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0.1 Introduction

The growth of the high-throughput technologies nowadays has led to exponential growth
in the harvested data with respect to dimensionality and sample size. As a sequence, storing
and processing these data becomes more challenging. Figure (1) shows the trend of this
growth for UCI machine learning repository. This augmentation made manual processing
for these datasets to be impractical. Therefore, data mining and machine learning tools were
proposed to automating pattern recognition and knowledge discovery process. However,
using data mining techniques on an ore data is mostly useless due to the high level of
noise associated with collected samples. Usually, data noise is either due to imperfection in
the technologies that collected the data or the nature of the source of this data itself. For
instance, in medical images domain, any deficiency in the imaging device will be reflected
as noise in the dataset later on. This kind of noise is caused by the device itself. On the
other hand, text datasets crawled from the internet, are noisy by nature because they are
usually informally written and suffer from grammatical mistakes, misspelling, and improper
punctuation. Undoubtedly, extracting useful knowledge from such huge and noisy datasets
is a painful task.

Dimensionality reduction is one popular technique to remove noisy (i.e. irrelevant) and
redundant attributes (AKA features). Dimensionality reduction techniques can be catego-
rized mainly into feature extraction and feature selection. In feature extraction approach,
features are projected into a new space with lower dimensionality. Examples of feature
extraction technique include Principle Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Singular Value Decomposition (SVD), to name a few. On the other hand,
the feature selection approach aims to select a small subset of features that minimize re-
dundancy and maximize relevance to the target (i.e. class label). Popular feature selection
techniques include: Information Gain, Relief, Chi Squares, Fisher Score, and Lasso, to name
a few.

Both dimensionality reduction approaches are capable of improving learning perfor-
mance, lowering computational complexity, building better generalizable models, and de-
creasing required storage. However, feature selection is superior in terms of better readabil-
ity and interpretability since it maintains the original feature values in the reduced space
while feature extraction transforms the data from the original space into a new space with
lower dimension, which cannot be linked to the features in the original space. Therefore,
further analysis of the new space is problematic since there is no physical meaning for the
transformed features obtained from feature extraction technique.

Feature selection is broadly categorized into four models, namely: filter model, wrapper
model, embedded model and hybrid model. As we mentioned above, feature selection selects
subset of highly discriminant features. In other words, it selects features that are capable
of discriminating samples that belong to different classes. Thus, we need to have labeled
samples as training samples in order to select these features. This kind of learning is called
supervised learning, which means that the dataset is labeled. In supervised learning, it is
easy to define what relevant feature means. It simply refers to the feature that is capable
of distinguishing different classes. For example, a feature fi is said to be relevant to a class
cj if fi and cj are highly correlated.

Unlabeled data poses a yet another challenge in feature selection. In such cases, defining
relevancy becomes unclear. However, we still believe that selecting subset(s) of features
may help improving unsupervised learning in a way similar to improving the supervised
learning. One of the most utilized unsupervised learning technique is data clustering. Data
clustering is the unsupervised classification of samples into groups. In other words, it is the
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FIGURE 1: Plot (a) shows the dimensionality growth trend in UCI Machine Learning
Repository from mid 80s to 2012 while (b) shows the growth in the sample size for the same
period.

technique that aims to group similar samples into one group called a cluster. Each cluster has
maximum within-cluster similarity and minimum between-cluster similarity based on certain
similarity index. However, finding clusters in high-dimensional space is computationally
expensive and may degrade the learning performance. Furthermore, equally good candidate
of features’ subsets may produce different clusters. Therefore, we demand to utilize feature
selection for clustering to alleviate the effect of high-dimensionality.

In the following subsection, we will review the literature of data clustering in Section
(0.1.1) followed by general discussion about feature selection models in Section (0.1.2) and
feature selection for clustering in Section (0.1.3).

0.1.1 Data Clustering

Due to the increase in data size, human manual labeling has become extremely difficult
and expensive. Therefore, automatic labeling has become indispensable step in data mining.
Data clustering is one of the most popular data labeling techniques. In data clustering, we
are given unlabeled data and we are to put similar samples in one pile, called a cluster, and
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the dissimilar samples should be in different clusters. Usually, neither cluster’s description
nor its quantification is given in advance unless a domain knowledge exists, which poses a
great challenge in data clustering.

Clustering is useful in several machine learning and data mining tasks including: im-
age segmentation, information retrieval, pattern recognition, pattern classification, network
analysis, and so on. It can be seen as either an exploratory task or preprocessing step. If the
goal is to explore and reveal the hidden patterns in the data, clustering becomes a stand-
alone exploratory task by itself. However, if the generated clusters are going to be used to
facilitate another data mining or machine learning task, clustering will be a preprocessing
step in this case.

There are many clustering methods in the literature. These methods can be categorized
broadly into: partitioning methods, hierarchical methods, and density-based methods. The
partitioning methods use a distance-based metric to cluster the points based on their simi-
larity. Algorithms belonging to this type produce one level partitioning and non-overlapping
spherical shaped clusters. K-means and k-medoids are popular partitioning algorithms. The
hierarchical method, on the other hand, partitions the data into different levels that look at
the end like a hierarchy. This kind of clustering helps in data visualization and summariza-
tion. Hierarchical clustering can be done in either bottom-up (i.e. agglomerative) fashion or
top-down (i.e. divisive) fashion. Examples of this type of clustering are BIRCH, Chameleon,
AGNES, DIANA. Unlike these two clustering techniques, density-based clustering can cap-
ture arbitrary shaped clusters such as S-shape. Data points in dense regions will form a
cluster while data points from different clusters will be separated by low density regions.
DBSCAN and OPTICS are popular examples of density-based clustering methods.

0.1.2 Feature Selection

In the past thirty years, the dimensionality of the data involved in machine learning
and data mining tasks has increased explosively. Data with extremely high dimensional-
ity has presented serious challenges to existing learning methods [38],known as the curse
of dimensionality [25]. With the existence of a large number of features, a learning model
tends to overfit and their learning performance degenerates. To address the problem of the
curse of dimensionality, dimensionality reduction techniques have been studied, which form
an important branch in the machine learning research area. Feature selection is one of the
most used techniques to reduce dimensionality among practitioners. It aims to choose a
small subset of the relevant features from the original ones according to certain relevance
evaluation criterion [37, 23], which usually leads to better learning performance, e.g. higher
learning accuracy, lower computational cost, and better model interpretability. Feature se-
lection has been successfully applied in many real applications, such as pattern recognition
[28, 58, 46], text categorization [74, 31, 52], Image processing [28, 56], bioinformatics [1, 2],
and so forth.

According to whether the label information is utilized, different feature selection algo-
rithms can be categorized into supervised [69, 60], unsupervised [18, 46], or semi-supervised
algorithms [79, 73]. With respect to different selection strategies, feature selection algo-
rithms can also be categorized as being of either the filter [39, 15], wrapper [33], hybrid,
and embedded models [13, 51]. Feature selection algorithms of the filter model are indepen-
dent of any classifier. They evaluate the relevance of a feature by studying its characteristics
using certain statistical criteria. Relief [59], Fisher score [16], CFS [24], and FCBF [76] are
among the most representative algorithms of the filter model. On the other hand, algorithms
belonging to the wrapper model utilize a classifier as a selection criteria. In other words,
they select a set of features that has the most discriminative power using a given classifier,
such as: SVM, KNN, and so on. An example of the wrapper model is the FSSEM [17],
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ℓ1SVM [10]. Other examples of the wrapper model could be any combination of a preferred
search strategy and given classifier. Since the wrapper model depends on a given classifier,
cross-validation is usually required in the evaluation process. They are in general more com-
putationally expensive and biased to the chosen classifier. Therefore, in real applications,
the filter model is more popular, especially for problems with large datasets. However, the
wrapper model has been empirically proven to be superior, in terms of classification accu-
racy, to those of a filter model. Due to these shortcomings in each model, the hybrid model
[13, 40], was proposed to bridge the gap between the filter and wrapper models. First, it
incorporates the statistical criteria, as filter model does, to select several candidate features
subsets with a given cardinality. Second, it chooses the subset with the highest classifica-
tion accuracy [40]. Thus, the hybrid model usually achieves both comparable accuracy to
the wrapper and comparable efficiency to the filter model. Representative feature selection
algorithms of hybrid model include: BBHFS [13], HGA [53]. Finally, the embedded model
performs feature selection in the learning time. In other words, it achieves model fitting
and feature selection simultaneously. Examples of embedded model include C4.5 [54], Blo-
gReg [21], and SBMLR [21]. Based on different types of outputs, most feature selection
algorithms fall into one of the three categories: subset selection [75], which returns a subset
of selected features identified by the index of the feature; feature weighting [59], which re-
turns weight corresponding to each feature; and the hybrid of subset selection and feature
weighting, which returns a ranked subset of features.

Feature weighting, on the other hand, is thought of as a generalization of feature selection
[70]. In feature selection, a feature is assigned a binary weight, where 1 means the feature is
selected and 0 otherwise. However, feature weighting assigns a value, usually in the interval
[0,1] or [-1,1], to each feature. The greater this value is, the more salient the feature will be.
Feature weighting was found to outperform a feature selection in tasks where features vary
in their relevance score [70], which is true in most real-world problems. Feature weighting
could be, also, reduced to feature selection if a threshold is set to select features based on
their weights. Therefore, most of feature selection algorithms mentioned in this chapter can
be considered using feature weighting scheme.

Typically, a feature selection method consists of four basic steps [40], namely, subset
generation, subset evaluation, stopping criterion, and result validation. In the first step,
a candidate feature subset will be chosen based on a given search strategy, which is sent,
in the second step, to be evaluated according to certain evaluation criterion. The subset
that best fits the evaluation criterion will be chosen from all the candidates that have been
evaluated after the stopping criterion are met. In the final step, the chosen subset will be
validated using domain knowledge or validation set.

0.1.3 Feature Selection for Clustering

The existence of irrelevant features in the data set may degrade learning quality and
consume more memory and computational time that could be saved if these features were
removed. From the clustering point of view, removing irrelevant features will not negatively
affect clustering accuracy whilst reducing required storage and computational time. Figure
2 illustrates this notion where (a) shows the relevant feature f1 which can discriminate
clusters. Figure 2(b) and (c) shows that f2 and f3 cannot distinguish the clusters; hence,
they will not add any significant information to the clustering.

In addition, different relevant features may produce different clustering. Figure 3(a)
shows four clusters by utilizing knowledge from f1 and f2, while Figure 3(b) shows two
clusters if we use f1 only. Similarly, Figure 3(c) shows two different clusters if we use f2
instead.Therefore, different subset of relevant features may result in different clustering,
which greatly help discovering different hidden patterns in the data.
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FIGURE 2: Feature f1 is relevant while f2 and f3 are irrelevant. We are able to distinguish
the two clusters from f1 only. Thus, removing f2 and f3 will not effect the accuracy of
clustering.
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FIGURE 3: Different sets of features may produce different clustering.

Motivated by these facts, different clustering techniques were proposed to utilize feature
selection methods that eliminate irrelevant and redundant features while keeping relevant
features in order to improve clustering efficiency and quality. For simplicity and better or-
ganization, we are going to describe different feature selection for clustering (FSC) methods
based on the domain. The following sections will be organized as follows: conventional FSC,
FSC in text data, FSC in streaming data, and FSC link data.

Similar to feature selection for supervised learning, methods of feature selection for
clustering are categorized into filter [15] wrapper [55], and hybrid models [19]. A wrapper
model evaluates the candidate feature subsets by the quality of clustering while filter model
is independent of clustering algorithm. Thus, the filter model is still preferable in terms of
computational time and unbiased toward any clustering method, while the wrapper model
produces better clustering if we know the clustering method in advance. To alleviate the
computational cost in the wrapper model, filtering criteria are utilized to select the candidate
feature subsets in the hybrid model.

In the following subsections, we will briefly discuss feature selection for clustering meth-
ods that falls in the filter, wrapper and hybrid models. For more about conventional meth-
ods, we refer the reader to [19].

0.1.3.1 Filter Model

Filter model methods do not utilize any clustering algorithm to test the quality of the
features [19]. They evaluate the score of each feature according to certain criteria. Then,
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TABLE 0.1: Nomenclature
D Dataset
n Sample size
m Number of features
xj jth sample
fi ith feature
F Selected feature set
l Number of selected features
K Number of clusters
Ck kth cluster

it selects the features with the highest score. It is called the filter since it filters out the
irrelevant features using given criteria. Furthermore, feature evaluation could be either uni-
variate or multivariate. Univariate means each feature is evaluated independently of the
feature space. This approach is much faster and more efficient than the univariate, which
evaluates features with respect to the other features. Therefore, the multivariate, unlike the
univariate approach, is capable of handling redundant features. SPEC ,see Section (0.2.1.1),
is an example of the univariate filter model, although it was extended to multivariate ap-
proach in [78]. Other examples of filter model criteria used in feature selection for clustering
include: feature dependency [62], entropy-based distance [15], and laplacian score [26, 80].

0.1.3.2 Wrapper Model

The wrapper model utilizes a clustering algorithm to evaluate the quality of selected
features. It starts by (1) finding a subset of features. Then, (2) it evaluates the clustering
quality using the selected subset. Finally, it repeats (1) and (2) until the desired qual-
ity is found. Evaluating all possible subsets of features is impossible in high-dimensional
datasets. Therefore, heuristic search strategy is adopted to reduce the search space. The
wrapper model is very computationally expensive compared to filter model. Yet, it produces
better clustering since we aim to select features that maximize the quality. It is still biased
toward the used clustering method. Different wrapper feature selection methods for cluster-
ing were proposed by changing the combination of search strategy and the utilized clustering
algorithm. The method proposed in [18] is an example of a wrapper that involves maximum
likelihood criteria and feature selection and mixture of Gaussians as clustering method.
Others use conventional clustering methods such as k-means and any search strategy as
feature selector [32].

0.1.3.3 Hybrid Model

To overcome the drawback of filter and wrapper models a hybrid model is used to benefit
from the efficient filtering criteria and better clustering quality from the wrapper model. A
typical hybrid process goes through the following steps: (1) it utilizes filtering criteria to
select different candidate subsets. Then, (2) it evaluates the quality of clustering of each
candidate subsets. (3) The subset with highest clustering quality will be selected. Algorithms
belonging to the hybrid model usually produce better clustering quality than those of filter
model, yet, they are less efficient. Compared to the wrapper model, the hybrid model is
much more efficient.
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0.2 Feature Selection for Clustering

Several feature selection for clustering methods have been proposed in the literature.
Some algorithms handle text data, while others handle streaming data. Still others are
capable of handling different kind of data. In this section, we will discuss different methods
with respect to data types they can handle. We will review algorithms for text, streaming
and linked data, as well as algorithms that is able to handle generic data.

0.2.1 Algorithms for Generic Data

In this section, we will discuss feature selection for clustering methods that are able to
handle generic datasets. In other words, it is not necessary to be designed to handle only
text, data stream or linked data.

0.2.1.1 Spectral Feature Selection (SPEC)

Although the Spectral Feature selection (SPEC) algorithm is a unified framework that
enables the joint study of supervised and unsupervised learning, we will use SPEC in this
work as an example of filter-based unsupervised feature selection methods. SPEC [80] es-
timates the feature relevance by estimating feature consistency with the spectrum of a
matrix derived from a similarity matrix S. SPEC uses the Radial-Bases Function RBF as
a similarity function between two samples xi and xj :

Sij = e−
||xi−xj ||

2

2σ2 (0.1)

Graph G will be constructed from S and adjacency matrix W will be constructed from
G. Then, degree matrix D̄ will be computed from W . D̄ is diagonal matrix where D̄ii =
∑n

j=1Wij . Given D̄ and W Laplacian matrix L and the normalized Laplacian matrix L are
computed as follows:

L = D̄ −W ; L = D̄− 1

2LD̄− 1

2 (0.2)

The main idea behind SPEC is that the features consistent with the graph structure are
assigned similar values to instances that are near to each other in the graph. Therefore, these
features should be relevant since they behave similarly in each similar group of samples (i.e.
clusters). Motivated by graph theory that states that graph structure information can be
captured from its spectrum, SPEC studies how to select features according to the structure
of the graph G induced from the samples similarity matrix S.

The weight of each feature fi in SPEC is evaluated using three functions ψ1, ψ2, and ψ3.
These functions were derived from the normalized cut function with the spectrum of the
graph, and extended to their more general forms. In this chapter, we will not explain these
functions in detail, therefore, we refer the reader to [80] for more details. We assume here
that each function ψ takes feature vector fi and returns the weight based on the normalized
Laplacian L.

0.2.1.2 Laplacian Score (LS)

Laplacian Score (LS)[26] is a special case of SPEC if the ranking function used is:

Fi ←
f̂Ti Lf̂i

f̂Ti D̄f̂i
where f̂i = fi −

fTi D̄1

1T D̄1
1 (0.3)
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Algorithm 1 Spectral Feature Selection (SPEC)

Input:
D: dataset
ψ ∈ {ψ1, ψ2, ψ3}: feature weighting functions
n: number of samples
Output:
F : the ranked feature list

1: Construct similarity matrix S from D
2: Construct Graph G from S
3: Construct W from S
4: Construct D̄ from W
5: Define L and L according to Eq (0.2)
6: for each feature vector fi do

7: f̂i ←
D̄

− 1

2 fi

||D̄− 1

2 fi||
8: Fi ← ψ(f̂i)
9: end for

10: Rank F based on ψ

Where 1 is one vector. LS is very effective and efficient with respect to the data size. Similar
to SPEC, the most time consuming in LS is constructing the similarity matrix S. The beauty
of this algorithm is it can handle both labeled and unlabeled data.

0.2.1.3 Feature Selection for Sparse Clustering

Witten and Tibshirani in [71] proposed a framework for feature selection in sparse clus-
tering. They applied Lasso-type , ℓ1 − norm, as feature selection method embedded in the
clustering process. This framework can be applied to any similarity-based clustering tech-
nique, yet, they used k-means clustering in [71]. The number of selected features l is chosen
using gap statistics in a similar fashion to choosing the number of clusters in [67]. The
proposed method attempts to minimize the following objective function with respect to the
clusters {C1, . . . , CK} and the feature weight vector w :

min
∑m

j=1 wjΨj

subject to ||w||2 ≤ 1,
||w||1 ≤ l,
wj ≥ 0 ∀j

(0.4)

Where Ψj is given by the following equation for k-means over jth feature:

Ψj =
K
∑

c=1

1

nc

∑

i,i′∈CK

Sim(i, i′, j)−
1

n

n
∑

i=1

n
∑

i′=1

Sim(i, i′, j).

K is the number of clusters, nc is the number of samples in cluster c and Sim(i, i′, j) is
the similarity index of sample i and i′ using only the selected feature j. Optimizing Eq (0.4)
is done using iterative algorithm by holding w fixed and optimizing Eq (0.4) with respect
to the clusters {C1, . . . , CK}. In this step, we apply standard k-means clustering on n-by-n
similarity matrix using jth feature. Then, we hold the clusters fixed and optimize Eq (0.4)
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with respect to w. w is set in this step to be

w =
S(Ψ+,∆)

S(||Ψ+,∆)||2
(0.5)

where Ψ+ is the positive part of Ψ and ∆ = 0 when ||w||1 ≤ l and ∆ > 0 otherwise, so,
||w||1 = l. Algorithm (2) illustrates these steps of optimizing Eq (0.4).

Algorithm 2 Feature Selection for Sparse Clustering

Input:
D: dataset
l: number of selected features obtained from gab statistics-like approach
n: number of samples
Output:
the clusters and w
Initialize:
w1 = w2, . . . , wm = 1√

m

1: while not converge do
2: Hold w fixed
3: Optimize Eq (0.4) with respect to C1, . . . , CK

4: Holding C1, . . . , CK fixed
5: Optimize Eq (0.4) with respect to w by applying Eq (0.5)
6: end while

Witten and Tibshirani in [71], also, proposed sparse hierarchical clustering based on
lasso penalty similar to Algorithm (2). The hierarchical clustering involves n-by-n similarity
matrix, which is optimized iteratively with w. Then, we perform hierarchical clustering on
the constructed similarity matrix. For more about this algorithm we refer the reader to [71].

0.2.1.4 Localized Feature Selection Based on Scatter Separability (LFSBSS)

Li et al in [35] proposed a localized feature selection based on scatter separability (LFS-
BSS). This is motivated by the fact that the set of features that are relevant to one clustering
result are not necessary the same set that is relevant to another clustering result. In other
words, clustering datasetD using a set of feature F1 may produce clusters {C1, C2, C3} while
clustering using another set of features F2 may lead to clusters {C4, C5}, where F1 6= F2.
This notion is also illustrated in Figure (3). Furthermore, each cluster in a clustering result
may be associated to different set of relevant features. In document clustering, for instance,
documents that belong to sport news are more likely to have different set of relevant terms
such as: FIFA, Ball, and so on. While the set of documents that belong to technology news
contains relevant terms such as: Apple, IBM, and so on. In this section we are will use
the cluster set C = {(C1, F1), . . . , (Cj , Fj), . . . , (CK , FK)} to refer to the clustering result
where C1 and F1 are the first cluster and the set of selected features corresponds to the first
cluster, respectively.

Li et al in [35] borrowed the notion of scatter separability from Dy and Brodley [18] and
adopted as a localized feature selection. They defined the scatter separability as:

Ω = tr(S−1
w Sb)

where S−1
w is the inverse of within-cluster separability and Sb is the between-cluster sep-

arability. If we need to evaluate Ωi for cluster i, we should use the within that cluster

separability S
(i)−1
w , instead. It was proven in [35] that Ωi is monotonically increasing with
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dimensions as long as the clustering assignments remain the same. To mitigate this prob-
lem, separability criteria must be normalized with respect to the dimensionality for feature
selection. Moreover, since localized feature selection attempts to select different sets of rel-
evant features for each cluster, the between-cluster separability needs to be appropriately
normalized as well. This is performed using cross-projecting over individual clusters. We
assume that the projected cluster is Ĉ = {(Ĉ1, F̂1), . . . , (ĈK , F̂K)}. At each step of the pro-
jection, we replace the projected cluster Ĉi with the largest overlap and the original cluster
Cj to generate the new clustering C∗ = {(C1, F1), . . . , (Ĉi, F̂i), . . . , (CK , FK)}. Finally, we
cross-project into each other, which generates the normalized value, v that allows us to
compare two different clusters with different subspaces. Larger v indicates larger greater
separability between clusters. More details about the projection may be found in [35].

LFSBSS reduces the impact of overlapping and unassigned data by penalizing using
what they called adjusted normalized value a. This value penalizes the cross-projection if
the amount of unsigned or overlap have increased in the projected clustered compared to
the original clusters.

LFSBSS adopts the sequential backward feature selection. This means, that the clusters
are generated first using the whole feature space. Then, iteratively removing irrelevant or
noisy feature based on a from each cluster individually. Algorithm (3) illustrates the steps
of LFSBSS.

Algorithm 3 Localized Feature Selection Based on Scatter Separability (LFSBSS)

Input:
D: dataset
l: number of selected features
n: number of samples
K: number of clusters
Output:
the clusters and their corresponding features sets
Initialize:
initialize C using all feature space F

1: F ′
1 = F ′

2 = · · · = F ′
K = F

2: while not converged do
3: for c = 1 to K do
4: Evaluate a for Cc

5: Choose feature fi to be removed based on a
6: Fc=Fc − fi
7: Generate a new cluster set C ′ based on Fc

8: Compare Cluster in C ′ with clusters in C
9: if BetterClusterFound then

10: Replace the corresponding cluster in C
11: end if
12: end for
13: if Desired then
14: Process unassigned samples
15: end if
16: end while
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0.2.1.5 Multi-Cluster Feature Selection (MCFS)

Similar to the motivation illustrated in Figure (3), Cai et al in [11] proposed a multi-
cluster feature selection (MCFS) method that is able to select the set of features that
can cover all the possible clustering in the data. In MCFS, spectral analysis is used to
measure the correlation between different features without label information needed. Using
the top eigenvectors of graph Laplacian, spectral clustering can cluster data samples without
utilizing label information. Thus, MCFS applied k-Nearest-Neighbors approach to construct
the graph of the data samples, where k is a predetermined parameter. Next, the heat kernel
weighting matrix W is computed as follows:

Wij = e−
||xi−xj ||

2

σ

where xi and xj are connected samples in the k-Nearest-Neighbors graph and σ is used
predefined parameter. From W a degree matrix is computed as explained earlier in this
chapter. Then, a graph Lapalcian matrix L = D̄ −W is constructed. After that, MCFS
solves the following eigen-problem:

Ly = λD̄y (0.6)

Given Y = [y1, . . . , yK ], the eigenvectors of Eq (0.6), we can find a relevant subset of features
by minimizing the following objective function:

minak
||yk −X

Tak||
2

s.t. ||ak||0 = l

Where ak is a m−dimensional vector and the ||ak||0 is the number of non-zero elements in
ak. Then, K sparse coefficient vectors will be chosen to correspond to each cluster. For each
feature fj , the maximum value of ak that correspond to fj will be chosen. Finally, MCFS
will choose the top l−features. MCFS shows improvement over other methods such as LS
according to [11].

0.2.1.6 Feature Weighting k-means

k-means clustering is one of the most popular clustering techniques. It has been ex-
tensively used in data mining and machine learning problems. Large number of k-means
variations were proposed to handle feature selection [9, 68, 30, 27, 47]. Most of these vari-
ations start by clustering the data into k clusters. Then, it assigns weight to each feature.
The feature that minimizes the within-cluster distance and maximizes between-cluster dis-
tance is preferred, hence, gets higher weight. In [30], for example, an entropy weighting
k -means (EWKM) was proposed for subspace clustering. It simultaneously minimizes the
within-cluster dispersion and maximize the negative weight entropy in the clustering pro-
cess. EWKM calculates the weight of each feature in each cluster by including the weight
entropy in the objective function of k-means. The subset of features corresponding to each
cluster are, then, selected based on that weight. Thus, EWKM allows subspace clustering
where the set of selected features may differ from one cluster to another.

In addition, [47] proposed feature weighting k-means clustering using generalized Fisher
ratio that minimizes the ratio of the average of within-cluster distortion over the average
between-cluster distortion. In this algorithm, several candidate clusterings are generated
and the one with the minimal Fisher ratio is determined to be the final cluster.

Similarly, [27] proposed another variation of feature weighting k-means (W-k-means) that
measures the weight of each feature based on its variance of the within-cluster distance.
Algorithm 4 illustrates the process of W-k-means. It, iteratively, minimizes Eq. (0.7) by
fixing two parameters at each step and solve Ψ with respect to the third one. If there is no
change in Ψ after the minimization, the algorithm is said to be converged.
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Ψ(C,Z,w) =

k
∑

l=1

n
∑

i=1

m
∑

j=1

cilw
β
j d(xij , zlj) (0.7)

Where C is n-by-k partition matrix that contains binary values, cil = 1 indicates that xi
belongs to cluster l. Z is the centroids and d(·, ·) is the distance matrix. w is the weight
vector and β is the parameter of the attribute weight. Minimizing Ψ with respect to C and
Z is straight forward. However, minimizing Ψ with respect to w depends of the value of β.
We refer the reader to [27] for more about minimizing with respect to w

Algorithm 4 Feature Weighting k-means (W-k-means)

Input:
D: dataset
n: number of samples
Ψ: the objective function Eq. (0.7)
Initialize:
C: apply k-means on D to obtain initial clusters
Z: randomly choose k centroids
w: randomly initialize the weight of each feature so that

∑m

i=1 wi = 1
t: 0
Output:
C: the clustering
Z: the centroids
w: the features weights

1: while not stop do
2: Fix Z and w and solve Ψ with respect to C.
3: Stop when no changes occur on C.
4: Fix C and w and solve Ψ with respect to Z.
5: Stop when no changes occur on Z.
6: Fix C and Z and solve Ψ with respect to w.
7: Stop when no changes occur on w.
8: t=t+1
9: end while

0.2.2 Algorithms for Text Data

Document clustering aims to segregate documents into meaningful clusters that reflect
the content of each document. For example, in the news wire, manually assigning one or more
categories for each document requires exhaustive human labour, especially with the huge
amount of text uploaded online daily. Thus, efficient clustering is essential. Another problem
associated with document clustering is the huge number of terms. In a matrix representation,
each term will be a feature and each document is an instance. In typical cases, the number
of features will be close to the number of words in the dictionary. This imposes a great
challenge for clustering methods where the efficiency will be greatly degraded. However, a
huge number of these words are either stop words, irrelevant to the topic, or redundant.
Thus, removing these unnecessary words may help significantly reducing dimensionality.

Feature selection does not only reduce computational time but, also, improves clustering
results and provides better data interpretability [49]. In document clustering, the set of
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selected words that are related to a particular cluster will be more informative than the
whole set of words in the documents with respect to that cluster. Different feature selection
methods have been used in document clustering recently. For example, term frequency,
pruning infrequent terms, pruning highly frequent terms, entropy-based weighting and so
on. Some of these methods and others will be explained in the following subsections.

0.2.2.1 Term Frequency (TF)

Term Frequency is one of the earliest and most simple, yet, effective term methods. It
is dated back to 1957 in [43]. Thus, it is, indeed, a conventional term selection method.
In a text corpus, the documents that belong to the same topic are more likely will use
similar words. Therefore, the frequent terms will be a good indicator for a certain topic.
We can say that a very frequent term that is normally distributed across different topics
is not informative, hence, such term would be unselected. We call this technique: pruning
high highly frequent terms. Similarly, very rare terms should be prone as well and that is
called: pruning infrequent terms. Stop words most likely will be pruned due to their high
frequency. Furthermore, words such as ”abecedarian” will be ignored since they will not be
very frequent.

TF for term fi with respect to the whole corpus is given by:

TF (fi) =
∑

j∈Dfi

tfij (0.8)

Where Dfi is the documents that contain the term fi and tfij is the frequency of fi in
document j.

0.2.2.2 Inverse Document Frequency (IDF)

TF is effective term selection method. However, it is not effective in terms of term
weighting, where all selected terms will be assigned the same weights. Also, we cannot link
TF value to any document. In other words, we cannot distinguish between frequent words
that appeared in a small set of documents, which could have discriminative power for this
set of documents, and frequent words that appear in all or most of the documents in the
corpus. In order to scale the term’s weight, we use, instead, the inverse document frequency
(IDF). IDF measures whether the term is frequent or rare across all documents.

idf(fi) = log
|D|

|Dfi |
(0.9)

Where |D| is the total number of documents (i.e. sample size) and |Dfi | is the number of
documents that contain the term fi. The value of IDF will be high for rare terms and low
for highly frequent ones.

0.2.2.3 Term Frequency-Inverse Document Frequency (TF-IDF)

We can now combine the above mentioned measures (i.e. TF and IDF) to produce weight
for each term fi in each document dj . This measure is called TF-IDF. It is given by:

tf-idf(fi, dj) = tfij ∗ idf(fi) (0.10)

tf-idf assigns greater values to these terms that occur frequently in a small set of documents,
thus, more discriminative power. This value gets lower when the term occur in more docu-
ments. While the lowest value is given to terms that occur in all documents. In document
clustering, terms that have higher tf-idf have higher ability for better clustering.
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0.2.2.4 Chi Square statistic

Chi Square χ2 statistic has been widely used in supervised feature selection [72]. It
measures the statistical dependency between the feature and the class. χ2 with r different
values and C classes is defined as:

χ2 =

r
∑

i=1

C
∑

j=1

(nij − µij)
2

µij

,

where nij is the number of samples (i.e. documents) with ith feature value in the jth class
and µij =

ni∗n∗j

n
and n is the total number of documents. This equation can be interpreted

using the probability as:

χ2(f, c) =
n(p(f, c)p(¬f,¬c)− p(f,¬c)p(¬f, c))2

p(f)p(¬f)p(¬c)p(c)
(0.11)

Where p(f, c) is the probability of class c contains the term f and p(¬f,¬c) is the probabil-
ity of not being in class c and not containing term f and so on. Thus, χ2 cannot be directly
applied in an unsupervised learning such as clustering due to the absence of class label. Y.
Li et al in [36] propose a variation of χ2 called rχ2 that overcome some drawbacks of the
original χ2 and embedded in an Expectation-Maximization (EM) algorithm to be used for
text clustering problem. [36] found out that χ2 cannot determine whether the dependency
between the feature and the class is negative or positive, which leads to ignoring relevant
features and select irrelevant features sometimes. Therefore, they proposed a relevance mea-
sure (R) that can be used in the original χ2 to overcome this limitation. This new measure
R follows:

R(f, c) =
p(f, c)p(¬f,¬c)− p(f,¬c)p(¬f, c)

p(f)p(c)
(0.12)

R in Eq (0.12) will be equal 1 if there is no such dependency between the class and the
feature and greater than on if there is a positive dependency while less than one if the
dependency is negative.

From Eqs (0.11) and (0.12), [36] proposed a new variation of χ2 that is able to distinguish
positive and negative relevance:

rχ2(f) =

C
∑

j=1

p(R(f, cj))χ
2(f, cj) (0.13)

where p(R(f, cj)) is given by: p(R(f, cj)) =
R(f,cj)∑

C
j=1

R(f,cj)
. The larger the value of rχ2 is,

the more relevant the feature f will be.
As we mentioned earlier, we cannot apply a supervised feature selection in an unsuper-

vised learning directly. Therefore, [36] embedded their proposed method given in Eq (0.13)
in clustering algorithm using EM approach. They used k-means as clustering algorithm and
rχ2 as feature selection method as shown in Algorithm (5).

One advantage of this framework that it does not simply remove the unselected features,
instead, it keeps them while reducing their weight to α, so, they can be reselected in coming
iterations. Also, this approach outperforms other clustering techniques even with the exis-
tence of feature selection methods using F-measure and the purity. However, [36] did not
investigate the convergence of Algorithm (5) which is a big concern for such an algorithm
especially when we know that the selected features may change dramatically from iteration
to another. In addition, the complexity of this algorithm is not discussed. In fact, the feature
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Algorithm 5 rχ2 as a feature selector for clustering

Input:
D: dataset
k: number of clusters
α: predetermine parameter in the range of [0,1)
m: number of selected features
Output:
C the clusters
Initialize:
C ←Apply k-means on D to obtain initial clusters

1. E-step:

• Apply rχ2 from Eq (0.13) using clusters C obtain from step (1) as class label

• Make the weight of the top m relevant features to be 1 and α for the rest of
the features.

• Calculate the new k centroid for the new space.

2. M-step: Compute the new clusters using k-means

3. Repeat E-step and M-step until convergence

selection step in Algorithm (5) is not a feature selection, instead, it is a feature weighting. In
other words, the number of features in each iteration remains the same. Thus, the complex-
ity of k-means will not be reduced, which is against the goals of involving feature selection
in clustering.

Similar approach is proposed for Relief algorithm by Dash and Ong in [14]. They called
their method Relief-C. It is observed that if clustering has done using the whole feature
space, Relief will fail miserably in presence of large number of irrelevant features. Thus,
Relief-C starts by clustering using randomly selected features, exactly 2 features, and using
clusters as a class label passed to Relief. After that, the feature weight will be updated.
These two steps repeated until given criteria is met. We believe Relief-C may not perform
well with huge dimensionality, say more than 1000, features, since the chance of finding the
real clusters from two randomly chosen feature is very slim especially if we know that the
percentage of relevant features is very small. In addition, both Relief-C and rχ2 are capable
of handling generic data. We include rχ2 in the text data section since it was originally
applied on text domain and it requires dataset to contain discrete values.

0.2.2.5 Frequent Term-Based Text Clustering

Frequent Term-Based Text Clustering (FTC) proposed in [8] provides a natural way
to reduce dimensionality in text clustering. It follows the notion of frequent item set that
forms the basis of association rule mining. In FTC, the set of documents that contains the
same frequent term set will be a candidate cluster. Therefore, clusters may overlap since the
document may contain different item sets. This kind of clustering can be either flat (FTC)
or hierarchical (HFTC) clustering since we will have different cardinalities of item sets.

Algorithm (6) explains the FTC algorithm. First, a dataset D, predetermined minimum
support minsup value and an algorithm that find frequent item set should be available. The
algorithm starts by finding the frequent item set with minimum support minsup. Then, it
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runs until the number of documents contributing in the selected term set |cov(STS)| is
equivalent to the number of documents in D. In each iteration, the algorithm calculates the
entropy overlap EO for each set in the remaining term set RTS, where EO is given by:

EOi =
∑

Dj∈Ci

−
1

Fj

· ln(
1

Fj

)

where Dj is the jth document, Ci is the ith cluster and Fj is the number of all frequent
term set supported by document J . The less overlap assumed to be the better. EO equals
0 if all the documents in Ci support only on frequent item set (i.e. Fj = 1). This value
increases with the increase of Fj . This method of overlap evaluation was found to produce
better clustering quality than the standard one [8]. The best candidate set BestSet will be
the set with minimum amount of overlap. BestSet will be selected and added to the STS
and excluded from RTS. In addition, the set of documents that support the BestSet are
removed from the dataset since they have been already clustered, which lead to dramatically
reduce the number of documents. They are also removed from the documents’ list of RTS
which lead to reduce the number of remaining term set. This greedy approach gives the
computational advantage for this algorithm.

Algorithm 6 Frequent Term-Based Clustering (FTC)

Input:
D: dataset
minsup: minimum support
Ψ(·, ·): frequent item set finder
n: number of documents
Output:
STS and cov(STS)
Initialize:
Selected Term Set STS = {}

1: Remaining Term Set RTS = Ψ(D,minsup)
2: while |cov(STS)| 6= n do
3: for each set in RTS do
4: EOi = Calculate overlap for the set
5: end for
6: BestSet = RTSi which is the set with min(EO)
7: STS = STS ∪BestSet
8: RTS = RTS −BestSet
9: D = D − cov(BestSet)

10: cov(RTS) = cov(RTS)− cov(BestSet)
11: end while

Due to the monotonicity property of frequent item set, which means all (k-1)-items that
are subset of a frequent (k)-items are also frequent, we can perform a hierarchical frequent
term-based clustering (HFTC). HFTC is based on Algorithm (6). Instead of performing
FTC on the whole frequent term sets, it is performed on single level of frequent term set,
say k-term sets. Then, the obtained clusters are further partitioned using the next level of
term set, (k+1)-term sets.

Both FTC and HFTC were imperially proven to be superior to other well-known clus-
tering methods such as bisecting k-means and 9-secting k-means in efficiency and clustering
quality. They also was able to provide better description and interpretation of the generated
clusters by the selected term set.
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0.2.2.6 Frequent Term Sequence

Similar to FTC, a clustering based on frequent term sequence (FTS) was proposed in
[34]. Unlike FTC, the sequence of the terms matters in FTS. This means that the order
of terms in the document is important. The frequent terms sequence, denoted as f , is a
set that contains the frequent terms < f1, f2, . . . , fk >. The sequence here means that f2
must be after f1, where it is not necessary to be immediately after it. There could be other
non-frequent terms between them. This is true for any fk and fk−1 terms. This definition
of frequent terms sequence is more adaptable to the variation of human languages [34].

Similar to FTC, FTS starts by finding frequent term sets using an association rule mining
algorithm. This frequent term set guarantees to contain the frequent term sequence but not
vice versa. Hence, we do not need to search the whole term space for the frequent term
sequence. We can only search in the frequent term set space, which is a dramatic dimension
reduction. After that, FTS builds a generalized suffix tree (GST), which is a well-known
data structure for sequence pattern matching, using the documents after removing the non-
frequent terms. From the suffix nodes in GST, we obtain the cluster candidates. These
cluster candidates may contain subtopics that may be eligible to be merged together to
create more general topics. Therefore, a merging step takes place.

The authors of [34] chose to merge cluster candidates into more general topic clusters
using k −mismatch instead of the similarity. An example of using k −mismatch concept
is when we have FSi = {feature, selection, clustering} and FSj = {feature, selection
, classification}, they have one mismatch. Therefore, we can merge these two clusters if
the tolerance parameter k ≥ 1. In [34], FTS adopted Landau−Vishkin (LV) to test three
types of mismatches: insertion, deletion, substitution. Insertion means that all we need to
insert is k, or less, terms into the FSj in order to match FSi. Deletion, in contrast, means
we need to delete, instead. While substitution means we need to substitute terms from FSj

by terms from FSi.
These merged clusters are prone to overlap. Accordingly, more merging will be performed

after measuring the amount of overlap using Jaccard Index.

J(Ci, Cj) =
|Ci ∪ Cj |

|Ci ∩ Cj |

The larger J(Ci, Cj) is, the more overlap would be. The merge takes place here when
the overlap exceeds a user defined threshold, δ. However, the final number of clusters could
be predefined too. In this case, this merging step would be repeated until the number of
clusters meet the user’s demand.

In Algorithm (7), the most time consuming is constructing GST, yet, it is still linear
with the number of terms. In [34], the terms reduction after finding the frequent term sets
is huge, where it exceeds 90% in all cases.

Similar to FTS, [34] proposed another frequent term set algorithm (FTMS) that is based
on the synonymous set (synsets) of terms instead of the term itself. This is more adaptable
with human language where we may use different terms to refer to the same meaning.
This proposed algorithm used WordNet dictionary to retrieve the synsets of each word and
replace it with the original term. Each two synsets that intersect in at least one term will
be merged into one synset. Thus, the number of synsets will be further reduced. Finally,
FTS will be applied to these documents that contain the synsets.

These two proposed algorithms (i.e. FTS and FTMS) were empirically proved to be
superior to other algorithms, such as bisect k-means and hierarchical frequent item-based
clustering. Yet, FTMS is more capable of capturing more precise clustering topics than
FTS. This is due to using the terms synsets instead of just the word itself.

There are several clustering techniques based on frequent item sets besides the ones
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Algorithm 7 Frequent Term Sequence (FTS)

Input:
D: dataset
minsup: minimum support
Ψ(·, ·): frequent item set finder
n : number of documents
K: number of clusters
δ: overlap threshold
Output:
Clusters
Initialize:
Clusters = {}

1: Frequent 2-Term Set FS = Ψ(D,minsup)

2: D̂ = Reduce D by removing all every term f /∈ FS.
3: G = GST (D̂)
4: for each node j in G do
5: if node j has Frequent term set FSj with documents id IDj then
6: Cj = {FSj , IDj}
7: Clusters = Clusters ∪ Cj

8: end if
9: end for

10: Use Landau−Vishkin to find k−mismatch
11: Clusters←Merge Clusters according to Landau−Vishkin results
12: while number of Clusters > K do
13: Clusters← Combine overlapped Clusters based on Jaccard Index and δ
14: end while
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mentioned in this chapter [20, 61, 77, 6, 48]. However, they all follow the same notion of
reducing dimensionality by finding the frequent term sets. They differ in the parameters or
the underlying utilized methods. For example, the number of terms in the frequent set may
be set to a specific number or undefined. Hence, the maximum number will be found. They
also differ in the way the final clustered is smoothed or merged.

0.2.3 Algorithms for Streaming Data

Streaming Data are continuous and rapid data records. Formally defined as a set of multi-
dimensional records X1, . . . , Xn, . . . that come in time stamps T1, . . . , Tn, . . . . Each record
Xi is m-dimensional. Usually these samples are with a huge dimensionality and arrive very
fast. Therefore, they require scalable and efficient algorithms. Also, the underlying cluster
structure is changing, so, we need to capture this change and keep selected feature sets
up-to-date. In this chapter, we introduce what we believe to be required characteristics of
a good algorithm that handles streaming data. These characteristics are:

• Adaptivity: the algorithm should be able to adjust features’ weights or even reselect
the set of features, so it is able to handle the data drift, a.k.a. dataset shift.

• Single scan: the algorithm should be able to cluster the incoming stream from one
scan, since another scan is usually impossible or at least costly.

The following algorithms represent the literature of feature selection for data stream
clustering. In fact, this area still needs great attention from the researchers due to the lack
of work in this area.

0.2.3.1 Text Stream Clustering Based on Adaptive Feature Selection (TSC-
AFS)

It is natural for clusters and data categories to evolve overtime. For example, the break-
ing news in that dominates the worlds’ media today may change dramatically tomorrow.
Therefore, using the same set of features to process and cluster data stream may lead to
unsatisfactory learning results over time. Gong et al in [22] proposed to use cluster quality
threshold γ to test the quality of newly arrived sample’s clustering with respect to old clus-
ters. TSC-AFS starts by applying feature selection on training data D. Then, it clusters
the samples of D with respect to the selected features only.

After that, it starts to receive data streams and assign them to the closest cluster. TSC-
AFS evaluates a validity index ρ for each cluster using Davies-Boulding D-B index. If γ is
less than ρ, then, TSC-AFS should reselect the set of features. Otherwise, the algorithm
keeps the current feature set and clusters based on them and accepts new streams to come.
Otherwise, TSC-AFS will re-evaluate ρ while considering the new data stream being added
the closest cluster. If the validity index cannot satisfy the threshold requirements, a tolerance
parameter κ is set to allow this sample to be clustered and initialize the algorithm again.
These parameters, κ and γ, are simply determined by the cross-validation approach.

This algorithm utilizes a word variance-based selection method as feature selection since
the domain in [22] is text data stream. However, any other appropriate algorithm may
be used. In addition, k-means was used as a clustering method. Algorithm (8) shows the
pseudocode for TSC-AFS.

TSC-AFS, shown in Algorithm (8), is arguable in terms of performance and applicability
in the current form. However, it has a nice underlying property that is the adaptivity with
the drifting features. We believe that this approach needs more attention to improve the
adaptivity step.
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Algorithm 8 Text Stream Clustering Based on Adaptive Feature Selection (TSC-AFS)

Input:
γ: cluster quality threshold
κ: tolerance parameter
t : time stamp
K: number of clusters
Ξ(·): feature selection method
Output: Clusters
Initialize: t = ρ = 0

1: while We have more stream do
2: D ← Load new training set
3: Select features Ft = Ξ(D)
4: D̂ ← remove unselected features from D
5: Apply k-means clustering on D̂
6: µ← the centroid of each cluster
7: while ρ < κ do
8: t = t+ 1
9: St ← new stream

10: Evaluate the validity index ρ
11: Flag = true
12: while Flage do
13: if ρ > γ then
14: Assign St to the nearest µ
15: ρ← Re-evaluate the validity index
16: else
17: Assign St to the nearest µ
18: end if
19: end while
20: end while
21: Clusters← {µ, F}
22: end while
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0.2.3.2 High-dimensional Projected Stream Clustering (HPStream)

Aggarwal et al in [4] proposed a data streams clustering technique that involves feature
selection step. The proposed method in [4] is called HPStream. Projected clustering [5] is a
subset of data points P with a subset of dimensions F such that the points in P are closely
clustered with respect to F .

Since data quality in data streams may decay, the stream clustering method should assign
a greater level of importance to recent data points. Motivated from this belief, fading data
structure was proposed in [4] to keep the clustering contemporary. Assuming,X1, . . . , Xi, . . .
are multi-dimensional data samples arriving in time stamps T1, . . . , Ti, . . . . Each data sample
Xi contains m dimensions (x1i , . . . , x

m
i ). The fading f(t) function for each data point will

be according to the arrival time t. The fading function is assumed to be monotonically
exponentially decreasing with respect to the time t [4].

Fading function f(t) = 2−λt, where λ = 0.5 is the decay rate. After defining
the fading function, [4] defines the fading cluster structure at time t as Ω(P, t) =
(Ψ2(P, t),Ψ(P, t), w(t)), where Ψ2(P, t) and Ψ(P, t) for each jth dimension are given by
∑n

i=1 f(t− Ti) · (x
j
i )

2 and
∑n

i=1 f(t− Ti) · (x
j
i ) respectively. And w(t) is the sum of all the

weights of the data points at time t,
∑n

i=1 f(t− Ti).
Algorithm (9) systematically describes the HPStream algorithm. HPStream is initialized

off-line using k-means to cluster a portion of the data Dtr using full dimension. Then, the
least spread dimensions within each cluster will be chosen to form the initial fading cluster
structure Ω. These two steps will be repeated, using the selected features until convergence.
After initialization, incoming data stream X is temporally added to each cluster with the
corresponding selected features of that cluster for determination of new set of selected
features. Final assignment of X will be to the closest cluster. After that, the limiting radius
of each cluster will be calculated. Any data point that lies outside the limiting radii will form
a cluster by itself. If the number of generated clusters exceeds the predetermined number
of clusters K, the oldest cluster(s), so, that the number of clusters equals K.

There are few more things regarding HPStream worth mentioning. First, the data set
should be normalized for meaningful comparison between different dimensions. Also, Man-
hattan Segmental Distance is used to find the distance along the projected dimensions. This
is a normalized version of Manhattan Distance that can compute the distance of different
dimensionality. In terms of the empirical evaluation of HPStream, [4] conducted several
experiments on real-world and synthetic datasets. HPStream was able to out perform CluS-
tream [3], which as clustering method for evolving data streams. Also, it was shown to be
very stable in terms of processing speed and scalable in terms of dimensionality.

0.2.4 Algorithms for Linked Data

Linked data has become ubiquitous in real-world applications such as tweets in Twit-
ter 1 (tweets linked through hyperlinks), social networks in Facebook 2(people connected by
friendships) and biological networks (protein interaction networks). Typically linked data
has the following three characteristics: (1) high-dimensional such as there are tens of thou-
sands of terms for tweets; (2) linked, providing an important source of information beyond
attributes, i.e., link information; (3) unlabeled due to the large-scale size and the expensive
cost for labeling. Such properties pose challenges to clustering task and feature selection is
an effective way to prepare high-dimensional data for effective and efficient clustering [38].
In this subsection, we first introduce the challenges and opportunities of linked data for
traditional feature selection, and then present an embedded unsupervised feature selection

1http://www.twitter.com/
2https://www.facebook.com/
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Algorithm 9 High-dimensional Projected Stream Clustering (HPStream)

Input:
Dtr: training data set
K: number of clusters
l: number of selected features
Output: Ω
Initialize:
Perform clustering on Dtr

F = {F1, . . . , FK}: sets of bit vectors
Ω : fading cluster structure

1: while X ←We have more incoming stream do
2: for each cluster Ci do
3: Add the new stream point X into Ci

4: Update Ω(Ci, t)
5: for each dimension d do
6: Compute the radii of Ω(Ci, t)
7: end for
8: Pick the dimensions in Ω(Ci, t) with minimum radii
9: Create selected features set Fi for Ci

10: end for
11: for each cluster Ci do
12: for each selected feature Fi do
13: disi ← Average distance between X and the centroid of Ci

14: end for
15: index = argmini{disi}
16: s← The radius of Cindex

17: if disindex > s then
18: Add new cluster CK+1

19: else
20: Add X to Cindex

21: end if
22: Remove clusters with zero dimensions from Ω
23: if Number of current clusters > K then
24: Delete the least recently added cluster from Ω
25: end if
26: end for
27: end while
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framework for linked data and finally follow with a discussion about future work of feature
selection for linked data.

0.2.4.1 Challenges and Opportunities

Linked instances are related to each other via different types of links (e.g., hyperlinks,
friendships and interactions). Thus linked data is distinct from traditional attribute value
data (or “ flat” data). Figure 4 illustrates a typical example of linked data and its two
representations. Figure 4(a) shows 8 linked instances (u1 to u8) while Figure 4(b) is a
conventional representation of attribute-value data: rows are instances and columns are
features. As mentioned above, except attributes, linked data provides an extra source in the
form of links, represented as in Figure 4(c). These differences present both challenges and
opportunities for traditional feature selection and machine learning [45, 57].
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(c) Linked Data Representation

FIGURE 4: A Simple Example of Linked Data

Linked data is patently not independent and identically distributed (i.i.d.), which is
among the most enduring and deeply buried assumptions of traditional machine learning
methods [29, 66]. Due to the absence of class labels that guide the search for relevant
information, unsupervised feature selection is particularly difficult [11]. The linked prop-
erty further exacerbates the difficulty of unsupervised feature selection for linked data. On
the other hand, linked data provides more information than attribute value data and the
availability of link information presents unprecedented opportunities to advance research.
For example, linked data allows collective inference, inferring various interrelated values
simultaneously [45] and enables relational clustering, finding a more accurate pattern [42].

Many linked data related learning tasks are proposed such as collective classifica-
tion [45, 57], and relational clustering [41, 42], but the task of feature selection for linked
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data is rarely touched due to its unique challenges for feature selection: (1) how to exploit
relations among data instances; and (2) how to take advantage of these relations for feature
selection. Until recently, feature selection for linked data attracts attention. In [63], a su-
pervised feature selection algorithm, LinkedFS, is proposed for linked data in social media.
Various relations(coPost, coFollowing, coFollowed and Following) are extracted following
social correlation theories. LinkedFS significantly improves the performance of feature selec-
tion by incorporating these relations into feature selection. In [64], an unsupervised feature
selection framework, LUFS, is developed for linked data [64]. More details about LUFS will
presented in the following subsection.

0.2.4.2 LUFS: An Unsupervised Feature Selection Framework for Linked Data

LUFS is an unsupervised feature selection framework for linked data and in essence,
LUFS investigates how to exploit and take advantage of link information of linked data
for unsupervised feature selection. In general, the goal of feature selection is to select a
subset of features to be consistent with some constraints [80]. For supervised learning, label
information plays the role of constraint. Without label information, LUFS introduces the
concept of pseudo-class label to guide unsupervised learning. Particularly, LUFS assumes
that there is a mapping matrix W ∈ R

m×c, assigning each data point with a pseudo-class
label where m is the number of original features and c is the number of pseudo-class labels.
The pseudo-class label indicator matrix is Y = W⊤X ∈ R

c×n where n is the number
of data points. Each column of Y has only one nonzero entity, i.e., ‖Y(:, i)‖0 = 1 where
‖ · ‖0 is the vector zero norm, counting the number of nonzero elements in the vector. Then
LUFS seeks pseudo-class label information by extracting constraints from both linked and
attribute value data. The constraints from link information and attribute-value parts are
obtained through social dimension regularization and spectral analysis, respectively.

Social Dimension Regularization: In [65], social dimension is introduced to improve
the performance of relational learning. LUFS employs social dimensions to exploit the in-
terdependency among linked data. It first adopts Modularity Maximization [50] to extract
social dimension indicator matrix H. Since social dimensions can be considered as a type of
affiliations, according to Linear Discriminant Analysis, three matrices, i.e., within, between,
and total social dimension scatter matrixes Sw, Sb, and St, are defined as follows:

Sw = YY⊤ −YFF⊤Y⊤,

Sb = YFF⊤Y⊤,

St = YY⊤, (0.14)

where F = H(H⊤H)−
1

2 is the weighted social dimension indicator matrix.
Instances from different social dimensions are dissimilar while instances in the same

social dimension are similar. Finally the constraint, social dimension regularization, from
link information can be obtained via the following maximization problem,

max
W

Tr
(

(St)
−1Sb

)

. (0.15)

Spectral Analysis: To take advantage of information from attribute-value part, LUFS
obtains the constraint from attribute-value part through spectral analysis [44] as,

min Tr(YLY⊤) (0.16)

where L is a laplacian matrix.
Considering constraints from both link information and attribute-value part, LUFS, is
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equivalent to solving the following optimization problem,

min
W,s

Tr(YLY⊤)− αTr
(

(St)
−1Sb

)

,

s.t. ‖Y(:, i)‖0 = 1, 1 ≤ i ≤ n. (0.17)

With the spectral relaxation for label indicator matrix [44], LUFS is eventually to solve
the following optimization problem,

min
W

f(W) = Tr(W⊤AW) + β‖W‖2,1,

s.t. W⊤BW = Ic, (0.18)

where A = XLX⊤ + αX(In − FF⊤)X⊤ is a symmetric and positive semidefinite matrix
and B = XX⊤ + λI is a symmetric and positive matrix. Since the problem in Eq. (0.18) is
convex, an optimal solution W can be guaranteed for LUFS [64]. The detailed algorithm
for LUFS is shown in Algorithm 10.

Algorithm 10 LUFS

Input: {X,R, α, β, λ, c,K, k}
Output: k most relevant features

1: Obtain the social dimension indicator matrix H
2: Set F = H(H⊤H)−

1

2

3: Construct S through RBF kernel
4: Set L = D− S
5: Set A = XLX⊤ + αX(In − FF⊤)X⊤

6: Set B = XX⊤ + λI
7: Set t = 0 and initialize D0 as an identity matrix
8: while Not convergent do
9: Set Ct = B−1(A+ βDt)

10: Set Wt = [q1, . . . , qc] where q1, . . . , qc are the eigenvectors of Ct corresponding to the
first c smallest eigenvalues

11: Update the diagonal matrix Dt+1, where the i-th diagonal element is 1
2‖Wt(i,:)‖2

;

12: Set t = t+ 1
13: end while
14: Sort each feature according to ‖W(i, :)‖2 in descending order and select the top-k

ranked ones;

In Algorithm 10, social dimension extraction and weighted social dimension indicator
construction are from line 1 to line 2. The iterative algorithm to optimize Eq. (0.18) is
presented from line 8 to line 13.

0.2.4.3 Conclusion and Future Work for Linked Data

In this subsection, we first analyze the differences between linked data and attribute-
view data, then present the challenges and opportunities posed by linked data for feature
selection and finally introduce a recent proposed unsupervised feature selection framework,
LUFS, for linked data in details. To the best of our knowledge, LUFS is the first to study
feature selection for linked data in an unsupervised scenario and many works are needed to
further exploit linked data for feature selection.

Since LUFS can be categorized as an embedded method, analogous to conventional
data, how to develop filter, wrapper and hybrid models for linked data is an interesting
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problem for further research. Furthermore, LUFS employs social dimension to capture link
information, a further investigation into sophisticated methods of exploiting link will lead
to novel approaches and help us develop a deeper understanding of how to improve the
performance of feature selection. Finally, the availability of various link formation can lead
to links with heterogeneous strengths. Therefore how to incorporate automatic link selection
into feature selection is another promising direction for linked data.

0.3 Discussions and Challenges

Here are several challenges and concerns that we need to mention and discuss briefly in
this chapter about feature selection for clustering.

0.3.1 The Chicken or the Egg Dilemma

In feature selection for clustering, there is a dilemma in choosing which one to start with
or which one serves the demands of the other. Do we utilize feature selection to improve
clustering quality? Or, do we use clustering as an indicator of relevant features? This, in
fact, leads us to the chicken or the egg dilemma. Which one comes first, clustering or
feature selection? If the answer to the latter is yes, that means feature selection is a goal
in itself. However, this is not the case in feature selection literature. We usually use feature
selection, as we mentioned earlier, to improve learning quality, reduce computational time
and reduce require storage. Thus, the answer to the first question is, indeed, yes. We use
feature selection to improve clustering quality. Accordingly, we should select the features
that preserve cluster structure. However, some current methods initialize clusters using all
features. Then, they apply supervised feature selection method using the initial clusters as
class labels. We believe that such techniques will not achieve the goal of feature selection
since the initial clusters may not be the real ones or even close. If these clusters are claimed
to be real ones, why bother doing feature selection at all? Some other methods apply the
same process but in an iterative manner using an EM-like approach. Although this might
lead to better results, we still believe that there are several drawbacks associated with this
approach. For example, if the dimensionality in the original space is huge, such an approach
may take very long time to converge. Therefore, we prefer utilizing feature selection that
does not depend on any clustering input to define the relevancy of the the feature. In other
words, we may utilize the clustering method to guide the searching process but we do not
use the clustering as a class label. This means, we apply the feature selection method on
the whole dataset and then use the selected features to construct the clusters. If we are not
satisfied with the clustering quality, we may use this as an indicator that this set of features
is not satisfactory. This is exactly the wrapper approach.

0.3.2 Model Selection: K and l

Selecting the number of clusters K or the number of selected features l is an open
problem. In real world problems, we have limited knowledge about each domain. Conse-
quently, determining optimal K or l is almost impossible. Although this problem seems not
to be a big issue with some approaches (such as frequent term set based feature selection
methods) we still need to determine other sensitive parameters like the minimum support,
which leads us to another problem. Choosing different l for the same problem usually results
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in different equally good subsets of features, and hence, different clustering results. Simi-
larly, choosing different K leads to merging totally different clusters into one or splitting
one cluster into smaller ones. In other cases, this may lead to changing the set of selected
features which results in losing potential clusters and/or constructing less important ones.
Therefore, picking nearly optimal parameters is desirable for better clustering quality. Some
work has been done to quantify such parameters. For instance, [12] used the notion of false
nearest neighbor to find the number of selected features for clustering. On the other hand,
[67] used gap statistics to estimate the number of clusters in a dataset. However, the effort
in finding better parameters for clustering is still limited. We believe it is necessary to pay
more attention to these two parameters for better clustering results.

0.3.3 Scalability

With the tremendous growth of dataset sizes, the scalability of current algorithms may
be in jeopardy, especially with these domains that require online clustering. For example,
streaming data or data that cannot be loaded into the memory require single data scan
where the second pass is either unavailable or very expensive. Using feature selection meth-
ods for clustering may reduce the issue of scalability for clustering. However, some of the
current methods that involve feature selection in the clustering process require to keep full
dimensionality in the memory to observe any evolving in the cluster structure. If a change in
data structure is observed, the clustering process should be restarted. Furthermore, other
methods require an iterative process where each sample is visited more than once until
convergence.

On the other hand, the scalability of feature selection algorithms is a big problem.
Usually, they require a sufficient number of samples to obtain, statically, good enough
results. It is very hard to observe feature relevance score without considering the density
around each sample. Some methods try to overcome this issue by memorizing only samples
that are important or a summary, say the mean of each cluster. In conclusion, we believe that
the scalability of clustering and feature selection methods should be given more attention
to keep pace with the growth and fast streaming of the data.

0.3.4 Stability

In supervised learning such as classification, stability of feature selection algorithms
has gained increasing attention last few years. Stability of feature selection algorithms or
selection stability is the sensitivity of the selection toward data perturbation [7]. An exam-
ple of data perturbation would be new data sample(s). Therefore, with a small amount of
perturbation introduced to the data, we do not expect dramatical change in the selected fea-
tures. Otherwise, the algorithm is considered to be unstable. To the best to our knowledge,
selection stability in unsupervised learning has not been studied yet.

Studying stability in supervised learning is much easier than the unsupervised. Due
to the absence of class label in latter, we cannot maintain enough knowledge about the
underlying clusters within the data. For this reason, we cannot be confident enough if
the new sample(s) belong to any existing clusters or they form one or more new clusters.
However, in supervised learning, we have limited number of classes. Thus, a sample that
does not belong to any existing class would be considered an outlier and we do not need to
modify our selected set to obey outliers. So, to address the issue of feature selection stability
in clustering, we discuss it with respect to different situation:

Predefined Clusters:
In case we have enough domain knowledge to predefine the possible clusters, the stability

issue will be identical to the stability in supervised learning. Therefore, we expect the feature
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selection algorithm to be stable with the existence of the small amount of perturbation.
However, if the topics do not change while the data itself change, we might consider unstable
selection.

Undefined Clusters:
In contrast the first case, if we do not have enough knowledge about the clusters of the

data, which is true in real-world situations, we generally can say that this case depends
on the domain and the practitioner’s desired. In streaming data, for example, we usually
expect some kind of dataset shift or drift where the distribution and the clustering topics
of the data may evolve over time. Therefore, we should have an adaptive feature selection
process that adjusts the selected features in a away that can capture the evolving structure
of the data. However, we might desire a stable selection for a period of time and unstable
for another period. For example, in a news data clustering, we wish to have stable selection
while we do not have a breaking news that takes the distribution to different topic.

On the other hand, subspace and projected clustering may not promote stable selection
since they search for all possible sets of features that define clusters. In some cases, we might
want to maintain stable selection on some clusters, while unstable on others. For instance, if
we are performing projected clustering on news data, we may want to have stable selection
on clusters that do not evolve rapidly while having unstable selection on rapidly evolving
clusters.
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