an overflow of the low byte
of the data pointer (DPL) from 0FFh to 00h increments the high byte of the data pointer (DPH) by one. An overflow
of the high byte (DPH) does not increment the high word of the extended data pointer (DPX = DR56).

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

Registers DPH and DPL contain 12h and 0FEh, respectively. After the instruction sequence:

INC DPTR 
INC DPTR 
INC DPTR

DPH and DPL contain 13h and 01h, respectively.

INC DPTR

[Encoding]

A 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

INC
(DPTR) ← (DPTR) + 1



TSC80251

Rev. E – 20 December, 2000 5.69

JB <bit>,rel

Function:
Jump if bit set

Description:

If the specified bit is a one, jump to the address specified; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. The bit tested is not modified.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

Input Port 1 contains 11001010B and the accumulator contains 56h (01010110B). After the instruction sequence:

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.
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Variations

JB bit51,rel

2 0 bit addr rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JB 
(PC) ← (PC) + 3
IF (bit51) = 1

THEN
(PC) ← (PC) + rel

JB bit,rel

[Encoding]

A 9 2 0yyy bit addr rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JB 
(PC) ← (PC) + size(instr)
IF [(bit) = 1]

THEN
(PC) ← (PC) + rel
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JBC <bit>,rel

Function:
Jump if bit is set and clear bit.

Description:

If the specified bit is one, branch to the specified address; otherwise proceed with the next instruction. The bit is not
cleared if it is already a zero. The branch destination is computed by adding the signed relative displacement in the
third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction.

Note :
When this instruction is used to test an output pin, the value used as the original data is read from the output data latch, not the input pin.

FLAGS :

CY AC OV N Z

! _ _ _ _

Example :

The accumulator contains 56h (01010110B). After the instruction sequence:

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

the accumulator contains 52h (01010010B) and program execution continues at label LABEL2.

JBC bit51,rel

[Encoding]

1 0 bit addr rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JBC
(PC) ← (PC) + 3
IF [(bit51) = 1]

THEN
(bit51) ← 0
(PC) ← (PC) + rel
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JBC bit,rel

[Encoding]

A 9 1 0yyy bit addr rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JBC 
(PC) ← (PC) + size(instr)
IF [(bit51) = 1]

THEN
(bit51) ← 0
(PC) ← (PC) + rel
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JC rel

Function:
Jump if carry is set

Description:

If the CY flag is set, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

FLAGS :

CY AC OV N Z

! _ _ _ _

Example :

The CY flag is clear. After the instruction sequence:

JC LABEL1
CPL CY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

JC rel

[Encoding]

4 0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JC 
(PC) ← (PC) + 2
IF [(CY) = 1]

THEN
(PC) ← (PC) + rel
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JE rel

Function:
Jump if equal

Description:

If the Z flag is set, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

FLAGS :

CY AC OV N Z

_ _ _ _ !

Example :

The Z flag is set. After executing the instruction JE LABEL1 program execution continues at label LABEL1.

JE rel

[Encoding]

6 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JE 
(PC) ← (PC) + size(instr)
IF [(Z) = 1]

THEN
(PC) ← (PC) + rel
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JG rel

Function:
Jump if greater than

Description:

If the Z flag and the CY flag are both clear, branch to the address specified; otherwise proceed with the next instruction.
The branch destination is computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ _ ! _

Example :

The instruction JG LABEL1 causes program execution to continue at label LABEL1 if the Z flag and the CY flag are
both clear.

JG rel

[Encoding]

3 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JG
(PC) ← (PC) + size(instr)
IF [[(Z) = 0] AND [(CY) = 0]]

THEN
(PC) ← (PC) + rel
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JLE rel

Function:
Jump if less than or equal

Description:

If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative displacement in the second instruction byte to the PC,
after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ _ ! !

Example :

The instruction JLE LABEL1 causes program execution to continue at LABEL1 if the Z flag or the CY flag is set.

JLE rel

[Encoding]

2 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding] 
Source Mode = [Encoding]

JLE 
(PC) ← (PC) + size(instr)
IF [[(Z) = 1] OR [(CY) = 1]]

THEN
(PC) ← (PC) + rel
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JMP @A+DPTR

Function:
Jump indirect

Description:

Adds the 8–bit unsigned content of the accumulator with the 16–bit data pointer and load the resulting sum into the
lower 16 bits of the program counter. This is the address for subsequent instruction fetches. The contents of the
accumulator and the data pointer are not affected.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The accumulator contains an even number from 0 to 6. The following sequence of instructions branchs to one of four
AJMP instructions in a jump table starting at JMP_TBL :

MOV DPTR,#JMP_TBL 
JMP @A+DPTR
AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator contains 04h at the start this sequence, execution jumps to LABEL2. Remember that AJMP is a
two–byte instruction, so the jump instructions start at every other address.

JMP @A+DPTR

[Encoding]

7 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JMP
(PC.15:0) ← (A) + (DPTR)
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JNB bit51,rel JNB bit,rel

Function:
Jump if bit not set

Description:

If the specified bit is clear, branch to the specified address; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. The bit tested is not modified.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

Input Port 1 contains 11001010B and the accumulator contains 56h (01010110B). After executing the instruction
sequence:

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

JNB bit51,rel

[Encoding]

3 0 bit addr rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JNB
(PC) ← (PC) + 3
IF [(bit51) = 0]

THEN
(PC) ← (PC) + rel

JNB bit,rel

[Encoding]

A 9 3 00yy bit addr rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JNB
(PC) ← (PC) + size(instr)
IF [(bit) = 0]

THEN
(PC) ← (PC) + rel
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JNC rel

Function: Jump if carry not set

Description:

If the CY flag is clear, branch to the address specified; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative displacement in the second instruction byte to the PC, after
incrementing the PC twice to point to the next instruction. The CY flag is not modified.

FLAGS :

CY AC OV N Z

! _ _ _ _

Example :

The CY flag is set. The instruction sequence:

JNC LABEL1
CPL CY
JNC LABEL2

clears the CY flag and causes program execution to continue at label LABEL2.

JNC rel

[Encoding]

5 0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JNC 
(PC) ← (PC) + 2
IF [(CY) = 0]

THEN
(PC) ← (PC) + rel
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JNE rel

Function:
Jump if not equal

Description:

If the Z flag is clear, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

FLAGS :

CY AC OV N Z

_ _ _ _ !

Example :

The instruction JNE LABEL1 causes program execution to continue at LABEL1 if the Z flag is clear.

JNE rel

[Encoding]

7 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JNE
(PC) ← (PC) + size(instr)
IF [(Z) = 0]

THEN
(PC) ← (PC) + rel
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JNZ rel

Function:
Jump if accumulator not zero

Description:

If any bit of the accumulator is set, branch to the specified address; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative displacement in the second instruction byte to the PC,
after incrementing the PC twice. The accumulator is not modified.

FLAGS :

CY AC OV N Z

_ _ _ _ !

Example :

The accumulator contains 00h. After executing the instruction sequence:

JNZ LABEL1
INC A
JNZ LABEL2

the accumulator contains 01h and program execution continues at label LABEL2.

JNZ rel

[Encoding]

7 0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JNZ
(PC) ← (PC) + 2
IF [(A) ≠ 0]

THEN
(PC) ← (PC) + rel
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JSG rel

Function:
Jump if greater than (signed)

Description:

If the Z flag is clear and the N flag and the OV flag have the same value, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed relative displacement in
the second instruction byte to the PC, after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ ! ! !

Example :

The instruction JSG LABEL1 causes program execution to continue at LABEL1 if the Z flag is clear and the N flag
and the OV flag have the same value.

JSG rel

[Encoding]

1 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JSG
(PC) ← (PC) + size(instr)
IF [(Z) = 0] AND [(N) = (OV)]

THEN
(PC) ← (PC) + rel
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JSGE rel

Function:
Jump if greater than or equal (signed)

Description:

If the N flag and the OV flag have the same value, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ ! ! !

Example :

The instruction JSGE LABEL1 causes program execution to continue at LABEL1 if the N flag and the OV flag have
the same value.

JSGE rel

[Encoding]

5 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JSGE
(PC) ← (PC) + size(instr)
IF [(N) = (OV)]

THEN
(PC) ← (PC) + rel
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JSL rel

Function:
Jump if less than (signed)

Description:

If the N flag and the OV flag have different values, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ ! ! !

Example :

The instruction JSL LABEL1 causes program execution to continue at LABEL1 if the N flag and the OV flag have
different values.

JSL rel

[Encoding]

4 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 JSL
(PC) ← (PC) + size(instr)
IF [(N) ≠ (OV)]

THEN
(PC) ← (PC) + rel
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JSLE rel

Function:
Jump if less than or equal (signed)

Description:

If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed relative displacement in
the second instruction byte to the PC, after incrementing the PC twice.

FLAGS :

CY AC OV N Z

_ _ ! ! !

Example :

The instruction JSLE LABEL1 causes program execution to continue at LABEL1 if the Z flag is set OR if the the N
flag and the OV flag have different values.

JSLE rel

[Encoding]

0 8 rel addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JSLE 
(PC) ← (PC) + 2
IF [[(Z) = 1] OR [(N) ≠ (OV)]]

THEN
(PC) ← (PC) + rel
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JZ rel

Function:
Jump if accumulator zero

Description:

If all bits of the accumulator are clear (zero), branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice. The accumulator is not modified.

FLAGS :

CY AC OV N Z

_ _ _ _ !

Example :

The accumulator contains 01h. After executing the instruction sequence:
JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00h and program execution continues at label LABEL2.

JZ rel

[Encoding]

6 0 rel. addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

JZ 
(PC) ← (PC) + 2
IF [(A) = 0]

THEN
(PC) ← (PC) + rel
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LCALL <dest>

Function:
Long call

Description:
Calls a subroutine located at the specified address. The instruction adds three to the program counter to generate the
address of the next instruction and then PUSHes the 16–bit result onto the stack (low byte first). The stack pointer is
incremented by two. The high and low bytes of the PC are then loaded, respectively, with the second and third bytes
of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may
therefore begin anywhere in the 64–Kbyte region of memory where the next instruction is located.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer contains 07h and the label ”SUBRTN” is assigned to program memory location 1234h. After
executing the instruction LCALL SUBRTN at location 0123h, the stack pointer contains 09h, on–chip RAM locations
08h and 09h contain 01h and 26h and the PC contains 1234h.

LCALL addr16
[Encoding]

1 2 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

LCALL 
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← (addr.15:0)

LCALL @WRj
[Encoding]

9 9 tttt 4

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

LCALL
(PC) ← (PC) + size(instr)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← (WRj)
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LJMP <dest>

Function:
Long Jump

Description:

Causes an unconditional branch to the specified address, by loading the high and low bytes of the PC (respectively)
with the second and third instruction bytes. The destination may therefore be anywhere in the 64–Kbyte memory region
where the next instruction is located.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The label ”JMPADR” is assigned to the instruction at program memory location 1234h. After executing the instruction
LJMP JMPADR at location 0123h, the program counter contains 1234h.

LJMP addr16

[Encoding]

0 2 addr15–addr8 addr7–addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

LJMP
(PC) ← (addr.15:0)

LJMP @WRj

[Encoding]

8 9 tttt 4

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

LJMP
(PC) ← (WRj)
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MOV <dest>,<src>

Function:
Move byte variable

Description:

Copies the byte variable specified by the second operand into the location specified by the first operand. The source
byte is not affected.

This is by far the most flexible operation. Twenty–four combinations of source and destination addressing modes are
allowed.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

On–chip RAM location 30h contains 40h, on–chip RAM location 40h contains 10h, and input Port 1 contains
11001010B (0CAh). After executing the instruction sequence:

MOV R0,#30h ;R0 < = 30h
MOV A,@R0 ;A < = 40h
MOV R1,A ;R1 < = 40h
MOV B,@R1 ;B < = 10h
MOV @R1,P1 ;RAM (40h) < = 0CAh
MOV P2,P1 ;P2 #0CAh

register 0 contains 30h, the accumulator and register 1 contain 40h, register B contains 10h and on–chip RAM location
40h and output Port 2 contain 0CAh (11001010B).
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MOV A,#data

[Encoding]

7 4 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

 MOV 
(A) ← #data

MOV dir8,#data

[Encoding]

7 5 addr7-addr0 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(dir8) ← #data

MOV @Ri,#data

[Encoding]

7 011i immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
((Ri)) ← #data

MOV Rn,#data

[Encoding]

7 1rrr immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

 MOV
(Rn) ← #data
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MOV dir8,dir8

[Encoding]

8 5 addr7-addr0s addr7-addr0d

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(dir8) ← (dir8)

MOV dir8,@Ri

[Encoding]

8 011i addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
(dir8) ← ((Ri))

MOV dir8,Rn

[Encoding]

8 1rrr addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
(dir8) ← (Rn)

MOV @Ri,dir8

[Encoding]

A 011i addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
((Ri)) ← (dir8)
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MOV Rn,dir8

[Encoding]

A 1rrr addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
(Rn) ← (dir8)

MOV A,dir8

[Encoding]

E 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

 MOV
(A) ← (dir8)

MOV A,@Ri

[Encoding]

E 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

 MOV
(A) ← ((Ri))

MOV A,Rn

[Encoding]

E 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

 MOV
(A) ← (Rn)
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MOV dir8,A

[Encoding]

F 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(dir8) ← (A )

MOV @Ri,A

[Encoding]

F 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

 MOV
 ((Ri)) ← (A)

MOV Rn,A

[Encoding]

F 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

 MOV
(Rn) ← (A)

MOV Rmd,Rms

[Encoding]

7 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(Rmd) ← (Rms)
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MOV WRjd,WRjs

[Encoding]

3 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(WRjd) ← (WRjs)

MOV DRkd,DRks

[Encoding]

7 F uuuu UUUU

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(DRkd) ← (DRks)

MOV Rm,#data

[Encoding]

7 E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(Rm) ← #data

MOV WRj,#data16

[Encoding]

7 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj) ← #data16
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MOV DRk,#0data16

[Encoding]

3 E uuuu 8 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(DRk) ← #0data16

MOV DRk,#1data16

[Encoding]

3 E uuuu C immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(DRk) ← #1data16

MOV Rm,dir8

[Encoding]

7 E ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(Rm) ← (dir8)

MOV WRj,dir8

[Encoding]

7 E tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj) ← (dir8)
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MOV DRk,dir8

[Encoding]

7 E uuuu D addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(DRk) ← (dir8)

MOV Rm,dir16

[Encoding]

7 E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(Rm) ← (dir16)

MOV WRj, dir16

[Encoding]

7 E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj ← (dir16)

MOV DRk,dir16

[Encoding]

7 E uuuu F addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(DRk) ← (dir16)
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MOV Rm,@WRj

[Encoding]

7 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(Rm) ← ((WRj))

MOV Rm,@DRk

[Encoding]

7 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(Rm) ← ((DRk))

MOV WRjd,@WRjs

[Encoding]

0 B TTTT 8 tttt 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(WRjd) ← ((WRjs))

MOV WRj,@DRk

[Encoding]

0 B uuuu A tttt 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj) ← ((DRk))
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MOV dir8,Rm

[Encoding]

7 A ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir8) ← (Rm)

MOV dir8,WRj

[Encoding]

7 A tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir8) ← (WRj)

MOV dir8,DRk

[Encoding]

7 A uuuu D addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir8) ← (DRk)

MOV dir16,Rm

[Encoding]

7 A ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir16) ← (Rm)



TSC80251

Rev. E – 20 December, 2000 5.99

MOV dir16,WRj

[Encoding]

7 A tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir16) ← (WRj)

MOV dir16,DRk

[Encoding]

7 A uuuu F addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(dir16) ← (DRk)

MOV @WRj,Rm

[Encoding]

7 A tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
((WRj)) ← (Rm)

MOV @DRk,Rm

[Encoding]

7 A uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
((DRk)) ← (Rm)
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MOV @WRjd,WRjs

[Encoding]

1 B tttt 8 TTTT 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
((WRjd)) ← (WRjs)

MOV @DRk,WRj

[Encoding]

1 B uuuu A tttt 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
((DRk)) ← (WRj)

MOV Rm,@WRj + dis16

[Encoding]

0 9 ssss tttt dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(Rm) ← ((WRj) + dis16)

MOV WRj,@WRj + dis16

[Encoding]

4 9 tttt TTTT dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj) ← ((WRj) + dis16)
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MOV Rm,@DRk + dis16

[Encoding]

2 9 ssss uuuu dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(Rm) ← ((DRk) + dis24)

MOV WRj,@DRk + dis16

[Encoding]

6 9 tttt uuuu dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

 MOV
(WRj) ← ((DRk) + dis24)

MOV @WRj + dis16,Rm

[Encoding]

1 9 ssss tttt dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
((WRj) + dis16) ← (Rm)

MOV @WRj + dis16,WRj

[Encoding]

5 9 TTTT tttt dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
((WRj) + dis16) ← (WRj)
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MOV @DRk + dis16,Rm

[Encoding]

3 9 ssss uuuu dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
((DRk) + dis24) ← (Rm)

MOV @DRk + dis16,WRj

[Encoding]

7 9 tttt uuuu dis hi dis low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
((DRk) + dis24) ← (WRj)
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MOV <dest-bit>,<src-bit>

Function

Move bit data

Description

Copies the boolean variable specified by the second operand into the location specified by the first operand. One of
the operands must be the CY flag; the other may be any directly addressable bit. Does not affect any other register.

FLAGS :

CY AC OV N Z

� _ _ _ _

Example :

The CY flag is set, input Port 3 contains 11001001B and output Port 1 contains 35h (00110101B). After executing the
instruction sequence:

MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY

the CY flag is clear and Port 1 contains 39h (00111001B).

MOV bit51,CY

[Encoding]

9 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

 MOV
(bit51) ← (CY)

MOV CY,bit51

[Encoding]

A 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

 MOV
(CY) ← (bit51)
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MOV bit,CY

[Encoding]

A 9 9 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(bit) ← (CY)

MOV CY,bit

[Encoding]

A 9 A 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(CY) ← (bit)
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MOV DPTR,#data16

Function:

Load data pointer with a 16–bit constant

Description:

Loads the 16–bit data pointer (DPTR) with the specified 16–bit constant. The high byte of the constant is loaded into
the high byte of the data pointer (DPH). The low byte of the constant is loaded into the low byte of the data pointer
(DPL).

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

After executing the instruction MOV DPTR,#1234h DPTR contains 1234h (DPH contains 12h and DPL contains 34h).

MOV DPTR,#data16

[Encoding]

9 0 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

 MOV
(DPTR) ← #data16
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MOVC A,@A+<base-reg>

Function:

Move code byte

Description:
Loads the accumulator with a code byte or constant from program memory. The address of the byte fetched is the sum
of the original unsigned 8–bit accumulator contents and the contents of a 16–bit base register, which may be the 16
LSBs of the data pointer or PC. In the latter case, the PC is incremented to the address of the following instruction before
being added with the accumulator; otherwise the base register is not altered. 16–bit addition is performed.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The accumulator contains a number between 0 and 3. The following instruction sequence translates the value in the
accumulator to one of four values defined by the DB (define byte) directive.

RELPC: INC A
MOVC A,@A+PC
RET
DB 66h
DB 77h
DB 88h
DB 99h

If the subroutine is called with the accumulator equal to 01h, it returns with 77h in the accumulator. The INC A before
the MOVC instruction is needed to ”get around” the RET instruction above the table. If several bytes of code separated
the MOVC from the table, the corresponding number would be added to the accumulator instead.

MOVC A,@A+PC

[Encoding]

8 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

MOVC A,@A+DPTR

[Encoding]

9 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVC
(A) ← ((A) + (DPTR))
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MOVH DRk(hi),#data16

Function:

Move immediate 16–bit data to the high word of a dword (double–word) register.

Description:

Moves 16–bit immediate data to the high word of a dword (32–bit) register. The low word of the dword register is
unchanged.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The dword register DRk contains 5566 7788h. After the instruction MOVH DRk,#1122h executes, DRk contains 1122
7788h.

MOVH DRk(hi),#data16

[Encoding]

7 A uuuu C immed data hi immed data low

Hex Code in: Operation:

Binary Mode =[A5] [Encoding]
Source Mode = [Encoding]

MOVH
(DRk).31-16 ← #data16
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MOVS WRj,Rm

Function:

Move 8–bit register to 16–bit register with sign extension

Description:

Moves the contents of an 8–bit register to the low byte of a 16–bit register. The high byte of the 16–bit register is filled
with the sign extension, which is obtained from the MSB of the 8– bit source register.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

8–bit register Rm contains 055h (01010101B) and the 16–bit register WRj contains 0FFFFh (11111111 11111111B).
The instruction MOVS WRj,Rm moves the contents of register Rm (01010101B) to register WRj (i.e., WRj contains
00000000 01010101B).

MOVS WRj, Rm

[Encoding]

1 A tttt ssss

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOVS
(WRj).7-0 ← (Rm).7-0
(WRj).15-8 ← MSB
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MOVX <dest>,<src>

Function:

Move external

Description:

Transfers data between the accumulator and a byte in external data RAM. There are two types of instructions. One
provides an 8–bit indirect address to external data RAM; the second provides a 16–bit indirect address to external data
RAM.

In the first type of MOVX instruction, the contents of R0 or R1 in the current register bank provides an 8–bit address
on Port 0. 8 bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For larger arrays,
any Port pins can be used to output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16–bit address. Port 2 outputs the upper 8 address
bits (from DPH) while Port 0 outputs the lower 8 address bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address bits on Port 0. In page mode,
the data is multiplexed with the contents of P2 on Port 2 (8–bit address) or with the upper address bits on Port 2 (16–bit
address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its upper address lines driven
by P2 can be addressed via the data pointer, or with code to output upper address bits to P2 followed by a MOVX
instruction using R0 or R1.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The TSC80251 Microcontroller is operating in nonpage mode. An external 256–byte RAM using multiplexed
address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to Port 0. Port 3 provides control lines for the
external RAM. Ports 1 and 2 are used for normal I/O. R0 and R1 contain 12h and 34h. Location 34h of the external
RAM contains 56h. After executing the instruction sequence:

MOVX A,@R1
MOVX @R0,A

the accumulator and external RAM location 12h contain 56h.

MOVX A,@DPTR

[Encoding]

E 0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
(A) ← ((DPTR))
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MOVX A,@Ri

[Encoding]

E 001i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
(A) ← ((Ri))

MOVX @DPTR,A

[Encoding]

F 0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
((DPTR)) ← (A)

MOVX @Ri,A

[Encoding]

F 001i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
((Ri)) ← (A)
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MOVZ WRj,Rm

Function:

Move 8–bit register to 16–bit register with zero extension

Description:

Moves the contents of an 8–bit register to the low byte of a 16–bit register. The upper byte of the 16–bit register is filled
with zeros.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

8–bit register Rm contains 055h (01010101B) and 16–bit register WRj contains 0FFFFh (11111111 11111111B). The
instruction MOVZ WRj,Rm moves the contents of register Rm (01010101B) to register WRj. At the end of the
operation, WRj contains 00000000 01010101B.

MOVZ WRj,Rm

[Encoding]

0 A tttt ssss

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOV
(WRj).7-0 ← (Rm).7-0
(WRj).15-8 ← 0
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MUL <dest>,<src>

Function:

Multiply

Description:

Multiplies the unsigned integer in the source register with the unsigned integer in the destination register. Only register
addressing is allowed.

For 8–bit operands, the result is 16 bits. The most significant byte of the result is stored in the low byte of the word
where the destination register resides. The least significant byte is stored in the following byte register. The OV flag
is set if the product is greater than 255 (0FFh); otherwise it is cleared.

For 16–bit operands, the result is 32 bits. The most significant word is stored in the low word of the the dword where
the destination register resides. The least significant word is stored in the following word register. In this operation,
the OV flag is set if the product is greater than 0FFFFh, otherwise it is cleared. The CY flag is always cleared. The
N flag is set when the MSB of the result is set. The Z flag is set when the result is zero.

FLAGS :

CY AC OV N Z

0 _ � � �

Example :

Register R1 contains 80 (50h or 10010000B) and register R0 contains 160 (0A0h or 10010000B). After executing the
instruction MUL R1,R0 which gives the product 12800 (3200h), register R0 contains 32h (00110010B), register R1
contains 00h, the OV flag is set and the CY flag is clear.

MUL Rmd,Rms

[Encoding]

A C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MUL (8–bit operands)
if <dest> md = 0, 2, 4, .., 14
Rmd ← high byte of the Rmd x Rms
Rmd+1 ← low byte of the Rmd x Rms
if <dest> md = 1, 3, 5, .., 15
Rmd-1 ← high byte of the Rmd x Rms
Rmd ← low byte of the Rmd x Rms
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MUL WRjd,WRjs

[Encoding]

A D tttt TTTT

Hex Code in: Operation:

Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

MUL (16–bit operands)
if <dest> jd = 0, 4, 8, .., 28
WRjd ← high word of the WRjd x WRjs
WRjd+2 ← low word of the WRjd x WRjs
if <dest> jd = 2, 6, 10, .., 30
WRjd-2 ← high word of the WRjd x WRjs
WRjd← low word of the WRjd x WRjs
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MUL AB

Function:

Multiply

Description:

Multiplies the unsigned 8–bit integers in the accumulator and register B. The low byte of the 16–bit product is left in
the accumulator, and the high byte is left in register in B. If the product is greater than 255 (0FFh) the OV flag is set;
otherwise it is clear. The CY flag is always clear.

FLAGS :

CY AC OV N Z

0 _ � � �

Example :

The accumulator contains 80 (50h) and register B contains 160 (0A0h). After executing the instruction MUL AB which
gives the product 12800 (3200h), register B contains 32h (00110010B), the accumulator contains 00h, the OV flag is
set and the CY flag is clear.

MUL AB

[Encoding]

A 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MUL 
(A) ← low byte of (A) X (B)
(B) ← high byte of (A) X (B)
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NOP

Function:

No operation

Description:

Execution continues at the following instruction. Affects the PC register only.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

We assume we are executing an internal code and you want to produce a low–going output pulse on bit 7 of Port 2 that
lasts exactly 11 states. A simple CLR–SETB sequence generates an eight–state pulse. (Each instruction requires four
states to write to a Port SFR.) You can insert three additional states (if no interrupts are enabled) with the following
instruction sequence :

CLR P2.7
NOP
NOP
NOP
SETB P2.7

NOP

[Encoding]

0 0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

NOP
(PC) ← (PC) + 1
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ORL <dest> <src>

Function:

Logical–OR for byte variables

Description:

Performs the bitwise logical–OR operation (V) between the specified variables, storing the results in the destination
operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the accumulator, the source
can be register, direct, register–indirect or immediate addressing; when the destination is a direct address, the source
can be the accumulator or immediate data. When the destination is register the source can be register, immediate, direct
and indirect addressing.

Note:
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 0C3h (11000011B) and R0 contains 55h (01010101B). After executing the instruction, ORL
A, R0 the accumulator contains 0D7h (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location
or hardware register. The pattern of bits to be set is determined by a mask byte, which may be a constant data value
in the instruction or a variable computed in the accumulator at run time. After executing the instruction ORL P1,
#00110010B sets bits 5, 4 and 1 of output Port 1.

ORL dir8,A

[Encoding]

4 2 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(dir8) ← (dir8) V (A)



TSC80251

Rev. E – 20 December, 2000 5.117

ORL dir8,#data

[Encoding]

4 3 addr7-addr0 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(dir8) ← (dir8) V #data

ORL A,#data

[Encoding]

4 4 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(A) ← (A) V #data

ORL A,dir8

[Encoding]

4 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(A) ← (A) V (dir8)

ORL A,@Ri

[Encoding]

4 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ORL (A) ← (A) V ((Ri))
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ORL A,Rn

[Encoding]

4 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ORL
(A) ← (A) V (Rn)

ORL Rmd,Rms

[Encoding]

4 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rmd) ← (Rmd) V (Rms)

ORL WRjd,WRjs

[Encoding]

4 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(WRjd)←(WRjd) V (WRjs)

ORL Rm,#data

[Encoding]

4 E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) ← (Rm) V #data
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ORL WRj,#data16

[Encoding]

4 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(WRj) ← (WRj) V #data16

ORL Rm,dir8

[Encoding]

4 E ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) ← (Rm) V (dir8)

ORL WRj,dir8

[Encoding]

4 E tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(WRj) ← (WRj) V (dir8)

ORL Rm,dir16

[Encoding]

4 E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) ← (Rm) V (dir16)
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ORL WRj,dir16

[Encoding]

4 E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(WRj) ← (WRj) V (dir16)

ORL Rm,@WRj

[Encoding]

4 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) ← (Rm) V ((WRj))

ORL Rm,@DRk

[Encoding]

4 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) ← (Rm) V ((DRk))
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ORL CY,<src–bit>

Function:

Logical–OR for bit variables

Description:

Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state otherwise. A slash (”/”)
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as
the source value, but the source bit itself is not affected.

FLAGS :

CY AC OV N Z

� _ _ _ _

Example :

Set the CY flag if and only if P1.0 = 1, ACC.7 = 1 or OV = 0.

MOV CY,P1.0 ;Load carry with input pin P1.0
ORL CY,ACC.7 ;Or carry with the accumulator bit 7
ORL CY,/OV ;Or carry with the inverse of OV.

ORL CY,bit51

[Encoding]

7 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(CY) ← (CY) V (bit51)

ORL CY,/bit51

� If this instruction addresses a Port (Px, x = 0-3), add 1 state.

[Encoding]

A 0 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(CY) ← (CY) V¬ (bit51)
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ORL CY,bit

[Encoding]

A 9 7 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(CY) ← (CY) V (bit)

ORL CY,/bit

[Encoding]

A 9 F 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(CY) ← (CY) V 0 (bit)



TSC80251

Rev. E – 20 December, 2000 5.123

POP <src>

Function:

Pop from stack.

Description:

Reads the contents of the on–chip RAM location addressed by the stack pointer, then decrements the stack pointer by
one. The value read at the original RAM location is transferred to the newly addressed location, which can be 8–bit
or 16–bit.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer contains 32h and on–chip RAM locations 30h through 32h contain 01h, 23h, and 20h, respectively.
After executing the instruction sequence:

POP DPH
POP DPL

the stack pointer contains 30h and the data pointer contains 0123h. After executing the instruction POP SP the stack
pointer contains 20h. Note that in this special case the stack pointer was decremented to 2Fh before it was loaded with
the value popped (20h).

POP dir8

[Encoding]

D 0 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

POP
(dir8) ← ((SP)
(SP) ← (SP) - 1

POP Rm

[Encoding]

D A ssss 8

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

POP
(Rm) ← ((SP))
(SP) ← (SP) - 1
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POP WRj

[Encoding]

D A tttt 9

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

POP
(SP) ← (SP) - 1
(WRj) ← ((SP))
(SP) ← (SP) - 1

POP DRk

[Encoding]

D A uuuu B

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

POP
(SP) ← (SP) - 3
(DRk) ← ((SP))
(SP) ← (SP) - 1
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PUSH <dest>

Function:

PUSH onto stack

Description:

Increments the stack pointer by one. The contents of the specified variable are then copied into the on–chip RAM
location addressed by the stack pointer.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example: On entering an interrupt routine, the stack pointer contains 09h and the data pointer contains 0123h. After
executing the instruction sequence:

PUSH DPL
PUSH DPH

the stack pointer contains 0Bh and on–chip RAM locations 0Ah and 0Bh contain 01h and 23h, respectively.

PUSH dir8

[Encoding]

C 0 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← (dir8)

PUSH #data

[Encoding]

C A 0 2 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← #data
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PUSH #data16

[Encoding]

C A 0 6 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← #data16
(SP) ← (SP) + 1

PUSH Rm

[Encoding]

C A ssss 8

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← (Rm)

PUSH WRj

[Encoding]

C A tttt 9

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← (WRj)
(SP) ← (SP) + 1

PUSH DRk

[Encoding]

C A uuuu B

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) ← (SP) + 1
((SP)) ← (DRk)
(SP) ← (SP) + 3
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RET

Function:

Return from subroutine

Description:

Pops the high and low bytes of the PC successively from the stack, decrementing the stack pointer by two. Program
execution continues at the resulting address, which normally is the instruction immediately following ACALL or
LCALL.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The stack pointer contains 0Bh and on–chip RAM locations 0Ah and 0Bh contain 01h and 23h, respectively. After
executing the instruction, RET the stack pointer contains 09h and program execution continues at location 0123h.

RET

[Encoding]

2 2

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

RET
(PC).15:8 ← ((SP))
(SP) ← (SP) - 1
(PC).7:0 ← ((SP))
(SP) ← (SP) - 1



TSC80251

Rev. E – 20 December, 2000 
5.128

RETI

Function:

Return from interrupt

Description:

This instruction pops two or four bytes from the stack, depending on the INTR bit in the CONFIG1 register .

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and uses them as the 16–bit return
address in region FF:.The stack pointer is decremented by two. No other registers are affected, and neither PSW nor
PSW1 is automatically restored to its pre–interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The three bytes of the PC are
the return address, which can be anywhere in the 16–Mbyte memory space. The stack pointer is decremented by four.
PSW1 is restored to its pre–interrupt status, but PSW is not restored to its pre–interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts at the same priority level
as the one just processed. Program execution continues at the return address, which normally is the instruction
immediately after the point at which the interrupt request was detected. If an interrupt of the same or lower priority
is pending when the RETI instruction is executed, that one instruction is executed before the pending interrupt is
processed.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

INTR = 0. The stack pointer contains 0Bh. An interrupt was detected during the instruction ending at location 0122h.
On–chip RAM locations 0Ah and 0Bh contain 01h and 23h, respectively. After executing the instruction, RETI the
stack pointer contains 09h and program execution continues at location 0123h.



TSC80251

Rev. E – 20 December, 2000 5.129

RETI

[Encoding]

3 2

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = 0 :
RETI
(PC).15:8 ← ((SP))
(SP) ← (SP) - 1
(PC).7:0 ← ((SP))
(SP) ← (SP) - 1
Operation for INTR = 1 : 
RETI
(PC).15:8 ← ((SP))
(SP) ← (SP) - 1
(PC).7:0 ← ((SP))
(SP) ← (SP) - 1
(PC).23:16 ← ((SP))
(SP) ← (SP) - 1
PSW1 ← ((SP))
(SP) ← (SP) - 1
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RL A

Function:

Rotate accumulator left

Description:

Rotates the 8 bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0 position.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 0C5h (11000101B). After executing the instruction, RL A the accumulator contains 8Bh
(10001011B); the CY flag is unaffected.

RL A

[Encoding]

2 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

RL 
(A).a+1 ← (A).a
(A).0 ← (A).7
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RLC A

Function:

Rotate accumulator left through the carry flag

Description:

Rotates the 8 bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into the CY flag position and the
original state of the CY flag moves into bit 0 position.

Description:

FLAGS :

CY AC OV N Z

� _ _ � �

Example :

The accumulator contains 0C5h (11000101B) and the CY flag is clear. After executing the instruction RLC A the
accumulator contains 8Ah (10001010B) and the CY flag is set.

RLC A

[Encoding]

3 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

RLC
(A).a+1 ← (A).a
(A).0 ← (CY)
(CY) ← (A) .7
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RR A

Function:

Rotate accumulator right

Description:

Rotates the 8 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 position.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 0C5h (11000101B). After executing the instruction, RR A the accumulator contains 0E2h
(11100010B) and the CY flag is unaffected.

RR A

[Encoding]

0 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

RR
(A).a ← (A).a+1
(A).7 ← (A) .0
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RRC A

Function:

Rotate accumulator right through carry flag

Description:

Rotates the 8 bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into the CY flag position; the
original value of the CY flag moves into the bit 7 position.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The accumulator contains 0C5h (11000101B) and the CY flag is clear. After executing the instruction RRC A the
accumulator contains 62h (01100010B) and the CY flag is set.

RRC A

[Encoding]

1 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

RRC
(A).a ← (A).a+1
(A).7 ← (CY)
(CY) ← (A).0
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SETB <bit>

Function:

Set bit

Description:

Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable bit.

FLAGS : No flags are affected except the CY flag for instruction with CY as the operand.

CY AC OV N Z

� _ _ _ _

Example:

The CY flag is clear and output Port 1 contains 34h (00110100B). After executing the instruction sequence:

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35h (00110101B).

SETB bit51

[Encoding]

D 2 bit addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SETB
(bit51) ← 1

SETB CY

[Encoding]

D 3

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SETB
(CY) ← 1
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SETB bit

[Encoding]

A 9 D 0yyy bit addr

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SETB
(bit) ← 1
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SJMP rel

Function:

Short jump

Description:

Program control branches unconditionally to the specified address. The branch destination is computed by adding the
signed displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore, the range
of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following it.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The label ”RELADR” is assigned to an instruction at program memory location 0123h. The instruction SJMP
RELADR assembles into location 0100h. After executing the instruction, the PC contains 0123h.

Note :
In the above example, the instruction following SJMP is located at 102h. Therefore, the displacement byte of the instruction is the relative offset
(0123h-0102h) = 21h. Put another way, an SJMP with a displacement of 0FEh would be a one–instruction infinite loop.

SJMP rel

[Encoding]

8 0 rel addr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel
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SLL <src>

Function:

Shift logical left by 1 bit

Description:

Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted out (MSB) is stored in the
CY bit.

FLAGS :

CY AC OV N Z

� _ _ � �

Example :

Register 1 contains 0C5h (11000101B). After executing the instruction SLL R 1 register 1 contains 8Ah (10001010B)
and CY = 1.

SLL Rm

[Encoding]

3 E ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SLL
(Rm).a+1 ← (Rm).a
(Rm).0 ← 0
CY ← (Rm).7

SLL WRj

[Encoding]

3 E tttt 4

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SLL
(WRj).b+1 ← (WRj).b
(WRj).0 ← 0
CY← (WRj).15
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SRA <src>

Function:

Shift arithmetic right by 1 bit

Description:

Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit shifted out (LSB) is stored
in the CY bit.

FLAGS :

CY AC OV N Z

� _ _ � �

Example :

Register 1 contains 0C5h (11000101B). After executing the instruction SRA R 1 register 1 contains 0E2h (11100010B)
and CY = 1.

SRA Rm

[Encoding]

0 E ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRA
(Rm).7← (Rm).7
(Rm).a ← (Rm).a + 1
CY← (Rm).0

SRA WRj

[Encoding]

0 E tttt 4

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRA
(WRj).15 ← (WRj).15
(WRj).b ← (WRj).b+1
CY← (WRj).0
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SRL <src>

Function:

Shift logical right by 1 bit

Description:

SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit shifted out (LSB) is stored
in the CY bit.

FLAGS :

CY AC OV N Z

� _ _ � �

Example :

Register 1 contains 0C5h (11000101B). After executing the instruction SRL R 1 register 1 contains 62h (01100010B)
and CY = 1.

SRL Rm

[Encoding]

1 E ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRL
(Rm).7 ← 0
(Rm).a ← (Rm) a + 1
CY← (Rm).0

SRL WRj

[Encoding]

1 E tttt 4

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRL
(WRj).15 ← 0
(WRj).b ← (WRj).b+1
CY← (WRj).0
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SUB <dest>,<src>

Function:

Subtract

Description:

Subtracts the specified variable from the destination operand, leaving the result in the destination operand. SUB sets
the CY (borrow) flag if a borrow is needed for bit 7. Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: immediate, indirect, register and direct.

FLAGS :

CY AC OV N Z

� � � � � �

� For word and dword subtractions, AC is not affected.

Example :

Register 1 contains 0C9h (11001001B) and register 0 contains 54h (01010100B). After executing the instruction SUB
R1,R0 register 1 contains 75h (01110101B), the CY and AC flags are clear, and the OV flag is set.

SUB Rmd,Rms

[Encoding]

9 C ssss SSSS

Hex Code in: Operation:

Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

SUB
(Rmd) ← (Rmd) - (Rms)

SUB WRjd,WRjs

[Encoding]

9 D tttt TTTT

Hex Code in: Operation:

Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

SUB
(WRjd) ← (WRjd) - (WRjs)
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SUB DRkd,DRks

[Encoding]

9 F uuuu UUUU

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(DRkd) ← (DRkd) - (DRks)

SUB Rm,#data

[Encoding]

9 E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(Rm) ← (Rm) - #data

SUB WRj,#data16

[Encoding]

9 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(WRj) ← (WRj) - #data16

SUB DRk,#data16

[Encoding]

9 E uuuu 8 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(DRk) ← (DRk) - #data16



TSC80251

Rev. E – 20 December, 2000 
5.142

SUB Rm,dir8

[Encoding]

9 E ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(Rm) ← (Rm) - (dir8)

SUB WRj,dir8

[Encoding]

9 E tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(WRj) ← (WRj) - (dir8)

SUB Rm,dir16

[Encoding]

9 E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(Rm) ← (Rm) - (dir16)

SUB WRj,dir16

[Encoding]

9 E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(WRj) ← (WRj) - (dir16)
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SUB Rm,@WRj

[Encoding]

9 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(Rm) ← (Rm) - ((WRj))

SUB Rm,@DRk

[Encoding]

9 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SUB
(Rm) ← (Rm) - ((DRk))
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SUBB A,<src-byte>

Function:

Subtract with borrow

Description:

SUBB subtracts the specified variable and the CY flag together from the accumulator, leaving the result in the
accumulator. SUBB sets the CY (borrow) flag if a borrow is needed for bit 7 and clears CY otherwise. (If CY was set
before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple
precision subtraction, so the CY flag is subtracted from the accumulator along with the source operand.) AC is set if
a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into
bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a negative value is
subtracted from a positive value or a positive result when a positive number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 bit)

The source operand allows four addressing modes: register, direct, register–indirect or immediate.

FLAGS :

CY AC OV N Z

� � � � �

Example :

The accumulator contains 0C9h (11001001B), register 2 contains 54h (01010100B), and the CY flag is set. After
executing the instruction SUBB A,R2 the accumulator contains 74h (01110100B), the CY and AC flags are clear, and
the OV flag is set.Notice that 0C9h minus 54h is 75h. The difference between this and the above result is due to the
CY (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or
multiple–precision subtraction, it should be explicitly cleared by a CLR CY instruction.

SUBB A,#data

[Encoding]

9 4 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SUBB
(A) ← (A) - (CY) - #data
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SUBB A,dir8

[Encoding]

9 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SUBB
(A) ← (A) - (CY) - (dir8)

SUBB A,@Ri

[Encoding]

9 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

SUBB
(A) ← (A) - (CY) - ((Ri))

SUBB A,Rn

[Encoding]

9 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

SUBB
(A) ← (A) - (CY) - (Rn)
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SWAP A

Function:

Swap nibbles within the accumulator

Description:

Interchanges the low and high nibbles (4–bit fields) of the accumulator (bits 3-0 and bits 7- 4). This operation can also
be thought of as a 4–bit rotate instruction.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The accumulator contains 0C5h (11000101B). After executing the instruction SWAP A the accumulator contains 5Ch
(01011100B).

SWAP A

[Encoding]

C 4

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SWAP
(A).3:0 → ← (A).7:4
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TRAP

Function:

Causes interrupt call

Description:

Causes an interrupt call that is vectored through location FF:007Bh. The operation of this instruction is not affected
by the state of the interrupt enable flag in PSW0 and PSW1. Interrupt calls can not occur immediately following this
instruction.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

The instruction TRAP causes an interrupt call to location 0FF007Bh during normal operation.

TRAP

[Encoding]

B 9

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation for INTR = 0 :
TRAP
(SP) ← (SP) + 1
(SP) ← (PC).15:0
(SP) ← (SP) + 1
(PC) ← (FF007Bh)
Operation for INTR = 1 : 
TRAP
(SP) ← (SP) + 1
(PSW1) ← ((SP))
(SP) ← (SP) + 1
(PC).23:16 ← ((SP))
(SP) ← (SP) + 1
(PC).15:8 ← ((SP))
(SP) ← (SP) + 1
(PC) ← (FF007Bh)
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XCh A,<byte>

Function:

Exchange accumulator with byte variable

Description:

Loads the accumulator with the contents of the specified variable, at the same time writing the original accumulator
contents to the specified variable. The source/destination operand can use register, direct or register–indirect
addressing.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

R0 contains the address 20h, the accumulator contains 3Fh (00111111B) and on–chip RAM location 20h contains 75h
(01110101B). After executing the instruction XCh A,@R0. RAM location 20h contains 3Fh (00111111B) and the
accumulator contains 75h (01110101B).

XCh A,dir8

[Encoding]

C 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XCh
(A) → ← (dir8)

XCh A,@Ri

[Encoding]

C 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

XCh
(A) → ← ((Ri))
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XCh A,Rn

[Encoding]

C 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

XCh
(A) → ← (Rn)
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XCHD A,@Ri

Function:

Exchange digit

Description:

Exchanges the low nibble of the accumulator (bits 3–0) generally representing a Hexadecimal or BCD digit, with that
of the on–chip RAM location indirectly addressed by the specified register. Does not affect the high nibble (bits 7–4)
of either register.

FLAGS :

CY AC OV N Z

_ _ _ _ _

Example :

R0 contains the address 20h, the accumulator contains 36h (00110110B), and on–chip RAM location 20h contains 75h
(01110101B). After executing the instruction, XCHD A,@R0 on–chip RAM location 20h contains 76h (01110110B)
and 35h (00110101B) in the accumulator.

XCHD A,@Ri

[Encoding]

D 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

XCHD
(A).3:0 → ← ((Ri)).3:0
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XRL <dest>,<src>

Function:

Logical Exclusive–OR for byte variables

Description:

Performs the bitwise logical Exclusive–OR operation (∀ ) between the specified variables, storing the results in the
destination. The destination operand can be the accumulator, a register or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the accumulator or a register, the
source addressing can be register, direct, register–indirect or immediate; when the destination is a direct address, the
source can be the accumulator or immediate data.

Note :
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS :

CY AC OV N Z

_ _ _ � �

Example :

The contains 0C3h (11000011B) and R0 contains 0AAh (10101010B). After executing the instruction, XRL A,R0 the
accumulator contains 69h (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any RAM
location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a
constant contained in the instruction or a variable computed in the accumulator at run time. The instruction XRL
P1,#00110001B complements bits 5, 4, and 0 of output Port 1.

XRL dir8,A

[Encoding]

6 2 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(dir8) ← (dir8) ∀ (A)

XRL dir8,#data

[Encoding]

6 3 addr7-addr0 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(dir8) ← (dir8) ∀ #data
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XRL A,#data

[Encoding]

6 4 immed data

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(A) ← (A) ∀ #data

XRL A,dir8

[Encoding]

6 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(A) ← (A) ∀ (dir8)

XRL A,@Ri

[Encoding]

6 011i

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

XRL
(A) ← (A) ∀ ((Ri))

XRL A,Rn

[Encoding]

6 1rrr

Hex Code in: Operation:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

XRL
(A) ← (A) ∀ (Rn)
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XRL Rmd,Rms

[Encoding]

6 C ssss SSSS

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rmd) ← (Rmd) ∀ (Rms)

XRL WRjd,WRjs

[Encoding]

6 D tttt TTTT

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(WRds) ← (WRjd) ∀ (WRjs)

XRL Rm,#data

[Encoding]

6 E ssss 0 immed data

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rm) ← (Rm) ∀ #data

XRL WRj,#data16

[Encoding]

6 E tttt 4 immed data hi immed data low

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(WRj) ← (WRj) ∀ #data16
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XRL Rm,dir8

[Encoding]

6 E ssss 1 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rm) ← (Rm) ∀ (dir8)

XRL WRj,dir8

[Encoding]

6 E tttt 5 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(WRj) ← (WRj) ∀ (dir8)

XRL Rm,dir16

[Encoding]

6 E ssss 3 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rm) ← (Rm) ∀ (dir16)

XRL WRj,dir16

[Encoding]

6 E tttt 7 addr15-addr8 addr7-addr0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(WRj) ← (WRj) ∀ (dir16)
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XRL Rm,@Wrj

[Encoding]

6 E tttt 9 ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rm) ← (Rm) ∀ ((WRj))

XRL Rm,@Drk

[Encoding]

6 E uuuu B ssss 0

Hex Code in: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

XRL
(Rm) ← (Rm) ∀ ((DRk))
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This glossary defines acronyms, abbreviations, and terms that have special meaning in this manual.

#0data16 A 32–bit constant that is immediately addressed in an instruction. The upper 16–bit
part is filled with zeros.

#1data16 A 32–bit constant that is immediately addressed in an instruction. The upper 16–bit
part is filled with ones.

#data An 8–bit constant that is immediately addressed in an instruction.

#data16 A 16–bit constant that is immediately addressed in an instruction.

#short A constant, equal to 1, 2 or 4, that is immediately addressed in an instruction.

accumulator A register or storage location that forms the result of an arithmetic or logical
operation.

addr11 An 11–bit destination address. The destination can be anywhere within the same
2–Kbyte block of memory as the first byte of the next instruction.

addr16 A 16–bit destination address. The destination can be anywhere within the same
64–Kbyte region as the first byte of the next instruction.

addr24 A 24–bit destination address. The destination can be anywhere within the
16–Mbyte address space.

ALU Arithmetic–logic unit. The part of the CPU that processes arithmetic and logical
operations.

assert The term assert refers to the act of making a signal active (enabled). The polarity
(high/low) is defined by the signal name. Active–low signals are designated by a
pound symbol (#) suffix; active–high signals have no suffix. To assert RD# is to
drive it low; to assert ALE is to drive it high.

binary–code compatibility The ability of a TSC80251 microcontroller to execute, without modification,
binary code written for an 80C51 microcontroller.

binary mode An operating mode, selected by a configuration bit, that enables a TSC80251
microcontroller to execute, without modification, binary code written for a
80C51 microcontroller.

bit A binary digit.

bit (operand) An addressable bit in the C251 Architecture.

bit51 An addressable bit in the C251 Architecture.

byte Any 8–bit unit of data.

Glossary
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clear The term clear refers to the value of a bit or the act of giving it a value. If a bit is
clear, its value is “0”; clearing a bit gives it a “0” value.

code memory See program memory.

configuration bytes Bytes that determine a set of operating parameters for the TSC80251 Product. For
TSC80251 EPROM and OTPROM versions, these bytes are programmable in an
EPROM area. For TSC83251 masked ROM versions, these bytes are additional
information provided in a masked ROM area. For TSC80251 ROMless version,
these bytes are configured in factory according to the part number.

dir8 An 8–bit direct address. This can be a memory address or an SFR address.

dir16 A 16–bit memory address (00:0000h-00:FFFFh) used in direct addressing.

DPTR The 16–bit data pointer. In TSC80251 microcontrollers, DPTR is the lower 16 bits
of the 24–bit extended data pointer, DPX.

DPX The 24–bit extended data pointer in TSC80251 microcontrollers. See also DPTR.

deassert The term deassert refers to the act of making a signal inactive (disabled). The
polarity (high/low) is defined by the signal name. Active–low signals are
designated by a pound symbol (#) suffix; active–high signals have no suffix. To
deassert RD# is to drive it high; to deassert ALE is to drive it low.

double word A 32–bit unit of data. In memory, a double word comprises four contiguous bytes.

dword See double word.

EPROM Erasable programmable read–only memory.

external address A 16–bit or 17–bit address presented on the device pins. The address decoded by
an external device depends on how many of these address bits the external system
uses. See also internal address.

integer Any member of the set consisting of the positive and negative whole numbers and
zero.

internal address The 24–bit address that the device generates. See also external address.

interrupt handler The module responsible for handling interrupts that are to be serviced by
user–written interrupt service routines.

interrupt latency The delay between an interrupt request and the time when the first instruction in
the interrupt service routine begins execution.

interrupt response time The time delay between an interrupt request and the resulting break in the current
instruction stream.

interrupt service routine The software routine that services an interrupt.

LSB Least–significant bit of a byte or a least–significant byte of a word.

MSB Most–significant bit of a byte or a most–significant byte of a word.
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multiplexed bus A bus on which the data is time–multiplexed with (some of) the address bits.

OTPROM One–time–programmable read–only memory, a version of EPROM.

PC Program counter.

program memory A part of memory where instructions can be stored for fetching and execution.

RAM Random access memory

rel A signed (two’s complement) 8–bit, relative destination address. The destination
is –128 to +127 bytes relative to the first byte of the next instruction.

reserved bits Register bits that are not used in this device but may be used in future
implementations. Avoid any software dependence on these bits. In most cases: the
value read from this bit is indeterminate; do not set this bit.

ROM Read only memory

set The term set refers to the value of a bit or the act of giving it a value. If a bit is set,
its value is “1”; setting a bit gives it a “1” value.

SFR Special Function Register.

sign extension A method for converting data to a larger format by filling the extra bit positions with
the value of the sign. This conversion preserves the positive or negative value of
signed integers.

source–code compatibility The ability of an TSC80251 microcontroller to execute recompiled source code
written for an 80C51 microcontroller.

source mode An operating mode that is selected by a configuration bit. In source mode, a
TSC80251 microcontroller can execute recompiled source code written for a
80C51 microcontroller. In source mode, the TSC80251 microcontroller cannot
execute unmodified binary code written for an 80C51 microcontroller. See binary
mode.

SP Stack pointer.

SPX Extended stack pointer.

state time (or state) The basic time unit of the microcontroller; the combined period of the two internal
timing signals, PH1 and PH2. (The internal clock generator produces PH1 and PH2
by halving the frequency of the signal on XTAL1.) With a 16–MHz crystal, one
state time equals 125 ns. Because the device can operate at many frequencies, this
manual defines time requirements in terms of state times rather than in specific
units of time.

word A 16–bit unit of data. In memory, a word comprises two contiguous bytes.


