A NOTE ON QUASI-OPEN MAPS

JAE WOON KIM

ABSTRACT. Let $f: X \to Y$ be quasi-open. We show that: (1) If $A \subset X$ is open, f|A is quasi-open, (2) $f: X \to f(X)$ is quasi-open. (3) And let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be quasi-open. Then $\Pi f_{\alpha}: \Pi X_{\alpha} \to \Pi Y_{\alpha}$, defined by $\{x_{\alpha}\} \to \{f_{\alpha}(x_{\alpha})\}$, is quasi-open. (4) Lastly, if $f_i: X_i \to Y$ are quasi-open, i=1,2, then $F: X_1 \oplus X_2 \to Y$, defined by $F(x) = f_i(x), \ x \in X_i$, is also quasi-open.

1. Introduction

The concept of a quasi-open map was introduced by Kao [3] in 1983. Some characterizations of M_1 -spaces, in terms of quasi-open maps, have been given by Kao [3].

The continuous maps and the quasi-open maps are not related. See the Examples of this note. But the quasi-open maps have the properties which are similar to those of the continuous maps. The purpose of this note is to derive the characterizations of quasi-open maps

Let X, Y and Z be topological spaces with no separation axioms assumed unless explicitly stated.

The interior of a subset U of X will be denoted by Int(U). Notations and terminologies not explained here but used in this note are taken from Dugundji [2].

2. Results

Definition 1 [3]. A mapping $f: X \to Y$ is called quasi-open if $\operatorname{Int}(f(U)) \neq \emptyset$ for every non-empty open subset $U \subset X$.

Received by the editors May 28, 1997 and, in revised form Nov. 25, 1997.

¹⁹⁹¹ Mathematics Subject Classifications. Primary 54C10.

Key words and phrases. Quasi-open map.

Example 1. Let $X = \{a, b, c\}$, and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ be a topology on X. Let $Y = \{p, q\}$, and $\sigma = \{\emptyset, \{p\}, Y\}$ be a topology on Y. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p and f(b) = f(c) = q. Then f is continuous but not quasi-open.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ be a topology on X. Let $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, \{q, r\}, Y\}$ be a topology on Y. Define $g: (X, \tau) \to (Y, \sigma)$ by g(a) = p, g(b) = q, g(c) = r. Then g is quasi-open but not continuous.

Lemma 1 [3]. If $f: X \to Y$ is open, f is quasi-open.

Lemma 2(cf. [1]). If $f: X \to Y$ is local homeomorphism, f is quasi-open.

Proof. Every local homeomorphism is a countinuous open map [1]. By Lemma 1, f is quasi-open.

Let ΠX_{α} be the product space with the product topology. Then the β -th projection map $\pi_{\beta}: \Pi X_{\alpha} \to X_{\beta}$ is continuous, open and surjective. Hence, by Lemma 1, we obtain the following lemma.

Lemma 3 [3]. π_{β} is quasi-open.

Lemma 4 [Composition](cf. [3]). Let $f: X \to Y$ and $g: Y \to Z$ be quasi-open maps. Then $g \circ f$ is quasi-open.

Proof. Let U be any non-empty open set in X. Since f is quasi-open, $\operatorname{Int}(f(U)) \neq \emptyset$. Since g is also quasi-open, $\operatorname{Int}(g(\operatorname{Int}(f(U))) \neq \emptyset$.

But we know that $\operatorname{Int}(g(\operatorname{Int}(f(U))) \subset \operatorname{Int}(g(f(U)))$. Hence $\operatorname{Int}(g(f(U))) \neq \emptyset$. This completes the proof.

If A is an open subset of X, then the inclusion $i: A \to X$ is open [2].

Proposition 5 [Restriction of Domain]. Let $f: X \to Y$ be a quasi-open map, and A open subspace of X. Then $f|A:A\to Y$ is quasi-open.

Proof. Let U be any non-empty open set in A. Then U is a non-empty open set in X. We know that $f|A = f \circ i$, where $i : A \to X$ is an inclusion, and that i is open [2]. By Lemma 4, we get the result.

Proposition 6 [Restriction of Range]. If $f: X \to Y$ is quasi-open and f(X) is taken the subspace topology, then $f: X \to f(X)$ is quasi-open.

Proof. Let U be any non-empty open set in X. Then $\operatorname{Int}_{f(X)}(f(U)) \supset \operatorname{Int}_{Y}(f(U)) \cap f(X) = \operatorname{Int}_{Y}(f(U))$. Since f is quasi-open, $\operatorname{Int}_{Y}(f(U)) \neq \emptyset$. Hence $f: X \to f(X)$ is quasi-open.

Proposition 7. Let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be onto for each α . Define $\Pi f_{\alpha}: \Pi X_{\alpha} \to \Pi Y_{\alpha}$ by $\{x_{\alpha}\} \to \{f_{\alpha}(x_{\alpha})\}$. If f_{α} is quasi-open for each α , Πf_{α} is quasi-open.

Proof. Let $U = U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times U_{\alpha_n} \times \Pi_{\alpha \neq \alpha_i} X_{\alpha}$ be a non-empty basic open set in ΠX_{α} . Then $\operatorname{Int}(\Pi f_{\alpha}(U)) = \operatorname{Int}(f_{\alpha_1}(U_{\alpha_1})) \times \cdots \times \operatorname{Int}(f_{\alpha_n}(U_{\alpha_n})) \times \Pi_{\alpha \neq \alpha_i} Y_{\alpha}$ is non-empty. Hence Πf_{α} is quasi-open.

Let $X_1 \oplus X_2$ be a sum of disjoint topological spaces X_1 and X_2 . Define $F: X_1 \oplus X_2 \to Y$ by $F(x) = f_i(x)$ if $x \in X_i$, where $f_i: X_i \to Y, i = 1, 2$.

Proposition 8. If $f_i: X_i \to Y$ are quasi-open, i = 1, 2, F is quasi-open.

Proof. Let U be any non-empty open set in $X_1 \oplus X_2$. Then $U \cap X_i$ are open in X_i by the definition of a topological sum. Since f_i are quasi-open, $\emptyset \neq \operatorname{Int}(f_1(U \cap X_1)) \cup \operatorname{Int}(f_2(U \cap X_2)) \subset \operatorname{Int}(f_1(U \cap X_1) \cup f_2(U \cap X_2)) = \operatorname{Int}(F(U))$. Hence F is quasi-open.

Corollary 9. If $f_i: X_i \to Y$ are quasi-open for $i = 1, 2, \dots, n$, the map $F: \bigoplus_{i=1}^n X_i \to Y$, defined by $F(x) = f_i(x)$ if $x \in X_i$, is quasi-open.

References

- 1. N. Bourbaki, *Elements of mathematics. General topology. Part 1*, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR **34**#5044a.
- 2. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass, 1966. MR 33#1824.
- 3. K. S. Kao, Pacific J. Math. 108 (1983), no. 1, 121–128. MR 85b:54047.

Department of Mathematics Education, Chongju University, 36 Naedeok-Dong, Chongju, 360-764, Korea.