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ABSTRACT 
 The beta-normal distribution is characterized by 
four parameters that jointly describe the location, the 
scale and the shape properties. The beta-normal 
distribution can be unimodal or bimodal. This paper 
studies the bimodality properties of the beta-normal 
distribution. The region of bimodality in the parameter 
space is obtained. A test for bimodality is proposed for 
the distribution. The beta-normal distribution is applied 
to fit a bimodal numerical data set. 
 
 
1.  Introduction 
 Bimodal distributions occur in many areas of 
science. Withington et al. (2000), in their study of 
cardiopulmonary bypass in infants showed that plasma 
vecuronium and vecuronium clearance requirements 
have bimodal distributions. They concluded that their 
findings on bimodal distributions for plasma 
vecuronium and vecuronium clearance requirements 
highlight the need for individual monitoring of 
neuromuscular blockade. Espinoza et al. (2001) 
discussed the importance of bimodal distributions in 
the study of size distribution of metals in aerosols. 
Bimodal distributions also occur in the study of genetic 
diversity (Freeland et al., 2000), in the study of 
agricultural farm size distribution (Wolf and Sumner, 
2001), in the study of atmospheric pressure (Zangvil et 
al., 2001), and in the study of anabolic steroids on 
animals (Isaacson, 2000). 
 Let ( )F x  be the cumulative distribution function 
(CDF) of a random variable X. The cumulative 
distribution function for a generalized class of 
distributions for the random variable X can be defined 
as the logit of the beta random variable given by 
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Eugene et al. (2002) considered ( )F x  as the CDF of 
the normal distribution with parameters µ and σ. Thus, 
the random variable X has the beta-normal distribution 
with probability density function (pdf) 
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the normal CDF. 
 The distribution in (1.2) may be symmetric, 
skewed to the left, or skewed to the right. The 
distribution may be unimodal or bimodal. Eugene et al. 
(2002) discussed the shape properties of the unimodal 
beta-normal distribution. Furthermore, they considered 
the estimation of its parameters by the method of 
maximum likelihood. 
 In the analysis of bimodal data, a mixture of two 
normal densities is usually used as a model (e.g., Cobb 
et al., 1983). The mixture of normal distribution is used 
as a model to analyze bimodal data because the 
mixture of normal densities can take on bimodal shapes 
depending on the parameters of the distribution. 
Eisenberger (1964) showed how the parameters of a 
mixture of normal distributions determine its shape. 
When a mixture assumption is not required or justified 
the beta-normal distribution can serve as a model to 
analyze data since only one distribution has to be used 
and one less parameter to estimate. 
 In section 2, we provide some bimodality 
properties of beta-normal distribution. In section 3, we 
obtain the region of bimodality in the parameter space. 
A likelihood ratio test is developed to test for 
bimodality in section 4. In section 5, we illustrate the 
application of beta-normal distribution to a numerical 
data set that exhibit two modes. 
 
 
2.  Bimodality Properties 
 In this section, we provide some results on the 
bimodality properties of beta-normal distribution. 
 
 
Theorem: The mode(s) of  is at the 
point x x  that satisfies  

( ,  ,  ,  )BN α β µ σ

0 0 ( ,  )α β=
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Proof: Differentiating BN  in (1.2) with 
respect to x, setting it equal to zero, and solving for x 
gives the result in (2.1). 
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Corollary 1: If α = β and one mode of 

 is atx , then the other mode is at the 
point 2 . 

( ,  ,  ,  )BN α β µ σ

0xµ −
0

Proof: If  is unimodal, then the only 
mode occurs at the point x = µ. For bimodal case, we 
need to show that if we replace x  with , 
then equation (2.1) remains the same. When 
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simplification, we get the result in (2.2). 
 
 
Corollary 2: If BN  has a mode at x , 
then  has a mode at 2 . 
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Proof: We need to show that if we replace α with β, 
and  with x , equation (2.1) remains the 
same. Equation (2.1) can be written as  
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, and on simplification, we 

get back the result in (2.4). 
 
 
Corollary 3: The modal point x  is an 
increasing function of α  and a decreasing function of 
β. 
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Hence  is an increasing function of α and a 
decreasing function of β. 

0 ( ,  )x α β

 Eugene et al. (2002) showed that the beta-normal 
distribution is symmetric about µ when α = β. From 
this result and corollary 3, the modal value is greater 
than µ if α > β. Also, the modal value is less than µ if 
α < β. The beta-normal distribution has a very distinct 
property in that it can be used to describe both bimodal 
and unimodal data. 
 
 
3.  Region of Bimodality 
 The beta-normal distribution becomes bimodal for 
certain values of the parameters α and β, and the 
analytical solution of α and β where the distribution 
becomes bimodal cannot be solved algebraically. A 
numerical solution is obtained, however, by solving the 
number of roots of the derivative of BN(α, β, µ, σ). 
Numerically, the largest value of α or β that gives 
bimodal property is approximately 0.214. Figure 1 
shows a plot of the boundary region of α and β values 
where BN(α, β, 0,1) is bimodal. 
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Figure 1. Plot of bimodal region for beta-normal distribution BN(α, β, 0, 1) 
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Corollary 4: The bimodal property of BN(α, β, µ, σ) is 
independent of the parameters µ and σ. 
Proof: The mode(s) of  is at the point 

 given in (2.1). On re-writing (2.1), 
one obtains (2.4). On taking the µ on the right hand 
side of (2.4) to the left hand side, dividing through by 
σ, and replacing 

( ,  ,  ,  )BN α β µ σ
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 In corollary 4, we showed that the bimodal 
property of BN(α, β, µ, σ) is robust against the 
parameters µ and σ. In other words, regardless of the 
values of µ and σ, the α and β range for the bimodality 
of BN(α, β, µ, σ) remains the same. To get more 
accurate values of the pairs of (α, β) values that lie on 
the boundary of the region where the beta-normal 
distribution becomes bimodal, regression lines were 
drawn to estimate each boundary. The regression line 
that traced the boundaries of Figure 1 was 

approximated using curve estimation. For the values of 
α in the interval [0.01, 0.16), the values of β at the 
upper boundary in Figure 1 were estimated by 

. For α in the 
interval [0.16, 0.214] we estimated β values by 

. For the values of 
α in the interval [0.16, 0.189), the values of β at the 
lower boundary in Figure 1 were estimated by 

. For α in the 
interval [0.189, 0.214] we use equation 

 to estimate the 
value of β. 

2ˆ 0.8591 0.0453 0.1603β α α= + +

2ˆ 4.4113 1.1966 0.2675β α α= − +

2ˆ 116.15 45.4657 4.290β α α= − + −

2ˆ 41.972 18.9913 1.928β α α= − + −

8

1

z

which is independent of parameters µ and σ. 

 If BN(α, β, µ, σ) is unimodal, the distribution is 
skewed to the right whenever α > β and it is skewed to 
the left whenever α < β. If BN(α, β, µ, σ) is bimodal, 
the distribution is skewed to the right when α < β and 
it is skewed to the left when α > β. Thus, the beta-
normal distribution provides great flexibility in 
modeling symmetric, skewed and bimodal 
distributions. 
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4.  Test for Bimodality 
 A likelihood ratio test statistic is developed to test 
the bimodal beta-normal distribution against a 
unimodal alternative. The beta-normal distribution in 
(1.2) is bimodal if the parameters α and β fall in the 
bimodal region (which is shaded) in Figure 1. Thus, to 
test for bimodality we test the hypothesis 

0

0

: Values of  and  are outside the bimodal region
:  is not true.                                                        a

H
H H

α β
 

  (4.1) 
 Let ( ,  ,  ,  )ω α β µ σ=  be the set of beta-normal 
distribution parameters where both α and β lie inside 
the bimodal region in Figure 1. Under 0H , the set of 
beta-normal distribution parameters will be given by 
the complement ω′ . Let the whole parameter space for 
beta-normal density be given by ω ω ′Ω = . We 
define the likelihood ratio statistic 

∪

  ( , , , )
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max

x
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α β µ σ ω

α β µ σ
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∈Ω

=  (4.2) 

where  is the likelihood function for beta-normal 
distribution. The numerator in (4.2) is maximized over 
α, β, µ, and σ outside the shaded region in Figure 1. In 
this maximization, two restrictions (one for α and the 
other for β) are imposed on the parameter space. The 
denominator in (4.2) is maximized over α, β, µ, and σ 
by using the whole parameter space . Under very 
general conditions, the quantity –2log(λ) has an 
approximate chi-square distribution with 2 degrees of 
freedom. This enables us to test the hypothesis in (4.1) 
at any given level of significance. 

xL

Ω

 
 
5.  Application to Bimodal Data 
 Sewell and Young (1997) studied the egg size 
distributions of echinoderm. In marine invertebrates, a 
species produces either many small eggs with 
planktotrophic development or fewer larger eggs with 
lecithotrophic development, Thorson (1950). The 
models developed by Vance (1973a, 1973b) viewed 
planktotrophy and lecithotrophy as extreme forms of 
larvae development. Subsequent modifications of these 
models [see the references in Sewell and Young 
(1997)] predict that eggs of marine invertebrates have 
bimodal distributions. Christiansen and Fenchel (1979) 
reported a bimodal distribution of egg sizes within 
prosobranchs. Emlet et al. (1987) described bimodal 
distributions in asteroid and echinoid echinoderms. For 
echinoids and asteroids [see Tables 2 and 7 of Emlet et 
al. (1987)], the egg diameters for species with 
planktotrophic larvae have less variation than species 
with lecithotrophic larvae. Because of this variation, 
the egg diameters appear to have one mode. However, 

with logarithmic transformation, the effect of large 
eggs in lecithotrophic species is reduced and the 
distribution of eggs becomes bimodal for both 
echinoids and asteroids. 
 Sewell and Young (1997) reported that many of 
the early studies used data sets that were not 
appropriate for a valid test of the egg size distribution 
patterns. They defined three criteria for appropriate 
data sets. The most widely cited example of bimodality 
in egg sizes is the data set compiled by Emlet et al. 
(1987). This data set satisfied the three criteria defined 
by Sewell and Young. 
 Sewell and Young (1997) reexamined the asteroid 
and echinoid egg size data in Emlet et al. (1987) with 
some additional data from more recent study. The 
additional data used by Sewell and Young were not 
available in their published paper. In this paper, we 
have applied the beta-normal distribution to fit the 
logarithm of the egg diameters of the asteroids data in 
Emlet et al. (1987). The valid data consists of 88 
asteroid species divided into three types consisting of 
35 planktotrophic larvae, 36 lecithotrophic larvae, and 
17 brooding larvae. These species are from a variety of 
habitats. 
 The maximum likelihood estimation method is 
used for parameter estimation. Eugene et al. (2002) 
gave the detailed discussion of this estimation 
technique. The parameter estimates for beta-normal 
distribution are α̂  = 0.013, β̂  = 0.007, µ̂  = 5.747, 
and σ̂  = 0.068. The estimates for α and β fall in the 
bimodal region in Figure 1. The log-likelihood value is 
–109.48. A histogram of the data with the beta-normal 
distribution super imposed is presented in Figure 2. We 
checked the goodness of fit of beta-normal distribution 
to the data by using the Kolmogorov-Smirnov test [see 
the book by DeGroot and Schervish (2002), page 568]. 
In Figure 3, we present both the empirical CDF and the 
beta-normal CDF for the data. The absolute maximum 
difference between the empirical cumulative 
distribution function and the beta-normal cumulative 
distribution function is nD∗  = 0.1244. This provides a 

test statistic nnD∗  = 1.167 with a significance 
probability of 0.1310. Thus, the beta-normal 
distribution provides an adequate fit to the data. 
 We tested the hypothesis in (4.1) about the 
bimodality of the asteroids species data. The log-
likelihood statistic under the null hypothesis 0H  in 
(4.1) is –118.61. The likelihood ratio statistic in (4.2) is 
18.26 with 2 degrees of freedom. The corresponding p-
value for this test is 0.0001. Thus, the null hypothesis 
is rejected and hence the data is bimodal. 
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Figure 2. Histogram of log(egg diameter) with beta-normal super imposed 
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Figure 3. Empirical CDF and beta-normal CDF for log(egg diameter) 
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