AIMEL TSC80251

WIRELESS & uC

TSC 80251
Programmer’s Guide

Rev E — 2000

Rev. E — 20 December, 2000 1

AIMEL TSC80251

WIRELESS & uC

Atmel Wireless & Microcontrollers reserves the right to make changes in the specifications contained in this document in order to
improvedesign or performanceand to supply the best possible products.Atmel al so assumesno responsibility for theuseof any circuits
described herein, conveysnolicenseunder any patentsor other rights, and makesnorepresentationsthat thecircuitsarefreefrompatent
infringement. Applicationsfor any integrated circuits contained in this publication arefor illustration purposes only andAtmel makes
no representation or warranty that such applications will be suitable for the use specified without further testing or modification.
Reproduction of any portion hereof without the prior written consent of Atmel is prohibited.

On lineinformation

World Wide Web: http://www.atmel-wm.com

Factory Technical Support

Email: micro@atmel—-wm.com

Publisher

Atmel Nantes S A.

La Chantrerie — Route de Gachet,
BP 70602

44306 NANTES Cedex 03
France

Phone: 332401818 18

Fax: +33 2401819 60

Copyright Atmel Nantes S.A. 2000.
Copyright INTEL Corporation 1994.
Portions reprinted by permission of INTEL Corporation.

Rev. E — 20 December, 2000 1

AIMEL TSC80251

WIRELESS & uC

Table of Contents

Conventions

Chapter 1: Introduction

1.1. 8/16-hit Microcontroller 1.1
1.2. TSC80251 DEriVatiVESottt e e e e e e e e e e e e e e 11
1.3. TSC80251 DocUmMENTAtioN oottt e e e e e 1.3

Chapter 2: Architectural Overview

2.1. Microcontroller Architecture. ... e 21
2.2. Microcontroller Core e 2.2
2.2, CPU i 22
222.Clock and Resat UNitot e e e 24
2.2.3. Interrupt Handler 24
3.1. C251 Architecture Address Spacesco it 31
3.2. C51 Architecture AddressS SPaceSo vttt e 3.2
3.3. C51 Architecture mapping to C251 Architecture AddressSpaces 32
34. TSC80251 Register File e e 34
3.4.1. Byte, Word and DWOrd REQISLENSottt e e e e 35
34.2. Dedicaled RegISIErS . . . oottt e 3.6

3.4.2.1. Accumulator and B REGISErot 37

3.4.2.2. Extended Data Pointer, DPX 3.7

3.4.2.3. Extended Stack POINEEr, SPX\ttt et e 37
3.5. Special Function Registers(SFRS) 39

Chapter 3: Address Spaces

3.1. C251 Architecture Address SPaceso vt e 31
3.2. C51 Architecture AddressS SPacesottt 3.2
3.3. C51 Architecture mapping to C251 Architecture AddressSpaces 32

Rev. E — 20 December, 2000 1

T SC80251 AIMEL

34. TSCB0251 Register File e e e 3.4
3.4.1. Byte, Word and DWOrd RegiStarSo ittt e e e 35
34,2, Dedicated REgISIErS . . oottt 3.6
3.4.2.1. Accumulator and B REgIStErottt e 37
3.4.2.2. Extended Data Pointer, DPX i 3.7
3.4.2.3. Extended Stack Pointer, SPX 3.7
3.5. Special Function RegIiSterS (SFRS) ..o ot e e 3.8

Chapter 4: Programming

4.1. Source Modeor Binary ModeOpeodest 4.1
4.1.1. Selecting Binary Mode or SOUrCEMOUEottt e e e 4.2
4.2. 4.1. Programming Features of the C251 Architecture.......................... 4.2
I T =)Y/ 0T 4.3

4.2.1.1. Order of Byte Storage for Wordsand DoubleWords 43
4.2.2. REGISIEr NOIAiONSottt ettt e e et e e e e e 43
4.2.3. AdAressS NOtaiONSottt e e e e e 43
424 AdressiNg MOOES . . . oottt 4.4
4.3. Program StatuUSWordsot e e 45
44, Data INStrUCIONS . . .o\ttt e 4.6
4.4.1. Data Addressing MOOeSottt 4.6

4.4.1.1. Addressable RegIStErS vt e 4.6

44.1.2. Immediate AdAreSSINgottt 4.6

4.4.1.3. DireCt AQArESSING . .. oo ettt e e e 46

4424, IndireCt AdAreSSINGo ot 4.7

4.4.1.5. Displacement AdAreSSINGo ottt e 4.8
4.4.2. ArithmetiC INSITUCLIONSottt e e e e e e e e e et e i 4.9
4.4.3.L0gICal INSITUCLIONS . . . oottt et e et e e e e e e e e e e e e e e 49
444, DataTransfer INSIIUCHIONSttt et et e e e e e e et e e e 4.9
45, Bit INSITUCLIONS . ..o e e 4.10
450 Bit AdOresSINg . . .ot e 4.10
4.6. Control INSIrUCHIONS . . oot e e e 411
4.6.1. Addressing Modes for Control INStruCtionS oottt e e e 412
4.6.2. Conditional JUMIPS . ..ttt e e 4.13
4.6.3. UNconditional JUMPSottt et e e e e e e e 4.13
4.6.4. Callsand REtUIMNS oo 414
A7, INtErTUPt ProCESSING ..t i et e e e 4.15
A7.0. INterrupt REOUESE oot e e e e e e 4.15
4.7.2. Blocking Conditionsot 4.15
A.7.3. Interrupt VECIOr CyYCle . ..o 4.16
4.7.4. INterrupt SErVICE ROULINE ottt e e et et it e et e 4.16

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

4 8. TNt TUPE TIMES . ..ottt e e et e e e et e e 4.16
4.8.1. INterrupt RESPONSE TIME . . oottt ettt e e e e e e e e e e e e e e e e 4,16
4.8.2. INterrupt LatenCy Time ..ottt ettt ettt et e e e 4,18
4.8.2.1. Minimum Fixed INterrupt Timeo e e 4.18
4.8.2.2.Worst CaseLatency Variables 4.18
4.8.2.3. Latency CalCUlalioNSottt e e 4.18

Chapter 5: Instruction Set

5.1. Notation for Instruction Operandsttt 52
5.2.INSruction Set SUMMAIY oot e e 54
5.2.1. Size and Execution Timefor Instruction Families 55
5.2.2. Opcode Map and SupportingTables 5.15
5.3. INStruction DesCriptioNSottt e e e 5.22
5.1 INStruction SEt SUMMAryot e e 51
5.1.1. Notation for INStruction OPerandsttt e e e e 52
5.1.2. Sizeand Execution Timefor Instruction Families i i 54
5.2. OpcodeMap and SupPortingTables i, 5.18
5.3. INStruction Set SUMMArYot 5.24
5.3.1. Execution Times for Instructionsthat Accessthe POrtSSFRSo i 5.24
5.4. InStruction DesCriptionsot e e 5.36
Glossary

Rev. E — 20 December, 2000 3

AIMEL TSC80251

WIRELESS & uC

List of Figures

Chapter 2: Architectural Overviewc. ... 2.1
Figure 2.1. TSC80251 Product BIOCK Diagramttt e e e 22
Figure 2.2. Central Processor Unit BIoCK Diagramot e 23
Figure 2.3. Clocking DefiNitioNSot e e 24
Chapter 3: AddressSpaces ..ot e e e 31
Figure 3.1. Address Spaces for TSC80251 Microcontrollers e 31
Figure 3.2. Address Spacesfor the C51 ArchiteCturet e 3.2
Figure 3.3. Mappings C51 Architecture to C251 Architecture AddressSpaces, 34
Figure 3.4. TSCB0251 MEMOIY SPACE . . v vttt ettt et ettt e ettt e e et ettt ettt 34
Figure 3.5. Register Filein Byte, Word, and Dword Register VIiewst 35
Figure 3.6. Register File LOCAiONS O0-7ottt et e e et e 3.6
Figure 3.7. Dedicated Registersin the Register File and their Corresponding SFRs 3.7
Chapter 4: Programmingvvu ittt et e 4.1
Figure4.1. Binary Mode OpCode MapDottt e e e e e 4.2
Figure 4.2. SoUrce Mode OpCOdE M A i vttt e e e et ettt e 4.2
Figure 4.3. Word and Double-word StorageinBigEndianForm i 44
Figure 4.4. INterrUpt PrOCESSottt et e e e e et e e e e e e e e 4.15
Figure4.5. Response TiIme EXample L o e e e 417
Figure4.6. Response Time EXample 2 oo 417
Figure 4.7. Latency Time EXample oottt e e e e 4,19
Figure 4.8. Program Status Word register (PSW) . ..ottt e e e e 4.20
Figure 4.9. Program StatusWord 1 register (PSWL)ot e 421

Rev. E — 20 December, 2000 1

AIMEL TSC80251

WIRELESS & uC

List of Tables

Chapter 3: Address Spaces

Table 3.1 AdOreSS MapPinNgS . . . o o vttt e et e e e e e e 33
Table3.2. Register Bank SElECtioN o 34
Table 3.3. Dedicated Registersin the Register File and their Corresponding SFRs on. L. 3.6
Table 3.4, Core SFRSo 3.8

Chapter 4: Programming

Table 4.1. Examples of Opcodesin Binary and SOUrceModesot e e 41
TADIE 4. 2. DA TY DS ottt et e et e e e e e e e e e 43
Table 4.3. Notation for Byte Registers, Word Registers, and Dword Registers ..., 44
Table 4.4. The Efffects of Instructionsonthe PSW and PSW1Hagst 45
Table 4.5. Addressing Modes for Data Instructioninthe C51 Architecture, 47
Table 4.6. Addressing Modes for Data Instruction in the C251 Architecture oo, 48
Table4.7. Bit-addressable LOCELIONS oot e e e e e 4.10
Table 4.8. Two Samplesof BitS AAAreSSINGottt e e e e e 411
Table 4.9. Addressing Modesfor Bit INSITUCLIONSottt e e e et e e 411
Table 4.10. Addressing Modes for Control INStrUCtions e e e e 412
Table 4.11. Compare-conditional JUMP INSIFUCLIONSottt e et et e 4,13
Table 4.12. Interrupt Latency Variableso 4.18
Table 4.13. Actual vs. Predicted Latency Calculationsttt et e 4.19

Chapter 5: Instruction Set

Table5.1. Notation for DireCt AdAresSINgo v vt e e e e e 5.2
Table 5.2. Notation for Immediate AdAreSSIiNgottt 52
Table5.3. Notation for Bit AdAreSSINgottt e e et et et e 52
Table 5.4. Notation for Destination in Control InStructions i e 52
Table 5.5. Notation for Register Operandscoiiii it i et e et e et 53
Table5.6. Flag SymbolS 53
Table 5.7. Minimum Number of States per Instruction for given AverageSizes ..., 54
Table 5.8. Summary of Add and Subtract INStructions 55
Table 5.9. Summary of Increment and Decrement INStruCtionst i e enn 5.6
Table 5.10. Summary of Compare INStrUCLIONSt e e e e 5.6
Table 5.11. Summary of Logical INStructions (1/2)o oottt e e e e e 5.7
Table 5.12. Summary of Logical INStruCtionS (2/2)o vt e 5.8
Table 5.13. Summary of Multiply, Divide and Decimal-adjust Instructions oo, 5.8
Table 5.14. Summary of Move INStructions (1/3) ... oot 5.9
Table 5.15. Summary of Move INStructions (2/3)ot 5.9
Table 5.16. Summary of Move INStructions (3/3) . .. oot 5.10
Table5.17. Summary of Bit INSIFUCLIONSo o e e 511
Table 5.18. Summary of Exchange, Pushand Pop Instructions 5.12
Table 5.19. Summary of Conditional Jump Instructions (1/2) e 5.12
Table 5.20. Summary of Conditional Jump INStructions (2/2) ...t e e 5.13

Rev. E — 20 December, 2000 1

T SC80251 AIMEL

Table 5.21. Summary of unconditional JUMpP INSLFUCLIONSo i e 5.14
Table 5.22. Summary of Call and Return INSIrucCtionst e e 514
Table 5.23. Instructions for 80C51 Microcontrollers.o 5.15
Table 5.24. New Instructionsfor the C25L Architectureot e e 5.16
Table5.25. Data INStrUCtIONSottt e e et e e e e e e e e 5.17
Table 5.26. High Nibble, Byte 0 of Data Instructions oot e 517
Table5.27. Bit INSIIUCLIONSttt et e e e e e e e e e e et e e e 5.18
Table 5.28. Byte 1 (High Nibble) for Bit INStructions e 5.18
Table5.29. PUSH/POP INSITUCLIONSottt ettt e e et e e e e e e e et e i e e 5.18
Table 5.30. Control INStIUCHIONSottt et e et e et et et e e e e 5.19
Table 5.31. Displacement/Extended MOVSINSITUCLIONSottt 5.20
Table 5.32. Shift INStIUCHIONSot e e e e et et e e e 5.20
Table5.33. INC/DEC INSITUCLIONSottt e et e e e e et e e e e ettt e 521
Table 5.34. Encoding for INC/DEC INStrUCHIONSot i e ettt et e e e 5.21

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

Conventions

Thefollowing notations and terminology are used in thismanual . The Glossary definesall termswith special meanings.

italics

XXXX

Assert and Deassert

Instructions

Logic O (Low)

Logic 1 (High)

Numbers

Register Bits

Register Names

Reserved Bits

The pound symbol (#) has either of two meanings, depending on the context. When used
with a signal name, the symbol means that the signal is active low. When used in an
instruction, the symbol prefixes an immediate value in immediate addressing mode.

Italics identify variables and introduce new terminology. The context in which italics are
used distinguishes between two possible meanings.

Variables in registers and signal names are commonly represented by x and y, where x
represents the first variable and y represents the second variable. For example, in register
Px.y, x represents the variable that identifies the specific port, and y represents the register
bit variable [7:0]. Variables must be replaced with the correct values when configuring or
programming registers or identifying signals.

Uppercase X (no italics) represents an unknown value or a“don’'t care” state or condition.
The value may be either binary or hexadecimal, depending on the context. For example,
2XAFh (hex) indicatesthat bits 11:8 are unknown; 10X Xb in binary context indicates that
the two Least Significant Bits are unknown.

The terms Assert and Deassert refer to the act of making a signal active (enabled) and
inactive (disabled), respectively. The active polarity (high/low) is defined by the signal
name. Active-low signalsare designated by apound symbol (#) suffix; active-high signals
have no suffix. To assert RD#isto driveit low; to assert ALE isto driveit high; to deassert
RD# isto driveit high; to deassert ALE isto driveit low.

Instruction mnemonics are shown in upper case to avoid confusion. You may use either
upper case or lower case.

Aninput voltage level equal to or less than the maximum value of V| or an output voltage
level equal to or less than the maximum value of Vo . See Product Datasheet for values.

An input voltage level equal to or greater than the minimum value of V4 or an output
voltage level equal to or greater than the minimum value of V. See Product Datasheet
for values.

Hexadecimal numbers are represented by a string of hexadecimal digits followed by the
letter h. Decimal and binary numbers are represented by their customary notations: i.e. 255
isadecimal number and 1111 1111 is a binary number. In most cases of binary numbers,
the letter b is added for clarity.

Bit locations are indexed by 7:0 for byte registers, 15:0 for word registers, and 31:0 for
doubleword (dword) registers. Bit O istheleast significant bit and 7, 15 or 31 are the most
significant bits. Anindividual bit isrepresented by the register name, followed by aperiod
and the bit number. For example, PCON.4 is hit 4 of the Power Control register. In some
discussions, bit names are used. For example, the name of PCON.4 is POF, the Power Off

flag.

Register names are shown in upper case. For example, PCON isthe Power Control register.
If aregister name contains alowercase character, it represents more than one register. For
example, CCAPMx (x = 0, 1, 2, 3, 4) represents the five registers. CCAPMO through
CCAPMA4,

Some registers contain reserved bits. These bits are not used in this device but they may
be used in future implementations. Pay attention to the recommendations when
mani pulating theses hits.

Rev. E — 20 December, 2000 1

T SC80251 AIMEL

WIRELESS & uC

Set and Clear The terms Set and Clear refer to the value of a bit or the act of giving it avalue. If abit
is Set, itsvalue is“1”; setting a bit givesit a“1” value. If abit is Clear, its valueis “0”;
clearing abit givesit a“0” value.

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

I ntroduction

1.1. 8/16-bit microcontroller

In the world of 8/16-bit microcontrollers, the C51 Architecture has become an industry standard for embedded
applications. For over 15 years, Atmel Wireless & Microcontrollers has been aleading provider of this microcontroller
family. This unsurpassed experience is the driving force as Atmel takes this proven family to the next level of
performance: the TSC80251 family!

Thisnew C251 Architecture at its lowest performance level (binary mode), is binary code compatible with the 80C51
microcontrollers, hence, attaining an increase in performance has never been easier.

Due to a 3-stage pipeline, the CPU—performance is increased by a factor 5, using existing C51 code without
modifications.

Using the new C251 instruction set, which you will find in this document (See Chapter 5), the performancewill increase
up to 15 times at the same clock rate. This performance enhancement is based on the 16-bit instruction bus, alowing
for more powerful instructions and additional internal instruction bus, 8-bit and 16-bit data busses.

The 24-hit address buswill allow to access up to 16 Mbytesin asinglelinear memory space. Please see each individual
TSC80251 Product Design Guide for the effective addressable memory range.

Programming flexibility and C—code efficiency are both increased through a Register—based Architecture, the
64—K byte extended stack space combining with the new instruction set.
C251 C—compilersare some of the most efficient available (nearly no overhead), coupled with thefinal codesize which
could be afactor of 3 down when compared with the C51 C—compilers.

All technical information in this document about core features are related to the corerevision A and corerevision D.

1.2. TSC80251 Derivatives

Atmel Wireless & Microcontrollers is developing a full family of application specific TSC80251 derivatives. Please
see the Design Guide of each product for further information.

These products are designed to help you getting high—performance products to market faster.
Due to the high instruction throughput, the TSC80251 derivatives are focussing on al high—end 8-bit to 16-hit
applications.

TSC80251 derivatives are also used in mid—range and lower—end microcontroller applications, where a very low
operation frequency is needed, without decreasing the level of CPU—power.
Thisfeatureisidea for today portable applications and EMC sensitive systems.

Rev. E — 20 December, 2000 1.1

T SC80251 AIMEL

WIRELESS & uC

Typical applications for thisfamily are:

® Automotive:

Airbag

ABS

Gearbox

Climate control

Car radio

Car navigation

e Communication:;

Cordless phones

Cellular phones

High speed modems
High—end feature phones
ISDN phones

Linecards

Network termination

e Computer:

= High—end monitors

= DVD-ROM

= Magtape card & smart card readers
= Barcodesreaders

= Computer telephony
I

Force feedback joysticks
ndustrial:
Process monitoring control & readouts
Air conditioning systems
Automation

Atmel’s TSC80251 derivatives are designed around the C251 core, using standard peripherals dedicated to a targetted
range of applications.
Hereisaselection of peripheral blocks:
® Seridl interfaces:
= UART (Universal Asynchronous Receiver Transmitter)
= |2C (Inter—Integrated Circuit)
= SP| (Seria Protocol Interface)
= pWire (Synchronous Serial Interface)
® Specia Functions:
PCA: Programmable Counter Array (5 x 16-bit modules)
High—speed output
Compare/Capture 1/O
8-hit Pulse Width Modulator (PWM)
ADC (Anaog to Digital Converter)
Smart sensor interfaces with PMU (Pulse M easurement Unit)
e Control functions:
= Watchdog Timer
= Timerg/Counters
= Power monitoring and management
= Interrupt handler
® Memories:
= RAM
= ROM
= EPROM/OTPROM

Most of TSC80251 derivatives are available asROMIless, OTPROM, EPROM and Mask ROM version. For any special
request, refer to sales representative.

12 Rev. E — 20 December, 2000

AMEL TSC80251

1.3. TSC80251 Documentation

The following documentation and starter tools are available to alow the full evaluation of the Atmel’s TSC80251
derivatives:
® “TSC80251 Programmer’s Guide’
Contains all information for the programmer (Architecture, Instruction Set, Programming).
® “TSC80251 Design Guide”
Contains al product specific dataand a summary of available application notes.
e Application Notes
® “TSC80251 Product Starter Kit”
This kit enables the product to be evaluated by the designer.
Its contentsis:
= C—Compiler (limited to 2 Kbytes of code)
Assembler
Linker
Product Simulator
TSC80251 Product Evaluation Board with ROM—Monitor
EPROM and ROMless samples of the available derivatives
» Pleasevisit our WWW for updated versionsin ZIP format.
e \World Wide Web
Please contact our WWW for possible updated information at http://www.atmel-wm.com
® Technica support: micro@atmel-wm.com

Rev. E — 20 December, 2000 1.3

T SC80251 AIMEL

WIRELESS & uC

14 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Architectural Overview

2.1. Microcontroller Architecture

The TSC80251 family of 8/16-bit microcontrollers is a high performance upgrade of the widely used 80C51
microcontrollers. It extends features and performance while maintaining binary code compatibility, so the impact on
existing hardware and software is minimal .

The C251 Architecture core contains:

24-hit linear addressing and up to 16 Mbytes of memory

aregister file based CPU with registers accessible as bytes, words, and double words

apage mode for accelerating external instruction fetches

an instruction pipeline

an enriched instruction set, including 16-hit arithmetic and logic instructions

a 64—Kbyte extended stack space

aminimum instruction—execution time of two clocks (vs. 12 clocks for 80C51 microcontrollers)
binary—code compatibility with 80C51 microcontrollers

Several benefits are derived from these features :

® preservation of code written for 80C51 microcontrollers

® asignificant increase in core execution speed in comparison with 80C51 microcontrollers at the same clock rate
e support for larger programs and more data

® increased efficiency for code written in C language

Rev. E — 20 December, 2000 2.1

TSC80251 AMEL

Figure 2.1. isafunctional block diagram of TSC80251 microcontrollers. The core, which is common to all TSC80251
microcontrollers, is described in the next paragraph. Each derivative in the family hasits own on—chip peripheras, I/0
Ports, external bus, size of on—chip RAM, type and size of on—chip ROM.

OTPROM >
PORTS EPROM RAM
ROM -
A AA
16-bit Memory Code)
. Peripherals
Y 16-bit Memory Address -
X 5
>
@
> § <>
9]
£
L] ® >
g
Bus Interface Unit =
o)
X “l oy
3 2] o >
m m B
2 z 2 8 5
@ S @ = g
% o] ke =
c U ® < =
=) e g 2> Interrupt Handler Unit
2 & 2 o)
=1 = 0 =
] 2
N J
CPU l«—> Clock
—>>
<> Reset

Figure 2.1. TSC80251 Product Block Diagram

2.2. Microcontroller Core

The TSC80251 microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, the bus interface
and the peripheral interface (See Figure 2.1.). The CPU contains the instruction sequencer, ALU, register file and data
memory interface (See Figure 2.2.).

2.2.1. CPU

The TSC80251 fetches instructions from on—chip code memory two bytes at atime or from external memory one byte
at atime. The instructions are sent over the 16-bit instruction bus to the CPU. You can configure the TSC80251 to
operate in page mode for accelerated instruction fetches from external memory. In page mode, if an instruction fetch
is to the same 256-byte “page’ as the previous fetch, the fetch requires one state (two clocks) rather than two states
(four clocks). For information regarding the page or non—page mode selection, see Product Design Guide.

The TSC80251 register file has 40 registers, which can be accessed as bytes (8-bit data), words (16-hit data) and double
words (32-hit data). Asin the C51 Architecture, registers 0-7 consist of four banks of eight registers each, where the
active bank is selected by the Program Status Word (PSW) for fast context switches (See “Programming” chapter).

9o Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

The TSC80251 CPU isapipeline machine. When the pipelineisfull and codeis executing from on—chip code memory,
aninstruction can be completed every state time. When the pipelineisfull and code is executing from external memory
(with no wait states and no extension of the ALE signal) an instruction can be completed every two state times.

code

{16

address

24}

Instruction Sequencer

SRC1 8
A
SRQZ 8 v T
. Data 4784> data
ALU Reg_lster Memory 24
File Interface ——<# address

‘16

!

@

Figure 2.2. Central Processor Unit Block Diagram

Rev. E — 20 December, 2000

2.3

TSC80251 AMEL

2.2.2. Clock and Reset Unit

The timing source for the TSC80251 microcontroller can be an external oscillator or an internal oscillator with an
external crystal/resonator. The basic unit of time in TSC80251 is the state time (or state), which is two oscillator
periods. The state time is divided into phase P1 and phase P2 (See Figure 2.3.).

Phase 1 Phase 2
P1 P2
XTAL1
>
Tosc
- >
2 Tosc = State Time

| State 1 State 2 | State 3 | State 4 | State5| State 6 |
PL | P2 prl P2l pPL | P2 PL | P2 Pl P21 PL | P2

Figure 2.3. Clocking Definitions

The TSC80251 peripherals operate on a peripheral cycle, which is six state times (this peripheral cycle is not a
characteristic of the C251 Architecture). A one—clock interval in a peripheral cycle is denoted by its state and phase
(SxPy). For simplicity purpose, XTAL1 signal has been used in thisfigure. In fact thisisthe prescaler output that drives
the core. The clock prescaler being a software programmable device, the effective core clock can be dynamically
adapted to the application speed and power consumption needs.

The reset unit places the TSC80251 into a known state. A chip reset isinitiated by asserting the RST pin or alowing
the Watchdog Timer to time out when the TSC80251 has one.

2.2.3. Interrupt Handler Unit

The Interrupt Handler Unit can receive interrupt requests from many sources: internal peripheral sources, external
sources and TRAP instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the normal
flow of instructions and branches to a routine that services the source that requested the interrupt. You can enable or
disable the interrupts individually (except for TRAP and NMI which cannot be disabled) and you can chose among
one to four priority levels for each interrupt.

04 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Address Spaces

TSC80251 microcontrollers have three address spaces: a memory space, a Special Function Register (SFR) space and
a register file. This chapter describes these address spaces as they apply to all TSC80251 microcontrollers. It also
discusses the compatibility of the C251 Architecture and the C51 Architecture in terms of their address spaces.

1.1. C251 Architecture Address Spaces

Figure 3.1. shows the three address spaces. i.e. memory space, SFR space and register file for TSC80251
microcontrollers. The address spaces are depicted as being 8-byte wide with addresses increasing from left to right
and from bottom to top (See Figure 3.1.).

Memory Address Space
16 Mbytes
FF.FFFFh
SFR Space
512 bytes
S:1FFh
S:000h S:007h
Register File space
64 bytes

3Fh
00:0000h 00:0007h 00h 07h

Figure 3.1. Address Spacesfor TSC80251 Microcontrollers

It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64—Kbyte regions, numbered
00: to FF..

Note :
The memory space in the C251 Architecture is unsegmented. The 64— Kbyte “ region” 00:, 01, ..., FF: are introduced only as a convenience for
discussions. Addressing in the C251 Architectureislinear; there are no segment registers.

TSC80251 microcontrollers can have up to 64—Kbytes of on—chip code memory in region FF:. On—chip data RAM
begins at location 00:0000h. The first 32 bytes (00:0000h-00:001Fh) provide storage for a part of the register file.The
sizes of the on—chip code memory and on—chip RAM depend on the particular device.

The register file has its own address space (See Figure 3.1.). The 64 locations in the register file are numbered
decimally from 0O to 63. Locations O-7 represent one of four, switchable register banks, each having 8 registers. The
32 bytes required for these banks occupy locations 00:0000h-00:001Fh in the memory space. Register file locations
8-63 do not appear in the memory space and are new hardware resources of the C251 Architecture.

The SFR space can accommodate up to 512 8-hit Special Function Registers with addresses S:000h-S:1FFh. Some
of these locations may be unimplemented in a particular device. In the C251 Architecture, the prefix “S.” is used with
SFR addresses to distinguish them from the memory space addresses 00:0000h-00:01FFh.

Rev. E — 20 December, 2000 3.1

T SC80251 AIMEL

WIRELESS & uC

1.2. C51 Architecture Address Spaces

Figure 3.2. shows the address spaces of the C51 Architecture. Internal data memory locations 00h-7Fh can be
addressed directly, indirectly by register addressing mode and bit addressing mode for data locations 20h—2Fh. Internal
data locations 80h-FFh can only be addressed indirectly. Directly addressing these locations accesses the SFRs. The
64—K byte code memory has a separate memory space. Datain the code memory can be accessed only withthe MOVC
instruction. Similarly, the 64—Kbyte external data memory can be accessed only with the MOV X instruction.

The register file (registers RO-R7) comprises four, switchable register banks, each having 8 registers. The 32 bytes
required for the four banks occupy locations 00h-1Fh in the on—chip data memory.

FFFFh
Code
(MOVC)
0000h
FFFFh
External Data
(MOVX)
0000h
Internal Data FFh SFRs FFh
80h (indirect) 8oh (direct)
A 7Fh
30h
.
20h 2Fh ’ bit addressable
Internal Data 18h RO-R7 1Fh| #
(direct, indirect) o
OFh RO-R7 register addressable
08h RO-R7 OEh
07h
{ | oon RO-R7 ’

Figure 3.2. Address Spacesfor the C51 Architecture

1.3. C51 Architecture mapping to C251 Architecture Address Spaces

The 64—Kbyte code memory for 80C51 microcontrollers maps into region FF: of the memory space for TSC80251
microcontrollers. Assemblers for TSC80251 microcontrollers assemble code for 80C51 microcontrollers into region
FF:, and data accesses to code memory (MOVC) are directed to this region. The assembler also maps the interrupt

vectors to region FF.. This mapping is transparent to the user; code executes just as with a 80C51 micro without
maodification.

30 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Table 3.1. Address Mappings

C51 Architecture C251 Architecture
Memory Type Size L ocation Data Addressing L ocation
Code 64 Kbytes 0000h-FFFFh Indirect using MOVC FF:0000h-FF:FFFFh
External Data 64 Kbytes 0000h-FFFFh Indirect using MOV X 01:0000h-01:FFFFh
128 bytes 00h-7Fh Direct, Indirect 00:0000h-00:007Fh
Internal Data 128 bytes 80h-FFh Indirect 00:0080h-00:00FFh
SFRs 128 bytes S:80h-S:FFh Direct S:0080h-S:0FFh
Register 8 bytes RO-R7 Register 00:0000h-00:001Fh

The 64-Kbyte external data memory for 80C51 microcontrollers is mapped into the memory region specified by bits
16-23 of the data pointer DPX, i.e., DPXL, which is accessible as register file location 57 and also as SFR at S:084h.
Thereset value of DPXL is01h, which mapsthe external memory to region 01: as shown in Figure 3.3. You can change
this mapping by writing a different value to DPXL. A mapping of the C51 Architecture external data memory into any
64-Kbyte memory region in the C251 Architecture provides complete runtime compatibility because the lower 16
address bits are identical in both architectures.

The 256 bytes of on—chip data memory for 80C51 microcontrollers (00h—FFh) are mapped to addresses
00:0000h—00:00FFh to ensure compl ete runtime compatibility. In the C51 Architecture, the lower 128 bytes (00h—7Fh)
are directly and indirectly addressable; however the upper 128 bytes are accessible by indirect addressing only. In the
C251 Architecture, all locationsin region 00: are accessible by direct, indirect, and displacement addressing.

The 128-byte SFR space for 80C51 microcontrollers is mapped into the 512—byte SFR space of the C251 Architecture
starting at address S:080h, as shown in Figure 3.3. This provides complete compatibility with direct addressing of
80C51 microcontroller SFRs (including bit addressing). The SFR addresses are unchanged in the new Architecture.
In the C251 Architecture, SFRs, A, B, DPL, DPH and SP, aswell asthe new DPXL and SPH, reside in the register file
for high performance. However, to maintain compatibility, they are also mapped into the SFR space at the same
addresses as in the C51 Architecture.

Rev. E — 20 December, 2000 33

TSC80251

AIMEL

I)
WIRELESS & uC

7”0

Memory Address Space
16 Mbytes
FFFFh
C51 Architecture Code
Memory
FF:0000h | 0000h
A ¥
02:0000h
FFFFh
C51 Architecture Externa
Data Memory
01:0000h | 0000h
FFh
C51 Architecture
Internal Data Memory
00:0000h | 00N

S:100h

S:000h

08h

00h

SFR Space
512 Bytes

C51 Architecture FFh

Register File
64 Bytes

C51 Architecture R7
RO Register File.

S:1FFh

S.07Fh

3Fh

Figure 3.3. Mappings C51 Architectureto C251 Architecture Address Spaces

Figure 3.4. TSC80251 Memory Space

1.4. TSC80251 Register File

The TSC80251 register file consists of 40 byte locations: 0-31 and 56-63, as shown in Figure 3.5. These locations are
accessible as bits, bytes, words and dwords. Severa locations are dedicated to special registers; the others are
general—purpose registers.

Register file locations 0-7 actually consist of four switchable banks of eight registers each, as illustrated in
Figure 3.6. Thefour banks areimplemented asthefirst 32 bytes of on—chip RAM and are aways accessible aslocations
00:0000h-00:001Fh inthe memory address space. Only one of the four banksisaccessibleviatheregister fileat agiven
time. The accessible, or “active”, bank is selected by bits RS1 and RS0 in the PSW register, asshown in Table 3.2. This

bank selection can be used for fast context switches.

Register file locations 8-31 and 56-63 are always accessible. These locations are implemented as registersin the CPU.
Register file locations 32-55 are reserved and cannot be accessed.

Table 3.2. Register Bank Selection

PSW Selection Bits
Bank Address Range
RS1 RSO
Bank 0 00h-07h 0 0
Bank 1 08h-0Fh 0 1
Bank 2 10h-17h 1 0
Bank 3 18h-1Fh 1 1

34

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

1.4.1. Byte, Word and Dword Registers

Depending on its location in the register file, aregister is addressable as a byte, a word, or a dword, as shown in the
right side of Figure 3.5. A register is named for itslowest numbered byte location. For instance:

® R4 isthebyte register consisting of location 4.
® \WR4istheword register consisting of registers 4 and 5.
® DRA4isthe dword register consisting of registers4, 5, 6, and 7.

L ocations RO-R15 are addressabl e as bytes, words or dwords. Locations 16-31 are addressable only aswords or dwords.
Locations 56-63 are addressable only as dwords. Registers are addressed only by the names shown in Figure 3.5. ,
except for the 32 registers that comprise the four banks of registers RO-R7, which can also be accessed as locations
00:0000n-00:001Fh in the memory space (see Figure 3.6.).

Byte Registers
Note:R10=B
R11=A
Register File R8 | RO |R10 | R11|R12 |R13 |R14 |R15
Word Registers
Locations 32-55 are Reserved
24 | 25 |1 26 |27 |28 |29 |30 |31 WR24 WR26 WR28 WR30
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 WR16 WR18 WR20 WR22
8 9 10 | 11 12 |13 |14 | 15 WR8 WR10 WR12 WR14
0 1 2 3 4 5 6 7 WRO WR2 WR4 WR6

Dword Registers

DR56 = DPX I DR60 = SPX
S s - T =
Banks 0-3 DR24 DR28
DR16DR20
DRS8 DR12
DRO DR4

Figure 3.5. Register Filein Byte, Word, and Dword Register Views

Rev. E — 20 December, 2000 35

TSC80251 AMEL

Register File Memory Address Space
63 FF:FFFFh
g N R
Ol1[2]3[4]5] 67

[O]J1I]T2]3[4]5]6]7 00:0020h

» 18h 1Fh Banks 0-3

(ol1lz2lsl4al5]6l7] »110h 17h Eaccble

(0]1]2[3]4]5] 6] 7}——»08h OFh » | in memory

[OTIT 234567 »00h_07h » | address space
PSW bits RS1:0 select one bank Banks 0-3

to be accessed via the register file.

Figure 3.6. Register File Locations 0-7

1.4.2. Dedicated Registers

Theregister file has four dedicated registers :
® RI10isthe B-register.

® R11isthe accumulator (A).

® DR56 isthe extended data pointer, DPX.

® DRG0 isthe extended stack pointer, SPX.

Theseregistersarelocated in theregister file; however, R10, R11 and some bytes of DR56 and DR6E0 are al so accessible
as SFRs. The bytes of DPX and SPX can be accessed in the register file only by addressing the dword registers. The
dedicated registers in the register file and their corresponding SFRs are illustrated in Figure 3.7. and listed in
Table 3.3.

Table 3.3. Dedicated Registersin the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic Reg. Location | Mnemonic | Address

Stack Pointer - - 60 - -

(SPX) _ _ 61 _ _
Stack Pointer, High SPH DR60 62 SPH S:BEh
Stack Pointer, Low SP 63 SP S:81h

Data Pointer - - 56 — -
(DPX) Data Pointer, Extended Low DPXL 57 DPXL S:84h
DPTR Data Pointer, High DPH DR56 58 DPH S:83h
Data Pointer, Low DPL 59 DPL S:82h
Accumulator (A Register) A R11 1 A S:ECh
B Register B R10 10 B S:FOh

36 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

1.4.2.1. Accumulator and B Register

The 8-hit accumulator (A) is byte register R11, which is also accessible in the SFR space as A at S:0EOh (See
Figure 3.7.). The B register, used in multiplies and divides, is register R10, which is also accessible in the SFR space
as B at S:0FOh. Accessing A or B asaregister is one state faster than accessing them as SFRs.

Instructions in the C51 Architecture use the accumulator as the primary register for data moves and calculations.
however, in the C251 Architecture, any of registers R1-R15 can serve for these tasks. Asaresult, the accumulator does
not play the central role that it hasin 80C51 microcontrollers.

1.4.2.2. Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (See Figure 3.7.). The lower three bytes of DPX (DPL, DPH
and DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer DPTR. While instructions in the
C51 Architecture lways use DPTR asthe data pointer, instructionsin the C251 Architecture can use any word or dword
register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:-FF:) that maps into the 64-Kbyte external data
memory spacein the C51 Architecture. In other words, the MOV X instruction addresses the region specified by DPXL
when it moves data to and from external memory. The reset value of DPXL isO1h.

1.4.2.3. Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (See Figure 3.7.). The byte at (location 63) is the 8-hit stack pointer,
SP, in the C51 Architecture. The byte at location 62 is the stack pointer high, SPH. The two bytes alow the stack to
extend to the top of memory region 00:. SP and SPH can be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL, ECALL, LCALL) and
returns (ERET, RET, RETI) aso use the stack pointer. To preserve the stack, do not use DR60 as a general—purpose
register.

Register File Stack Pointer, High SFRSE SBEh
Stack Pointer
I =|' P |S:81h
| | [s [sp |
60 61 62 63

DR60 = Extended Stack Pointer, SPX

Data Pointer Extended, Low
:II DPXL | S:84h
Data Pointer, High
~! DPH | S:83h

Data Pointer, Low
|

»1 DPL S:82h

| [opxc | orH | DrL |

56 57 58 59
DR56 = Extended Stack Pointer, DPX

=]] B |S:F0h
R10

RI1 i A | S.EOh
[s]

Figure 3.7. Dedicated Registersin the Register File and their Corresponding SFRs

Rev. E — 20 December, 2000 37

TSC80251

AIMEL

I)
WIRELESS & uC

1.5. Special Function Registers (SFRs)

The Special Function Registers (SFRs) reside in their associated on—chip peripherals or in the core. SFR addresses are
preceded by “S:” to differentiate them from addresses in the memory space. Unoccupied locations in the SFR space
are unimplemented, i.e., no register exists. If an unimplemented SFR location is read, it returns an unspecified value.

Note:

SFRs may be accessed only as bytes; they may not be accessed as words or dwords.

Table 3.4. Core SFRs

Mnemonic Name Address

A* Accumulator S:EOh
B* B register S:FOh
PW Program Status Word S:DOh
PSW1 Program Status Word 1 S:D1h
SP Stack Pointer - LSB of SPX S:8lh
SPH * Stack Pointer high - MSB of SPX S:BEh
DPTR* Data Pointer (2 bytes) -
DPL * Low Byte of DPTR S:82h
DPH * high Byte of DPTR S:83h
DPXL * Data Pointer, Extended Low S:84h
IEO Interrupt Enable Control 0 S:A8h
IE1 Interrupt Enable Control 1 S:Blh
IPLO Interrupt Priority Control Low O S:B8h
IPL1 Interrupt Priority Control Low 1 S:B3h
IPHO Interrupt Priority Control High O S:B7h
IPH1 Interrupt Priority Control High 1 S:B2h
Note:

* These SFRs can also be accessed by their corresponding registers in the register file (See

Table 3.3.

3.8

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Programming

Theinstruction set for the C251 Architecture is a superset of the instruction set for the C51 Architecture. This chapter
describes the addressing modes and summarizes the instruction set, which is divided into data instructions, bit
instructions, and control instructions. (Chapter 5, “Instruction Set Reference” contains an opcode map and the detailed
description of each instruction.)

Notes:

1 Theinstruction execution times given in Chapter 5 are for code executing from on—chip code memory and for data that is read from and
written to on—chip RAM. Execution times are increased by executing code from external memory, accessing peripheral SFRs, accessing data in
external memory, using a wait state, or extending the ALE pulse.

2 For someinstructions, accessing the port SFRs, Px (x = 0, 1, 2, 3) increases the execution time. These cases are noted individually in the
tablesin Chapter 5.

1. Source Mode or Binary Mode Opcodes

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction set of the C251
Architecture. Depending on the application, one mode or the other may produce more efficient code. The mode is
established during device reset based on the value of the SRC bit in configuration byte CONFIGO. For information
regarding the configuration bytes, see the Product Design Guide.

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for the C251 Architecture.
One of these modes must be selected when the chip is configured. Depending on the application, binary mode or source
mode may produce more efficient code. This section describes the binary and source modes and provides some
guidelines for selecting the mode for your application.

The C251 Architecture has two types of instructions:

® |nstructionsthat originate in the C51 Architecture

® |nstructionsthat are unique to the C251 Architecture

Figure 4.1. shows the opcode map for the binary mode. Areal and area |l make up the opcode map for the instructions
that are unigue to the C251 Architecture. Note that some of these opcodes are reserved for future instructions. The
opcode values for areas |1 and 111 are identical (06H—FFH). To distinguish between the two areas in binary mode, the

opcodesin arealll are given the prefix A5H (the ASH instruction is not implemented in the native C51 Architecture).
The arealll opcodes are thus AS06H—-A5FFH.

Figure 4.2. shows the opcode map for source mode. Areas |l and 111 have switched places (compare with Figure 4.1.).
In source mode, opcodes for instructionsin areall require the A5F escape prefix while opcodes for instructionsin area
I11 (C251 Architecture) do not.

To illustrate the difference between the binary—mode and source-mode opcodes, Table 4.1. shows the opcode
assignments for three sample instructions.

Table 4.1. Examples of Opcodesin Binary and Source M odes

Instruction Opcode
Binary Mode Source Mode
DECA 14H 14CH
SUBB A, R4 9CH A59CH
SUB R4, R4 A59CH 9CH

1.1. Selecting Binary Mode or Source Mode

If you have code that was written for a C51 microcontroller and you want to run it unmodified on a C251
microcontroller, choose binary mode. You can use the object code without reassembling the source code. You can also

Rev. E — 20 December, 2000 4.1

T SC80251 AIMEL

WIRELESS & uC

assemble the source code with an assembler for the C251 Architecture and have it produce object code that is
binary—compatible with C51 microcontrollers. The remainder of this section discusses the selection of binary mode
or source mode for code that may contain instructions from both architectures.

An instruction with a prefixed opcode requires one more byte for code storage, and if an additional fetch is required
for the extra byte, the execution timeisincreased by one state. This means that using fewer prefixed opcodes produces
more efficient code.

If aprogram uses only instructions from the C51 Architecture, the binary—mode code is more efficient because it uses
no prefixes. On the other hand, if a program uses many more new instructions than instructions from the C51
Architecture , source mode is likely to produce more efficient code. For a program where the choice is not clear, the
better mode can be found by experimenting with a simulator.

AB5H Prefix
OH SH 6H FH 6H FH
OH ' OH
)
1
I
)
)
1
)
I
FH : FH
C51 Architecture C51 Architecture C251 Architecture
Figure4.1. Binary Mode Opcode M ap
AS5H Prefix
OH 5H 6H FH 6H FH
OH ' OH
)
1
I
)
I ' n I
)
1
)
I
FH : FH
C51 Architecture C251 Architecture C51 Architecture

Figure 4.2. Source M ode Opcode M ap

2. 4.1. Programming Features of the C251 Architecture

Theinstruction set for TSC80251 microcontrollers provides the user with new instructions that exploit the features of
the C251 Architecture while maintaining compatibility with the instruction set for 80C51 microcontrollers. Many of
the new instructions can operate on either 8-hit (byte), 16-bit (word) or 32—bit (dword) operands (In comparison with
8-bit and 16-bit operands, 32—bit operands are accessed with fewer addressing modes.). This capability increases the
ease and efficiency of programming TSC80251 microcontrollersin a high-evel language such as C.

Theinstruction set is divided into “Data Instructions”, “Bit Instructions’ and “ Control Instructions’. Data instructions
process 8-hit, 16-hit and 32-hit data; bit instructions manipulate bits; and control instructions manage program flow.

2.1. Data Types

Table 4.2. lists the data types that are addressed by the instruction set. Words or dwords (double words) can be stored
in memory starting at any byte address; alignment on two-byte or four—byte boundaries is not required. Words and
dwords are stored in memory and the register file in big endian form.

42 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Table 4.2. Data Types

Data Type Number of Bits
Bit 1
Byte 8
Word 16
Dword (Double Word) 32

2.1.1. Order of Byte Storage for Words and Double Words

TSC80251 microcontrollers store words (2 bytes) and double words (4 bytes) in memory and in the register filein big
endian form. In memory storage, the most significant byte (M SB) of the word or double word is stored in the memory
byte specified in theinstruction; the remaining bytes are stored at higher addresses, with the least significant byte (LSB)
at the highest address. Words and double words can be stored in memory starting at any byte address. In the register
file, the MSB is stored in the lowest byte of the register specified in the instruction. The code fragment in
Figure 4.3. illustrates the storage of words and double words in big endian form.

2.2. Register Notations

In register—addressing instructions, specific indices denote the registers that can be used in that instruction. For
example, the instruction ADD A,Rn uses‘Rn” to denote any one of RO, RY, ..., R7; i.e., the range of nis 0-7. The
instruction ADD Rm,#data uses “Rm” to denote RO, R1, ..., R15; i.e, the range of m is 0-15. Table 4.3. summarizes
the notation used for the register indices. When an instruction contains two registers of the same type (e.g., MOV
Rmd,Rms) the first index “d” denotes “ destination” and the second index “s” denotes “source”.

2.3. Address Notations
In the C251 Architecture, memory addresses include a region number (00:, 01, ..., FF:). SFR addresses have a prefix

“S.” (S:000h-S:1FFh). The distinction between memory addresses and SFR addresses is necessary, because memory
| ocations 00:0000h-00:01FFh and SFR locations S:000h-S: 1FFh can both be directly addressed in an instruction.

200h 201h 202h 203h

A3h Béh
0 1 2 3 4 5 6 I
A3h Béh 00h 00h C4h | D7h
w - — _—
WRO DR4

Contents of register file and memory after execution: MOV WRO0, #A3B6h
MOV 00:0201h, WRO
MOV DR4, #0000C4D7h

Figure 4.3. Word and Double-word Storagein Big Endian Form

Rev. E — 20 December, 2000 4.3

TSC80251

ATMEL

— - Z
WIRELESS & uC

Table 4.3. Notation for Byte Registers, Word Registers, and Dword Registers

. Register Destination Source .
Register Type Ssgnbol Register Register Register Range
Ri - - RO, R1
Byte Rn - - RO-R7
Rm Rmd Rms RO-R15
Word WRj WRjd WRjs WRO0, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28,DR56, DR60

Instructions in the C51 Architecture use 80h-FFh as addresses for both memory locations and SFRs, because memory
|ocations are addressed only indirectly and SFR locations are addressed only directly. For compatibility, software tools
for TSC80251 controllers recognize this notation for instructions in the C51 Architecture. No change is necessary in
any code written for 80C51 microcontrollers.

For new instructions in the C251 Architecture, the memory region prefixes (00:, 01, ..., FF:) and the SFR prefix (S:)
arerequired. Also, software tools for the C251 Architecture permit 00: to be used for memory addresses 00h-FFh and
permit the prefix S: to be used for SFR addressesin instructions in the C51 Architecture.

2.4. Addressing Modes

The C251 Architecture supports the following addressing modes:
® Register addressing
Theinstruction specifies the register that contains the operand.

® |mmediate addressing
Theinstruction contains the operand.

® Direct addressing
Theinstruction contains the operand address.

® |ndirect addressing
Theinstruction specifies the register that contains the operand address.

® Displacement addressing
The instruction specifies aregister and an offset. The operand address is the sum of the register contents (the base
address) and the offset.

® Relative addressing
The instruction contains the signed offset from the next instruction to the target address (the address for transfer
of control, e.g., the jump address).

® Bitaddressing
The instruction contains the bit address.

3. Program Status Words

The Program Status Word (PSW) register and the Program Status Word 1 (PSW1) register contain four types of bits
(seeFigure 4.8. and Figure 4.9.):

® CY,AC,0V, N and Z are flags set by hardware to indicate the result of an operation.

® The P bit indicates the parity of the accumulator.

® BitsRS0 and RS1 are programmed by software to select the active register bank for registers RO-R7.
® [0 and UD are available to the user as general—purpose flags.

» Rev. E — 20 December, 2000

AIMEL

- —
WIRELESS & uC

®

TSC80251

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not affected by a write.
Individual bits can be addressed with the bit instructions (“Bit Instructions’). The PSW and PSW1 bits are used
implicitly in the conditional jump instructions (“ Conditional Jumps”).

The PSW register is identical to the PSW register in 80C51 microcontrollers. The PSW1 register exists only in
TSC80251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 areidentical to the corresponding bitsin PSW,
i.e., the same hit can be accessed in either register. Table 4.4. lists the instructions that affect the CY, AC, OV, N and

Z bits.
Table 4.4. The Efffects of I nstructions on the PSW and PSW1 Flags
Instruction T Flags Affected (1)
Type cY oV |AC®| N Z
ADD, ADDC, SUB, CMP X X X X X
INC, DEC X X
Arithmetic | MUL, DIV ® 0 X X X
DA X X
ANL, ORL, XRL, CLRA, CPL A, RL, RR, SWAP X X
Logical RLC, RRC, SRL, SLL, SRA 4 X X X
Program CINE X X X
Control DINE X X
Notes :

1. X = the flag can be affected by the instruction. 0 = theflag is cleared by the instruction.

2. The AC flag is affected only by operations on 8-bit operands.
3. If the divisor is zero, the QV flag is set, and the other bits are meaningless.
4. For SRL, SLL and SRA instructions, the last bit shifted out is stored in the CY bit.

Rev. E — 20 December, 2000

4.5

T SC80251 AIMEL

WIRELESS & uC

4. Data I nstructions

Data instructions consist of arithmetic, logical, and data—transfer instructions for 8-hit, 16-hit and 32—bit data. This
section describes the data addressing modes and the set of data instructions.

4.1. Data Addressing M odes

This section describes the data addressing modes, which are summarized in two tables: Table 4.6. for the instructions
that are native to the C51 Architecture and Table 4.6. for the data instructions unique to the C251 Architecture.

Notes:

4.

Referencesto registers RO-R7, WR0O-WR6, DRO and DR4 alwaysrefer to the register bank that is currently selected
by the PSW and PSW1 registers. Registersin al banks (active and inactive) can be accessed as memory locations
in the range 00h-1Fh.

Instructions from the C51 Architecture access externa memory through the region of memory specified by byte
DPXL in the extended data pointer register, DPX (DR56). Following reset, DPXL contains 01h, which maps the
external memory to region 01:. You can specify a different region by writing to DR56 or the DPXL SFR.

1.1. Addressable Registers

Both Architectures address registers directly.

4.

4.

C251 Architecture
In the register addressing mode, the operand(s) in a data instruction are in byte registers (R0-R15), word registers
(WRO0, WR2, ..., WR30) or dword registers (DRO, DR4, ..., DR28, DR56, DR60).

C51 Architecture
Instructions address registers RO-R7 only.

1.2. Immediate Addressing

C251 Architecture

In the immediate addressing mode, the instruction contains the data operand itself. Byte operations use 8-hit
immediate data (#data); word operations use 16-bit immediate data (#datal6). Dword operations use 16-bit
immediate data in the lower word and either zeros in the upper word (denoted by #0datal6) or ones in the upper
word (denoted by #1datal6). MOV instructionsthat place 16-bit immediate datainto adword register (DRK), place
the data either into the upper word while leaving the lower word unchanged, or into the lower word with a sign
extension or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4), which specifies the amount
of theincrement/decrement.

C51 Architecture
Instructions use only 8-bit immediate data (#data).

1.3. Direct Addressing

C251 Architecture

In the direct addressing mode, the instruction contains the address of the data operand. The 8-hit direct mode
addresses on—chip RAM (dir8 = 00:0000h-00:007Fh) as both bytes and words, and addresses the SFRs (dir8 =
S:080h-S:1FFh) as bytes only. The 16-hit direct mode addresses both bytes and words in memory (dirl6 =
00:0000h-00: FFFFh).

C51 Architecture

The 8-hit direct mode addresses 256 bytes of on—chip RAM (dir8 = 00h-7Fh) as bytes only and the SFRs (dir8 =
80h-FFh) as bytes only.

46 Rev. E — 20 December, 2000

AIMEL

- —
WIRELESS & uC

®

TSC80251

Table 4.5. Addressing Modes for Data I nstruction in the C51 Architecture

Assembly
Mode Addg&s REMEEE] L anguage Comments
perand
Reference
Register 00h-1Fh RO-R7 (Bank
selected by PSW)
Immediate Operand in Instruction | #data = #00h-#FFh
00h-7Fh dir8 = 00h-7Fh On-chip RAM
Direct SFRs dir8 = 80h-FFh SFR address
or SFR mnemonic
00h-FFh @RO0, @R1 Accesses on-chip RAM or the lowest 256
bytes of external data memory (MOVX)
Indirect 0000h-FFFFh @DPTR, Accesses external data memory (MOVX)
@A+DPTR
0000h-FFFFh @A+DPTR, Accesses region FF : of code memory
@A+PC (MOVC)

4.1.4. Indirect Addressing

In arithmetic and logical instructions that use indirect addressing, the source operand is always a byte, and the
destination is either the accumulator or abyte register (R0-R15). The source addressis abyte, word or dword. The two
architectures do indirect addressing via different registers:

® (251 Architecture

Memory isindirectly addressed viaword and dword registers:

= Word register (@WRj,j =0, 2, 4, ..., 30)

The 16-bit addressin WRj can access locations 00:0000h-00: FFFFh.
= Dword register (@DRK, k=0, 4, 8, ..., 28, 56, and 60)
The 24 least significant bits can access the entire 16-Mbyte address space. The upper eight bits of DRk must
be 0. (If you use DR60 as ageneral data pointer, be aware that DR60 is the extended stack pointer register SPX.)

® (51 Architecture

Instructions use indirect addressing to access on—chip RAM, code memory, and external data RAM.
= Byteregister (@Ri, i =0, 1)
Registers RO and R1 indirectly address on—chip memory locations 00h-FFh and the lowest 256 bytes of external

data RAM.

= 16-bit data pointer (@DPTR or @A+DPTR)
The MOV C and MOV X instructions use these indirect modes to access code memory and external data RAM.
= 16-hit program counter (@A+PC)
The MOV C instruction uses this indirect mode to access code memory.

Rev. E — 20 December, 2000

4.7

TSC80251

AIMEL

- —
WIRELESS & uC

G)

Table 4.6. Addressing Modes for Data I nstruction in the C251 Architecture

Address Range of Assembly L anguage

Mode Operand SETE Comments

Register 00:0000h-00:001Fh | RO-R15, WRO-WR30, RO-R7, WRO-WR6, and DR4 are
DRO-DR28, DR56, DR60 in the register bank currently
selected by the PSW and PSW1
Immediate 2 bits N.A. (Operandisin |#short=1,2,0r4 Used only in increment and
the instruction) decrement instructions

Immediate 8 bits N.A. (Operandisin | #data8 = #00h-#FFh

theinstruction)

Immediate 16 bits

N.A. (Operandisin
the instruction)

#datal6 = #0000h-#FFFFh

00:0000h-00:007Fh

dir8 = 00:0000h-00:007Fh

On-chip RAM

Direct, 8 address bits

SFRs

dir8 = S:080h-S:1FFh (2)
or SFR mnemonic

SFR address

Direct, 16 address bits

00:0000h-00: FFFFh

dir16 = 00:0000h-00:FFFFh

Indirect, 16 address
bits

00:0000h-00: FFFFh

@WRO-@WR30

Indirect, 24 address
bits

00:0000h-FF:FFFFh

@DRO-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be 00h

Displacement, 16 00:0000h-00:FFFFh | @WRj +disl6 = Offset is signed; address wraps
address bits @WRO +0h through around in region 00:
@WR30 +FFFFh
Displacement, 24 00:0000h-FF:FFFFh | @DRK +dis24 =
address bits @DRO +0h through @DR28 | Offset is signed, upper 8 bits of
+FFFFh, DRk must 00h
@DR56 +(0h-FFFFh),
@DR60 +(0h-FFFFh)
Notes:

1. Theseregistersare accessible in the memory space aswell asin the register file.
2. The C251 Architecture supports SFRs in locations S:000h-S: 1FFh.

4.1.5. Displacement Addressing

Several move instructions use displacement addressing to move bytes or words from a source to a destination.

Sixteen-bit displacement addressing (@WRj+disl6) accesses indirectly the lowest 64 Kbytes in memory. The base
address can be in any word register WRj. The instruction contains a 16-bit signed offset which is added to the base
address. Only the lowest 16 hits of the sum are used to compute the operand address. If the sum of the base address

and a positive offset exceeds FFFFh, the computed address wraps around within region 00: (e.g. FOOOh + 2005h

becomes 1005h). Similarly, if the sum of the base address and a negative offset isless than zero, the computed address
wraps around the top of region 00: (e.g., 2005h + FO00h becomes 1005h).

24-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-Mbyte address space. The base

address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The upper byte in the dword register must be zero.
Theinstruction contains a 16-hit signed offset which is added to the base address.

4.8

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

4.2. Arithmetic I nstructions

The set of arithmetic instructions is greatly expanded in the C251 Architecture. The ADD and SUB instructions (see
Table 5.19) operate on byte and word data that is accessed in several ways:

® asthe contents of the accumulator, a byte register (Rn), or aword register (WRj)

® intheinstructionitself (immediate data)

® inmemory viadirect or indirect addressing

The ADDC and SUBB instructions are the same as those for 80C51 microcontrollers.

The CMP (compare) instruction (see Table 5.20) calcul ates the difference of two bytes or words and then writesto flags
CY, OV, AC, N, and Z in the PSW and PSW1 registers. The difference is not stored. The operands can be addressed
in avariety of modes. The most frequent use of CMP is to compare data or addresses preceding a conditional jump
instruction.

Table 5.21 lists the INC (increment) and DEC (decrement) instructions. The instructions for 80C51 microcontrollers
are supplemented by instructions that can address byte, word, and dword registers and increment or decrement them
by 1, 2, or 4 (denoted by #short). Theseinstructions are supplied primarily for register—based address pointers and loop
counters.

The C251 Architecture provides the MUL (multiply) and DIV (divide) instructions for unsigned 8-hit and 16-bit data
(Table 5.22). Signed multiply and divide are | eft for the user to manage through a conversion process. The following
operations are implemented :

® eight—bit multiplication: 8 bits x 8 bits — 16 bits

® sixteen—hit multiplication: 16 bitsx 16 bits - 32 hits

® eight—bit division: 8 bits/ 8 bits - 16 bits (8-bit quotient, 8-bit remainder)

® sixteen—hit division: 16 bits/ 16 bits — 32 bits (16-bit quotient, 16-bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or the accumulator and
B register (A, B). For 8-hit register multiplies, the result is stored in the word register that contains the first operand
register. For example, the product from an instruction MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies,
the result is stored in the dword register that contains the first operand register. For example, the product from the
instruction MUL WR6,WR18 is stored in DR4.

For 8-bit divides, the operands are byte registers. Theresult is stored in the word register that containsthe first operand
register. The quotient is stored in the lower byte, and the remainder is stored in the higher byte. A 16-hit divide is
similar. Thefirst operand is aword register, and the result is stored in the double word register that contains that word
register. If the second operand (the divisor) is zero, the overflow flag (OV) is set and the other bitsin PSW and PSW1
are meaningless.

4.3. Logical Instructions

The C251 Architecture provides aset of instructionsthat perform logical operations. The ANL, ORL, and XRL (logical
AND, logical OR, and logical exclusive OR) instructions operate on bytes and words that are accessed via several
addressing modes (see Table 5.23). A byte register, word register, or the accumulator can be logically combined with
aregister, im—mediate data, or datathat is addressed directly or indirectly. Theseinstructions affect the Z and N flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that operate on the
accumulator, TSC80251 microcontrollers have three shift commands for byte and word registers:

® SLL (Shift Left Logical) shiftsthe register one bit |eft and replaces the LSB with 0.

® SRL (Shift Right Logical) shiftsthe register one bit right and replaces the MSB with O.

® SRA (Shift Right Arithmetic) shiftsthe register one bit right; the MSB is unchanged.

4.4. Data Transfer I nstructions

Data transfer instructions copy data from one register or memory location to another. These instructions include the
move instructions (see Table 5.24) and the exchange, PUSH, and pop instructions (see Table 5.24). Instructions that
move only asingle bit are listed with the other bit instructionsin Table 5.26.

Rev. E — 20 December, 2000 4.9

T SC80251 AIMEL

WIRELESS & uC

MOV (Move) isthe most versatile instruction, and its addressing modes are expanded in the C251 Architecture. MOV
can transfer abyte, word or dword between any two registers or between aregister and any location in the address space.

The MOVX (Move External) instruction moves a byte from externa memory to the accumulator or from the
accumulator to memory. The external memory isin the region specified by DPXL, whose reset value is O1h.

The MOV C (Move Code) instruction moves a byte from code memory (region FF:) to the accumulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents of an 8-hit register
to the lower byte of a 16-hit register. The upper byteisfilled with the sign bit (MOV'S) or zeros (MOVZ). The MOVH
(Move to high Word) instruction places 16-hit immediate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumul ator with aregister or memory location. The
XCHD (Exchange Digit) instruction interchanges the lower nibble of the accumulator with the lower nibble of a byte
in on—chip RAM. XCHD isuseful for BCD (binary coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it (POP) in reverse order.
PUSH can push a byte, aword or a dword onto the stack, using the immediate, direct or register addressing modes.
POP can pop a byte or aword from the stack to aregister or to memory.

5. Bit Instructions

A bit instruction addresses a specific bit in amemory location or SFR. There are four categories of bit instructions:

e SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, clear or complement any
addressabl e hit.

e ANL (And Logica), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or Logical Complement).
These instructions allow anding and oring of any addressable bit or its complement with the CY flag.

e MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

e Bit—conditional jump instructions execute a jump if the bit has a specified state. The bit—conditional jump
instructions are classified with the control instructions.

5.1. Bit Addressing

The bits that can be individually addressed are in the on—chip RAM and the SFRs (see Table 4.7.). The bit instructions

that are unique to the C251 Architecture can address a wider range of bits than the instructions from the C51

Architecture.

There are some differencesin the way the instructions from the two Architectures address bits. In the C51 Architecture,

a bit (denoted by bit51) can be specified in terms of its location within a certain register, or it can be specified by a

bit address in the range 00h-7Fh. The C251 Architecture does not have bit addresses as such. A bit can be addressed

by name or by its location within a certain register, but not by a bit address.

Table 4.8. illustrates bit addressing in the two Architectures by using two sample bits:

® RAMBIT ishit 5in RAMREG, which is location 23h. (“RAMBIT” and “RAMREG" are assumed to be defined
in user code.)

® |Tlisbhit2in TCON, whichisan SFR at |ocation 88h.

Table 4.7. Bit-addressable L ocations

Bit-addressable L ocations
Architecture -
On-chip RAM SFRs
C251 Architecture 20h-7Fh All defined SFRs
C51 Architecture 20h-2Fh SFRs with addresses ending in Oh or 8h: 80h, 88h, 90h, 98h, ..., F8h

Table 4.9. lists the addressing modes for bit insructions, and Table 5.26 summarizes the bit instructions. “bit” denotes
abit that is addressed by a new instruction in the C251 Architecture, and “bit51” denotes a bit that is addressed by an
instruction in the C51 Architecture.

Rev. E — 20 December, 2000
410

AIMEL

I
WIRELESS & uC

TSC80251

Table 4.8. Two Samples of Bits Addressing

L ocation Addressing Mode C51 Architecture C251 Architecture
Register Name RAMREG.5 RAMREG.5
On-chip RAM Register Address 23h.5 23h.5
Bit Name RAMBIT RAMBIT
Bit Address 1Dh NA
Register Name TCON.2 TCON.2
SER Register Address 88.2h S:88.2h
Bit Name IT1 IT1
Bit Address 8A NA
Table 4.9. Addressing Modesfor Bit Instructions
Architecture Variants Bit Address Memory/SFR Address Comments
Memory NA 20h.0-7Fh.7
C51 (b g NA All defined SFRs
Memory 00h-7Fh 20h.0-7Fh.7
C51 (biY SFR 80h-F8h XXh.0-XXh.7, where XX = | SFRsare not defined at all
80, 88, 90, 98, ..., FO, F8 bit-addressable |ocations

6. Control I nstructions

Control instructions “instructions that change program flow” include calls, returns, and conditional and unconditional
jumps (see Table 5.27). Instead of executing the next instruction in the queue, the processor executes a target
instruction. The control instruction provides the address of a target instruction either implicitly, asin areturn from a
subroutine, or explicitly, in the form of arelative, direct, or indirect address.

TSC80251 microcontrollers have a 24-hit program counter (PC), which allows a target instruction to be anywhere in
the 16-Mbyte address space. however, as discussed in this section, some control instructions restrict the target address
to the current 2—Kbyte or 64—Kbyte address range by allowing only the lowest 11 or lowest 16 bits of the program
counter to change.

Rev. E — 20 December, 2000

411

T SC80251 AIMEL

WIRELESS & uC

6.1. Addressing Modesfor Control Instructions

Table 4.10. lists the addressing modes for the control instructions.
® Relative addressing:
The control instruction provides the target address as an 8-hit signed offset (rel) from the address of the next
instruction.
® Direct addressing:
The control instruction provides a target address, which can have 11 bits (addr1l1), 16 bits (addr16), or 24 bits
(addr24). The target address is written to the PC.
= addrll: Only the lower 11 bits of the PC are changed; i.e., the target address must be in the current 2—Kbyte
block (the 2—Kbyte block that includes the first byte of the next instruction).
= addrl6: Only the lower 16 hits of the PC are changed; i.e., the target address must be in the current 64—Kbyte
region (the 64—K byte region that includes the first byte of the next instruction).
= addr24: The target address can be anywhere in the 16-Mbyte address space.
® [ndirect addressing:
There are two types of indirect addressing for control instructions:
= FortheinstructionsLCALL @WRj and LIMP @WRY, the target addressisin the current 64—Kbyte region. The
16-bit addressin WR)j is placed in the lower 16 bits of the PC. The upper eight bits of the PC remain unchanged
from the address of the next instruction.
= For the instruction IMP @A+DPTR, the sum of the accumulator and DPTR is placed in the lower 16 bits of
the PC, and the upper eight bits of the PC are FF:, which restricts the target address to the code memory space
of the C51 Architecture.

Table 4.10. Addressing Modes for Control Instructions

Description Ag?gﬁ;'ts Address Range
Relative, 8-bit relative address (rel) 8 —128to +127 from first byte of next instruction
Direct, 11-bit target address (addr11) 11 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24) 24 00:0000h-FF:FFFFh
*
Indirect (@WRj) x 16 Current 64 Kbytes
Indirect (@A +DPTR) 16 64-Kbyte region specified by DPXL (reset value = 01h)
Note:

* These modes are not used by instructionsin the C51 Architecture.

Rev. E — 20 December, 2000
412

AIMEL TSC80251

WIRELESS & uC

6.2. Conditional Jumps

The C251 Architecture supports bit—conditional jumps, compare—conditional jumps, and jumps based on the value of
the accumulator. A bit—conditional jump is based on the state of abit. In acompare—conditional jump, the jump isbased
on acomparison of two operands. All conditional jumps are relative, and the target address (rel) must bein the current
256-byte block of code. The instruction set includes three kinds of bit—conditional jumps:

® JB (Jump on Bit): Jump if the bit is set.
® JNB (Jump on Not Bit): Jump if the bit is clear.
e JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

Compare—conditional jumps test a condition resulting from a compare (CMP) instruction that is assumed to precede
the jump instruction. The jump instruction examines the PSW and PSW1 registers and interprets their flags as though
they were set or cleared by a compare (CMP) instruction. Actually, the state of each flag is determined by the last
instruction that could have affected that flag.

The condition flags are used to test one of the following six relations between the operands :
® equa (=), not equal (#)

® greater than (>), less than (<)

® greater than or equal (=), less than or equal (<)

For each relation there are two instructions, one for signed operands and one for unsigned operands (see Table 4.11.).

Table 4.11. Compare-conditional Jump Instructions

Type = £ > < > <
Unsigned JG JL JGE JLE
Signed JE NE ISG L JSGE JSLE

6.3. Unconditional Jumps

There are five unconditional jumps. NOP and SIMP jump to addresses relative to the program counter. AIMP, LIMP,
and EJMP jump to direct or indirect addresses.

® NOP (No Operation) is an unconditional jump to the next instruction.
® SIMP (Short Jump) jumps to any instruction within —128 to 127 of the next instruction.

e AJIMP (Absolute Jump) changes the lowest 11 hits of the PC to jump anywhere within the current 2—Kbyte block
of memory. The address can be direct or indirect.

e | JMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the current 64—Kbyte region.

EIMP (Extended Jump) changesall 24 bits of the PC to jump anywherein the 16-Mbyte address space. The address
can be direct or indirect.

Rev. E — 20 December, 2000 413

T SC80251 AIMEL

WIRELESS & uC

6.4. Callsand Returns
The C251 Architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack and then changes
the lower 11 bits of the PC to the 11-bit address specified by the instruction. The call isto an addressthat isin the
same 2—K byte block of memory as the address of the next instruction.

LCALL (Long Call) pushes the lower 16 bits of the next—instruction address onto the stack and then changes the
lower 16 bits of the PC to the 16-bit address specified by the instruction. The call is to an address in the same
64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then changes the 24
bits of the PC to the 24-bit address specified by theinstruction. The call isto an address anywhere in the 16-Mbyte
memory space.

RET (Return) popsthe top two bytes from the stack to return to the instruction following asubroutine call (ACALL
or LCALL). The return address must be in the same 64—Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address following a subroutine
call (ECALL). Thereturn address can be anywhere in the 16-Mbyte address space.

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation of RETI depends

onthe INTR bit in the CONFIG1 configuration byte (see Product Design Guide):

= For INTR =0, aninterrupt pushes the two lower bytes of the PC onto the stack in the following order : PC.7:0,
PC.15:8. The RETI instruction pops these two bytes and uses them as the 16-bit return address in region FF..
RETI aso restores the interrupt logic to accept additional interrupts at the same priority level as the one just
processed.

= For INTR =1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the following order: PSW1,
PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes and then returns to the specified 24-hit
address, which can be anywhere in the 16-Mbyte address space. RETI also clearsthe interrupt request line. (see
the note in Table 4.10. regarding compatibility with code written for 80C51 microcontrollers.)

The TRAP instruction which causes a non maskable interrupt cal is useful for the development of emulation of a
TSC80251 microcontroller.

Note:

A simple RET instruction also returns execution to the interrupted program. In previous implementations this inappropriately allowed the system
to operate as though an interrupt service routineis still in progress. The C251 Architecture allows use of both RETI and RET instructions for
interrupt completion. However, for code expected to run properly on both 80C51 and TSC80C251 microcontrollers, only the execution of a RETI
instruction is considered proper completion of the interrupt operation.

Rev. E — 20 December, 2000
414

AIMEL TSC80251

WIRELESS & uC

7. Interrupt Processing

7.1. Interrupt Request

Interrupt processing is adynamic operation that begins when a source requests an interrupt and lasts until the execution
of the first instruction in the interrupt service routine (see Figure 4.4.). Response time is the amount of time between
the interrupt request and the resulting break in the current instruction stream. Latency is the amount of time between
theinterrupt request and the execution of thefirst instruction in theinterrupt service routine. These periods are dynamic
due to the presence of both fixed-time sequences and several variable conditions. These conditions contribute to total
elapsed time.

Response Time
v "
OsC
) 1
State
Time
1 1
1)
))
External _W
Interrupt / / / / :
Request , ,
|)
Poll INTO# L] L] L] LI L L | L

Context Switch Request

Ending Instruction PUSH PSW1, PC || CALL ISR -

Interrupt Vector Cycle

]

L atency

>

Figure4.4. Interrupt Process

Both response time and latency begin with the interrupt request. The subsequent minimum fixed sequence comprises
the interrupt sample, poll, context switch request and interrupt vector cycle operations. The variables consist of (but
are not limited to): specific instruction in use at request time, internal versus external interrupt source requests, internal
versus external program operation, stack location, presence of wait states, page-mode operation and call pointer length.

7.2. Blocking Conditions

If all enable and priority requirements have been met, asingle prioritized interrupt request at atime generates a context
switch and a vector cycle to an ISR. There are three causes of blocking conditions with hardware-generated vectors:

e Aninterrupt of equal or higher priority level is already in progress (defined as any point after the flag has been set
and the RET]I of the ISR has not executed).

The current polling cycle is not the final cycle of the instruction in progress.

® Theinstruction in progressis RETI

® Theinstruction in progress is any write/read—modify—write to interrupt enable or interrupt priority level registers
(see the Product Design Guide).

Any of these conditions blocks calls to ISR. Condition two ensures the instruction in progress completes before the
system vectors to the ISR. Condition three ensures at least one more instruction of the interrupted routine executes

Rev. E — 20 December, 2000 4.15

T SC80251 AIMEL

WIRELESS & uC

before the system vectors to additional interrupts. Condition four insures interrupt requests are polled and prioritized
consistently.

Note:

If the interrupt flag for a level-triggered external interrupt is set but denied for one of the above conditions and is clear when the blocking
condition is removed, then the denied interrupt isignored. In other words, blocked interrupt requests are not buffered for retention.
Furthermore, if several interrupts are pending, the interrupt actually served will be the one selected by the last polling cycle when the blocking
condition disappears, hence blocking the other ones.

7.3. Interrupt Vector Cycle

When an interrupt vector cycle is initiated following a context switch request, the CPU breaks the instruction stream
sequence, resolves al instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the stack.
The CPU then rel oads the PC with a start address for the appropriate ISR. The number of bytes pushed to the stack and
the call pointer length depend upon the INTR bit in the configuration register (see CONFIGL in the Product Design
Guide). A processor status word (PSW1) may also be pushed to the stack according to the INTR hit.

7.4. Interrupt Service Routine

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs the processor the
interrupt routine is completed. It pops PC address bytes off the stack (as well as PSW1 for INTR = 1), and execution
resumes at the suspended instruction stream.

With the exception of TRARP, the start addresses of consecutive interrupt service routines (ISR) are eight bytes apart.
If consecutive interrupts are used (IEO and TFO, for example, or TFO and |E1), the first interrupt routine (if more than
eight bytes long including RETI instruction) must execute a jump to some other memory location. This prevents
overlap of the start address of the following interrupt routine but slightly increase the | SR overhead.

8. Interrupt Times

To have a system supporting heavy duty operation, the maximum latency has to be considered. Though the average
performance rather depends on the average latency which is more difficult to predict. This section explains how to
compute the maximum time and to estimate the average time.

8.1. Interrupt Response Time

Responsetimeis defined asthe start of adynamic time period when a source requests an interrupt and lasts until abreak
in the current instruction execution stream occurs (see Figure 4.5.). Response time (and therefore latency) is affected
by two primary factors: the incidence of the request relative to the four-state-time sample window and the completion
time of instructionsin the response period (i.e., shorter instructions compl ete earlier than longer instructions).

Note:

External interrupt signals require one additional state timein comparison to internal interrupts. Thisis necessary to sample and latch the pin
value prior to a poll of the interrupts. The sample occursin thefirst half of the state time and the poll/request occurs in the second half of the next
state time. Therefore, this sample and poll/request portion of the minimunymaximum fixed response and latency time is two/five states for internal
interrupts and three/six states for external interrupts. External interrupts should remain active for more than four state times to guarantee
interrupt recognition when the request occursimmediately after a sample has been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the poll state, the interrupt is not resampled and polled for another
three states. After the second sample is taken and the interrupt request is recognized, the interrupt controller requests
the interrupt vector cycle. The programmer must also consider the time to complete the instruction at the moment the
context switch request is sent to the execution unit. If 9 states of a 10-state i nstruction have compl eted when the context
switch is requested, the total response timeis 6 states, with an interrupt vector cycle immediately after the final state
of the 10-state instruction (see Figure 4.5.).

Rev. E — 20 December, 2000
4.16

AIMEL TSC80251

WIRELESS & uC

Response Time=6
OSC [MM UL UL UL
Sie = [MU UL
Time])
1.2 3 4 5 6

INTO# Interrupt _W ////E

Request

Poll INTO#—)_ | L L] LI
Context Switch Request L] ,

10-State
Instruction PUSH PC

Figure 4.5. Response Time Example 1

Conversely, if the external interrupt requests service in the state just prior to the next sample, responseis much quicker.
One state asserts the interrupt request, one state samples, and one state requests the context switch. If at that point the
same instruction conditions exist, one additional state time is needed to complete the 10-state instruction prior to the
interrupt vector cycle (see Figure 4.6.). The total response timein this case is four state times. The programmer must
evauate all pertinent conditions for accurate predictability.

Response Time=4

-
0sc '
State X :
Time ! \
Lrururuyururorud
AL I T/
Poll INTO# —_ | L]
Context Switch Request | i
Instruction

Figure 4.6. Response Time Example 2

Rev. E — 20 December, 2000 417

T SC80251 AIMEL

WIRELESS & uC

8.2. Interrupt Latency Time

8.2.1. Minimum Fixed Interrupt Time

Each interrupt is sampled and polled every four state times (see Figure 4.5.). One additional state timeis required for
acontext switch request. For code branchesto jump locationsin the current 64-K byte memory region (compatible with
C51 Architecture), the interrupt vector cycle timeis 11 states. Therefore, the minimum fixed poll and request timeis
13 states (1 poll states + 1 request state + 11 states for the interrupt vector cycle = 13 state times).

Therefore, this minimum fixed period rests upon five assumptions:

® Theinterrupt request is coincident with its polling cycle.

® The source request is an internal interrupt with high enough priority to take precedence over other potential
interrupts.

® The context switch request is coincident with internal execution and needs no instruction completion time before
the interrupt vector cycle.

The program uses an internal stack location.
The ISR isin on-chip code memory.

8.2.2. Wor st Case Latency Variables

Worst-case latency calculations assume that the longest C251 Architecture instruction used in the program must fully
execute prior to a context switch. The delay from instruction completion time is reduced by one state with the given
assumption that the first instruction state overlaps the context switch request state (therefore, 16-bit DIV is21-1 =20
states for latency calculations). The calculations add fixed and variable interrupt times (see Table 4.12.) to this
instruction time to predict latency. The worst-case latency (both fixed and variable times included) is expressed by a
pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

Table 4.12. Interrupt Latency Variables

- >64K External External
Variable P.?”Lneg IEl)t(;rerrEalt Jump to EX%L%Q?(Z) Stack Stack
P ISR (1 2-bytepush ® | 4-bytepush 4
Number
of States| O0to3 1 8 N1+2 2 x (N2+2) 4 x (N2+2)
Added
Notes:

1. <64K / >64K means inside/outside the 64-Kbyte memory region where code is executing.

2. N1 isthe number of wait states for external code fetch, add the number states to fetch possible additional bytes and complete the first
instruction according to the information provided in SECTION 5.2.

3. N2 isthe number of wait states for external stack accesses.

8.2.3. Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR and the stack are located
within the same 64-Kbyte memory region (compatible with memory maps for 80C51 Microcontrollers). Further
assume INTO# has made the request one state prior to the poll state. Also assume there are seven states yet to complete
in the current 21-state DIV instruction when INTO# requests service. As shown in Figure 4.7. , the completion of the
current instruction isthe limiting factor for this assumption. The actual responsetimeis seven stateswhile the best case
response time istwo states for internal interrupts with one more state for external interrupts.

Rev. E — 20 December, 2000
418

AIMEL TSC80251

WIRELESS & uC

Latency cal culations begin with the minimum fixed latency of 13 states: two states best case responsetime and 11 states
best case context switch time. From Table 4.12. , one state is added for an INTO# request from external hardware; two
states are added for external execution; and four states for an external stack with 2-byte push (64—Kbyte pointers).
Three states are further added for the current instruction to complete. Finally one stateis added for the interrupt request
has been made one state before the poll state. The actual latency is 24 states. Maximum latency calculations predict
43 states for this example due to inclusion of total DIV instruction time (less one state). Average latency calculations
estimate 23 states, assuming an average execution time of three states per instruction in the interruptible routines: the
average completion time is half of the average execution time. Minimum latency calculations predict 20 states when
thereis no delay for polling or instruction completion.

Table 4.13. Actual vs. Predicted Latency Calculations

L atency Factors Actual | Minimum |Maximum | Average
Base Case Minimum Fixed Time 13 13 13 13
INTO# External Request 1 1
External Execution 2 2 2
External Stack 2-byte Push 4 4
Completion Time for Current (DIV 3 0 20 15
instruction)
Polling Time 1 0 3 15
TOTAL 24 20 43 23

Note:
This computation does not include the possible additional states to actually complete the first instruction of the ISR.
It further assumes the average execution time is three states per instruction for the interrupted routines.

Response Time=7

< >
¢ >

OosC

StateTime 1= 2: oo . . \

' ll ' [' EfC.... [' '

v, [' " ")

)

INTO# Interrupt Request Ny R 17, X I
[[']]]

Poll INTO# [T | , LJ LJ LJ | . L

Context Switch Request — ! | \ , . .
1 [[' 1 [[

21-State Instruction . ' ' DIV PUSH PC X

1'10 2 ' 3 ! 1 4 2

o> >e ‘ »le > >

) [}]

] 1S '

' =1]

! i £ J :

' ; % 3 '

' 2 v v o !

] =] é g 5 !

' g 5 z g

"o = o ‘5 & '

‘s > % o g T

= g 3 g 5 !

g= g = g,

& o S . m ~ g

' Latency Time =24 !

A

Figure4.7. Latency Time Example

Rev. E — 20 December, 2000 419

TSC80251

AIMEL

I)
WIRELESS & uC

PSW (S:DOh)
Program Status Word register

o |

AC

FO RS1 RSO ov ub P

7

6

5 4 3 2 1 0

Bit
Number

Bit
Mnemonic

Description

CY

Carry flag
Thecarry flag isset by an addition (ADD, ADDC) if thereisacarry out of the MSB.
Itis set by asubtraction (SUB, SUBB) or compare (CMP) if aborrow is needed for
the MSB. The carry flag isalso affected by somerotate and shift instructions, logical
bit instructions and bit move instructions, and the multiply (MUL) and decimal
adjust (DA) instructions (see Table 4.4.).

AC

Auxiliary Carry flag
The auxiliary flag is affected only by instructions that address 8-hit operands. The
ACflagisset if an arithmetic instruction with an 8-bit operand produces a carry out
of bit 3 (from addition) or a borrow into bit 3 (from subtraction). Otherwise it is
cleared. Thisflag is useful for BCD arithmetic (see Table 4.4.).

FO

Flag 0
This general-purpose flag is available to the user.

RS1

Register Bank Select bit 1

This bit selects the memory locations that comprise the active bank of the register
file (registers RO-R7).

RS1 Bank Address

0 0 00h-07h

0 1 08h-0Fh

1 2 10h-17h

1 3 18h-1Fh

RS0

Register Bank Select bit 0
This bit selects the memory locations that comprise the active bank of the register
file (registers RO-R7).
RS0 Bank Address
0 0 00h-07h
1 1 08h-0Fh
0 2 10h-17h
1 3 18h-1Fh

ov

Overflow flag
Thisbit isset if an addition or subtraction of signed variables resultsin an overflow
error (i.e., if the magnitude of the sum or differnecceistoo great for the seven LSBs
in 2's-complement representation). The overflow flagisalso set if amultiplication
product overflows one byte or if adivision by zero is attempted.

ub

User-definable flag
This general-purpose flag is available to the user.

Parity bit
This bit indicates the parity of the accumulator. It is set if an odd number of bitsin
the accumulator are set. Otherwise, it is cleared. Not al instructions update the
parity bit.

Reset Value = 0000 0000b

Figure 4.8. Program Status Word register (PSW)

4.20

Rev. E — 20 December, 2000

AIMEL

- —
WIRELESS & uC

®

TSC80251

PSW1 (S:D1h)
Program Status Word 1 register

| o | Ac N | Rst RSO oV -
7 6 5 4 3 2 1 0
Bit Bit Descrinti
Number Mnemonic escription
7 CcY Carry flag
Identical to the CY bit in the PSW register (see Figure 4.8.).
6 AC Auxiliary Carry flag
Identical to the AC bit in the PSW register (see Figure 4.8.).
5 N Negative flag
This bit is set if the result of the last logical or arithmetic operation was negative,
i.e, bitl5 = 1. Otherwiseit is cleared.
4 RS1 Register Bank Select bit 1
Identical to the RS1 bit in the PSW register (see Figure 4.8.).
3 RSO Register Bank Select bit 0
Identical to the RSO bit in the PSW register (see Figure 4.8.).
2 ov Overflow flag
Identical to the OV bit in the PSW register (see Figure 4.8.).
1 4 Zeroflag
This flag is set if the result of the last logical or arithmetic operation is zero.
Otherwiseit is cleared.
0 - Reserved
The value read from this bit is indeterminate.
Do not set this bit.

Reset Value = 0000 0000b

Figure4.9. Program Status Word 1 register (PSW1)

Rev. E — 20 December, 2000

421

T SC80251 AIMEL

WIRELESS & uC

Rev. E — 20 December, 2000
4,22

AMEL TSC80251

| nstruction Set Reference

This chapter contains reference materia for the instructions in the C251 Architecture. It includes an opcode map, a
summary of the instructions —with instruction lengths and execution times— and a detailed description of each
instruction. It contains the following tables:

Table 1through Table 5describe the notation used for the instruction operands.

Table 6bounds the minimum number of states per instruction.

Table 22and Table 23comprise the opcode map for the instruction set.

The following tables list the instructions with their lengths in bytes and their execution times:

= Add and Subtract Instructions, Table 7

= |ncrement and Decrement Instructions, Table 8

= Compare Instructions, Table 9

= Logica Instructions, Table 10and Table 11

= Multiply, Divide and Decimal-adjust Instructions, Table 12
= Movelnstructions, Table 13to Table 15

= Bit Instructions, Table 16

= Exchange, Push and Pop Instructions, Table 17

= Control Instructions, Table 18to Table 21

Table 24through Table 33contain supporting material for the opcode map.

Notes:

1. Theinstruction execution times given in this appendix are for code executing from on-chip code memory and for data that is read from and
written to on-chip RAM. Execution times are increased by executing code from external memory, accessing peripheral SFRs, accessing data in
external memory, using a wait state, or extending the ALE pulse.

2. For someinstructions, accessing the Port SFRs, Px, x = 0-3, increases the execution time.

Rev. E — 20 December, 2000 51

TSC80251

AIMEL

I)
WIRELESS & uC

9. Notation for Instruction Operands

Table 1 to Table 5 provide Notation for Instruction Operands.

Table 1Notation for Direct Addressing

Direct Address Description C251 C51
dir8 A direct 8-bit address. This can be a memory address (00h-7Fh) or a SFR address I I
(80h-FFh). It is a byte (default), word or double word depending on the other operand.
dirl6 A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing. I
Table 2Notation for Immediate Addressing
Immediate Arai
Address Description C251 C51
#data An 8-bit constant that isimmediately addressed in an instruction. v I
#datal6 A 16-bit constant that isimmediately addressed in an instruction. I
#0datal6 A 32-bit constant that isimmediately addressed in an instruction. The upper word isfilled I
#1datal6 with zeros (#0datal6) or ones (#1datal6).
#short A constant, equal to 1, 2, or 4, that isimmediately addressed in an instruction.
Binary representation of #short (00" is1,’01" is2,’10" is4 and 11’ is reserved). I
w
Table 3Notation for Bit Addressing
Direct Address Description C251 C51
bit51 A directly addressed bit (bit number= 00h-FFh) in memory or an SFR. Bits 00h-7Fh are the
128 bitsin byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bitsin the I
16 SFRs with addresses that end in Oh or 8h, S:80h, S:88h, S:90h,..., S:FOh, S:F8h.
bit A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.
Binary representation of a bit number (0-7) whitin abyte. I
yyy
Table 4Notation for Destination in Control I nstructions
Direct Address Description C251 Ch1
rel A signed (two’s complement) 8-bit relative address. The destination is—128 to +127 bytes I I
relative to the next instruction’s first byte.
addr1l An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next I
instruction’sfirst byte.
addr16 A 16-bit target address. The target can be anywhere within the same 64-Kbyte region as the I
next instruction’sfirst byte.
addr24 A 24-bit target address. The target can be anywhere within the 16-M byte address space. I

52

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

Table 5Notation for Register Operands

Register Description C251 C51
@RI A memory location (00h-FFh) addressed indirectly via byte registers RO or R1. I
Rn Byte register R0O-R7 of the currently selected register bank.
n Byte register index: n=0-7. I
rer Binary representation of byte register index n.
Rm Byte register R0-R15 of the currently selected register file.
Rmd Destination byte register.
Rms Source byte register. I
m, md, ms Byte register index: m, md, ms= 0-15.
Ssss Binary representation of byte register index m or md.
SSSS Binary representation of byte register index ms.
WRj Word register WRO, WR?2, ..., WR30 of the currently selected register file.
Destination word register.
WRjd Source word register.
WRjs A memory location (00:0000h-00: FFFFh) addressed indirectly through word register
@WRj WRO-WR30, is the target address for jump instructions.
A memory location (00:0000h-00: FFFFh) addressed indirectly through word register o
@WRj +disl6 (WRO-WR30) + 16-hit signed (two’'s complement) displacement value.

Word register index: j, jd, js= 0-30.
Binary representation of word register index j/2 or jd/2.

Jtt tJtdY Is Binary representation of word register index j5/2.
TTTT
DRk Dword register DRO, DR4, ..., DR28, DR56, DR60 of the currently selected register file.
Destination dword register.
DRkd Source dword register.
DRks A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register
@DRk DRO0-DR28, DR56 and DR60, is the target address for jump instruction.
A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register -
(DRO-DR28, DR56, DR60) + 16-hit (two's complement) signed displacement value.
@DRK +disl6 Dword register index: k, kd, ks= 0, 4, 8..., 28, 56, 60.
Binary representation of dword register index k/2 or kd/2.
k. kd, ks Binary representation of dword register index ks/2.
uuuu
Uuuu

Table 5.1. defines the symbols (-, »~,1, O, ?) used to indicate the effect of the instruction on the flagsin the PSW and
PSW1 registers. For a conditional jump instruction, “!” indicates that a flag influences the decision to jump.

Table5.1. Flag Symbols
Symbol Description

— The instruction does not modify the flag.

The instruction sets or clears the flag, as appropriate.

Theinstruction sets the flag.

The instruction clears the flag.

w|lo|r |\

The instruction leaves the flag in an indeterminate state.

| For aconditional jumpinstruction: thestate of theflag beforetheinstructi on executesinfluencesthe decision to jump or not jump.

Rev. E — 20 December, 2000 53

T SC80251 AIMEL

WIRELESS & uC

10. Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its
length in bytes, and its execution timein states (one state time is equal to two system clock cycles). There are two con-
current processes limiting the effective instruction throughput:

® |nstruction Fetch

® |nstruction Execution

Table 7to Table 21assume code executing from on—chip memory, then the CPU is fetching 16-hit at a time and this
is never limiting the execution speed.

If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize
the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited de-
pending on the average size of instructions (for the considered section of the program flow). The maximum average
instruction throughput is provided by Table 6depending on the external memory configuration (from Page Mode with-
out wait state to Non—Page Mode with the maximum number of wait states). If the average size of instructions is not
an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer val-
ues.

Note:

For instructions addressing an 1/0O Port (Px, x= 0-3), the pre—fetch processis disturbed and some wait states are added as highlighted by
footnotes in Table 7to Table 21Adding the corresponding number of wait states to the actual lenght of each of these instructions provides the
equivalent average instruction sizes to account for the pre—fetch disturbance.

Table 6Minimum Number of States per Instruction for given Average Sizes

A}/e;t agit size of Page Mode Non—Page M ode (states)
" (tz)l/Jte;) " (states) 0Wait State | 1Wait State | 2Wait States | 3Wait States | 4 Wait States
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30

If the average execution time of the considered instructions is larger than the number of states given by Table 6, this
larger value will prevail as the limiting factor. Otherwise, the value from Table 6 must be taken. Thisis providing a
fair estimation of the execution speed but only the actual code execution can provide the fina value.

54 Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

10.1. Size and Execution Time for Instruction Families

Table 7Summary of Add and Subtract I nstructions

Add ADD <dest>, <src> dest opnd ~ dest opnd + src opnd

Subtract SUB <dest>, <src> dest opnd — dest opnd — src opnd

Add with Carry ADDC <dest>, <src> (A) ~ (A) +srcopnd + (CY)

Subtract with Borrow SUBB <dest>, <src> (A) « (A)—srcopnd—(CY)

Binary Mode Source Mode
Mnemonic | <dest>, <src>(® Comments
Bytes | States | Bytes | States

A, Rn Register to ACC 1 1 2 2
A, dir8 Direct addressto ACC 2 1@ 2 10

ADD
A, @RI Indirect addressto ACC 1 2 2 3
A, #data Immediate datato ACC 2 1 2 1
Rmd, Rms Byte register to/from byte register 3 2 2 1
WRjd, WRjs Word register to/from word register 3 3 2 2
DRkd, DRks Dword register to/from dword register 3 5 2 4
Rm, #data Immediate 8-bit data to/from byte register 4 3 3 2
WR)j, #datal6 Immediate 16-bit data to/from word register 5 4 4 3
DRk, #0datal6 16-hit unsigned immediate data to/from dword register 5 6 4 5

ADD / SUB Rm, dir8 Direct address (on-chip RAM or SFR) to/from byte 4 3@ 3 22

register
WRj, dir8 Direct address (on—chip RAM or SFR) to/from word 4 4 3 3
register

Rm, dir16 Direct address (64K) to/from byte register 5 3®) 4 23)
WRj, dirl6 Direct address (64K) to/from word register 5 44 4 34
Rm, @WR] Indirect address (64K) to/from byte register 4 3@ 3 23)
Rm, @DRk Indirect address (16M) to/from byte register 4 403 3 30
A, Rn Register to/from ACC with carry 1 1 2 2
A, dir8 Direct address (on-chip RAM or SFR) to/from ACC 2 12 2 12

ADDC/ with carry

SUBB
A, @RI Indirect address to/from ACC with carry 1 2 2 3
A, #data Immediate data to/from ACC with carry 2 1 2 1

Notes:

1. Ashaded cell denotes an instruction in the C51 Architecture.

If thisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

2
3. If thisinstruction addresses external memory location, add N+ 2 to the number of states (N: number of wait states).
4. If thisinstruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Rev. E — 20 December, 2000

55

TSC80251

AIMEL

I)
WIRELESS & uC

Table 8Summary of I ncrement and Decrement I nstructions

Increment INC <dest> dest opnd ~ dest opnd + 1
Increment INC <dest>, <src> dest opnd ~ dest opnd + src opnd
Decrement DEC <dest> dest opnd ~ dest opnd -1
Decrement DEC <dest>, <src> dest opnd ~ dest opnd — src opnd
Binary Mode Source Mode
Mnemonic | <dest>, <src>(%) Comments
Bytes | States | Bytes | States

A ACChy 1 1 1 1 1
INC Rn Register by 1 1 1 2 2
DEC dir8 Direct address (on—chip RAM or SFR) by 1 2 22) 2 2)

@Ri Indirect address by 1 1 3 2 4
INC Rm, #short Byteregister by 1, 2, or 4 3 2 2 1
DEC WR, #ishort Word register by 1, 2, or 4 3 2 2 1
INC DRk, #short Double word register by 1, 2, or 4 3 4 2 3
DEC DRk, #short Double word register by 1, 2, or 4 3 5 2 4
INC DPTR Data pointer by 1 1 1 1 1

Notes:

1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Ifthisinstruction addresses an I/0 Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 9Summary of Compare I nstructions

Compare CMP <dest>, <src> dest opnd — src opnd
Binary Mode Source Mode
Mnemonic | <dest>, <src>(® Comments
Bytes | States | Bytes | States

Rmd, Rms Register with register 3 2 2 1

WRjd, WRjs Word register with word register 3 3 2 2

DRkd, DRks Dword register with dword register 3 5 2 4

Rm, #data Register with immediate data 4 3 3 2

WRj, #datal6 Word register with immediate 16-bit data 5 4 4 3

DRk, #0datal6 (?;{vord register with zero-extended 16-bit immediate 5 6 4 5

a

CMP DRk, #1datal6 Dword register with one-extended 16-bit immediate data 5 6 4 5
Rm, dir8 Direct address (on—chip RAM or SFR) with byte register 4 3 3 2(1)

WRj, dir8 Direct address (on—chip RAM or SFR) with word 4 4 3 3

register
Rm, dir16 Direct address (64K) with byte register 5 3 4 202)
WR;, dirl6 Direct address (64K) with word register 5 403 4 30
Rm, @WR; Indirect address (64K) with byte register 4 3 3 202)
Rm, @DRk Indirect address (16M) with byte register 4 40 3 302
Notes:

1. Ifthisinstruction addresses an I/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
2. If thisinstruction addresses external memory location, add N+ 2 to the number of states (N: number of wait states).
3. If thisinstruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

56

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

Table 10Summary of Logical Instructions (1/2)

Logical AND(® ANL <dest>, <src> dest opnd — dest opnd A src opnd
Logical OR(1) ORL <dest>, <src> dest opnd — dest opnd V src opnd
Logical Exclusive OR(XRL <dest>, <src> dest opnd — dest opnd O src opnd
Clear(V) CLRA (A) -0
Complement(® CPL A (A) <« O(A)
Rotate L eft RL A (A)n+1 < (A)n, n=0.6
(Ao ~ (A)7
Rotate Left Carry RLCA (A)n+1 <« (A)p, n=0..6
(CY) - (A)7
(A)o - (CY)
Rotate Right RRA (A1 « A)p,n=7..1
(A)7 < (Ao
Rotate Right Carry RRC A (A)p1 « (A)p, n=7..1
(CY) « (A)o
(A)7 ~ (CY)
Binary Mode Source Mode
Mnemonic | <dest>, <src>(? Comments
Bytes | States | Bytes | States
A, Rn register to ACC 1 1 2 2
A, dir8 Direct address (on—chip RAM or SFR) to ACC 2 13 2 13
A, @Ri Indirect addressto ACC 1 2 2 3
A, #data Immediate datato ACC 2 1 2 1
dirg, A ACC to direct address 2 24 2 24
dir8, #data Immediate 8-bit data to direct address 3 3@ 3 34
Rmd, Rms Byte register to byte register 3 2 2 1
ggll: WRjd, WRjs Word register to word register 3 3 2 2
XRL Rm, #data Immediate 8-bit data to byte register 4 3 3 2
WRYj, #datal6 Immediate 16-bit data to word register 5 4 4 3
Rm, dir8 Direct address to byte register 4 3®) 3 23)
WRj, dir8 Direct address to word register 4 4 3 3
Rm, dir16 Direct address (64K) to byte register 5 30 4 25)
WR], dirl6 Direct address (64K) to word register 5 4(0) 4 30
Rm, @WR] Indirect address (64K) to byte register 4 30 3 209
Rm, @DRk Indirect address (16M) to byte register 4 40) 3 30
CLR A Clear ACC 1 1 1 1
CPL A Complement ACC 1 1 1 1
RL A Rotate ACC left 1 1 1 1
RLC A Rotate ACC left through CY 1 1 1 1
RR A Rotate ACC right 1 1 1 1
RRC A Rotate ACC right through CY 1 1 1 1
Notes:

Logical instructions that affect a bit arein Table 16.
A shaded cell denotes an instruction in the C51 Architecture.
If this instruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

If thisinstruction addresses external memory location, add N+ 2 to the number of states (N: number of wait states).

1
2
3.
4. If thisinstruction addresses an |/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
5
6

If thisinstruction addresses external memory location, add 2(N+2) to the number of states (N: number of wait states).

Rev. E — 20 December, 2000

57

TSC80251

AIMEL

I)
WIRELESS & uC

Table 11Summary of Logical I nstructions (2/2)

Shift Left Logical SLL <dest> <dest>g « O
<dest>pt+1 « <dest>p, n=0..msb-1
(CY) «~ <dest>mgp
Shift Right Arithmetic SRA <dest> <dest>mgy < <dest>mey
<dest>; « <dest>, n=msh..1
(CY) « <dest>g
Shift Right Logical SRL <dest> <dest>mg « 0
<dest>p; ~ <dest>j, n=msh..1
(CY) « <dest>g
Swap SWAP A Azg < A7a
Binary Mode Source Mode
Mnemonic | <dest>, <src>() Comments
Bytes | States | Bytes | States
sl Rm Shift byte register left through the MSB 3 2 2 1
WRj Shift word register |eft through the MSB 3 2 2 1
Rm Shift byte register right 3 2 2 1
SRA
WRj Shift word register right 3 2 2 1
SRL Rm Shift byte register left 3 2 2 1
WRj Shift word register |eft 3 2 2 1
SWAP A Swap nibbles within ACC 1 2 1 2
Note:

1. Ashaded cell denotes an instruction in the C51 Architecture.

Table 12Summary of Multiply, Divide and Decimal-adjust Instructions

Multiply
Divide

Divide

MUL AB
MUL <dest>, <src>
DIV AB

DIV <dest>, <src>

(B:A) — (A)x(B)

extended dest opnd — dest opnd x src opnd

(A) — Quotient ((A)/ (B))

(B) — Remainder ((A)/(B))

ext. dest opnd high — Quotient (dest opnd/ src opnd)
ext. dest opnd low — Remainder (dest opnd/ src opnd)

Decimal-adjust ACC DA A IF[[(A)3:0>9] O[(AC)=1]]
for Addition (BCD) THEN (A)3.0 « (A)3.0 + 6 !affects CY;
IF[[(A)7.4>9] O[(CY)=1]]
THEN (A)7:4 — (A)7:4+ 6
Binary Mode Source Mode
Mnemonic | <dest>, <src>(d) Comments
Bytes | States | Bytes | States
AB Multiply A and B 1 5 1 5
MUL Rmd, Rms Multiply byte register and byte register 3 6 2 5
WRjd, WRjs Multiply word register and word register 3 12 2 11
AB Divide A and B 1 10 1 10
DIV Rmd, Rms Divide byte register and byte register 3 11 2 10
WRjd, WRjs Divide word register and word register 3 21 2 20
DA A Decimal adjust ACC 1 1 1 1
Note:

1. Ashaded cell denotes an instruction in the C51 Architecture.

58

Rev. E — 20 December, 2000

AIMEL

- —
WIRELESS & uC

®

TSC80251

Table 13Summary of Move Instructions (1/3)

Move to High word
Move with Sign extension
Move with Zero extension

MOVH <dest>, <src>
MOVS <dest>, <src>
MOVZ <dest>, <src>

dest opnds;.1 < Src opnd

dest opnd — src opnd with sign extend
dest opnd — src opnd with zero extend

Move Code MOVCA, <src> (A) ~ srcopnd
Move eXtended MOVX <dest>, <src> dest opnd ~ src opnd
Binary Mode Source Mode
Mnemonic | <dest>, <src>(1) Comments
Bytes | States | Bytes | States
MOVH DRk, #datal6 16-bit immediate data into upper word of dword register 5 3 4 2
MOVS WRj, Rm Byte register to word register with sign extension 3 2 2 1
MOvVZz WRj, Rm Byte register to word register with zeros extension 3 2 2 1
MOVC A, @A +DPTR Code byte relative to DPTR to ACC 1 63 1 63
A, @A +PC Code byte relative to PC to ACC 1 63 1 63
A, @Ri Extended memory (8-bit address) to ACC(2) 1 4 1 5
MOVX A, @DPTR Extended memory (16-bit address) to ACC(2 1 34 1 34
@Ri, A ACC to extended memory (8-bit address)(2) 1 4 1 4
@DPTR, A ACC to extended memory (16-bit address)(2) 1 403 1 403
Notes:
1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Extended memory addressed isin the region specified by DPXL (reset value= 01h).
3. If thisinstruction addresses external memory location, add N+ 1 to the number of states (N: number of wait states).
4. If thisinstruction addresses external memory location, add N+ 2 to the number of states (N: number of wait states).
Table 14Summary of Move I nstructions (2/3)
Movell) MOV <dest>, <src> dest opnd — src opnd
Binary Mode Source Mode
Mnemonic | <dest>, <src>(? Comments
Bytes | States | Bytes | States
A, Rn Register to ACC 1 1 2 2
A, dir8 Direct address (on-chip RAM or SFR) to ACC 2 13 2 13
A, @RI Indirect addressto ACC 1 2 2 3
A, #data Immediate datato ACC 2 1 2 1
Rn, A ACC toregister 1 1 2 2
Rn, dir8 Direct address (on—-chip RAM or SFR) to register 2 13 3 23
MOV Rn, #data Immediate data to register 2 1 3 2
dirg, A ACC to direct address 2 23 2 23
dir8, Rn Register to direct address 2 203 3 30
dir8, dir8 Direct address to direct address 3 3@ 3 34
dir8, @Ri Indirect address to direct address 2 3®) 3 43
dir8, #data Immediate data to direct address 3 3®) 3 3®)
@Ri, A ACC toindirect address 1 3 2 4
@RI, dir8 Direct address to indirect address 2 3®) 3 43
@RI, #data Immediate data to indirect address 2 3 3 4
DPTR, #datal6 Load Data Pointer with a 16-bit constant 3 2 3 2
Notes:
1. Instructionsthat move bitsarein Table 16.
2. Moveinstructions from the C51 Architecture.
3. Ifthisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. Apply note 3 for each dir8 operand.

Rev. E — 20 December, 2000

59

TSC80251

AIMEL

I)
WIRELESS & uC

Table 15Summary of Move I nstructions (3/3)

Movell) MOV <dest>, <src> dest opnd — src opnd
Binary Mode Source Mode
Mnemonic <dest>, <src>(Comments
Bytes | States | Bytes | States
Rmd, Rms Byte register to byte register 3 2 2 1
WRjd, WRjs Word register to word register 3 2 2 1
DRkd, DRks Dword register to dword register 3 3 2 2
Rm, #data Immediate 8-bit data to byte register 4 3 3 2
WR), #datal6 Immediate 16-bit data to word register 5 3 4 2
DRk, #0datal6 zero-ext 16bit immediate data to dword register 5 5 4 4
DRk, #1datal6 one-ext 16bit immediate data to dword register 5 5 4 4
Rm, dir8 Direct address to byte register 4 33 3 203
WRj, dir8 Direct address to word register 4 4 3 3
DRK, dir8 Direct address to dword register 4 6 3 5
Rm, dir16 Direct address (64K) to byte register 5 34 4 24)
WRY, dir16 Direct address (64K) to word register 5 409 4 3G
DRk, dir16 Direct address (64K) to dword register 5 6(6) 4 5(6)
Rm, @WRj Indirect address (64K) to byte register 4 34 3 24)
Rm, @DRk Indirect address (16M) to byte register 4 44 3 3@
WRjd, @WRjs Indirect address (64K) to word register 4 40) 3 30
WRj, @DRk Indirect address (16M) to word register 4 5(5) 3 40
dir8, Rm Byte register to direct address 4 403 3 3d
MOV dir8, WRj Word register to direct address 4 5 3 4
dir8, DRk Dword register to direct address 4 7 3 6
dirl6, Rm Byte register to direct address (64K) 5 44 4 34
dirl6, WR;j Word register to direct address (64K) 5 5(5) 4 40
dir16, DRk Dword register to direct address (64K) 5 7(6) 4 6(6)
@WRj, Rm Byte register to indirect address (64K) 4 44 3 3@
@DRk, Rm Byte register to indirect address (16M) 4 5(4) 3 44
@WRjd, WRjs Word register to indirect address (64K) 4 5(5) 3 40
@DRk, WRj Word register to indirect address (16M) 4 65 3 5(5)
Rm, @WRj+dis16 Indirect with 16-hit dis (64K) to byte register 5 64 4 5(4)
WRj, @WRj+dis16 Indirect with 16-hit dis (64K) to word register 5 70) 4 60
Rm, @DRk+dis16 Indirect with 16-hit dis (16M) to byte register 5 7@ 4 64
WRj, @DRk+dis16 Indirect with 16—bit dis (16M) to word register 5 8() 4 70)
@WRj+dis16, Rm Byte register to indirect with 16-bit dis (64K) 5 64 4 5(4)
@WRj+disl16, WRj Word register to indirect with 16-bit dis (64K) 5 70) 4 605
@DRKk+dis16, Rm Byte register to indirect with 16-bit dis (16M) 5 74) 4 6@
@DRk+disl16, WRj Word register to indirect with 16-bit dis (16M) 5 80 4 76
Notes:
1. Instructionsthat move bits arein Table 16.
2. Moveinstructions unique to the C251 Architecture.
3. Ifthisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If thisinstruction addresses external memory location, add N+ 2 to the number of states (N: number of wait states).
5. If thisinstruction addresses external memory location, add 2(N+1) to the number of states (N: number of wait states).
6. If thisinstruction addresses external memory location, add 4(N+2) to the number of states (N: number of wait states).

Rev. E — 20 December, 2000
5.10

AIMEL

I
WIRELESS & uC

TSC80251

Table 16Summary of Bit Instructions

Clear Bit

Set Bit

Complement Bit

AND Carry with Bit

AND Carry with Complement of Bit
OR Carry with Bit

OR Carry with Complement of Bit
Move Bit to Carry

Move Bit from Carry

CLR <dest>
SETB <dest>
CPL <dest>
ANL CY, <src>
ANL CY, /<src>
ORL CY, <src>
ORL CY, /<src>
MOV CY, <src>
MQV <dest>, CY

dest opnd —~ O

destopnd ~ 1

dest opnd ~ O bit

(CY) ~ (CY) Osrcopnd
(CY) « (CY) M srcopnd
(CY) ~ (CY) Osrcopnd
(CY) « (CY) ™ srcopnd
(CY) « srcopnd

dest opnd ~ (CY)

Binary Mode Source Mode
Mnemonic | <dest>, <src>(d) Comments
Bytes | States | Bytes | States

CcY Clear carry 1 1 1 1
CLR bit51 Clear direct bit 2 203 2 20)
bit Clear direct bit 4 43 3 33

CY Set carry 1 1 1 1
SETB bit51 Set direct bit 2 203 2 203
bit Set direct bit 4 43 3 33

CcY Complement carry 1 1 1 1
CPL bit51 Complement direct bit 2 203) 2 20
bit Complement direct bit 4 4(3) 3 33
CY, hit51 And direct bit to carry 2 1) 2 12
CY, hit And direct bit to carry 4 3@ 3 2(2)
AN CY, /bit51 And complemented direct bit to carry 2 12 2 12
CY, /bit And complemented direct bit to carry 4 3 3 202)
CY, bit51 Or direct bit to carry 2 12 2 12
CY, hit Or direct bit to carry 4 3@ 3 2(2)
ORL CY, /bit51 Or complemented direct bit to carry 2 12 2 12
CY, /bit Or complemented direct bit to carry 4 3 3 202)
CY, bit51 Move direct bit to carry 2 12 2 1@
CY, bit Move direct bit to carry 4 3 3 202)
MoV bit51, CY Move carry to direct bit 2 23) 2 23)
bit, CY Move carry to direct bit 4 43 3 3@

Notes:

1. Ashaded cell denotes an instruction in the C51 Architecture.
2. If thisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. Ifthisinstruction addresses an 1/0 Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Rev. E — 20 December, 2000

511

TSC80251

AIMEL

I)
WIRELESS & uC

Table 17Summary of Exchange, Push and Pop I nstructions

Exchange bytes XCH A, <src> (A) ++ src opnd
Exchange Digit XCHD A, <src> (A)z:0 ++ src opnds:o
Push PUSH <src> (SP) « (SP) +1; ((SP)) ~ src opnd;
(SP) — (SP) +size(srcopnd) —1
Pop POP <dest> (SP) — (SP) —size (dest opnd) + 1;
dest opnd ~ ((SP)); (SP) ~ (SP) -1
Binary Mode Source Mode
Mnemonic | <dest>, <src>() Comments
Bytes | States | Bytes | States
A, Rn ACC and register 1 3 2 4
XCH A, dir8 ACC and direct address (on—chip RAM or SFR) 2 3®) 2 3d)
A, @RI ACC and indirect address 1 4 2 5
XCHD A, @RI ACC low nibble and indirect address (256 bytes) 1 4 2 5
dir8 Push direct address onto stack 2 202) 2 202)
#data Push immediate data onto stack 4 4 3 3
#datal6 Push 16-bit immediate data onto stack 5 5 4 5
PUSH
Rm Push byte register onto stack 3 4 2 3
WRj Push word register onto stack 3 5 2 4
DRk Push double word register onto stack 3 9 2 8
dir8 Pop direct address (on—chip RAM or SFR) from stack 2 3@ 2 3
Rm Pop byte register from stack 3 3 2 2
POP
WRj Pop word register from stack 3 5 2 4
DRk Pop double word register from stack 3 9 2 8
Notes:

1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Ifthisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If thisinstruction addresses an 1/0 Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 18Summary of Conditional Jump Instructions (1/2)

Jump conditional on status Jec rel (PC) ~ (PC) + size (instr);
IF [cc] THEN (PC) « (PC) + rel
Binary Model® | Source Model?
Mnemonic | <dest>, <src>(® Comments

Bytes | States | Bytes | States
Jc rel Jump if carry 2 1/4@3) 2 1/43)
INC rel Jump if not carry 2 143 2 143
JE rel Jump if equal 3 2/50) 2 1/43)
INE rel Jump if not equal 3 2/5(3) 2 1/43)
JG rel Jump if greater than 3 2/50) 2 1/43)
JLE rel Jump if less than, or equal 3 2/50) 2 1/43)
JsL rel Jump if less than (signed) 3 2/5(3) 2 143
JSLE rel Jump if less than, or equal (signed) 3 2/50) 2 1/43)
JSG rel Jump if greater than (signed) 3 2/50) 2 1/4Q)
JSGE rel Jump if greater than or equal (signed) 3 2/50) 2 1/43)

Notes:

1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Satesare given as jump not-taken/taken.
3. Ininternal execution only, add 1 to the number of states of the ‘jump taken’ if the destination addressis internal and odd.

512

Rev. E — 20 December, 2000

AIMEL

- —
WIRELESS & uC

®

TSC80251

Table 19Summary of Conditional Jump Instructions (2/2)

Jump if bit

Jump if not bit

Jump if bit and clear

Jump if accumulator is zero
Jump if accumulator is not zero

Compare and jump if not equal

Decrement and jump if not zero

IF [src opnd= 1] THEN (PC) « (PC) + rel

IF [src opnd= 0] THEN (PC) — (PC) + rel

JB <src>, rel (PC) ~ (PC) + size(instr);
INB <src>, rel (PC) ~ (PC) + size(instr);
JBC <dest>, rel (PC) ~ (PC) + size(instr);
IF [dest opnd= 1] THEN
destopnd —~ 0
(PC) — (PC) +re
JZ rel (PC) « (PC) + size(instr);
IF[(A)=0] THEN (PC) — (PC) +rel
INZ rel (PC) — (PC) + size(instr);

CINE <srcl>, <src2>, rel

DJINZ <dest>, rel

IF[(A) # 0] THEN (PC) ~ (PC) +rel

(PC) ~ (PC) + size(instr);

IF [src opndl < src opnd2] THEN (CY) « 1
IF [src opndl = src opnd2] THEN (CY) ~ O

IF [src opndl # src opnd2] THEN (PC) ~ (PC) +rel
(PC) — (PC) + size(instr); dest opnd — dest opnd —1;

IF[O (2)] THEN (PC) (PC) +rd

Binary Mode? Source Model?)
Mnemonic | <dest>, <sre>() Comments

Bytes States Bytes States
bit51, rel Jump if direct bit is set 3 2/5(3)(6) 3 2/5(3)(6)
B bit, rel Jump if direct bit of 8-bit address location is set 5 41703)(6) 4 3/6(3(6)
bit51, rel Jump if direct bit is not set 3 2/5(3)(6) 3 2/5(3)(6)

INB bit, rel Jump if direct bit of 8-bit address location is not set 5 47(3)(6) 4 3/6(3)
bit51, rel Jump if direct bit is set & clear bit 3 4/70)(6) 3 4/70)(6)
JBC bit, rel erp if direct bit of 8-hit address|ocation is set and 5 7/10(5)(6) 4 6/9(5)(6)

clear

z rel Jump if ACC is zero 2 2/5(6) 2 2/5(6)

INZ rel Jump if ACC is not zero 2 2/5(6) 2 2/5(6)
A, dir8, rel Compare direct address to ACC and jump if not equal 3 2/5(3)(6) 3 2/5(3)(6)

CINE A, #data, rel Compare immediate to ACC and jump if not equal 3 2/5(6) 3 2/5(6)

Rn, #data, rel Compare immediate to register and jump if not equal 3 2/5(6) 4 3/6(6)

@Ri, #data, rel Compare immediate to indirect and jump if not equal 3 3/6(6) 4 4176

OINZ Rn, rel Decrement register and jump if not zero 2 2/5(6) 3 3/6(6)
dir8, rel Decrement direct address and jump if not zero 3 3/6(4)(6) 3 3/6(4)(6)

Notes:

A shaded cell denotes an instruction in the C51 Architecture.
Sates are given as jump not-taken/taken.
If thisinstruction addresses an 1/0 Port (Px, x= 0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.

If thisinstruction addresses an 1/0 Port (Px, x= 0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.

1
2
3.
4. If thisinstruction addresses an 1/O Port (Px, x= 0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
5
6.

In internal execution only, add 1 to the number of states of the ‘ jump taken’ if the destination address is internal and odd.

Rev. E — 20 December, 2000

513

TSC80251

AIMEL

I)
WIRELESS & uC

Table 20Summary of unconditional Jump Instructions

Absolute jump AIMP <src> (PC) « (PC) +2; (PC)10:0 — src opnd
Extended jump EIMP <src> (PC) « (PC) + size(instr); (PC)23.0 — src opnd
Long jump LIMP <src> (PC) ~ (PC) + size(instr); (PC)15:0 — src opnd
Short jump SIMPrel (PC) ~ (PC) +2; (PC) ~ (PC) +rel
Jump indirect IJMP @A +DPTR (PC)23:16 « FFh; (PC)150 — (A) + (DPTR)
No operation NOP (PC) ~ (PC) +1
Binary Mode Source Mode
Mnemonic | <dest>, <src>(® Comments
Bytes | States | Bytes | States
AMP addr11 Absolute jump 2 30 2 30
EMP addr24 Extended jump 5 64 4 5()(4)
@DRk Extended jump (indirect) 3 724 2 624
LIMP @WRj Long jump (indirect) 3 624 2 5(2)(4)
addr16 Long jump (direct address) 3 524 3 524
SIMP rel Short jump (relative address) 2 44 2 424
IMP @A +DPTR Jump indirect relative to the DPTR 1 524 1 54
NOP No operation (Jump never) 1 1 1 1
Notes:
1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Ininternal execution only, add 1 to the number of states if the destination address isinternal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add 3 to the number of statesif the destination address is external.
Table 21Summary of Call and Return Instructions
Absolute call ACALL <src> (PC) ~ (PC) +2; push (PC)1s:0;
(PC)10:0 « src opnd
Extended call ECALL <src> (PC) « (PC) + size(instr); push (PC)23.0;
(PC)23.0 « src opnd
Long call LCALL <src> (PC) « (PC) + size(instr); push (PC)15:0;
(PC)15:0 « src opnd
Return from subroutine RET pop (PC)1s:0
Extended return from subroutine ERET pop (PC)23:0
Return from interrupt RETI IF[INTR= 0] THEN pop (PC)15:0
IF [INTR= 1] THEN pop (PC)23.0; pop (PSW1)
Trap interrupt TRAP (PC) « (PC) + size(instr);

IF[INTR= 0] THEN push (PC)15:0
IF[INTR= 1] THEN push (PSW1); push (PC)23:0

Binary Mode Source Mode
Mnemonic | <dest>, <src>(%) Comments
Bytes | States | Bytes | States
ACALL addr11 Absolute subroutine call 2 920 2 9B
ECALL @DRk Extended subroutine call (indirect) 3 1420Q) 2 1320
addr24 Extended subroutine call 5 1423 4 1323
LCALL @WRj Long subroutine call (indirect) 3 103 2 9B
addr16 Long subroutine call 3 92 3 923
RET Return from subroutine 1 7) 1 72)
ERET Extended subroutine return 3 92 2 82
RETI Return from interrupt 1 74 1 724
TRAP Jump to the trap interrupt vector 2 12(4) 1 114
Notes:
1. Ashaded cell denotes an instruction in the C51 Architecture.
2. Ininternal execution only, add 1 to the number of states if the destination/return address is internal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add5 to the number of statesif INTR= 1.

514

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

10.2. Opcode Map and Supporting Tables

Table 22l nstructions for 80C51 Microcontrollers

Bin x0 x1 X2 x3
Src x0 x1 X2 x3
NOP AIMP addr11 LIMP addr16 RRA

1 JBC hit51, rel ACALL addr11 LCALL addr16 RRCA

2 JB bit51, rel AIMP addr11 RET RL A

3 JINB hit51, rel ACALL addr11 RETI RLCA

4 JCrel AIMP addr11 ORL dir8, A ORL dir8#data

5 INCrel ACALL addr11 ANL dir8, A ANL dir8#data

6 JZ rel AIMP addr11 XRL dir8, A XRL dirg#data

7 INZ rel ACALL addr11 ORL CY,bit51 IJMP @A+DPTR

8 SIMPrel AIMP addr11 ANL CY,bit51 MOVC A,@A+PC

9 MOV DPTR #datal6 ACALL addr11 MOV bit51,CY MOVC A,@A+DPTR

A ORL CY,hit51 AIMP addr11 MOV CY,bit51 INCDPTR

B ANL CY,bit51 ACALL addr11 CPL hit51 CPL CY

C PUSH dir8 AIMP addr11 CLR hit51 CLRCY

D POP dir8 ACALL addr11 SETB hit51 SETB CY

E MOVX A, @DPTR AIMP addr11 MOVX A,@RI

F MOV @DPTR,A ACALL addr11 MOVX @RI,A
Bin x4 x5 X6-X7 X8—XF
Src x4 x5 A5X6-A5X7* A5x8-A5XF*

INCA INC dir8 INC @Ri INCRn

1 DECA DEC dir8 DEC @Ri DECRn

2 ADD A #data ADD A,dir8 ADD A,@Ri ADD A,Rn

3 ADDC A #data ADDC A dir8 ADDC A,@Ri ADDCA Rn

4 ORL A #data ORL A ,dir8 ORL A,@Ri ORL A,Rn

5 ANL A #data ANL A ,dir8 ANL A,@Ri ANL A,Rn

6 XRL A #data XRL A,dir8 XRL A,@Ri XRL A,Rn

7 MOV A #data MOQV dir8,#data MOV X @Ri,data MOV Rn#data

8 DIV AB MOV dir8,dir8 MOV dir8,@Ri MOV dirg8,Rn

9 SUBB A #data SUBB A ,dir8 SUBB A,@Ri SUBB A,Rn

A MUL AB Escape MOV @Ri,dir8 MOV Rn,dir8

B CINE A #data,rel CINE A dir8,rel CINE @Ri #datarel CINE Rn#datarel

C SWAP A XCH A,dir8 XCH A, @Ri XCH A,Rn

D DA A DJNZ dir8,rel XCHD A,@Ri DJINZ Rn,rel

E CLRA MOV A dir8 MOV A,@Ri MOV A,Rn

F CPLA MOV dir8,A MOV @Ri,A MOV Rn,A

* x takes the values found in Bin and Src column.

Rev. E — 20 December, 2000

5.15

T SC80251 AIMEL

WIRELESS & uC

Table 23New Instructionsfor the C251 Architecture

Bin A5x8* A5x9* ASXA* A5xB*
Src x8* x9* XA* xB*
0 JSLE rel MOV Rm, @WRj +dis16 MOVZ WRj, Rm INC R, #short (1)
MOV reg, ind
1 JSGrel MOV @WR] +dis16, Rm MOVSWRj, Rm DEC R, #short) MOV ind,
reg
2 JLEre MOV Rm, @DRk +dis24
3 JGrel MOV @DRK +dis24, Rm
4 JSL rel MOV WRj, @WR] +dis16
5 JSGE rel MOV @WRj +dis16, WR;
6 JE rel MOV WRj, @DRK +dis24
7 INE rel MOV @DRK +disl6, WRj MOV op1, reg @
8 LIMP @WRj EIJMP addr24
EIMP @DRk
9 LCALL @WR; ECALL addr24
ECALL @DRk
A Escape Bit Instructions (3) ERET
B TRAP
C PUSH op1 4
MOV DRk, PC
D POP opl 4
Bin ABXC* A5xD* ABXE* ASXF*
Src xC* xD* XE* XF*
0 SRA reg
1 SRL reg
2 ADD Rmd, Rms ADD WRjd, WRjs ADD reg, op2* ADD DRkd, DRks
3 SLL reg
4 ORL Rmd, Rms ORL WRjd, WRjs ORL reg, op2*
5 ANL Rmd, Rms ANL WRjd, WRjs ANL reg, op2*
6 XRL Rmd, Rms XRL WRjd, WRjs XRL reg, op2*
7 MOV Rmd, Rms MOV WRjd, WRjs MOV reg, op2* MOV DRkd, DRks
8 DIV Rmd, Rms DIV WRjd, WRjs
9 SUB Rmd, Rms SUB WRjd, WRjs SUB reg, op2* SUB DRkd, DRkd
A MUL Rmd, Rms MUL WRjd, WRjs
B CMP Rmd, Rms CMPWRjd, WRjs CMP reg, op2* CMP DRkd, DRks
Notes :
* X takes the values found in Bin and Src column.
1. R= RMWRj/DRK.
2. opl, op2 aredefined in Table 24
3. SeeTable 26and Table 27
4. SeeTable28

Rev. E — 20 December, 2000
5.16

AIMEL

I
WIRELESS & uC

TSC80251

Table 24Data I nstructions

Instruction Byte O Byte 1 Byte 2 Byte 3
Oper Rmd, Rms X C md ms
Oper WRjd, WRjs X D jdr2 jg2
Oper DRkd, DRks X F kd/4 ks/4
Oper Rm, #data X E m 0 #data
Oper WRYj, #datal6 X E J 12 4 #data (high) #data (low)
Oper DRK, #datal6 X E k/4 8 #data (high) #data (low)
MOVH DRK(h), #datal6 7 A k/4 C | #daa(high) #data (Iow)
MOV DRk, #1datal6 7 E
CMP DRk #1datal6 B E
Oper Rm, dir8 X E m 1 dir8 addr
Oper WRj, dir8 X E jl2 5 dir8 addr
Oper DRk, dir8 X E k/4 D | dir8addr
Oper Rm, dirl6 X E m 3 dirl6 addr (high) dirl6 addr (low)
Oper WRYj, dirl6 X E j/2 7 dirl6 addr (high) dirl6 addr (low)
Oper DRK, dir16 (1) X E kl/4 F dir16 addr (high) dir16 addr (low)
Oper Rm, @WR X E il2 9 m 0
Oper Rm, @DRk X E ki4 B m 0
Note:

1. For thisinstruction, the only valid operation is MOV.

Table 25High Nibble, Byte 0 of Data I nstructions

Operation

Notes

ADD reg, op2

SUB reg, op2

CMPreg, op2 D

ORL reg, op2 (2

ANL reg, op2 @

XRL reg, op2 (2

MOQV reg, op2

All data addressing modes are supported.

DIV reg, op2

>l olN|lojlo|dMmm|lOo|N]| X

MUL reg, op2

Two modes only:

reg, op2 = Rmd, Rms
reg, op2 = Wjd, Wjs

Notes :

1. The CMP operation does not support DRk, direct16.
2. For the ORL, ANL and XRL operations, neither reg nor op2 can be DRK.

Rev. E — 20 December, 2000

5.17

T SC80251 AIMEL

WIRELESS & uC

All of the bit instructions in the C251 Architecture (See Table 23) have opcode A9, which serves as an escape byte
(similar to A5). The high nibble of byte 1 specifies the bit instruction, as given in Table 26

Table 26Bit I nstructions

Instruction Byte 0(x) Byte 1 Byte2 Byte 3
Bitinst (dir8) A | 9 x | obi dir8_addr rel_addr

Table 27Byte 1 (High Nibble) for Bit Instructions

Bit Instruction

JBC hit

JB hit

JINB bit

ORL CY, bit

ANL CY, bit

MOV bit, CY

MOV CY, bit

CPL bit

CLR bit

SETB bit

ORL CY, /bit

MM OO0O|@|I>P|lo|o|N|w|[N|F|X

ANL CY, /bit

Table 28PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
PUSH #datal6 C A 6 #datal6 (high) #datal6 (low)
PUSH #data C A 2 #data
PUSH Rm C A m 8
PUSH WRj C A jI2 9
PUSH DRk C A k/4 B
MOV DRk, PC C A k/4 1
POP Rm D A m 8
POPWR] D A il2 9
POP DRk D A k/4 B

Rev. E — 20 December, 2000
5.18

AIMEL

I
WIRELESS & uC

TSC80251

Table 29Control I nstructions

Instruction Byte O Byte 1 Byte 2 Byte 3
ACALL addr11 addr[10:9] 1 1 addr[7:0]
AJIMP addr11 addr[10:8] 0 1 addr[7:0]
EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]
ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]
LIMP @WRj 8 9 2 4
LCALL @WR; 9 9 il2 4
EJMP @DRk 8 9 k/4 8
ECALL @DRk 9 9 k/4 8
ERET A A
JE e 8 8 rel
INE rel 7 8 rel
JLEre 2 8 rel
JG rel 3 8 rel
JsL rel 4 8 rel
JSGE rel 5 8 rel
JSLE el 0 8 rel
JSGrel 1 8 rel
TRAP B 9

Rev. E — 20 December, 2000

519

TSC80251

AIMEL

I)
WIRELESS & uC

Table 30Displacement/Extended MOVs|nstructions

Instruction Byte O Byte 1 Byte 2 Byte 3
MOV Rm, @WR +dis16 0 9 m ir2 dig[15:8] dig[7:0]
MOVWRk, @WR; +dis16 4 9 i2 k/2 dis[15:8] dig7:0]
MOV Rm, @DRK +dis24 2 9 m k/4 dig[15:8] dig7:0]
MOV WR;j, @DRKk +dis24 6 9 ir2 k/4 dig[15:8] dig7:0]
MOV @WR] +disl6, Rm 1 9 m ir2 dis[15:8] dig7:0]
MOV @WR +dis16, WRk 5 9 i2 kr2 dig[15:8] dig[7:0]
MOV @DRk +dis24, Rm 3 9 m k/4 dig[15:8] dig7:0]
MOV @DRk +dis24, WRj 7 9 i2 k/4 dis[15:8] dig7:0]
MOVSWR]j, Rm 1 A jl2 m
MOVZ WRj, Rm 0 A j2 m
MOV WRjd, @WRjs 0 B jg2 8 jdr2 0
MOV WR;j, @DRk 0 B k/4 A 2 0
MOV @WRjd, WRjs 1 B jsl2 8 jar2 0
MOV @DRk, WRj 1 B k/4 A 2 0
MQV dir8, Rm 7 A m 3 dir8 addr
MOV dir8, WRj 7 A j12 5 dir8 addr
MOV dir8, DRk 7 A k4 D dir8 addr
MOV dir16, Rm 7 A m 1 dir16 addr (high) dir16 addr
(low)
MOV dirl6, WRj 7 A jI2 7 dir16 addr (high) dir16 addr
(low)
MOV dir16, DRk 7 A ki/4 = dir16 addr (high) dir16 addr
(low)
MOV @WRj, Rm A 2 9 m 0
MOV @DRk, Rm A ki4 B m 0
Table 31Shift Instructions
Instruction Byte 0(x) Byte 1
1 SRA Rm 0 E m 0
2 SRA WRj 0 E 2 4
3 SRL Rm 1 E m 0
4 SRI WRj 1 E 2 4
5 SLL Rm 3 E m 0
6 SLL WRj 3 E jl2 4

5.20

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

Table 32| NC/DEC Instructions

Instruction Byte 0(x) Byte 1
1 INC Rm, #short 0 B m 00 vv
2 INC WRj, #short 0 B jl2 01lwv
3 INC DRk, #short 0 B k/4 11 wv
4 DEC Rm, #short 1 B m 00 wv
5 DEC WR;, #short 1 B jl2 01wv
6 DEC DRk, #short 1 B k/4 11 wv

Table 33Encoding for INC/DEC Instructions

WV #short
00 1
01 2
10 4

Rev. E — 20 December, 2000

521

TSC80251 AIMEL

WIRELESS & uC

11. Instruction Descriptions

This section describes each instruction in the C251 Architecture.

Rev. E — 20 December, 2000
5.22

AIMEL

I
WIRELESS & uC

TSC80251

ACALL <addr11>

Function:

Absolute call

Description:

Unconditionally calls a subroutine at the specified address. The instruction increments the 3-byte PC twice to obtain
the address of the following instruction, then pushes bytes 0 and 1 of the result onto the stack (byte O first) and
increments the stack pointer twice. The destination addressis obtained by successively concatenating bits 15-11 of the
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start
within the same 2K byte “page” of the program memory as the first byte of the instruction following ACALL.

FLAGS:

CY

AC

oV N

Example:

The stack pointer (SP) contains 07h and the label " SUBRTN” is at program memory location 0345h. After executing
the instruction ACALL SUBRTN at location 0123h, SP contains 09h; on—chip RAM locations 09h and 08h contain

01h and 25h, respectively; and the PC contains 0345h.

[Encoding]

[a10|a9|a81 | 1 | addr7—addr4 | addr3-addr0
Hex Codein: Operation:
Binary Mode = [Encoding] ACALL
Source Mode = [Encoding] (PC) « (PC)+2

(SP) - (SP)+1

((SP)) « (PC.7:0)

(SP) - (SP)+1

((SP)) ~ (PC.15:8)
(PC.10:0) ~ page address

Rev. E — 20 December, 2000

523

T SC80251 AIMEL

WIRELESS & uC

ADD <dest>,<src>

Function:

Add

Description:

Adds the source operand to the destination operand, which can be a register or the accumulator, leaving the result in
the register or accumulator. If there is a carry out of bit 7 (CY), the CY flag is set. If byte variables are added, and if
thereis a carry out of bit 3 (AC), the AC flag is set. For addition of unsigned integers, the CY flag indicates that an
overflow occurred.

If thereisacarry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV flag is set. When adding
signed integers, the OV flag indicates a negative number produced as the sum of two positive operands, or a positive
sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 hit)
Four source operand addressing modes are allowed: register, direct, register—indirect and immediate.

FLAGS:
CcY AC oV N z
4 - -

Example:

Register 1 contains 0C3h (11000011B) and register 0 contains 0OAAh (10101010B). After executing the instruction
ADD R1,RO register 1 contains 6Dh (01101101B), the AC flag is clear, and the CY and OV flags are set.

ADD A #data
[Encoding]
’ 2 ‘ 4 I immed. data ‘
Hex Codein: Operation:
Binary Mode = [Encoding] ADD
Source Mode = [Encoding] (A) < (A) + #data
ADD A,dir8
[Encoding]
| 2 | 5 J adr7-addro |
Hex Codein: Operation:
Binary Mode = [Encoding] ADD
Source Mode = [Encoding] (A) < (A) +(dirB)

Rev. E — 20 December, 2000
5.24

AIMEL

I
WIRELESS & uC

TSC80251

ADD A,@Ri

[Encoding]

] 2 \ 011i

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADD A,Rn

[Encoding]

‘ 2 ‘ lrrr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

ADD
(A) < (A) +((R))

Operation:

ADD
(A) < (A)+(Rn)

ADD Rmd,Rms

[Encoding]

| 2 | C ssss SSSS
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD

Source Mode = [Encoding]

ADD WRjd, WRjs

(Rmd) — (Rmd) + (Rms)

[Encoding]

| 2 | D titt TTTT
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD

Source Mode = [Encoding]

(WRjd) — (WRjd) + (WRjs)

Rev. E — 20 December, 2000

525

T SC80251 AIMEL

WIRELESS & uC

ADD DRkd,DRks

[Encoding]
| 2 | F | v uuuu
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (DRkd) ~ (DRkd) + (DRks)

ADD Rm, #data

[Encoding]

‘ 2 ‘ E I Ssss 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (Rm) « (Rm) + #data

ADD WRj #datal6

[Encoding]
2 | B | w [4 | immeddaahi JJimmeddaalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (WRj) « (WR)j) + #datal6
ADD DRk, #0datal6
[Encoding]
’ 2 ‘ E I uuuu ‘ 8 I immed data hi I immed data low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (DRK) « (DRK) + #datal6

Rev. E — 20 December, 2000
5.26

AIMEL

I
WIRELESS & uC

TSC80251

ADD Rm,dir8
[Encoding]
[2 [E | ss | 1 | add7-add4 | addr3-addr0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (Rm) — (Rm) + (dir8)
ADD WRj,dir8
[Encoding]
| 2 | E] wm [5 | addr7addr4 | addr3-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD

Source Mode = [Encoding]

(WRJ) — (WRj) + (dir8)

ADD Rm,dir16
[Encoding]
2 E SSSS 3 addr15— addr11—addr8 addr7—-addr4 addr3—addr0
addr12
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (Rm) —~ (Rm) + (dir16)
ADD WRj,dir16
[Encoding]
2 E tttt 7 addr15— addr11—addr8 addr7—addr4 | addr3-addrO
addr12
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD

Source Mode = [Encoding]

(WRj) — (WRj) + (dir16)

Rev. E — 20 December, 2000

5.27

T SC80251 AIMEL

WIRELESS & uC

ADD Rm,@WRj

[Encoding]
2 [e m [9 [s 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (Rm) « (Rm) + (WR)))

ADD Rm,@DRk

[Encoding]

‘ 2 ‘ E I uuuu B I SSSS 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ADD
Source Mode = [Encoding] (Rm) « (Rm) + ((DRK))

Rev. E — 20 December, 2000
5.28

AIMEL TSC80251

WIRELESS & uC

ADDC A, <src>

Function:

Add with carry

Description:

Simultaneously adds the specified byte variable, the CY flag and the accumulator contents, leaving the result in the
accumulator. If thereisacarry out of bit 7 (CY), the CY flag is set; if thereis a carry out of bit 3 (AC), the AC flag
is set. When adding unsigned integers, the CY flag indicates that an overflow occurred.

If thereisacarry out of bit 6 but not out of bit 7, or acarry out of bit 7 but not bit 6, the OV flag is set. When adding
signed integers, the OV flag indicates a negative number produced as the sum of two positive operands, or a positive
sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 bit)
Four source operand addressing modes are allowed: register, direct, register—indirect and immediate.

FLAGS:
(3% AC oV N z
4 4 4

Example:

The accumulator contains 0C3h (11000011B), register 0 contains 0AAh (10101010B) and the CY flag is set. After
executing the instruction ADDC A,RO0 the accumulator contains 6Eh (01101110B), the AC flag is clear and the CY
and QV flags are set.

ADDC A #data
[Encoding]
‘ 3 ‘ 4 I immed. data ‘
Hex Codein: Operation:
Binary Mode = [Encoding] ADDC
Source Mode = [Encoding] (A) < (A) +(CY) + #data
ADDC A, dir8
[Encoding]
| 3 | 5 J aodr7-acdro |
Hex Codein: Operation:
Binary Mode = [Encoding] ADDC
Source Mode = [Encoding] (A) < (A) +(CY) + (dir8)

Rev. E — 20 December, 2000 5.29

TSC80251

AIMEL

I)
WIRELESS & uC

ADDC A,@RIi

[Encoding]

] 3 \ 011

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

ADDC ARn

[Encoding]

‘ 3 ‘ 1rrr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

ADDC
(A) « (A)+(CY) +((Ri)

Operation:

ADDC
(A) < (A)+(CY) +(Rn)

5.30

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

AJMP addr11

Function:

Absolute jump

Description:

Transfers program execution to the specified address, which isformed at run time by concatenating the upper five bits
of the PC (after incrementing the PC twice), opcode bits 7-5, and the second byte of the instruction. The destination
must therefore be within the same 2—Kbyte “page” of program memory as the first byte of the instruction following
AIMP.

FLAGS:
CY AC oV N YA

Example:

The label "JMPADR” is at program memory location 0123h. After executing the instruction AJMP JMPADR at
location 0345h the PC contains 0123h.

[Encoding]

[a10(29|a8]0 | 1 | addr7—-addr4 | addr3-addr0
Hex Codein: Operation:
Binary Mode = [Encoding] AIMP
Source Mode = [Encoding] (PC) « (PC)+2

(PC.10:0) ~ page address

Rev. E — 20 December, 2000 5.31

T SC80251 AIMEL

WIRELESS & uC

ANL <dest>,<src>

Function:
Logica—-AND

Description:
Performs the bitwise logical—AND (A) operation between the specified variables and stores the results in the

destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the register or accumulator, the
source can use register, direct, register—indirect or immediate addressing; when the destination is a direct address, the
source can be the accumulator or immediate data.

Note:
When this instruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.
FLAGS:
CY AC oV N z

Example:

Register 1 contains 0C3h (11000011B) and register 0 contains 55h (01010101B). After executing the instruction ANL
R1, RO register 1 contains 41h (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bitsin any RAM location or
hardware register. The mask byte determining the pattern of bits to be cleared would either be an immediate constant
contained in the instruction or a value computed in the register or accumulator at run time. The instruction ANL
P1,#01110011B clears bits 7, 3, and 2 of output Port 1.

ANL dir8,A
[Encoding]
| 5 | 2 | acdr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] ANL
Source Mode = [Encoding] (dir8) — (dir8) A (A)

Rev. E — 20 December, 2000
5.32

AIMEL

I
WIRELESS & uC

TSC80251

ANL dir 8 #data

[Encoding]
| 5 | 3 | acdr7-addro [immed data
Hex Codein: Operation:
Binary Mode = [Encoding] ANL
Source Mode = [Encoding] (dir8) ~ (dir8) A #data
ANL A #data
[Encoding]
‘ 5 ‘ 4 I immed data
Hex Codein: Operation:
Binary Mode = [Encoding] ANL
Source Mode = [Encoding] (A) « (A) N\ #data
ANL A,dir8
[Encoding]
| 5 | 5 J addr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] ANL
Source Mode = [Encoding] (A) <« (A) A (dir)
ANL A,@RI
[Encoding]
| 5 | 011 |
Hex Codein: Operation:
Binary Mode = [Encoding] ANL
Source Mode =[A5][Encoding] (A) « (A)YA((RD))

Rev. E — 20 December, 2000

533

TSC80251

AIMEL

I)
WIRELESS & uC

ANL A,Rn

[Encoding]

’ 5 ‘ 1rrr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

ANL
(A) < (A)A(Rn)

ANL Rmd,Rms

[Encoding]

| 5 | C SSSS

Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

ANL WRjd,WRjs

(Rmd) —~ (Rmd) A (Rms)

[Encoding]

| 5 | D TTTT
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

ANL Rm #data

(WRjd) — (WRjd) A (WRjs)

[Encoding]

’ 5 ‘ F 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(Rm) — (Rm) A #data

534

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

ANL WRj #datal6

[Encoding]

| 5 | E | J immed daahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(WRj) — (WRj) A #datal6

ANL Rm,dir8

[Encoding]

| 5 | E RS 1 J addr7—addra | addr3—adaro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL
Source Mode = [Encoding] (Rm) « (Rm) A (dir8)

ANL WRj,dir8

[Encoding]

| 5 | E I tttt 5 | addr7-addra | addra—adaro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL
Source Mode = [Encoding] (WRj) « (WRj) A (dirB)

ANL Rm,dir 16

[Encoding]

| 5 | E | s 3 | acdri5-addrs | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(Rm) — (Rm) A (dir16)

Rev. E — 20 December, 2000

5.35

TSC80251

AIMEL

I)
WIRELESS & uC

ANL WRj,dir16

[Encoding]

| 5 | E | titt 7 | addr15-addr8 | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(WRj) (WR]j) A (dir16)

ANL Rm,@WRj

[Encoding]

| 5 | E I titt 9 I ssss 0
Hex Codein: Operation:

Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(Rm) (Rm) A (WRj))

ANL Rm,@DRk

[Encoding]

’ 5 ‘ E I uuuu B I SSSS 0
Hex Codein: Operation:

Binary Mode = [A5][Encoding] ANL

Source Mode = [Encoding]

(Rm) — (Rm) A ((DRK))

5.36

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

ANL CY,<src-bit>

Function:

Logica-AND for bit variables

Description:

If the boolean value of the source bit isalogica 0, clear the CY flag; otherwise leave the CY flag in its current state.
A slash (/") preceding the operand in the assembly language indicates that the logical complement of the addressed
bit is used as the source value, but the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

FLAGS:

CY

AC

ov N

-

Example:

Set the CY flagif, and only if, PL.O=1, ACC. 7=1and OV =0:

MOV CY,P1.0; Load carry with input pin state

ANL CY,ACC.7 ; AND carry with accumulator bit 7
ANL CY,/OV ; AND with inverse of overflow flag

ANL CY,bit51

[Encoding]

8 | >

bit addr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL CY, /bit51

[Encoding]

[8 | o0

bit addr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

ANL
(CY) « (CY) A (bit52)

Operation:

ANL
(CY) « (CY) A O (bit51)

Rev. E — 20 December, 2000

5.37

TSC80251

AIMEL

I)
WIRELESS & uC

ANL CY,bit

[Encoding]

A [e

Oyyy | bit addr

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL CY,/bit

[Encoding]

Operation:

ANL
(CY) « (CY) A (bit)

A | o

Oyyy | bit addr

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation:

ANL
(CY) « (CY)A D (bit)

5.38

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

CJINE <dest> <src> rel

Function:

Compare and jump if not equal.

Description:

Compares the magnitudes of the first two operands and branches if their values are not equal. The branch destination
is computed by adding the signed relative displacement in the last instruction byte to the PC, after incrementing the
PC to the start of the next instruction. If the unsigned integer value of <dest—byte> is less than the unsigned integer
value of <src—byte>, the CY flag is set. Neither operand is affected.

Thefirst two operands allow four addressing mode combinations: the accumulator may be compared with any directly
addressed byte or immediate data and any indirect RAM location or working register can be compared with an
immediate constant.

FLAGS:
CY AC oV N z
- _ _ - 4
Example:

The accumulator contains 34h and R7 contains 56h. After executing the first instruction in the sequence
CINE R7#60h,NOT_EQ;R7=60h; ...
NOT_EQ: JC REQ_LOW ; IFR7<60h
:R7 > 60h

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag, this instruction
determines whether R7 is greater or less than 60h.

If the data being presented to Port 1 is also 34h, then executing the instruction, WAIT: CINE A,P1,WAIT clears the
CY flag and continues with the next instruction in the sequence, since the accumulator does equal the data read from
Port 1. (If some other value was being input on Port 1, the program loops at this point until the Port 1 data changes to
34h.)

CJNE A #data,rel
[Encoding]
| B | 4 | immeddaa | refaddr |
Hex Codein: Operation:
Binary Mode = [Encoding] (PC) - (PC)+3
Source Mode = [Encoding] IF[(A) # #datd]
THEN
(PC) ~ (PC) + relative offset
IF[(A) < #data]
THEN
(CY) -1
ELSE
(CY) -0

Rev. E — 20 December, 2000 5.39

TSC80251

AIMEL

I)
WIRELESS & uC

CIJNE A dir8,ré

[Encoding]
| B | 5 | adrr-addo | refadar]
Hex Codein: Operation:
Binary Mode = [Encoding] (PC) - (PC)+3
Source Mode = [Encoding] IF[(A) # (dir8)]
THEN

(PC) ~ (PC) + relative offset
IF [(A) < (cir8)]

THEN
(CY) -1
ELSE
(CY) - 0
CINE @Ri,#data,rel
[Encoding]
| B | o | immeddaa | refadr |
Hex Codein: Operation:
Binary Mode = [Encoding] (PC) - (PC)+3
Source Mode = [A5][Encoding] IF [((Ri)) # #data]
THEN

CJINE Rn,#data,rel
[Encoding]

(PC) ~ (PC) + relative offset
IF [((Ri)) < #data]
THEN

(CY) « 1
ELSE

(CY) -0

‘ B ‘ 1rrr

I immed data I

rel addr \

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

(PC) — (PC)+3
IF[(Rn) # #data]
THEN
(PC) ~ (PC) + relative offset
IF[(Rn) < #data]
THEN
(CY) -1
ELSE
(CY) -0

5.40

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

CLRA

Function:

Clear accumulator

Description:

Clears the accumulator (i.e., resets all bitsto zero).

FLAGS:
cY AC oV VA
_ _ _ 4
Example:

The accumulator contains 5Ch (01011100B). The instruction CLR A clears the accumulator to 00h (00000000B).

[Encoding]

[e [

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

CLR
(A) -0

Rev. E — 20 December, 2000

541

TSC80251

AIMEL

I)
WIRELESS & uC

CLR bit

Function:

Clear bit

Description:

Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

FLAGS: Only for instructions with CY as the operand.

CY

AC

ov N YA

1~

Example:

Port 1 contains 5Dh (01011101B). After executing the instruction CLR P1.2 Port 1 contains 59h (01011001B).

CLR bit51

[Encoding]

¢ | o

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CLRCY

[Encoding]

. c [s

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

CLR
(bit51) — O

Operation:

CLR
(CY) < 0

542

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

CLR bit

*If thisinstruction addresses a Port (Px, x = 0-3), add 2 states.

[Encoding]

| A | 9 | C [Oyy | bit addr
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CLR
Source Mode = [Encoding] (bit) < O

Rev. E — 20 December, 2000 5.43

T SC80251 AIMEL

WIRELESS & uC

CMP <dest>,<src>

Function:

Compare

Description:

Subtracts the source operand from the destination operand. The result is not stored in the destination operand. If a
borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative value is subtracted from a
positive value, or a positive result when a positive valueis subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16 or 32 bit)
The source operand allows four addressing modes: register, direct, immediate and indirect.

FLAGS:
cY AC oV N z
4 4 4

Example:

Register 1 contains 0C9h (11001001B) and register 0 contains 54h (01010100B). The instruction CMP R1,R0 clears
the CY and AC flags and setsthe OV flag.

CMPRmd,Rms

[Encoding]
| B | C | s SSSS
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (Rmd) - (Rms)
CMP WRjd,WRjs
[Encoding]
| B | D I titt TTTT
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (WRjd) - (WRjs)

Rev. E — 20 December, 2000
5.44

AIMEL

I
WIRELESS & uC

TSC80251

CMP DRkd,DRks

[Encoding]

’ B ‘ F uuuu uuuu
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP

Source Mode = [Encoding]

(DRKd) - (DRkS)

CMP Rm #data
[Encoding]
‘ B ‘ E SSSS 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (Rm) - #data
CMP WRj #datal6
[Encoding]
| B | E tttt 4 | immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (WRj) - #datal6
CMP DRk, #0datal6
[Encoding]
‘ B ‘ E uuuu 8 I immed data hi I immed data hi
Hex Codein: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CMP (DRK) - #0datal6

Rev. E — 20 December, 2000

545

T SC80251 AIMEL

WIRELESS & uC

CMP DRk, #ldatal6
[Encoding]
’ B ‘ E I uuuu C I immed data hi I immed data hi
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (DRK) - #1datal6
CMPRm,dir8
[Encoding]
| B | E | s 1 J addr7-acdro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (Rm) - (dir8)
CMP WRj,dir8
[Encoding]
| B | E I tttt 5 | addr7-acdro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (WRj) - (dir8)
CMP Rm,dir16
[Encoding]
| B | E | s 3 | acdri5-addr || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP
Source Mode = [Encoding] (Rm) - (dir8)

Rev. E — 20 December, 2000
5.46

AIMEL

I
WIRELESS & uC

TSC80251

CMP WRj,dir16

[Encoding]

| B | E | w 7 | acri5-addrs || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP

Source Mode = [Encoding]

CMP Rm,@WR;]

(WRj) - (dir16)

[Encoding]

| B | E I tttt 9 S 0000
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP

Source Mode = [Encoding]

(Rm) - (WRy))

CMP Rm,@DRk

[Encoding]

‘ B ‘ E I uuuu B I SSss 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CMP

Source Mode = [Encoding]

(Rm) - ((DRK))

Rev. E — 20 December, 2000

5.47

T SC80251 AIMEL

WIRELESS & uC

CPL A

Function:
Complement accumul ator

Description:

Logically complements (O) each bit of the accumulator (one’s complement). Clear bitswhich are set and set bitswhich
are cleared.

FLAGS:
CY AC ov N z

Example:

The accumulator contains 5Ch (01011100B). After executing the instruction CPL A the accumulator contains 0A3h
(10100011B).

[Encoding]

. F [4 |

Hex Codein: Operation:
Binary Mode = [Encoding] CPL

Source Mode = [Encoding] (A) « O(A)

Rev. E — 20 December, 2000
5.48

AIMEL TSC80251

WIRELESS & uC

CPL bit

Function:

Complement bit

Description:

Complements (O) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL can operate on the CY or
any directly addressable hit.

Note:
When this instruction is used to modify an output pin, the value used as the original data is read from the output data latch, not the input pin.

FLAGS: Only for instructions with CY as the operand.
CcY AC oV N z
[l

Example:

Port 1 contains 5Bh (01011101B). After executing the instruction sequence CPL P1.1 CPL P1.2 Port 1 contains 5Bh
(01011011B).

CPL bit51
[Encoding]
| B | 2 | vitadar
Hex Codein: Operation:
Binary Mode = [Encoding] CPL
Source Mode = [Encoding] (bit51) ~ O(bit51)
CPL CY
[Encoding]
L 8 [3 |
Hex Codein: Operation:
Binary Mode = [Encoding] CPL
Source Mode = [Encoding] (CY) « O(CY)

Rev. E — 20 December, 2000 5.49

TSC80251 AIMEL

CPL bit
[Encoding]
| A | 9 | B [oy | bit addr
Hex Codein: Operation:
Binary Mode = [A5][Encoding] CPL

Source Mode = [Encoding] (bit) — O(bit)

Rev. E — 20 December, 2000
5.50

AIMEL TSC80251

WIRELESS & uC

DA A

Function:

Decimal—adjust accumulator for addition

Description:

Adjuststhe 8-hit valuein the accumul ator that resulted from the earlier addition of two variables (each in packed-BCD
format), producing two 4-hit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is set, six is added to the
accumulator, producing the proper BCD digit in the low nibble. This internal addition sets the CY flag if a carry out
of the lowest 4 bits propagated through all higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set or if the upper four bits now exceed nine (1010XXXX-1111XXXX), these four bits are
incremented by six, producing the proper BCD digit in the high nibble. Again, thissetsthe CY flag if there wasacarry
out of the upper four bits, but does not clear the carry. The CY flag thus indicates if the sum of the original two BCD
variablesis greater than 100, allowing multiple—precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, thisinstruction performs the decimal conversion by adding
00h, 06h, 60h or 66h to the accumulator, depending on initial accumulator and PSW conditions.

Note:
DA A cannot simply convert a Hexadecimal number in the accumulator to BCD notation, nor does DA A apply to decimal subtraction.

FLAGS:
CY AC ov
v 3 3

Example:

The accumulator contains 56h (01010110B), which represents the packed BCD digits of the decima number 56.
Register 3 contains 67h (01100111B), which represents the packed BCD digits of the decimal number 67. The CY flag
is set. After executing the instruction sequence ADDC A,RS.

DA A the accumulator contains OBEh (10111110B) and the CY and AC flags are clear. The Decimal Adjust instruction
then alters the accumulator to the value 24h (00100100B), indicating the packed BCD digits of the decimal number
24, the lower two digits of the decimal sum of 56, 67, and the carry—in. The CY flag is set by the Decimal Adjust
instruction, indicating that a decimal overflow occurred. The true sum of 56, 67 and 1 is 124. BCD variables can be
incremented or decremented by adding O1h or 99h. If the accumulator contains 30h (representing the digits of 30
decimal), then the instruction sequence:

ADD A, #99h.

DA A
leaves the CY flag set and 29h in the accumulator, since 30 + 99 = 129. The low byte of the sum can be interpreted
tomean 30- 1= 29.

Rev. E — 20 December, 2000 5.51

TSC80251 AIMEL

I)
WIRELESS & uC

DA A

[Encoding]

.o [4 |

Hex Codein: Operation:
Binary Mode = [Encoding] DA

Source Mode = [Encoding] (Contents of accumulator are BCD)

IF [[(A.3:0)>9] V [(AC) = 1]]
THEN (A.3:0) — (A.3:0)+ 6
AND
IF[[(A.7:4)>9] V [(CY) = 1]]
THEN (A.7:4) « (A.7:4)+6

Rev. E — 20 December, 2000
5.52

AIMEL TSC80251

WIRELESS & uC

DEC byte

Function:

Decrement

Description:

Decrements the specified byte variable by 1. An original value of 00h underflows to OFFh. Four operands addressing
modes are allowed: accumulator, register, direct or register—indirect.

Note:
When thisinstruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS:
CY AC ov N VA

Example:

Register 0 contains 7Fh (01111111B). On—chip RAM locations 7Eh and 7Fh contain 00h and 40h, respectively. After
executing the instruction sequence:

DEC @RO

DECRO

DEC @RO
register O contains 7Eh and on—chip RAM locations 7Eh and 7Fh are set to OFFh and 3Fh, respectively.

DEC A
[Encoding]
T T
Hex Codein: Operation:
Binary Mode = [Encoding] DEC
Source Mode = [Encoding] (A) -« (A)-1
DEC dir8
[Encoding]
] 1 | 5 J addr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] DEC
Source Mode = [Encoding] (dir8) — (dir8)-1

Rev. E — 20 December, 2000 5.53

T SC80251 AIMEL

WIRELESS & uC

DEC @RI
[Encoding]
| 1 | o11i |
Hex Codein: Operation:
Binary Mode = [Encoding] DEC
Source Mode = [A5][Encoding] ((Ri)) « ((Ri))-1
DEC Rn
[Encoding]
‘ 1 ‘ Irrr ‘
Hex Codein: Operation:
Binary Mode = [Encoding] DEC
Source Mode = [A5][Encoding] (Rn) « (Rn)-1

Rev. E — 20 December, 2000
5.54

AIMEL TSC80251

WIRELESS & uC

DEC <dest>,<src>

Function:

Decrement

Description:

Decrementsthe specified variable at the destination operand by 1, 2 or 4. An original value of 00h underflowsto OFFh.

FLAGS:
CY AC ov N z

Example:

Register 0 contains 7Fh (01111111B). After executing the instruction sequence DEC RO,#1 register O contains 7Eh.

DEC Rm,#short
[Encoding]
‘ 1 ‘ B I SSSS 00wv
Hex Codein: Operation:
Binary Mode = [A5][Encoding] DEC
Source Mode = [Encoding] (Rm) « (Rm) - #short

DEC WRj #short

[Encoding]
| 1 | B | titt 01wy
Hex Codein: Operation:
Binary Mode = [A5][Encoding] DEC
Source Mode = [Encoding] (WRj) « (WRj) - #short

DEC DRk #short

[Encoding]
‘ 1 ‘ B I uuuu 11vv
Hex Codein: Operation:
Binary Mode = [A5][Encoding] DEC
Source Mode = [Encoding] (DRK) ~ (DRK) - #short

Rev. E — 20 December, 2000 5.55

TSC80251

AIMEL

I)
WIRELESS & uC

DIV <dest>,<src>

Function:

Divide

Description:

Dividesthe unsigned integer in the register by the unsigned integer operand in register addressing mode and clears the

CY and QV flags.

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-hit quotient is stored in the higher byte of
the word where Rmd resides; the 8-hit remainder is stored in the lower byte of the word where Rmd resides. For
example: register 1 contains 251 (OFBh or 11111011B) and register 5 contains 18 (12h or 00010010B). After executing
theinstruction DIV R1,R5 register 0 contains 13 (ODh or 00001101B); register 1 contains 17 (11h or 00010001B), since
251 =(13x 18) + 17; and the CY and OV hits are clear (See Flags).

FLAGS: The CY flagiscleared. The N flag is set if the MSB of the quotient is set. The Z flag
isset if the quotient is zero.:

CY

AC

ov N

z

0

V e

1/

Exception: if <src> contains 00h, the values returned in both operands are undefined; the CY flag is cleared, OV flag

is set, and the rest of the flags are undefined.

FLAGS:
CY AC oV N z
0 ? 1 ? ?
DIV Rmd,Rms
[Encoding]
8 | | ssss_ |
Hex Codein: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DIV (8-hit operands)

(Rmd) < remainder (Rmd) / (Rms)

if <dest>md=0,2/4,..,14

(Rmd+1) ~ quotient (Rmd) / (Rms)
(Rmd-1) — remainder (Rmd) / (Rms)
if <dest>md=1,35,..,15

(Rmd) — quotient (Rmd) / (Rms)

5.56

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

DIV WRjd,WRjs

[Encoding]
| 8 | D I tttt TTITT |
Hex Codein: Operation:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

DIV (16-hit operands)

(WRjd) ~ remainder (WRjd) / (WRjs)

if <dest>jd=0,4,8,...28

(WRjd+2) ~ quotient (WRjd) / (WRjs)
(WRjd-2) — remainder (WRjd) / (WRjs))
if <dest>jd=2, 6, 10, ... 30

(WRjd) « quotient (WRjd) / (WRjs

For example, for adestination register WR4, assume the quotient is 1122h and the remainder is 3344h. Then, theresults

are stored in these register file locations:

L ocation 4

Contents 33h

44h 11h 22h

Rev. E — 20 December, 2000

557

TSC80251 AMEL

DIV AB

Function:

Divide
Description:

Divides the unsigned 8-hit integer in the accumulator by the unsigned 8-bit integer in register B. The accumulator
receivesthe integer part of the quotient; register B receives the integer remainder. The CY and OV flags are cleared.

Exception: if register B contains 00h, the values returned in the accumulator and register B are undefined; the CY flag
iscleared and the OV flag is set.

FLAGS:
CY AC oV N z
0 y -

For division by zero:

FLAGS:
cY AC oV N z
0 ? 1 ? ?
Example:

The accumulator contains 251 (OFBh or 11111011B) and register B contains 18 (12h or 00010010B). After executing
theinstruction DIV AB the accumulator contains 13 (ODh or 00001101B); register B contains 17 (11h or 00010001B),
since 251 = (13 x 18) + 17; and the CY and OV flags are clear.

DIVAB

[Encoding]

8 [4 |

Hex Codein: Operation:

Binary Mode = [Encoding] DIV

Source Mode = [Encoding] (A) < quotient (A)/(B)

(B) — remainder (A)/(B)

Rev. E — 20 December, 2000
5.58

AIMEL TSC80251

WIRELESS & uC

DJINZ <byte>,<rel-addr>

Function:

Decrement and jump if not zero

Description:

Decrements the specified location by 1 and branches to the address specified by the second operand if the resulting
valueisnot zero. An original vaue of 00h underflowsto OFFh. The branch destination iscomputed by adding the signed
relative—displacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the
following instruction.

The location decremented may be aregister or directly addressed byte.

Note:
When thisinstruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS:
CY AC ov N z

Example:

The on—chip RAM locations 40h, 50h, and 60h contain O1h, 70h, and 15h, respectively. After executing the following
instruction sequence:

DJNZ 40h,LABEL1
DJINZ 50h,LABEL2
DJINZ 60h,LABEL

on—chip RAM locations 40h, 50h, and 60h contain 00h, 6Fh, and 15h, respectively, and program execution continues
at label LABEL2. (Thefirst jump was not taken because the result was zero.)

Thisinstruction provides asimple way of executing a program loop a given number of times, or for adding a moderate
time delay (from 2 to 512 machine cycles) with asingle instruction.

Theinstruction sequence,

TOGGLE: MOV R2, #8
CPL P17
DJINZ R2, TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three states:
two for DINZ and one to alter the pin.

Rev. E — 20 December, 2000 5.59

TSC80251

AIMEL

I)
WIRELESS & uC

DJINZ dir8rel

[Encoding]

| D | 5 J addr7-addro | rel addr
Hex Codein: Operation:
Binary Mode = [Encoding] DJINZ
Source Mode = [Encoding] (PC) - (PC)+3

DJNZ Rn,rd

[Encoding]

‘ D ‘ 1rrr

rel addr

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

(dir8) — (dirg) - 1

IF [[(dir8) > 0] or [(dir8) < 0]]
THEN

(PC) (PC) + rel

Operation:

DJINZ

(PC) ~ (PC) + size(instr)
(Rn) « (Rn)-1

IF[[(Rn) > Q] or [(Rn) <0]]
THEN

(PC) « (PC) +ré

5.60

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

ECALL <dest>

Function:

Extended call

Description:

Calls a subroutine located at the specified address. The instruction adds four to the program counter to generate the
address of the next instruction and then PUSHes the 24-bit result onto the stack (high bytefirst), incrementing the stack
pointer by three. The 8 bits of the high word and the 16 bits of the low word of the PC are then |oaded, respectively,
with the second, third and fourth bytes of the ECALL instruction. Program execution continues with the instruction
at this address. The subroutine may therefore begin anywhere in the full 16-Mbyte memory space.

FLAGS:
CY AC oV N V4

Example:

The stack pointer contains 07h and the label "SUBRTN?” is assigned to program memory location 123456h. After
executing the instruction ECALL SUBRTN at |ocation 054321h, SP contains OAh; on—chip RAM locations 08h, 09h
and OAh contain 05h, 43h and 21h, respectively; and the PC contains 123456h.

ECALL addr24

[Encoding]

| 9 | A J acdr23- adar16 [J addris-adars | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ECALL
Source Mode = [Encoding] (PC) ~ (PC) + size(instr)

(SP) — (SP)+1
(SP)) - (PC.23:16)
(SP) « (SP) +1
(SP)) — (PC.15:8)
(SP) — (SP)+1
((SP)) < (PC.7:0)
(PC) « (addr.23:0)

Rev. E — 20 December, 2000 5.61

TSC80251

AIMEL

I)
WIRELESS & uC

ECALL @DRk

[Encoding]

’ 9 ‘ 9 I uuuu 8

Hex Codein: Operation:
Binary Mode = [A5][Encoding] ECALL

Source Mode = [Encoding]

(PC) ~ (PC) + size(instr)
(SP) - (SP)+1

((SP)) ~ (PC.23:16)
(SP) - (SP)+1

((SP)) ~ (PC.15:8)

(SP) - (SP)+1

((SP)) ~ (PC.7:0)

(PC) ~ ((DRK))

5.62

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

EIJMP <dest>

Function:

Extended jump

Description:

Causes an unconditional branch to the specified address by loading the 8 bits of the high order and 16 bits of the low
order words of the PC with the second, third, and fourth instruction bytes. The destination may be therefore be anywhere
in the full 16-Mbyte memory space.

FLAGS:
CY AC oV N z

Example:

The label "IMPADR” is assigned to the instruction at program memory location 123456h. The instruction is EIMP
JMPADR

EJMP addr24

[Encoding]

] 8 | A J adr23- adar16 [addris-adars | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] EIMMP
Source Mode = [Encoding] (PC) « (addr.23:0)

EJMP @DRk

[Encoding]

‘ 8 ‘ 9 I uuuu 8
Hex Codein: Operation:
Binary Mode = [A5][Encoding] EMP
Source Mode = [Encoding] (PC) ~ ((DRK))

Rev. E — 20 December, 2000 5.63

TSC80251

AIMEL

I)
WIRELESS & uC

ERET

Function:

Extended return

Description:

POPs byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and decrements the stack pointer by 3.
Program execution continues at the resulting address, which normally is the instruction immediately following

ECALL.

FLAGS:

CY

AC

ov

Example:

The stack pointer contains OBh. On—chip RAM locations 08h, 09h and OAh contain 01h, 23h and 49h, respectively.
After executing the instruction ERET the stack pointer contains 08h and program execution continues at location

012349h.

ERET

[Encoding]

LA | A

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation:

ERET
(PC.7:0) — ((SP))
(SP) « (SP)- 1
(PC.15:8) — ((SP))
(SP) — (SP)- 1
(PC.23:16) ((SP))
(SP) « (SP)- 1

5.64

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

INC <Byte>

Function:

Increment

Description:

Increments the specified byte variable by 1. An origina value of OFFh overflows to 00h. Three addressing modes are
alowed for 8-hit operands: register, direct, or register—indirect.

Note:
When thisinstruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS:
CY AC oVv N z

Example:

Register 0 contains 7Eh (011111110B) and on—chip RAM locations 7Eh and 7Fh contain OFFh and 40h, respectively.
After executing the instruction sequence:

INC @RO
INCRO
INC @RO

register O contains 7Fh and on—chip RAM locations 7Eh and 7Fh contain 00h and 41h, respectively.

INC A
[Encoding]
Lo [4
Hex Codein: Operation:
Binary Mode = [Encoding] INC
Source Mode = [Encoding] A) - (A)+1
INC dir8
[Encoding]
| 0 | 5 J adar7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] INC
Source Mode = [Encoding] (dir8) — (dir8) +1

Rev. E — 20 December, 2000 5.65

TSC80251

AIMEL

I)
WIRELESS & uC

INC @Ri

[Encoding]

| 0 | oni

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

INC Rn

[Encoding]

‘ 0 ‘ 1rrr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

INC
((Ri) « ((R)) +1

Operation:

INC
(Rn) « (Rn)+1

5.66

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

INC <dest>,<src>

Function:

Increment
Description:
Increments the specified variable by 1, 2 or 4. An original value of OFFh overflows to 00h.

FLAGS:

CY AC ov N y4

Example:
Register 0 contains 7Eh (011111110B). After executing the instruction INC RO,#1 register O contains 7Fh.

INC Rm,#short
[Encoding]
‘ 0 ‘ B I SSss 00wv
Hex Codein: Operation:
Binary Mode = [A5][Encoding] INC
Source Mode = [Encoding] (Rm) « (Rm) + #short
INC WRj #short
[Encoding]
| 0 | B | tttt 01vv
Hex Codein: Operation:
Binary Mode = [A5][Encoding] INC
Source Mode = [Encoding] (WRj) « (WRj) + #short
INC DRK,#short
[Encoding]
‘ 0 ‘ B I uuuu 11vv
Hex Codein: Operation:
Binary Mode = [A5][Encoding] INC
Source Mode = [Encoding] (DRK) ~ (DRK) + #shortdata pointer

Rev. E — 20 December, 2000 5.67

T SC80251 AIMEL

WIRELESS & uC

INC DPTR

Function:

Increment data pointer

Description:

Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an overflow of the low byte
of the data pointer (DPL) from OFFh to 00h increments the high byte of the data pointer (DPH) by one. An overflow
of the high byte (DPH) does not increment the high word of the extended data pointer (DPX = DR56).

FLAGS:
CY AC oV N z

Example:

Registers DPH and DPL contain 12h and OFEh, respectively. After the instruction sequence:

INC DPTR
INC DPTR
INCDPTR

DPH and DPL contain 13h and O1h, respectively.

INC DPTR

[Encoding]

A | 3 |

Hex Codein: Operation:

Binary Mode = [Encoding] INC

Source Mode = [Encoding] (DPTR) «~ (DPTR) +1

Rev. E — 20 December, 2000
5.68

AIMEL TSC80251

WIRELESS & uC

JB <bit>rel

Function:

Jump if bit set

Description:

If the specified bit is a one, jump to the address specified; otherwise proceed with the next instruction. The branch

destination is computed by adding the signed relative displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. The bit tested is not modified.

FLAGS:
CY AC oV N z

Example:

Input Port 1 contains 11001010B and the accumulator contains 56h (01010110B). After the instruction sequence:

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at l1abel LABEL 2.

Rev. E — 20 December, 2000 5.69

TSC80251

AIMEL

I)
WIRELESS & uC

Variations
JB bit51,rel
| 2 | 0 | bitaddr rel addr
Hex Codein: Operation:
Binary Mode = [Encoding] JB
Source Mode = [Encoding] (PC) - (PC)+3
IF (bit51) = 1
THEN
(PC) « (PC) +rd
JB bit,re
[Encoding]
| A | 9 I 2 | oy | bitadar [reladar
Hex Codein: Operation:
Binary Mode = [A5][Encoding] JB
Source Mode = [Encoding] (PC) < (PC) + size(instr)
IF [(bit) = 1]
THEN

(PC) - (PC)+rd

5.70

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

JBC <bit>rel

Function:

Jump if bit is set and clear bit.

Description:

If the specified bit is one, branch to the specified address; otherwise proceed with the next instruction. The bit is not
cleared if it is already a zero. The branch destination is computed by adding the signed relative displacement in the
third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction.

Note:
When this instruction is used to test an output pin, the value used as the original data is read from the output data latch, not the input pin.

FLAGS:

CY AC ov N YA
!

Example:

The accumulator contains 56h (01010110B). After the instruction sequence:

JBCACC.3LABEL1
JBCACC.2LABEL2

the accumulator contains 52h (01010010B) and program execution continues at label LABEL 2.

JBC bit51,rel
[Encoding]
| 1 | 0 | bitadar [reladdr
Hex Codein: Operation:
Binary Mode = [Encoding] JBC
Source Mode = [Encoding] (PC) - (PC)+3
IF[(bit51) = 1]
THEN
(bit51) ~ O

(PC) — (PC) + rel

Rev. E — 20 December, 2000 5.71

T SC80251 AIMEL

WIRELESS & uC

JBC bit,re
[Encoding]
| A | 9 I 1 [oyyy | bitadar || reladdr
Hex Codein: Operation:
Binary Mode = [A5][Encoding] JBC
Source Mode = [Encoding] (PC) ~ (PC) + size(instr)
IF[(bit51) = 1]
THEN
(bit51) < O

(PC) - (PC)+rd

Rev. E — 20 December, 2000
5.72

AIMEL

- —
WIRELESS & uC

®

TSC80251

JCrd

Function:

Jump if carry is set

Description:

If the CY flag is set, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing

the PC twice.

FLAGS:

CY

AC

ov N

Example:

The CY flag is clear. After the instruction sequence:

JC LABEL1
CPL CY
JC LABEL2

the CY flagis set and program execution continues at label LABEL 2.

JCré€

[Encoding]

| 4

rel addr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

Jc
(PC) — (PC)+2
IF[(CY)=1]
THEN
(PC) « (PC) +rel

Rev. E — 20 December, 2000

573

T SC80251 AIMEL

WIRELESS & uC

JEre

Function:
Jump if equal
Description:

If the Z flag is set, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

FLAGS:
CY AC oV N z

Example:

The Z flag is set. After executing the instruction JE LABEL 1 program execution continues at label LABEL 1.

JE rel

[Encoding]
| 6 | 8 J rdaar

Hex Codein: Operation:

Binary Mode = [A5][Encoding] JE

Source Mode = [Encoding] (PC) ~ (PC) + size(instr)

IF[(2)=1]
THEN

(PC) « (PC) +rd

Rev. E — 20 December, 2000
5.74

AIMEL

I
WIRELESS & uC

TSC80251

JGre

Function:

Jump if greater than

Description:

If the Z flag and the CY flag are both clear, branch to the address specified; otherwise proceed with the next instruction.
The branch destination is computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

FLAGS:

CY

AC

ov N

Example:

Theinstruction JG LABEL1 causes program execution to continue at label LABEL1 if the Z flag and the CY flag are

both clear.

JGrd

[Encoding]

s [8

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation:

JG
(PC) « (PC) + size(instr)
IF[[(Z) =0] AND [(CY) =0]]
THEN
(PC) « (PC) +rd

Rev. E — 20 December, 2000

5.75

T SC80251 AIMEL

WIRELESS & uC

JLE rel

Function:

Jump if less than or equal

Description:

If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative displacement in the second instruction byte to the PC,
after incrementing the PC twice.

FLAGS:
CY AC oV N z

Example:

Theinstruction JLE LABEL 1 causes program execution to continue at LABEL1 if the Z flag or the CY flag is set.

JLE rel
[Encoding]
| 2 | 8 J rdaar
Hex Codein: Operation:
Binary Mode = [A5][Encoding] JLE
Source Mode = [Encoding] (PC) ~ (PC) + size(instr)
IF[[(Z) =1] OR[(CY) =1]]
THEN

(PC) « (PC) +rd

Rev. E — 20 December, 2000
5.76

AIMEL TSC80251

WIRELESS & uC

JMP @A+DPTR

Function:

Jump indirect

Description:

Adds the 8-hit unsigned content of the accumulator with the 16-bit data pointer and load the resulting sum into the
lower 16 hits of the program counter. This is the address for subsequent instruction fetches. The contents of the
accumulator and the data pointer are not affected.

FLAGS:
CY AC oV N z

Example:

The accumulator contains an even number from 0 to 6. The following sequence of instructions branchs to one of four
AJIMP instructionsin ajump table starting at JMP_TBL :

MOV DPTR#IMP_TBL
JMP @A+DPTR
AIMP LABELO

AIMP LABEL1

AIMP LABEL2

AIMP LABEL3

If the accumulator contains 04h at the start this sequence, execution jumps to LABEL2. Remember that AJMP is a
two—-byteinstruction, so the jump instructions start at every other address.

JMP @A+DPTR
[Encoding]
L 3
Hex Codein: Operation:
Binary Mode = [Encoding] IMP
Source Mode = [Encoding] (PC.15:0) — (A) + (DPTR)

Rev. E — 20 December, 2000 577

TSC80251

AIMEL

I)
WIRELESS & uC

JNB bit51,rel INB bit,rel

Function:

Jump if bit not set

Description:

If the specified hit is clear, branch to the specified address; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. The bit tested is not modified.

FLAGS:

CY AC

Example:

Input Port 1 contains 11001010B and the accumulator contains 56h (01010110B). After executing the instruction

sequence:
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
program execution continues at label LABEL 2.

JNB bit51,rel

[Encoding]

| 3 | 0 | biteddr rel addr
Hex Codein: Operation:
Binary Mode = [Encoding] JINB
Source Mode = [Encoding] (PC) - (PC)+3

IF [(bit51) = 0]
THEN

(PC) (PC) + rel

JNB bit,rel

[Encoding]
| A | 9 | 3 00yy | bitadr [reladdr

Hex Codein: Operation:

Binary Mode = [A5][Encoding] INB

Source Mode = [Encoding] (PC) ~ (PC) + size(instr)

IF [(bit) = O]
THEN

(PC) — (PC) +rel

5.78

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

JNC rel

Function: Jump if carry not set

Description:

If the CY flag is clear, branch to the address specified; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative displacement in the second instruction byte to the PC, after

incrementing the PC twice to point to the next instruction. The CY flag is not modified.

FLAGS:

CY AC oV N

Example:

The CY flag is set. The instruction sequence:

JNC LABEL1
CPL CY
IJNC LABEL2

clearsthe CY flag and causes program execution to continue at label LABEL 2.

JNC rel

[Encoding]

| 5 | 0 | rcaar
Hex Codein: Operation:
Binary Mode = [Encoding] INC
Source Mode = [Encoding] (PC) - (PC)+2

IF[(CY)=0Q]
THEN

(PC) —~ (PC) +rd

Rev. E — 20 December, 2000

579

T SC80251 AIMEL

WIRELESS & uC

JNE red

Function:
Jump if not equal
Description:

If the Z flag is clear, branch to the address specified; otherwise proceed with the next instruction. The branch destination
is computed by adding the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

FLAGS:
CY AC oV N z

Example:

Theinstruction INE LABEL 1 causes program execution to continue at LABEL 1 if the Z flag is clear.

JNE rél
[Encoding]
| 7 | 8 J rdaar

Hex Codein: Operation:

Binary Mode = [A5][Encoding] INE

Source Mode = [Encoding] (PC) ~ (PC) + size(instr)

IF[(2)=0Q]
THEN

(PC) « (PC) +rd

Rev. E — 20 December, 2000
5.80

AIMEL

I
WIRELESS & uC

TSC80251

JNZ re

Function:

Jump if accumulator not zero

Description:

If any bit of the accumulator is set, branch to the specified address; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative displacement in the second instruction byte to the PC,
after incrementing the PC twice. The accumulator is not modified.

FLAGS:

CY

AC

ov N

Example

The accumulator contains 00h. After executing the instruction sequence:

JNZ LABEL1
INC A
IJNZ LABEL2

the accumulator contains 01h and program execution continues at label LABEL 2.

JNZ rel

[Encoding]

L7 | o

rel addr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

Nz
(PC) — (PC) +2
IF[(A) #0]

THEN

(PC) « (PC) +rel

Rev. E — 20 December, 2000

581

T SC80251 AIMEL

WIRELESS & uC

JSGre

Function:
Jump if greater than (signed)
Description:

If the Z flag is clear and the N flag and the OV flag have the same value, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed relative displacement in
the second instruction byte to the PC, after incrementing the PC twice.

FLAGS:
CY AC oV N z

Example:

The instruction JSG LABEL 1 causes program execution to continue at LABEL1 if the Z flag is clear and the N flag
and the OV flag have the same value.

JSGre
[Encoding]
| 1 | 8 | rdaa
Hex Codein: Operation:
Binary Mode = [A5][Encoding] JSG
Source Mode = [Encoding] (PC) ~ (PC) + size(instr)
IF[(Z) =0] AND [(N) = (OV)]
THEN

(PC) — (PC) +rd

Rev. E — 20 December, 2000
5.82

AIMEL TSC80251

WIRELESS & uC

JSGE rd

Function:

Jump if greater than or equal (signed)

Description:

If the N flag and the OV flag have the same value, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice.

FLAGS:
CY AC oV N z

Example:

The instruction JSGE LABEL 1 causes program execution to continue at LABEL1 if the N flag and the OV flag have
the same value.

JSGE rd
[Encoding]
] 5 | 8 | rcaa

Hex Codein: Operation:

Binary Mode = [A5][Encoding] JSGE

Source Mode = [Encoding] (PC) « (PC) + size(instr)

IF[(N) = (QV)]
THEN

(PC) — (PC) + rel

Rev. E — 20 December, 2000 5.83

T SC80251 AIMEL

WIRELESS & uC

JSL rel

Function:

Jump if less than (signed)

Description:

If the N flag and the OV flag have different values, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice.

FLAGS:
CY AC oV N z

Example:

The instruction JSL LABEL1 causes program execution to continue at LABEL1 if the N flag and the OV flag have
different values.

JSL rel
[Encoding]
| 4 | 8 | rdaa

Hex Codein: Operation:

Binary Mode = [A5][Encoding] JSL

Source Mode = [Encoding] (PC) ~ (PC) + size(instr)

IF[(N) # (QV)]
THEN

(PC) — (PC) + rel

Rev. E — 20 December, 2000
5.84

AIMEL TSC80251

WIRELESS & uC

JSLE rel

Function:
Jump if less than or equal (signed)
Description:

If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed relative displacement in
the second instruction byte to the PC, after incrementing the PC twice.

FLAGS:
CY AC oV N z

Example:

Theinstruction JSLE LABEL 1 causes program execution to continue at LABEL 1 if the Z flag is set OR if the the N
flag and the OV flag have different values.

JSLE rel
[Encoding]
] 0 | 8 | rcaa

Hex Codein: Operation:

Binary Mode = [A5][Encoding] JSLE

Source Mode = [Encoding] (PC) - (PC)+2

IF[[(2) = 1] OR[(N) # (QV)]]
THEN

(PC) — (PC) + rel

Rev. E — 20 December, 2000 5.85

T SC80251 AIMEL

WIRELESS & uC

JZ re

Function:

Jump if accumulator zero

Description:

If al bits of the accumulator are clear (zero), branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement in the second instruction
byte to the PC, after incrementing the PC twice. The accumulator is not modified.

FLAGS:
CY AC oV N z

Example:

The accumulator contains 01h. After executing the instruction sequence:
JZ LABEL1
DEC A
JZ LABEL2
the accumulator contains 00h and program execution continues at l1abel LABEL 2.

JZ rel

[Encoding]

| 6 | 0 | o aar
Hex Codein: Operation:
Binary Mode = [Encoding] Jz
Source Mode = [Encoding] (PC) ~ (PC)+2

IF[(A) =Q]
THEN

(PC) (PC) + rel

Rev. E — 20 December, 2000
5.86

AIMEL TSC80251

WIRELESS & uC

LCALL <dest>

Function:
Long call

Description:

Calls a subroutine located at the specified address. The instruction adds three to the program counter to generate the
address of the next instruction and then PUSHes the 16-hit result onto the stack (low byte first). The stack pointer is
incremented by two. The high and low bytes of the PC are then loaded, respectively, with the second and third bytes
of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may
therefore begin anywhere in the 64—-K byte region of memory where the next instruction is located.

FLAGS:
CY AC oV N Z

Example:

The stack pointer contains 07h and the label "SUBRTN” is assigned to program memory location 1234h. After
executing the instruction LCALL SUBRTN at location 0123h, the stack pointer contains 09h, on—chip RAM locations
08h and 09h contain 01h and 26h and the PC contains 1234h.

LCALL addri16

[Encoding]

| 1 | 2 J adoris-addrs || addr7-adaro |
Hex Codein: Operation:
Binary Mode = [Encoding] LCALL
Source Mode = [Encoding] (PC) - (PC) +3

(SP) — (SP)+1
((SP)) — (PC.7:0)
(SP) < (SP) +1
(SP)) — (PC.15:8)
(PC) « (addr.15:0)

LCALL @WRj

[Encoding]

| 9 | 9 | tttt 4 |
Hex Codein: Operation:
Binary Mode = [A5][Encoding] LCALL

Source Mode = [Encoding]

(PC) — (PC) + size(instr)
(SP) - (SP)+1

((SP)) — (PC.7:0)

(SP) - (SP)+1

((SP)) — (PC.15:8)

(PC) ~ (WR))

Rev. E — 20 December, 2000

5.87

T SC80251 AIMEL

WIRELESS & uC

LIMP <dest>

Function:

Long Jump

Description:

Causes an unconditional branch to the specified address, by loading the high and low bytes of the PC (respectively)
with the second and third instruction bytes. The destination may therefore be anywhere in the 64—K byte memory region
where the next instruction is located.

FLAGS:
CY AC oV N z

Example:

Thelabel "IMPADR” isassigned to the instruction at program memory location 1234h. After executing theinstruction
LIMP JMPADR at location 0123h, the program counter contains 1234h.

LIJMP addr16
[Encoding]
| 0 | 2 J adri5—addrg | addr7-adaro
Hex Codein: Operation:
Binary Mode = [Encoding] LIMP
Source Mode = [Encoding] (PC) ~ (addr.15:0)
LIMP @WRj
[Encoding]
| 8 | 9 | titt 4
Hex Codein: Operation:
Binary Mode = [A5][Encoding] LIMP
Source Mode = [Encoding] (PC) « (WR))

Rev. E — 20 December, 2000
5.88

AIMEL TSC80251

WIRELESS & uC

MOV <dest>,<src>

Function:

Move byte variable

Description:

Copies the byte variable specified by the second operand into the location specified by the first operand. The source
byteis not affected.

Thisis by far the most flexible operation. Twenty—four combinations of source and destination addressing modes are
allowed.

FLAGS:
CY AC ov N z

Example:

On—chip RAM location 30h contains 40h, on—chip RAM location 40h contains 10h, and input Port 1 contains
11001010B (0OCAh). After executing the instruction sequence:

MOV RO#30h :RO<=30h

MOV A,@RO ‘A < =40h

MOV RLA ;R1 <=40h

MOV B,@R1 ‘B<=10h

MOV @R1,P1 ;RAM (40h) < =0CAh
MOV P2,P1 ;P2 #0CAh

register 0 contains 30h, the accumulator and register 1 contain 40h, register B contains 10h and on—chip RAM location
40h and output Port 2 contain 0CAh (11001010B).

Rev. E — 20 December, 2000 5.89

T SC80251 AIMEL

WIRELESS & uC

MOV A #data

[Encoding]

‘ 7 ‘ 4 I immed data
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (A) — #data

MOV dir8,#data

[Encoding]

| 7 | 5 | addr7-addro | immed data
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (dir8) ~ #data

MOV @Ri,#data

[Encoding]

| 7 | owi | immeddata
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] ((Ri)) ~ #data

MOV Rn. #data

[Encoding]

’ 7 ‘ Irrr I immed data
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] (Rn) « #data

Rev. E — 20 December, 2000
5.90

AIMEL

I
WIRELESS & uC

TSC80251

MOV dir8,dir8

[Encoding]

| 8 | 5 J adar7-addros | addr7-addrog
Hex Codein: Operation:
Binary Mode = [Encoding] MOV

Source Mode = [Encoding]

MOV dir8,@Ri

[Encoding]

\ 8 \ 011

| addr7-addro

Hex Codein:

Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

MOV dir8,Rn

[Encoding]

‘ 8 ‘ 1rrr

| addr7-addr0

Hex Codein:

Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

MOV @Ri,dir8

[Encoding]

\ A \ 011i

| addr7-addro

Hex Codein:

Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

(dir8) — (dir8)

Operation:

MOV
(dir8) — ((Ri))

Operation:

MOV
(dir8) — (Rn)

Operation:

MOV
((Ri)) « (dir8)

Rev. E — 20 December, 2000

591

T SC80251 AIMEL

WIRELESS & uC

MOV Rn,dir8

[Encoding]

| A | irrr | adar7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] (Rn) ~ (dir8)
MOV A,dir8

[Encoding]

| E | 5 | adar7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (A) < (dir8)
MOV A,@RI

[Encoding]

| E | 011 |
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] (A) < ((Ri))
MOV ARn

[Encoding]

’ E ‘ Irrr ‘

Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] (A) < (Rn)

Rev. E — 20 December, 2000
5.92

AIMEL TSC80251

WIRELESS & uC

MOV dir8,A

[Encoding]

| F | 5 | addr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (dir8) « (A)

MOV @Ri,A

[Encoding]

| F | 011 |
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] ((Ri)) < (A)

MOV Rn,A

[Encoding]

‘ F ‘ Irrr ‘
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [A5][Encoding] (Rn) < (A)

MOV Rmd,Rms

[Encoding]

| 7 | C | s SSSS

Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (Rmd) ~ (Rms)

Rev. E — 20 December, 2000 5.93

T SC80251 AIMEL

WIRELESS & uC

MOV WRjd,WRjs

[Encoding]

| 3 | D | w TTTT
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (WRjd) « (WRj9)

MOV DRkd,DRks

[Encoding]

‘ 7 ‘ F I uuuu uuuu
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (DRkd) ~ (DRks)

MOV Rm #data

[Encoding]

’ 7 ‘ E I SSss 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (Rm) — #data

MOV WR; #datal6

[Encoding]

| 7 | E | 4 | immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MQV
Source Mode = [Encoding] (WRj) < #datal6

Rev. E — 20 December, 2000
5.94

AIMEL TSC80251

WIRELESS & uC

MOV DRk, #0datal6

[Encoding]

‘ 3 ‘ E I uuuu 8 I immed data hi I immed data low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (DRK) ~ #0datal6

MOV DRk, #1datal6

[Encoding]
‘ 3 ‘ E I uuuu C I immed data hi I immed data low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (DRK) ~ #1datal6
MOV Rm,dir8
[Encoding]
| 7 | E | s 1 | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (Rm) — (dir8)
MOV WR;j,dir8
[Encoding]
| 7 | E | 5 | adar7-acdro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (WRj) ~ (dir8)

Rev. E — 20 December, 2000 5.95

T SC80251 AIMEL

WIRELESS & uC

MOV DRKk,dir8

[Encoding]

‘ 7 ‘ E I uuuu D I addr7-addrO
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (DRK) « (dir8)

MOV Rm,dir 16

[Encoding]

| 7 | E | s 3 | accri5-addr || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (Rm) (dir16)

MOV WRj, dir16

[Encoding]

| 7 | E | w 7 | accri5-addrs || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (WRj < (dirl6)

MOV DRk,dir 16

[Encoding]

’ 7 ‘ E I uuuu F I addr15-addr8 I addr7-addrO
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (DRK) ~ (dir16)

Rev. E — 20 December, 2000
5.96

AIMEL

I
WIRELESS & uC

TSC80251

MOV Rm,@WR;

[Encoding]

| 7 | E I tttt 9 | s
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

MOV Rm,@DRk

(Rm) ((WR)))

[Encoding]

‘ 7 ‘ E I uuuu B I Ssss
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

MOV WRjd,@WRjs

(Rm) — ((DRK))

[Encoding]

| 0 | B | ™ 8 | w
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

MOV WRj,@DRk

(WRjd) — ((WRjs))

[Encoding]

‘ 0 ‘ B I uuuu A I tttt
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

(WRj) « ((DRK))

Rev. E — 20 December, 2000

5.97

T SC80251 AIMEL

WIRELESS & uC

MOV dir8,Rm

[Encoding]

| 7 | A | ss 1 | adar7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (dir8) « (Rm)

MOV dir8WR;

[Encoding]

| 7 | A | w 5 J adar7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (dir8) — (WRj)

MOV dir8,DRk

[Encoding]

’ 7 ‘ A I uuuu D I addr7-addrO
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (dir8) — (DRK)

MOV dir16,Rm

[Encoding]

| 7 | A | s 3 J acdris-adars || addr-adaro
Hex Codein: Operation:

Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (dir16) — (Rm)

Rev. E — 20 December, 2000
5.98

AIMEL TSC80251

WIRELESS & uC

MOV dir 16, WRj

[Encoding]

| 7 | A | w 7 | acri5-addr || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (dirl6) — (WR))

MOV dir16,DRk

[Encoding]

‘ 7 ‘ A I uuuu F I addr15-addr8 I addr7-addrO
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (dir16) — (DRK)

MOV @WRj,Rm

[Encoding]

| 7 | A | w 9 | s 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] ((WRj)) < (Rm)

MOV @DRk,Rm

[Encoding]

‘ 7 ‘ A I uuuu B I SSSS 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] ((DRK)) «~ (Rm)

Rev. E — 20 December, 2000 5.99

TSC80251

AIMEL

I)
WIRELESS & uC

MOV @WRjd,WRjs

[Encoding]

| 1 | B | w 8 J 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] ((WRjd)) < (WRj9)

MOV @DRk,WR;

[Encoding]

‘ 1 ‘ B I uuuu A I tttt 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] ((DRK)) « (WRj)

MOV Rm,@WRj + disl6

[Encoding]

| 0 | 9 | ss tttt | dshi [dslow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding] (Rm) « ((WRj) + disl6)

MOV WRj,@WR;j + disl6

[Encoding]

| 4 | 9 | TrrT [dishi [dislow
Hex Codein: Operation:

Binary Mode = [A5][Encoding] MQV

Source Mode = [Encoding]

(WRj) « ((WRj) + disl6)

5.100

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

MOV Rm,@DRk + dis1l6

[Encoding]

‘ 2 ‘ 9 I SSSS uuuu I dishi dislow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (Rm) — ((DRK) + dis24)

MOV WRj,@DRk + dis16

[Encoding]

‘ 6 ‘ 9 I tttt uuuu I dishi dislow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (WRj) < ((DRK) + dis24)

MOV @WRj + disl6,Rm

[Encoding]

| 1 | 9 | s tttt | ERL dis low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] ((WRj) + disl6) — (Rm)

MOV @WR;j + disl6,WR;

[Encoding]

| 5 | 9 J tttt | dsni dis low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

(WRj) + dis16) — (WRj)

Rev. E — 20 December, 2000

5.101

TSC80251

AIMEL

— "
WIRELESS & uC

MOV @DRk + disl6,Rm

[Encoding]

‘ 3 ‘ 9 I uuuu I dishi I dislow
Hex Codein: Operation:

Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

MOV @DRK + disl6,WRj

((DRK) + dis24) — (Rm)

[Encoding]

‘ 7 ‘ 9 I uuuu I dishi I dislow
Hex Codein: Operation:

Binary Mode = [A5][Encoding] MOV

Source Mode = [Encoding]

((DRK) + dis24) — (WRj)

5.102

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

MOV <dest-bit>,<src-bit>

Function
Move bit data

Description

Copies the boolean variable specified by the second operand into the location specified by the first operand. One of
the operands must be the CY flag; the other may be any directly addressable bit. Does not affect any other register.

FLAGS:
CY AC ov N y4

-

Example:

The CY flagisset, input Port 3 contains 11001001B and output Port 1 contains 35h (00110101B). After executing the
instruction sequence:

MOV P1.3,CY
MQV CY,P3.3
MOV P1.2,CY

the CY flagisclear and Port 1 contains 39h (00111001B).

MOV bit51,CY
[Encoding]
| 9 | 2 | bitaar
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (bit51) ~ (CY)
MOV CY,bit51
[Encoding]
| A | 2 | vitadar
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (CY) < (hbit51)

Rev. E — 20 December, 2000 5.103

TSC80251

AIMEL

- —
WIRELESS & uC

G)

MOV bit,CY
[Encoding]
| A | 9 9 Oyyy | bitacar
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (bit) ~ (CY)
MOV CY,bit
[Encoding]
| A | 9 A Oyyy | bit addr
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MQV
Source Mode = [Encoding] (CY) « (bit)

5.104

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

MOV DPTR #datal6

Function:
L oad data pointer with a 16-hit constant

Description:

Loads the 16-hit data pointer (DPTR) with the specified 16-bit constant. The high byte of the constant is loaded into
the high byte of the data pointer (DPH). The low byte of the constant is loaded into the low byte of the data pointer
(DPL).
FLAGS:

CY AC oV N z

Example:

After executing theinstruction MOV DPTR,#1234h DPTR contains 1234h (DPH contains 12h and DPL contains 34h).

MOV DPTR,#datal6

[Encoding]
| 9 | 0 J immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [Encoding] MOV
Source Mode = [Encoding] (DPTR) ~ #datal6

Rev. E — 20 December, 2000 5.105

TSC80251

AIMEL

I)
WIRELESS & uC

MOVC A,@A+<base-reg>

Function:

Move code byte

Description:

L oads the accumulator with a code byte or constant from program memory. The address of the byte fetched is the sum
of the original unsigned 8-bit accumulator contents and the contents of a 16-bit base register, which may be the 16
L SBsof thedatapointer or PC. Inthelatter case, the PC isincremented to the address of the following instruction before
being added with the accumulator; otherwise the base register is not atered. 16-bit addition is performed.

FLAGS:

CY

AC

ov

Example:

The accumulator contains a number between 0 and 3. The following instruction sequence translates the value in the
accumulator to one of four values defined by the DB (define byte) directive.

RELPC: INC A
MOvVC A @A+PC
RET
DB 66h
DB 77h
DB 88h
DB 9%h

If the subroutine is called with the accumulator equal to 01h, it returns with 77h in the accumulator. The INC A before
the MOV C instruction is needed to " get around” the RET instruction above thetable. If several bytes of code separated
the MOV C from the table, the corresponding number would be added to the accumul ator instead.

MOVC A,@A+PC

[Encoding]

s [s

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVC A,@A+DPTR
[Encoding]

s [s

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

MOVC
(PC) — (PC) +1
(A) < ((A) +(PC))

Operation:

MOVC
(A) ~ ((A) + (DPTR))

5.106

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

MOVH DRk (hi),#datal6

Function:
Move immediate 16-hit data to the high word of adword (double-word) register.

Description:

Moves 16-bit immediate data to the high word of a dword (32—bit) register. The low word of the dword register is
unchanged.

FLAGS:
CY AC ov N y4

Example:

The dword register DRk contains 5566 7788h. After the instruction MOV H DRk, #1122h executes, DRk contains 1122
7788h.

MOVH DRk(hi),#datal6

[Encoding]

| 7 | A | ww C J immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode =[A5] [Encoding] MOVH
Source Mode = [Encoding] (DRK).31-16 ~ #datal6

Rev. E — 20 December, 2000 5.107

T SC80251 AIMEL

WIRELESS & uC

MOVSWRj,Rm

Function:

Move 8-hit register to 16-hit register with sign extension

Description:

Movesthe contents of an 8-hit register to the low byte of a 16-bit register. The high byte of the 16-bit register isfilled
with the sign extension, which is obtained from the MSB of the 8- bit source register.

FLAGS:
CY AC ov N y4

Example:

8-hit register Rm contains 055h (01010101B) and the 16-bit register WRj contains OFFFFh (11111111 11111111B).
The instruction MOV S WRj,Rm moves the contents of register Rm (01010101B) to register WRj (i.e., WRj contains
00000000 01010101B).

MOVSWRj, Rm

[Encoding]
| 1 | A I titt ssss
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOVS
Source Mode = [Encoding] (WR)).7-0 « (Rm).7-0

(WR}j).15-8 — MSB

Rev. E — 20 December, 2000
5.108

AIMEL TSC80251

WIRELESS & uC

MOVX <dest><src>

Function:

Move externa

Description:

Transfers data between the accumulator and a byte in external data RAM. There are two types of instructions. One
provides an 8-hit indirect address to external data RAM; the second provides a 16-bit indirect address to external data
RAM.

In the first type of MOV X instruction, the contents of RO or R1 in the current register bank provides an 8-hit address
on Port 0. 8 bitsare sufficient for external 1/0 expansion decoding or for arelatively small RAM array. For larger arrays,
any Port pins can be used to output higher address bits. These pins would be controlled by an output instruction
preceding the MOV X.

In the second type of MOV X instruction, the data pointer generates a 16-bit address. Port 2 outputs the upper 8 address
bits (from DPH) while Port 0 outputs the lower 8 address bits (from DPL).

For both types of movesin nonpage mode, the dataiis multiplexed with the lower address bits on Port 0. In page mode,
the datais multiplexed with the contents of P2 on Port 2 (8-bit address) or with the upper address bits on Port 2 (16-bit
address).

It is possible in some situations to mix the two MOV X types. A large RAM array with its upper address lines driven
by P2 can be addressed via the data pointer, or with code to output upper address bits to P2 followed by a MOV X
instruction using RO or R1.

FLAGS:
CY AC ov N VA

Example:

The TSC80251 Microcontroller is operating in nonpage mode. An external 256-byte RAM using multiplexed
address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to Port 0. Port 3 provides control lines for the
external RAM. Ports 1 and 2 are used for normal 1/0. RO and R1 contain 12h and 34h. Location 34h of the external
RAM contains 56h. After executing the instruction sequence:

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12h contain 56h.

MOVX A,@DPTR

[Encoding]

L & | o |
Hex Codein: Operation:
Binary Mode = [Encoding] MOV X
Source Mode = [Encoding] (A) < (DPTR))

Rev. E — 20 December, 2000 5.109

TSC80251

AIMEL

I)
WIRELESS & uC

MOVX A,@Ri

[Encoding]

\ E \ 001i

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX @DPTR,A

[Encoding]

I

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX @Ri,A

[Encoding]

] F \ 001i

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

MOVX
(A) < ((R))

Operation:

MOVX
((DPTR)) « (A)

Operation:

MOVX
((R)) ~ (A)

5.110

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

MOVZ WRj,Rm

Function:
Move 8-hit register to 16-hit register with zero extension

Description:

Movesthe contents of an 8-bit register to the low byte of a16-bit register. The upper byte of the 16-hit register isfilled
with zeros.

FLAGS:
CY AC ov N y4

Example:

8-hit register Rm contains 055h (01010101B) and 16-bit register WRj contains OFFFFh (11111111 11111111B). The
instruction MOVZ WRj,Rm moves the contents of register Rm (01010101B) to register WRj. At the end of the
operation, WRj contains 00000000 01010101B.

MOVZ WRj,Rm

[Encoding]
| 0 | A I tttt ssss
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MOV
Source Mode = [Encoding] (WRj).7-0 « (Rm).7-0

(WR;).15-8 — 0

Rev. E — 20 December, 2000 5.111

T SC80251 AIMEL

WIRELESS & uC

MUL <dest>,<src>

Function:

Multiply

Description:

Multipliesthe unsigned integer in the source register with the unsigned integer in the destination register. Only register
addressing is allowed.

For 8-hit operands, the result is 16 bits. The most significant byte of the result is stored in the low byte of the word
where the destination register resides. The least significant byte is stored in the following byte register. The OV flag
isset if the product is greater than 255 (OFFh); otherwiseit is cleared.

For 16-hit operands, the result is 32 bits. The most significant word is stored in the low word of the the dword where
the destination register resides. The least significant word is stored in the following word register. In this operation,
the QV flag is set if the product is greater than OFFFFh, otherwise it is cleared. The CY flag is dways cleared. The
N flag is set when the MSB of theresult is set. The Z flag is set when the result is zero.

FLAGS:
cY AC oV N z
0 _ -
Example:

Register R1 contains 80 (50h or 10010000B) and register RO contains 160 (0AOh or 10010000B). After executing the
instruction MUL R1,R0 which gives the product 12800 (3200h), register RO contains 32h (00110010B), register R1
contains 00h, the OV flag is set and the CY flagisclear.

MUL Rmd,Rms

[Encoding]

| A | C | s Ssss |
Hex Codein: Operation:
Binary Mode = [A5][Encoding] MUL (8-bit operands)
Source Mode = [Encoding] if <dest>md=0, 2,4, .., 14

Rmd ~ high byte of the Rmd x Rms
Rmd+1 — low byte of the Rmd x Rms
if <dest>md=1, 3,5, ..,15

Rmd-1 — high byte of the Rmd x Rms
Rmd ~ low byte of the Rmd x Rms

Rev. E — 20 December, 2000
5.112

AIMEL TSC80251

WIRELESS & uC

MUL WRjd,WRjs

[Encoding]

| A | D l tttt TTTT |
Hex Codein: Operation:
Binary Mode =[A5][Encoding] MUL (16-hit operands)
Source Mode = [Encoding] if <dest>jd=0,4,8,..,28

WRjd ~ high word of the WRjd x WRjs
WRjd+2 ~ low word of the WRjd x WRjs
if <dest>jd=2,6, 10, .., 30

WRjd-2 ~ highword of the WRjd x WRjs
WRjd ~ low word of the WRjd x WRjs

Rev. E — 20 December, 2000 5.113

T SC80251 AIMEL

WIRELESS & uC

MUL AB

Function:
Multiply

Description:

Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the 16-bit product is left in
the accumulator, and the high byte isleft in register in B. If the product is greater than 255 (OFFh) the OV flag is set;
otherwiseitisclear. The CY flagisaways clear.

FLAGS:
CcY AC oV N z
0 _ -

Example:

The accumulator contains 80 (50h) and register B contains 160 (OAOh). After executing theinstruction MUL AB which
gives the product 12800 (3200h), register B contains 32h (00110010B), the accumulator contains 00h, the OV flag is
set and the CY flagisclear.

MUL AB

[Encoding]

Lo~ | 4 |

Hex Codein: Operation:

Binary Mode = [Encoding] MUL

Source Mode = [Encoding] (A) < low byteof (A) X (B)

(B) — high byte of (A) X (B)

Rev. E — 20 December, 2000
5.114

AIMEL

I
WIRELESS & uC

TSC80251

NOP

Function:

No operation

Description:

Execution continues at the following instruction. Affects the PC register only.

FLAGS:

CY

AC

ov

Example:

We assume we are executing an internal code and you want to produce alow—going output pulse on bit 7 of Port 2 that
lasts exactly 11 states. A simple CLR-SETB sequence generates an eight—state pulse. (Each instruction requires four
states to write to a Port SFR.) You can insert three additional states (if no interrupts are enabled) with the following

instruction sequence ;

CLRP2.7
NOP

NOP

NOP
SETB P2.7

NOP

[Encoding]

o | o

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

NOP
(PC) - (PC)+1

Rev. E — 20 December, 2000

5.115

T SC80251 AIMEL

WIRELESS & uC

ORL <dest> <src>

Function:

Logica—OR for byte variables

Description:

Performs the bitwise logical-OR operation (V) between the specified variables, storing the results in the destination
operand.

The destination operand can be aregister, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the accumulator, the source
can be register, direct, register—indirect or immediate addressing; when the destination is a direct address, the source
can be the accumulator or immediate data. When the destination is register the source can be register, immediate, direct
and indirect addressing.

Note:
When thisinstruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS:
CY AC (0)V N YA

Example:

The accumulator contains 0C3h (11000011B) and RO contains 55h (01010101B). After executing the instruction, ORL
A, RO the accumulator contains 0D7h (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location
or hardware register. The pattern of bits to be set is determined by a mask byte, which may be a constant data value
in the instruction or a variable computed in the accumulator at run time. After executing the instruction ORL P1,
#00110010B sets bits 5, 4 and 1 of output Port 1.

ORL dir8,A
[Encoding]
| 4 | 2 | addr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] ORL
Source Mode = [Encoding] (dir8) ~ (dir8) V (A)

Rev. E — 20 December, 2000
5.116

AIMEL TSC80251

WIRELESS & uC

ORL dir8,#data

[Encoding]
| 4 | 3 | addr7-addro | immed data
Hex Codein: Operation:
Binary Mode = [Encoding] ORL
Source Mode = [Encoding] (dir8) — (dir8) V #data
ORL A #data
[Encoding]
‘ 4 ‘ 4 I immed data
Hex Codein: Operation:
Binary Mode = [Encoding] ORL
Source Mode = [Encoding] (A) « (A)V #data
ORL A, dir8
[Encoding]
| 4 | 5 | addr7-addro
Hex Codein: Operation:
Binary Mode = [Encoding] ORL
Source Mode = [Encoding] (A) <« (A)V (dir8)
ORL A,@RI
[Encoding]
| 4 | 0Ll |
Hex Codein: Operation:
Binary Mode = [Encoding] ORL (A) « (A) V ((Ri))

Source Mode = [A5][Encoding]

Rev. E — 20 December, 2000 5.117

TSC80251

AIMEL

I)
WIRELESS & uC

ORL A,Rn

[Encoding]

‘ 4 ‘ 1rrr ‘

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

ORL
(A) - (A)V (Rn)

ORL Rmd,Rms

[Encoding]

| 4 | c | s SSSS

Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

ORL WRjd,WRjs

(Rmd) —~ (Rmd) V (Rms)

[Encoding]

| 4 | D | w TTTT
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

ORL Rm #data

(WRjd) (WRjd) V (WRjs)

[Encoding]

’ 4 ‘ E I SSSS 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(Rm) « (Rm) V #data

5.118

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

ORL WRj #datal6

[Encoding]

| 4 | E | w 4 | immed daahi] immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(WRj) — (WRj) V #datal6

ORL Rm,dir8

[Encoding]

‘ 4 ‘ E I ssss 1 I addr7-addr0
Hex Codein: Operation:

Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(Rm) — (Rm) V (dir8)

ORL WRj,dir8

[Encoding]

| 4 | E | w 5 | addr7-addro
Hex Codein: Operation:

Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(WRj) (WRj) V (dir8)

ORL Rm,dir16

[Encoding]

| 4 | E | s 3 J acdris-adars || addr7-adaro
Hex Codein: Operation:

Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(Rm) — (Rm) V (dir16)

Rev. E — 20 December, 2000

5.119

TSC80251

AIMEL

I)
WIRELESS & uC

ORL WRj,dir16

[Encoding]

| 4 | E | w 7 | accri5-addr || addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(WRj) (WRj) V (dirl6)

ORL Rm,@WR]

[Encoding]

| 4 | E | w 9 | ss 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

ORL Rm,@DRKk

(Rm) ~ (Rm) V ((WRj))

[Encoding]

’ 4 ‘ E I uuuu B I SSss 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] ORL

Source Mode = [Encoding]

(Rm) — (Rm) V ((DRK))

5.120

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

ORL CY,<src-hit>

Function:

Logica—OR for bit variables

Description:

Sets the CY flag if the Boolean value is alogical 1; leaves the CY flag in its current state otherwise. A slash ("/")
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as

the source value, but the source bit itself is not affected.

FLAGS:

CY

AC

ov N

l/

Example:

Set the CY flagif and only if PL.0O=1, ACC.7=10r OV =0.

MOV CY,P1.0
ORL CY,ACC.7

ORL CY,bit51

[Encoding]

L7 | o

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL CY,/bit51

;Load carry with input pin P1.0
;Or carry with the accumulator bit 7
ORL CY,/OV ;Or carry with the inverse of OV.

Operation:

ORL
(CY) « (CY) V (bit51)

* If thisinstruction addresses a Port (Px, x = 0-3), add 1 state.

[Encoding]

LA | o

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

ORL
(CY) « (CY) V- (bit51)

Rev. E — 20 December, 2000

5121

TSC80251

AIMEL

I)
WIRELESS & uC

ORL CY,bit

[Encoding]

A [e

oyyy | bit addr

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL CY,/bit

[Encoding]

Operation:

ORL
(CY) < (CY) V (bit)

IS

Oyyy | bit addr

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation:

ORL
(CY) < (CY) V 0 (bit)

5.122

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

POP <src>

Function:

Pop from stack.

Description:

Reads the contents of the on—chip RAM location addressed by the stack pointer, then decrements the stack pointer by
one. The value read at the original RAM location is transferred to the newly addressed location, which can be 8-bit
or 16-hit.
FLAGS:

CY AC oV N YA

Example:

The stack pointer contains 32h and on—chip RAM lacations 30h through 32h contain 01h, 23h, and 20h, respectively.
After executing the instruction sequence:

POP DPH
POP DPL
the stack pointer contains 30h and the data pointer contains 0123h. After executing the instruction POP SP the stack

pointer contains 20h. Note that in this special case the stack pointer was decremented to 2Fh before it was loaded with
the value popped (20h).

POP dir8
[Encoding]

| D | 0 J adar7-acdro
Hex Codein: Operation:
Binary Mode = [Encoding] POP
Source Mode = [Encoding] (dir8) — ((SP)

(SP) - (SP) -1

POP Rm
[Encoding]

Lo [~ | = [8 |
Hex Codein: Operation:
Binary Mode = [A5][Encoding] POP
Source Mode = [Encoding] (Rm) < ((SP)

(SP) - (SP) -1

Rev. E — 20 December, 2000 5.123

TSC80251

AIMEL

I)
WIRELESS & uC

POP WRj

[Encoding]

| D | A tttt 9

Hex Codein: Operation:
Binary Mode = [A5][Encoding] POP

Source Mode = [Encoding]

(SP) — (SP)- 1
(WRj) — ((SP))
(SP) - (SP)- 1

POP DRk

[Encoding]

’ D ‘ A uuuu B

Hex Codein: Operation:
Binary Mode = [A5][Encoding] POP

Source Mode = [Encoding]

(SP) - (SP)-3
(DRK) — ((SP))
(SP) - (SP)-1

5.124

Rev. E — 20 December, 2000

AIMEL TSC80251

WIRELESS & uC

PUSH <dest>

Function:
PUSH onto stack

Description:

Increments the stack pointer by one. The contents of the specified variable are then copied into the on—chip RAM
location addressed by the stack pointer.

FLAGS:
CY AC oV N VA

Example: On entering an interrupt routine, the stack pointer contains 09h and the data pointer contains 0123h. After
executing the instruction sequence:

PUSH DPL
PUSH DPH

the stack pointer contains 0Bh and on—chip RAM locations 0Ah and 0Bh contain 01h and 23h, respectively.

PUSH dir8

[Encoding]

| C | 0 J adar7-acdro
Hex Codein: Operation:
Binary Mode = [Encoding] PUSH
Source Mode = [Encoding] (SP) « (SP)+1

((SP)) < (dirg)

PUSH #data

[Encoding]

| C | A I 0 2 | immeddata
Hex Codein: Operation:
Binary Mode = [A5][Encoding] PUSH
Source Mode = [Encoding] (SP) - (SP)+1

(SP)) - #data

Rev. E — 20 December, 2000 5.125

TSC80251

AIMEL

I)
WIRELESS & uC

PUSH #datal6

[Encoding]

| C | A I 0 6 J immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] PUSH

Source Mode = [Encoding]

(SP) — (SP) +1
((SP)) - #datal6
(SP) « (SP) +1

PUSH Rm

[Encoding]

‘ C ‘ A I SSss 8
Hex Codein: Operation:
Binary Mode = [A5][Encoding] PUSH

Source Mode = [Encoding]

(SP) — (SP) +1
((SP)) ~ (Rm)

PUSH WRj

[Encoding]

| C | A I titt 9
Hex Codein: Operation:
Binary Mode = [A5][Encoding] PUSH

Source Mode = [Encoding]

(SP) — (SP)+1
((SP)) « (WRj)
(SP) - (SP)+1

PUSH DRk

[Encoding]

’ C ‘ A I uuuu B

Hex Codein: Operation:
Binary Mode = [A5][Encoding] PUSH

Source Mode = [Encoding]

(SP) — (SP)+1
((SP)) — (DRK)
(SP) — (SP)+3

5.126

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

RET

Function:

Return from subroutine

Description:

Pops the high and low bytes of the PC successively from the stack, decrementing the stack pointer by two. Program
execution continues at the resulting address, which normally is the instruction immediately following ACALL or

LCALL.

FLAGS:

CY

AC

ov N y4

Example:

The stack pointer contains 0Bh and on—chip RAM locations OAh and 0Bh contain 01h and 23h, respectively. After
executing the instruction, RET the stack pointer contains 09h and program execution continues at location 0123h.

RET

[Encoding]

2z | 2

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

RET
(PC).15:8 — ((SP))
(SP) — (SP)- 1
(PC).7:0 — ((SP))
(SP) — (SP)- 1

Rev. E — 20 December, 2000

5.127

T SC80251 AIMEL

WIRELESS & uC

RETI

Function:
Return from interrupt

Description:

Thisinstruction pops two or four bytes from the stack, depending on the INTR bit in the CONFIG1 register .

If INTR =0, RETI popsthe high and low bytes of the PC successively from the stack and uses them asthe 16-hit return
address in region FF:.The stack pointer is decremented by two. No other registers are affected, and neither PSW nor
PSW1 isautomatically restored to its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The three bytes of the PC are
the return address, which can be anywhere in the 16-Mbyte memory space. The stack pointer is decremented by four.
PSW1 isrestored to its pre-interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts at the same priority level
as the one just processed. Program execution continues at the return address, which normally is the instruction
immediately after the point at which the interrupt request was detected. If an interrupt of the same or lower priority
is pending when the RETI instruction is executed, that one instruction is executed before the pending interrupt is
processed.

FLAGS:
CY AC oV N y4

Example:

INTR = 0. The stack pointer contains OBh. An interrupt was detected during the instruction ending at location 0122h.
On—chip RAM locations 0Ah and OBh contain 01h and 23h, respectively. After executing the instruction, RETI the
stack pointer contains 09h and program execution continues at location 0123h.

Rev. E — 20 December, 2000
5.128

AIMEL TSC80251

WIRELESS & uC

RETI

[Encoding]

L s | 2 |
Hex Codein: Operation:
Binary Mode = [Encoding] Operation for INTR=0:
Source Mode = [Encoding] RETI

(PC).15:8 ~ ((SP))
(SP) - (SP) -1
(PC).7:0 — ((SP))
(SP) - (SP) -1
Operation for INTR=1:
RETI

(PC).15:8 ~ ((SP))
(SP) - (SP) -1
(PC).7:0 « ((SP)
(SP) - (SP) -1
(PC).23:16 ~ ((SP))
(SP) - (SP) -1
PSW1 — ((SP)
(SP) - (SP) -1

Rev. E — 20 December, 2000 5.129

T SC80251 AIMEL

WIRELESS & uC

RL A

Function:

Rotate accumulator |eft

Description:

Rotates the 8 bits in the accumulator one bit to the left. Bit 7 is rotated into the bit O position.

FLAGS:
CY AC ov N 4

Example:

The accumulator contains 0C5h (11000101B). After executing the instruction, RL A the accumulator contains 8Bh
(10001011B); the CY flag is unaffected.

RL A

[Encoding]

2 [3 |

Hex Codein: Operation:
Binary Mode = [Encoding] RL

Source Mode = [Encoding] (A).atl « (A).a

(A).0 — (A).7

Rev. E — 20 December, 2000
5.130

AIMEL TSC80251

WIRELESS & uC

RLCA

Function:
Rotate accumulator left through the carry flag

Description:

Rotates the 8 bits in the accumulator and the CY flag one bit to the left. Bit 7 movesinto the CY flag position and the
origina state of the CY flag movesinto bit O position.

Description:

FLAGS:
CY AC ov N z
-

Example:

The accumulator contains 0C5h (11000101B) and the CY flag is clear. After executing the instruction RLC A the
accumulator contains 8Ah (10001010B) and the CY flag is set.

RLCA
[Encoding]
L s | 3 |
Hex Codein: Operation:
Binary Mode = [Encoding] RLC
Source Mode = [Encoding] (A).a+l « (A).a
(A).0 « (CY)
(CY) « (A) .7

Rev. E — 20 December, 2000 5.131

T SC80251 AIMEL

WIRELESS & uC

RR A

Function:

Rotate accumulator right

Description:

Rotates the 8 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 position.

FLAGS:
CY AC ov N 4

Example:

The accumulator contains 0C5h (11000101B). After executing the instruction, RR A the accumulator contains OE2h
(11100010B) and the CY flag is unaffected.

RR A
[Encoding]
o [3 |
Hex Codein: Operation:
Binary Mode = [Encoding] RR
Source Mode = [Encoding] (A).a < (A).atl

(A).7 — (A).0

Rev. E — 20 December, 2000
5.132

AIMEL TSC80251

WIRELESS & uC

RRC A

Function:

Rotate accumulator right through carry flag

Description:

Rotates the 8 bits in the accumulator and the CY flag one bit to the right. Bit O moves into the CY flag position; the
origina vaue of the CY flag movesinto the bit 7 position.

FLAGS:
CY AC ov N y4

Example:

The accumulator contains 0C5h (11000101B) and the CY flag is clear. After executing the instruction RRC A the
accumulator contains 62h (01100010B) and the CY flag is set.

RRC A
[Encoding]
L+ [3 |
Hex Codein: Operation:
Binary Mode = [Encoding] RRC
Source Mode = [Encoding] (A).a - (A).atl
(A).7 < (CY)
(CY) « (A).0

Rev. E — 20 December, 2000 5.133

T SC80251 AIMEL

WIRELESS & uC

SETB <bit>

Function:

Set bit

Description:

Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable bit.

FLAGS: No flags are affected except the CY flag for instruction with CY as the operand.

CY AC ov N Z

l/

Example:

The CY flag isclear and output Port 1 contains 34h (00110100B). After executing the instruction sequence:

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35h (00110101B).

SETB bit51

[Encoding]

| D | 2 | vitadar
Hex Codein: Operation:
Binary Mode = [Encoding] SETB
Source Mode = [Encoding] (bit51) ~ 1
SETB CY

[Encoding]

. o | 3 |

Hex Codein: Operation:
Binary Mode = [Encoding] SETB
Source Mode = [Encoding] (CY) «1

Rev. E — 20 December, 2000
5.134

AMEL TSC80251

SETB bit

[Encoding]

| A | 9 | D [oyyy | bit addr
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SETB

Source Mode = [Encoding] (bit) « 1

Rev. E — 20 December, 2000 5.135

T SC80251 AIMEL

WIRELESS & uC

SIMP rel

Function:

Short jump

Description:

Program control branches unconditionally to the specified address. The branch destination is computed by adding the
signed displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore, the range
of destinations allowed is from 128 bytes preceding thisinstruction to 127 bytes following it.

FLAGS:
CY AC oV N 4

Example:

The label "RELADR” is assigned to an instruction at program memory location 0123h. The instruction SIMP
RELADR assemblesinto location 0100h. After executing the instruction, the PC contains 0123h.

Note:
In the above example, the instruction following SIMP is located at 102h. Therefore, the displacement byte of the instruction is the relative offset
(0123h-0102h) = 21h. Put another way, an SIMP with a displacement of OFEh would be a one-instruction infinite loop.

SIMPrd

[Encoding]

| 8 | 0 | BEEE
Hex Codein: Operation:
Binary Mode = [Encoding] SIMP
Source Mode = [Encoding] (PC) —~ (PC)+2

(PC) — (PC) +rel

Rev. E — 20 December, 2000
5.136

AIMEL TSC80251

WIRELESS & uC

SLL <src>

Function:
Shift logical Ieft by 1 bit

Description:

Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted out (M SB) is stored in the
CY hit.

FLAGS:
CY AC ov N Z
P

Example:

Register 1 contains 0C5h (11000101B). After executing the instruction SLL R 1 register 1 contains 8Ah (10001010B)
and CY = 1.

SLL Rm
[Encoding]
| 3 | E S 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SLL
Source Mode = [Encoding] (Rm).a+tl — (Rm).a
(Rm.0 - 0
CY « (Rm).7
SLL WRj
[Encoding]
| 3 | E | w 4
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SLL
Source Mode = [Encoding] (WRj).b+1 - (WRj).b
(WRj)0 -0

CY < (WR;j).15

Rev. E — 20 December, 2000 5.137

T SC80251 AIMEL

WIRELESS & uC

SRA <src>

Function:
Shift arithmetic right by 1 bit

Description:

Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit shifted out (LSB) is stored
inthe CY bit.

FLAGS:
CY AC (0)V N YA
-

Example:

Register 1 contains 0C5h (11000101B). After executing theinstruction SRA R 1 register 1 contains OE2h (11100010B)
and CY = 1.

SRA Rm
[Encoding]
| 0 | E | s 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SRA
Source Mode = [Encoding] (Rm).7 —~ (Rm).7
(Rm).a « (Rm).a+1
CY « (Rm).0
SRA WRj
[Encoding]
| 0 | E | w 4
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SRA
Source Mode = [Encoding] (WRj).15 « (WRj).15
(WRj).b « (WRj).b+1
CY « (WRj).0

Rev. E — 20 December, 2000
5.138

AIMEL TSC80251

WIRELESS & uC

SRL <src>

Function:
Shift logical right by 1 bit

Description:

SRL shiftsthe specified variableto the right by 1 bit, replacing the M SB with a zero. The bit shifted out (L SB) is stored
inthe CY bit.

FLAGS:
CY AC ov N Z

P

Example:

Register 1 contains 0C5h (11000101B). After executing the instruction SRL R 1 register 1 contains 62h (01100010B)
and CY =1.

SRL Rm
[Encoding]
| 1 | E S 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SRL
Source Mode = [Encoding] (Rm).7 - O
(Rm).a - (Rmya+1
CY « (Rm).0
SRL WRj
[Encoding]
| 1 | E | w 4
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SRL
Source Mode = [Encoding] (WRj).15 - 0
(WRj).b « (WRj).b+1
CY « (WR)).0

Rev. E — 20 December, 2000 5.139

T SC80251 AIMEL

WIRELESS & uC

SUB <dest>,<src>

Function:

Subtract

Description:

Subtracts the specified variable from the destination operand, leaving the result in the destination operand. SUB sets
the CY (borrow) flag if aborrow is needed for bit 7. Otherwise, CY isclear.

When subtracting signed integers, the OV flag indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)
The source operand allows four addressing modes: immediate, indirect, register and direct.

FLAGS:
% AC ov N z
- % -

* For word and dword subtractions, AC is not affected.
Example:

Register 1 contains 0C%h (11001001B) and register 0 contains 54h (01010100B). After executing the instruction SUB
R1,R0 register 1 contains 75h (01110101B), the CY and AC flags are clear, and the OV flag is set.

SUB Rmd,Rms
[Encoding]
| 9 | c | s SSSS
Hex Codein: Operation:
Binary Mode =[A5][Encoding] SuUB
Source Mode = [Encoding] (Rmd) ~ (Rmd) - (Rms)
SUB WRjd,WRjs
[Encoding]
| 9 | D I tttt TTTT
Hex Codein: Operation:
Binary Mode =[A5][Encoding] SuUB
Source Mode = [Encoding] (WRjd) « (WRjd) - (WRjs)

Rev. E — 20 December, 2000
5.140

AIMEL

I
WIRELESS & uC

TSC80251

SUB DRkd,DRks

[Encoding]

| 9 | F uuuu UuUUU
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB

Source Mode = [Encoding]

(DRkd) — (DRKd) - (DRk9)

SUB Rm,#data
[Encoding]
‘ 9 ‘ E SSSS 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB
Source Mode = [Encoding] (Rm) « (Rm) - #data
SUB WRj #datal6
[Encoding]
| 9 | E tttt 4 J immeddatahi JJ immed datalow
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB
Source Mode = [Encoding] (WRj) « (WR)j) - #datal6
SUB DRk #datal6
[Encoding]
‘ 9 ‘ E uuuu 8 I immed data hi I immed data low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB

Source Mode = [Encoding]

(DRK) — (DRK) - #datal6

Rev. E — 20 December, 2000

5.141

TSC80251

AIMEL

I)
WIRELESS & uC

SUB Rm,dir8
[Encoding]
‘ 9 ‘ E 5SS 1 I addr7-addrO
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SuUB
Source Mode = [Encoding] (Rm) < (Rm) - (dir8)
SUB WR;j,dir8
[Encoding]
| 9 | E titt 5 | adr7-acdro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SuUB
Source Mode = [Encoding] (WRj) « (WRj) - (dir8)
SUB Rm,dir 16
[Encoding]
| 9 | E ssss 3 J addris-adars || addr7-adaro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SuB

Source Mode = [Encoding]

SUB WRj,dir16

(Rm) < (Rm) - (dir16)

[Encoding]

| 9 | E titt 7 J acdris-adars || addr7-adaro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SuUB

Source Mode = [Encoding]

(WRj) « (WR;) - (dir16)

5.142

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

SUB Rm,@WRj

[Encoding]

| 9 | E I titt 9 I ssss 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB

Source Mode = [Encoding]

(Rm) « (Rm) - (WRj))

SUB Rm,@DRk

[Encoding]

‘ 9 ‘ E I uuuu B I SSss 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] SUB

Source Mode = [Encoding]

(Rm) — (Rm) - ((DRK))

Rev. E — 20 December, 2000

5.143

T SC80251 AIMEL

WIRELESS & uC

SUBB A ,<src-byte>

Function:

Subtract with borrow

Description:

SUBB subtracts the specified variable and the CY flag together from the accumulator, leaving the result in the
accumulator. SUBB setsthe CY (borrow) flag if aborrow is needed for bit 7 and clears CY otherwise. (If CY was set
before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple
precision subtraction, so the CY flag is subtracted from the accumulator along with the source operand.) AC is set if
aborrow is needed for bit 3 and cleared otherwise. OV is set if aborrow is needed into bit 6, but not into bit 7, or into
bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a negative value is
subtracted from a positive value or a positive result when a positive number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16 or 32 bit)
The source operand allows four addressing modes: register, direct, register—indirect or immediate.

FLAGS:
CcY AC oV N z
4 4 4

Example:

The accumulator contains 0C9h (11001001B), register 2 contains 54h (01010100B), and the CY flag is set. After
executing the instruction SUBB A,R2 the accumulator contains 74h (01110100B), the CY and AC flags are clear, and
the OV flag is set.Notice that 0C9h minus 54h is 75h. The difference between this and the above result is due to the
CY (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or
multiple—precision subtraction, it should be explicitly cleared by a CLR CY instruction.

SUBB A #data
[Encoding]
‘ 9 ‘ 4 I immed data
Hex Codein: Operation:
Binary Mode = [Encoding] SUBB
Source Mode = [Encoding] (A) < (A) - (CY) - #data

Rev. E — 20 December, 2000
5.144

AIMEL

I
WIRELESS & uC

TSC80251

SUBB A,dir8
[Encoding]

s | B

| addr7-addr0

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

SUBB A,@RIi
[Encoding]

\ 9 \ 011

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

SUBB A,Rn
[Encoding]

‘ 9 ‘ 1rrr

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

SUBB
(A) < (A)-(CY) - (dirg)

Operation:

SUBB
(A) « (A)-(CY) - ((R))

Operation:

SuBB
(A) ~ (A)-(CY)-(Rn)

Rev. E — 20 December, 2000

5.145

T SC80251 AIMEL

WIRELESS & uC

SWAP A

Function:
Swap nibbles within the accumulator

Description:

Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3-0 and bits 7- 4). This operation can also
be thought of as a 4-bit rotate instruction.

FLAGS:
CY AC ov N V4

Example:

The accumulator contains 0C5h (11000101B). After executing the instruction SWAP A the accumulator contains 5Ch
(01011100B).

SWAP A
[Encoding]
¢ [4 |
Hex Codein: Operation:
Binary Mode = [Encoding] SWAP
Source Mode = [Encoding] (A).3:0 - < (A).74

Rev. E — 20 December, 2000
5.146

AIMEL

I
WIRELESS & uC

TSC80251

TRAP

Function:

Causesinterrupt call

Description:

Causes an interrupt call that is vectored through location FF:007Bh. The operation of this instruction is not affected
by the state of the interrupt enable flag in PSWO0 and PSW1. Interrupt calls can not occur immediately following this

instruction.

FLAGS:

CY

AC

ov N y4

Example:

Theinstruction TRAP causes an interrupt call to location OFFO07Bh during normal operation.

TRAP
[Encoding]

. 8 | o

Hex Codein:

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation:

Operation for INTR=0:
TRAP

(SP) - (SP)+1

(SP) « (PC).15:.0

(SP) - (SP)+1

(PC) ~ (FFO07Bh)
Operation for INTR=1:
TRAP

(SP) « (SP)+1

(PSW1) — ((SP))

(SP) - (SP)+1
(PC).23:16 ~ ((SP))

(SP) - (SP)+1
(PC).15:8 — ((SP)

(SP) - (SP)+1

(PC) ~ (FFOO7Bh)

Rev. E — 20 December, 2000

5.147

T SC80251 AIMEL

WIRELESS & uC

XCh A <byte>

Function:

Exchange accumulator with byte variable

Description:

Loads the accumulator with the contents of the specified variable, at the same time writing the original accumulator
contents to the specified variable. The source/destination operand can use register, direct or register—indirect
addressing.

FLAGS:
CY AC oV N 4

Example:

RO contains the address 20h, the accumulator contains 3Fh (00111111B) and on—chip RAM location 20h contains 75h
(01110101B). After executing the instruction XCh A,@R0. RAM location 20h contains 3Fh (00111111B) and the
accumulator contains 75h (01110101B).

XChA,dir8

[Encoding]
| C | 5 | ador7-addro |

Hex Codein: Operation:
Binary Mode = [Encoding] XCh

Source Mode = [Encoding] (A) - « (dir8)
XCh A,@Ri

[Encoding]
| C | 011 |

Hex Codein: Operation:
Binary Mode = [Encoding] XCh

Source Mode = [A5][Encoding] (A) > < ((Ri)

Rev. E — 20 December, 2000
5.148

AIMEL

I
WIRELESS & uC

TSC80251

XCh A,Rn
[Encoding]

‘ C ‘ Irrr ‘

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation:

XCh
(A) » < (Rn)

Rev. E — 20 December, 2000

5.149

T SC80251 AIMEL

WIRELESS & uC

XCHD A,@Ri

Function:
Exchange digit

Description:

Exchanges the low nibble of the accumulator (bits 3-0) generally representing a Hexadecimal or BCD digit, with that
of the on—chip RAM location indirectly addressed by the specified register. Does not affect the high nibble (bits 7-4)
of either register.

FLAGS:
CY AC oV N 4

Example:

RO contains the address 20h, the accumulator contains 36h (00110110B), and on—chip RAM location 20h contains 75h
(01110101B). After executing the instruction, XCHD A,@RO0 on—chip RAM location 20h contains 76h (01110110B)
and 35h (00110101B) in the accumul ator.

XCHD A,@RiI
[Encoding]
| D | 011 |
Hex Codein: Operation:
Binary Mode = [Encoding] XCHD
Source Mode = [A5][Encoding] (A).3.0 - « ((R)).3:0

Rev. E — 20 December, 2000
5.150

AIMEL TSC80251

WIRELESS & uC

XRL <dest>,<src>

Function:

Logical Exclusive-OR for byte variables

Description:

Performs the bitwise logical Exclusive-OR operation ([0) between the specified variables, storing the results in the
destination. The destination operand can be the accumulator, aregister or adirect address.

The two operands allow 12 addressing mode combinations. When the destination is the accumulator or a register, the
source addressing can be register, direct, register—indirect or immediate; when the destination is a direct address, the
source can be the accumulator or immediate data.

Note:
When thisinstruction is used to modify an output Port, the value used as the original Port data is read from the output data latch, not the input
pins.

FLAGS:
CY AC oV N Z

Example:

The contains 0C3h (11000011B) and RO contains 0OAAh (10101010B). After executing the instruction, XRL A,RO the
accumulator contains 69h (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bitsin any RAM
location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a
constant contained in the instruction or a variable computed in the accumulator at run time. The instruction XRL
P1,#00110001B complements bits 5, 4, and 0 of output Port 1.

XRL dir8A
[Encoding]
| 6 | 2 J ador7-addo |
Hex Codein: Operation:
Binary Mode = [Encoding] XRL
Source Mode = [Encoding] (dir8) — (dir8) O (A)

XRL dir8,#data

[Encoding]
| 6 | 3 J addr7-agdro || immeddata |
Hex Codein: Operation:
Binary Mode = [Encoding] XRL
Source Mode = [Encoding] (dir8) — (dir8) O #data

Rev. E — 20 December, 2000 5.151

TSC80251

AIMEL

I)
WIRELESS & uC

XRL A #data

[Encoding]

& |

I immed data ‘

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL A dir8
[Encoding]

6 |

| addr7-addr0 \

Hex Codein:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL A,@RI
[Encoding]

& |

011i

Hex Codein:

Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

XRL A,Rn
[Encoding]

6 |

1rrr

Hex Codein:

Binary Mode = [Encoding]

Source Mode = [A5][Encoding]

Operation:

XRL
(A) < (A) O #data

Operation:

XRL
(A) < (A) O (dir8)

Operation:

XRL
(A) « (A) O((R))

Operation:

XRL
(A) = (A)T(Rn)

5.152

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

XRL Rmd,Rms

[Encoding]

| 6 | C S Ssss |
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

XRL WRjd,WRjs

(Rmd) —~ (Rmd) OO0 (Rms)

[Encoding]

| 6 | D | w TTTT |
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

(WRds) — (WRjd) O (WRjs)

XRL Rm,#data

[Encoding]

‘ 6 ‘ E I SSSS 0 I immed data
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

XRL WRj #datal6

(Rm) —~ (Rm) O #data

[Encoding]

‘ 6 ‘ E I tttt 4 I immed data hi I immed data low
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

(WRj) « (WRj) O #datal6

Rev. E — 20 December, 2000

5.153

TSC80251

AIMEL

I)
WIRELESS & uC

XRL Rm,dir8

[Encoding]

‘ 6 ‘ E I 5SS 1 I addr7-addrO ‘
Hex Codein: Operation:

Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

(Rm) — (Rm) O (dir8)

XRL WRj,dir8

[Encoding]

| 6 | E | w 5 | addr7-addro |
Hex Codein: Operation:

Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

(WRJ) — (WRj) O (dir8)

XRL Rm,dir16

[Encoding]

| 6 | E | s 3 J acdris-adars | addr7-addro
Hex Codein: Operation:

Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

XRL WRj,dir16

(Rm) — (Rm) O (dir16)

[Encoding]

| 6 | E | w 7 J a0cr15-addr8 | addr7-addro
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Source Mode = [Encoding]

(WRj) — (WRj) O (dir16)

5.154

Rev. E — 20 December, 2000

AIMEL

I
WIRELESS & uC

TSC80251

Source Mode = [Encoding]

(Rm) — (Rm) O ((DRK))

XRL Rm,@Wrj

[Encoding]

| 6 | E I tttt | 9 I 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL
Source Mode = [Encoding] (Rm) « (Rm) O ((WRj))

XRL Rm,@Drk

[Encoding]

‘ 6 ‘ E I uuuu ‘ B I SSss ‘ 0
Hex Codein: Operation:
Binary Mode = [A5][Encoding] XRL

Rev. E — 20 December, 2000

5.155

TEMIC

Semiconductors

TSC80251

Glossary

This glossary defines acronyms, abbreviations, and terms that have special meaning in this manual.

#0datal6

#1datal6

#data
#datal6
#short

accumulator

addr11

addr 16

addr24

ALU

binary—code compatibility

binary mode

bit
bit (operand)
bit51

byte

A 32-hit constant that isimmediately addressed in an instruction. The upper 16-bit
part isfilled with zeros.

A 32-hit constant that isimmediately addressed in an instruction. The upper 16-hit
part isfilled with ones.

An 8-hit constant that isimmediately addressed in an instruction.
A 16-bit constant that isimmediately addressed in an instruction.
A constant, equal to 1, 2 or 4, that isimmediately addressed in an instruction.

A register or storage location that forms the result of an arithmetic or logical
operation.

An 11-bit destination address. The destination can be anywhere within the same
2—Kbyte block of memory asthe first byte of the next instruction.

A 16-hit destination address. The destination can be anywhere within the same
64-K byte region as the first byte of the next instruction.

A 24-bit destination address. The destination can be anywhere within the
16-Mbyte address space.

Arithmetic-ogic unit. The part of the CPU that processes arithmetic and logical
operations.

The term assert refers to the act of making a signal active (enabled). The polarity
(high/low) is defined by the signal name. Active-low signals are designated by a
pound symbol (#) suffix; active-high signals have no suffix. To assert RD# is to
driveit low; to assert ALE isto driveit high.

The ability of a TSC80251 microcontroller to execute, without modification,
binary code written for an 80C51 microcontroller.

An operating mode, selected by a configuration bit, that enables a TSC80251
microcontroller to execute, without modification, binary code written for a
80C51 microcontroller.

A binary digit.
An addressable bit in the C251 Architecture.
An addressable bit in the C251 Architecture.

Any 8-hit unit of data.

Rev. D —Oct. 18, 1999

glossary.1

TSC80251

TEMIC

Semiconductors

clear

code memory

configuration bytes

dir8
dir16

DPTR

DPX

deassert

doubleword
dword
EPROM

external address

integer

internal address

interrupt handler

interrupt latency

interrupt responsetime

interrupt serviceroutine
LSB

MSB

The term clear refers to the value of a bit or the act of giving it avalue. If abitis
clear, itsvalueis“0"; clearing a bit givesit a“0” vaue.

See program memory.

Bytes that determine a set of operating parameters for the TSC80251 Product. For
TSC80251 EPROM and OTPROM versions, these bytes are programmable in an
EPROM area. For TSC83251 masked ROM versions, these bytes are additional
information provided in a masked ROM area. For TSC80251 ROMIess version,
these bytes are configured in factory according to the part number.

An 8-hit direct address. This can be amemory address or an SFR address.

A 16-bit memory address (00:0000h-00: FFFFh) used in direct addressing.

The 16-hit data pointer. In TSC80251 microcontrollers, DPTR isthe lower 16 bits
of the 24-hit extended data pointer, DPX.

The 24-hit extended data pointer in TSC80251 microcontrollers. See also DPTR.
The term deassert refers to the act of making a signal inactive (disabled). The
polarity (high/low) is defined by the signal name. Activedow signals are
designated by a pound symbol (#) suffix; active-high signals have no suffix. To
deassert RD# isto driveit high; to deassert ALE isto driveit low.

A 32-bit unit of data. In memory, a double word comprises four contiguous bytes.
See double word.

Erasable programmabl e read—only memory.

A 16-hit or 17-bit address presented on the device pins. The address decoded by
an external device depends on how many of these address bits the external system

uses. See also internal address.

Any member of the set consisting of the positive and negative whole numbers and
zero.

The 24-bit address that the device generates. See also external address.

The module responsible for handling interrupts that are to be serviced by
user—written interrupt service routines.

The delay between an interrupt request and the time when the first instruction in
the interrupt service routine begins execution.

The time delay between an interrupt request and the resulting break in the current
instruction stream.

The software routine that services an interrupt.
Least—significant bit of abyte or aleast—significant byte of aword.

Most-significant bit of abyte or amost—significant byte of aword.

glossary.2

Rev. D —Oct. 18, 1999

TEMIC

Semiconductors

TSC80251

multiplexed bus
OTPROM

PC

program memory
RAM

rel

reserved bits

ROM

SFR

sign extension

sour ce—code compatibility

sour ce mode

SP
SPX

statetime (or state)

word

A bus on which the data is time-multiplexed with (some of) the address bits.
One-time—programmable read—only memory, aversion of EPROM.

Program counter.

A part of memory where instructions can be stored for fetching and execution.
Random access memory

A signed (two's complement) 8-hit, relative destination address. The destination
is—128 to +127 bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may be used in future
implementations. Avoid any software dependence on these bits. In most cases: the
value read from this bit isindeterminate; do not set this bit.

Read only memory

The term set refers to the value of abit or the act of giving it avalue. If abit is set,
itsvalueis“1”; setting a bit givesit a“1” value.

Special Function Register.

A method for converting datato alarger format by filling the extrabit positionswith
the value of the sign. This conversion preserves the positive or negative value of
signed integers.

The ability of an TSC80251 microcontroller to execute recompiled source code
written for an 80C51 microcontroller.

An operating mode that is selected by a configuration bit. In source mode, a
TSC80251 microcontroller can execute recompiled source code written for a
80C51 microcontraller. In source mode, the TSC80251 microcontroller cannot
execute unmodified binary code written for an 80C51 microcontroller. See binary
mode.

Stack pointer.
Extended stack pointer.

The basic time unit of the microcontroller; the combined period of the two internal
timing signals, PH1 and PH2. (Theinternal clock generator produces PH1 and PH2
by halving the frequency of the signal on XTAL1.) With a 16-MHz crystal, one
state time equals 125 ns. Because the device can operate at many frequencies, this
manual defines time requirements in terms of state times rather than in specific
units of time.

A 16-bit unit of data. In memory, aword comprises two contiguous bytes.

Rev. D —Oct. 18, 1999

glossary.3

