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Hartree-Fock theory and accuracy

Hartree-Fock bond lengths [a.u.]

sto-3g  4-31G  6-31G*  6-31G**  exp.
CHs 2.047 2043 2.048 2.048  2.050
NHs 1952 1.873 1.897 1.897  1.913
H,O 1871 1.797 1.791 1.782  1.809
HF 1.812 1.742 1.722 1.703  1.733

minimum structure of Cyg - ring (R), bowl (B) or cage (C) ?
(energy difference in kcal /mol)

HF R 20 B 78 C
correct B 3 C 44 R
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Hartree-Fock theory: a recommendation

e qualitative investigations of electronic structure

e interpretation of electron density at one electron level

e "good guess” for molecular properties

o relatively fast basis set convergence

e standard : HF-SCF/SV(P)

e note: DFT usually provides better results at comparable cost !!

Textbook recommendation : “A Chemist's guide to DFT" Holthausen, Koch, Wiley VCH
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Hartree-Fock theory: interaction of electrons

Interaction of two electrons in HF theory :
coulomb and exchange

/%M%@é%@%@%ﬂm
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BUT : particles only interact through their charge distribution mean field
approximation - no explicit correlation of electron movement !
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Hartree-Fock theory: interaction of electrons

Interaction of two electrons in HF theory :
coulomb and exchange

/ 515205102 o
— [ 0s0);pa(2)drs dr

BUT : particles only interact through their charge distribution mean field
approximation - no explicit correlation of electron movement !
in the HF Wavefunction two electrons will never "see” each other, only

their charge clouds !
— follows from one electron orbital approximation in HF
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Electron correlation

Hartree Fock : Mean field approximation

no explicit correlation of electrons

definition (!) of correlation energy :

Ecorr = Lexact — EHF

general Ansatz : improve HF method
— post Hartree-Fock methods
often needed even for qualitative agreement with experiment !
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Hierarchy of quantum chemical methods

“Pople Diagram”
quality of method

computational effort
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/ MR Dz TZ QZz basis
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ab-initio methods : perturbation theory
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ab-initio methods : perturbation theory

divide System into unperturbed part Fo and small perturbation A’

H=FHo+XH
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ab-initio methods : perturbation theory

divide System into unperturbed part Ho and small perturbation A
H=Ho+)\H
expand energy and wavefunction in series

E=EO L \E® 4 \2e(®) | v =wO L \p® 4 \2y@ o
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ab-initio methods : perturbation theory

divide System into unperturbed part Ho and small perturbation A
H=FHy+\H
expand energy and wavefunction in series
E=EQ® + \E® 4 N2EQ) 4 W= v 4 aw® 4 \2e@)

sort in powers of A to obtain energy corrections :

Ol — ~ w(0)|ﬁ/0|\u(0) >
EMN = < wOfw >
ER = < wOfw® >
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ab-initio methods : perturbation theory

define unperturbed and perturbed Hamiltonian for our problem :
A=H+H H=> F()

H' as difference between exact electron electron
interaction and mean field interaction :
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ab-initio methods : perturbation theory

Rayleigh-Schrodinger perturbation theory leads to :

EI-Y

1
1] T
EW = 5> il 1)

y

zeroth and first order give HF solution
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ab-initio methods : perturbation theory

Rayleigh-Schrodinger perturbation theory leads to :

EI-Y

1
1] T
E“——§Z<u|\u>

ij
zeroth and first order give HF solution
first correction at 2nd order : Mgller-Plesset PT - MP2

2] _ UHab
EV = ZZE,—FQ—Q;—G[;
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ab-initio methods : perturbation theory

bond lengths [a.u.]: HF and MP2

sto-3g  4-31G  6-31G*  6-31G**  exp.
CHy | 2.047 2043 2.048 2.048  2.050
2.077 2.065 2.060 2.048
NHs | 1.952 1.873 1.897 1.897  1.913
1.997 1.907 1.922 1.912
H,O | 1.871 1.797 1.791 1.782  1.809
1916 1.842 1.831 1.816
HF 1812 1.742 1.722 1.703  1.733
1.842 1.790 1.765 1.740
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ab-initio methods : perturbation theory

Problem : convergence of perturbation series

0.002

~0.002

=006

FIG. 7. The energy corrections for HF at equilibrium geometry in the cc-
pVDZ basis.
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ab-initio methods : perturbation theory

Problem : convergence of perturbation series

5
0.002 25

-0.002}

-0.006¢

FIG. 9. The energy corrections for HF at equilibrium geometry in the
aug’-cc-pVDZ basis.
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ab-initio methods : perturbation theory

Problem : convergence of perturbation series
9742 J. Chem. Phys., Vol. 112, No. 22, 8 June 2000

0.0002

=0. 0002

FIG. 4. The energy corrections for Ne in the two-state model using the

Mok

/ parameters in Eqs. (32)—(34).
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ab-initio methods : perturbation theory

1 |(ijl|ab)|?
Emp2 = -
2 4%6;—1—61'—63—6[,

o MP2 often improves HF results significantly
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ab-initio methods : perturbation theory

1 |(ijl|ab)|?
Emp2 = -
2 4%6;—1—@—63—6[,

o MP2 often improves HF results significantly

e note: integrals also over virtual orbitals

)\aws
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ab-initio methods : perturbation theory

1 [(ijl]ab)|*
E = -
MP2 426;—1—@-—63—6[,
ijab
o MP2 often improves HF results significantly
e note: integrals also over virtual orbitals

o higher order expressions lead to better correction

)\ms
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ab-initio methods : perturbation theory

1 |(ijl|ab)|?
Emp2 = -
4%6;—1—61'—6,3—6[,

MP2 often improves HF results significantly

note: integrals also over virtual orbitals

higher order expressions lead to better correction

e BUT : investigation shows that MP series usually does not converge !
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ab-initio methods : perturbation theory

1 [(ijl]ab)|*
Emp2 = -
4%6;—1—61'—63—6[,

MP2 often improves HF results significantly

note: integrals also over virtual orbitals

higher order expressions lead to better correction
e BUT : investigation shows that MP series usually does not converge !
computational effort: HF/DFT N2/3/4 MP2 N°)
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ab-initio methods : perturbation theory

1 ij||ab)|?
Fupz = 4 Z € —i—|<ejH— ei|— €b
ijab

o MP2 often improves HF results significantly
e note: integrals also over virtual orbitals
o higher order expressions lead to better correction
e BUT : investigation shows that MP series usually does not converge !
e computational effort: HF/DFT N2/3/4, MP2 N® )

e recommendation : use other methods beyond MP2
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ab-initio methods : perturbation theory

1 ij||ab)|?
Ly |(ij||ab)|

4 €+ € —€3—¢€p

Enmpo =
ijab

MP2 often improves HF results significantly

note: integrals also over virtual orbitals

higher order expressions lead to better correction

BUT : investigation shows that MP series usually does not converge !
computational effort: HF/DFT N2/3/4 MP2 N°)

recommendation : use other methods beyond MP2

standard : RI-MP2 / TZ (note: Rl approximation !)
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ab-initio methods : configuration interaction

exact wavefunction is a many electron function !
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ab-initio methods : configuration interaction

exact wavefunction is a many electron function !

idea :
expand exact wavefunction in complete basis
of many electron functions

)\aws
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ab-initio methods : configuration interaction

_ € 4 _
_ h _'_
- | —
—H— - —+
—H— +— ——
—H xS
—H— o —H-
—H o ~ —H-

Hartree—Fock Ground state  singly substituted determinants ~ doubly substituted determinants
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ab-initio methods : configuration interaction

exact wavefunction is a many electron function !

idea :
expand exact wavefunction in complete basis
of many electron functions

many electron function : HF-SCF slater determinant

complete basis of many electron functions :

all possible determinants from occupied and virtuals

— Configuration Interaction (Cl) :

linear expansion, one parameter per determinant,
optimized variationally

f\mms
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ab-initio methods : configuration interaction

wavefunction expression as linear Cl expansion :

Wer) = (W) +Zc lw?) anb

Uab

Wab>

/@I

\(C@C MMER Summerschool 2014 - Electron Correlation 17 /42



ab-initio methods : configuration interaction

wavefunction expression as linear Cl expansion :

W) = |[Wo) +ZC |wé) anb

Uab

wab>

|WCI> = ‘Wo) + 61 ’\U0> + 62 |\Uo> +

diagonalization of Hamiltonian matrix yields energies for ground and
excited states

(Ve A W)
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ab-initio methods : configuration interaction

use all determinants that can be constructed
— expansion in complete basis
(number of determinants grows exponentially !!)

)ams
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ab-initio methods : configuration interaction

use all determinants that can be constructed
— expansion in complete basis
(number of determinants grows exponentially !!)

— exact solution of electronic problem in given AO basis
(Full Configuration Interaction FCI)

)ams
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ab-initio methods : configuration interaction

use all determinants that can be constructed
— expansion in complete basis
(number of determinants grows exponentially !!)

— exact solution of electronic problem in given AO basis
(Full Configuration Interaction FCI)

in practice only truncated expansion feasible :

CIS : only singly substituted determinants

CISD : singly and double substituted determinants
CISDT : single, double and triple substitutions

)ams
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ab-initio methods : configuration interaction

correlation energy contributions from different levels of excitations in BeH,
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ab-initio methods : configuration interaction

correlation energy contributions from different levels of excitations in BeH,

excitation level Ec/ (DZ basis) [a.u.]

1+2 -0.074033

3 -0.000428

4 -0.001439

5 -0.000011

6 -0.000006

total -0.075917
exact -0.14

0.1 a.u.= 262.6 kJ/mol = 2.7 eV = 21947 cm~!
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configuration interaction and size consistency

example : Hy molecule in minimal basis - 2 electrons, 2 orbitals :

-

A

cli Co

CISD = FCI'!

/@I
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configuration interaction and size consistency

example : two noninteracting hydrogen molecules (Hz)2

e

/l:OJI
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configuration interaction and size consistency

example : two noninteracting hydrogen molecules (Hz)2

e

CISDTQ = FCI'!

/l:o]|
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configuration interaction and size consistency

example : two noninteracting hydrogen molecules (Hz)2

e

CISDTQ = FCI'!

CISD does not allow for simultaneous double excitations

)ms
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configuration interaction and size consistency

example : two noninteracting hydrogen molecules (Hz)2

e

CISDTQ = FCI !
CISD does not allow for simultaneous double excitations

at the CISD level of theory a single hydrogen molecule is treated more
accurately than an isolated hydrogen molecule in a system of non
interacting molecules !

)ams
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configuration interaction and size constancy

unphysical description leads to wrong asymptotic
of energy for extended systems

extensivity of energy not given !!
(Cl is not size-extensive)

)ams
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configuration interaction and size constancy

unphysical description leads to wrong asymptotic
of energy for extended systems

extensivity of energy not given !!
(Cl is not size-extensive)

I

the larger the system, the smaller the fraction of correlation energy from a
truncated Cl

4 mIoE
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configuration interaction and size constancy

unphysical description leads to wrong asymptotic
of energy for extended systems

extensivity of energy not given !!
(Cl is not size-extensive)

I

the larger the system, the smaller the fraction of correlation energy from a
truncated Cl

recommendation : use Cl with caution !
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improving configuration interaction
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improving configuration interaction

not only include Cy, Cy but also products of excitations
C2, C3 for FCl result !

4ITOJI
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improving configuration interaction

not only include Cy, Cy but also products of excitations
C2, C3 for FCl result !

instead of a linear ansatz, a product separable ansatz
is required for size extensivity

4 MIOR
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coupled cluster theory

ansatz :
instead of linear expansion, use exponential expansion !

Wee) = e [Wo)

/@I
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coupled cluster theory

ansatz :
instead of linear expansion, use exponential expansion !

5
Wee) = e [Wo)
cluster operator T analogous to Cl-Operator

A

T = 7\_14-7\_24-7\_34-...

)\ams
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coupled cluster theory

ansatz :
instead of linear expansion, use exponential expansion !

Wee) = e’ [Wo)

cluster operator T analogous to Cl-Operator

A

T = 7\_14-7\_24-7\_34-...

coefficients are called amplitudes:
1

53
3!T + ...

n R 1
el =1+ T+§T2+

)ams
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coupled cluster theory

product terms resulting from exponential expansion

1
3!
1
3!
T g 1 2T 15 T2
+T1T2+§T1T2+§T1T2 —+ ...
4| Vo)

A 1 A N
|\|Jcc>=(1+T1+§T12+ T2+ ..

A 1. A
+B+§@+ 4.
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coupled cluster theory

Energy equations :
(Wol e THeT |wo) = E
Amplitude equations :
(WibleTHeT [wo) =0
energy as expectation value of similarity transformed Hamiltonian
“projection trick” to derive amplitude equations
iterative solution of nonlinear set of equations !
state selective (ground state)
quite expensive !

)ams
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coupled cluster theory

Cl based method with inclusion of higher excitations

strictly size consistent

faster convergence towards FCl

highly accurate !

approximate methods :

CCSD : Coupled Cluster Singles and Doubles

CCSD(T):Singles, Doubles + perturbative approximation to Triples
CCSDT : Singles, Doubles and Triples

)ams
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methods and basis sets

“Pople Diagram”
quality of method
computational effort

4
N
ccsp(my| N7
CCSD| N®
N® NP
[HF] N°
| | : >
, MR Dz TZ Qz basis
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benchmark studies

9230 J. Chem. Phys., Vial. 112, No. 21, 1 June 2000

‘ !
| @) Apparent amor
b) N-glectron emrar
<) Basis-set aror
| dj Intrinsic eror

2 3 4 5 &
cardingl number of one-electron basis set

FIG. 1. Schematie definition of the errors occurting in ab fuitio caleulaticos
with finite basis sets and approximative N-electron wave Runctions models.
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benchmark studies

HF HF HF
c-pCVDZ cc-pCVTZ cc-pCVQZ

-7 7 -7 7 -7 8
MP2 MP2 MP2
cc-pCVDZ ce-pCVTZ ce-pCVQZ

=1 7 -7 7 -7 7
CCSD. ccsp €esp
cc-pCVDZ €c-pCvTZ c-pCVQZ

=7 7 =] 7 3 7
€CSD(T) ‘ CCSIT) sy

co-pCVDZ | ce-pCvVTZ Co-pCveQE

-7 ? -7 7 -7 7

K. Bak, et. al J. Chem. Phys. 114, 6548 (2001).
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benchmark studies

I3C-NMR chemical shifts - benchmark study on 16 small organic
compounds, deviation and standard deviation from experiment [ppm]

/\ +vibr. corr.

+ large basis

ccsp(n)

_—/‘\ ccsb
J\ Me2
DFT
HF-SCF
-15 -10 5 o 5 1.0 15 20 25

A.A Auer, J.Gauss, J.F.Stanton J. Chem. Phys., 118, 10407 (2003)
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a detective story : Cyclopropane

re (CQC) re (CH)
rotational spectroscopy 1.5101 (23) 1.0742 (29)
electron diffraction 1.501 (4) 1.083 (5)
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a detective story : Cyclopropane

re (CQC) re (CH)
rotational spectroscopy 1.5101 (23) 1.0742 (29)

electron diffraction 1.501 (4) 1.083 (5)
theory (CCSD(T)/pVQZ) 1.5019 1.0781
/ MO
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a detective story : Cyclopropane

re (CQC) re (CH)
rotational spectroscopy 1.5101 (23) 1.0742 (29)

electron diffraction 1.501 (4) 1.083 (5)

theory (CCSD(T)/pVQZ) 1.5019 1.0781

rot. data - vibr.corr. 1.5030 (10) 1.0786 (10)
/ MO
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a detective story : Cyclopropane

re (CQC) re (CH)
rotational spectroscopy 1.5101 (23) 1.0742 (29)

electron diffraction 1.501 (4) 1.083 (5)
theory (CCSD(T)/pVQZ) 1.5019 1.0781
rot. data - vibr.corr. 1.5030 (10) 1.0786 (10)

discrepancy due to empirical force field data
in analysis of rotational data !!

J. Gauss, D. Cremer and J. F. Stanton, J. Phys. Chem. A, 104, 1319 (1999)
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pitfalls in electronic structure methods

up to now all methods based on orbital expansions
(ground state wavefunction or density represented by a single slater
determinant)
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pitfalls in electronic structure methods

up to now all methods based on orbital expansions
(ground state wavefunction or density represented by a single slater
determinant)

consider Ozone :
-0-0-0- 0O=0"-0" O -0"=0
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pitfalls in electronic structure methods

up to now all methods based on orbital expansions
(ground state wavefunction or density represented by a single slater
determinant)

consider Ozone :
-0-0-0- 0O=0"-0" O -0"=0

more than one determinant needed to describe electronic structure even
qualitatively !

)ams
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pitfalls in electronic structure methods

HF is not a good basis to start from

— breakdown of PT, CI, CC etc. !!
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pitfalls in electronic structure methods

HF is not a good basis to start from

— breakdown of PT, CI, CC etc. !!

DFT no good due to one determinant representation in Kohn-Sham
equations

)ams
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pitfalls in electronic structure methods

HF is not a good basis to start from

— breakdown of PT, Cl, CC etc. !l

DFT no good due to one determinant representation in Kohn-Sham
equations

— multireference problem !

often observed :

excited states, radicals, multiply charged ions, non-minimum structures,
bond formation and breaking of chemical bonds ...

)ams
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typical multireference case

H>O molecule - at minimum geometry and at stretched geometry

r—=Re r=2Re

E-EFcy W E-EFc W
RHF 0.2178 0.9410 0.3639 0.5897
CISD 0.0120 0.9980 0.0720 0.9487

CISDT 0.0090 0.9985 0.0561 0.9591
CISDTQ | 0.0003 0.9999 0.0058 0.9987
CISDTQ5 | 0.0001 0.9999 0.0022 0.9999
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\(C@C MMER Summerschool 2014 - Electron Correlation 35/42



multireference problems

multireference treatment : optimize determinant coefficients and orbitals
parameters at the same time !

)\aws
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multireference problems

multireference treatment : optimize determinant coefficients and orbitals
parameters at the same time !

artificial distinction :
Cl - dynamic correlation MR - static correlation
Methods :
MCSCF multi configuration SCF
CASSCF complete active space SCF
CASPT2 CASSCF + 2nd order PT
NEV-PT or NEV-CI
MRCI multi reference Cl

)ams
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hierarchy of post-HF ab-initio methods

MP2 / CC2 : noniterative / iterative N°

CCSD : iterative N2, N2 (formal N°)

CC3, CCSD(T) : iterative / noniterative N3N, (formal N7)
CCSDT : iterative N3, N3, (formal N8)

CCSDTQ : iterative N3 NS, (formal N0)

)ms
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hierarchy of post-HF ab-initio methods

MP2 / CC2 : noniterative / iterative N°

CCSD : iterative N2, N2 (formal N°)

CC3, CCSD(T) : iterative / noniterative N3N, (formal N7)
CCSDT : iterative N3, N3, (formal N8)

CCSDTQ : iterative N3 NS, (formal N0)

dilemma of high level ab-initio methods:
high scaling of computational cost !

)ms
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CC and Cl theory - computational effort

amplitude equations
(wib-le T HeT [wo) =0
example of T, equations for CCD:

ab ab m ,ab b ,ea 1 ab . mn ea nb 1 ef  ab
T2 v — Mt — 10t + Stonvi T + tivie + St ver

1 2 mn U 2
1 1 1
eb,fa  mn ef tab . mn ab ef  mn eb . fa . mn
+§tij tnVef +Zty tonVer — Etmi tnj Vef = tmi tnj Vef
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Classical theory based on canonical orbitals

abOWW
Tij J

)ams
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Rotation among occupied yields localized orbitals

5 _
T oop-ty2s68ite8d

)ams

\(C@C MMER Summerschool 2014 - Electron Correlation 40/42



literature

List of Books :

A. Szabo, S. Ostlund, Modern Quantum Chemistry, Dover Publications (1996)

T. Helgaker, P. Jgrgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, Chichester (2000)
B. Roos, Lecture Notes in Quantum Chemistry | + II, Springer Verlag (1994)

W. Koch,M. Holthausen, A Chemists Guide to DFT, Wiley (2001)

D. Young, Computational Chemistry, Wiley (2001)

List of Papers :

W. Klopper, K. L. Bak, P. Jgrgensen, J. Olsen, T. Helgaker, J. Phys. B, 32, R103 (1999)

K. L. Bak, P. Jgrgensen, J. Olsen, T. Helgaker, J. Gauss, Chem. Phys. Lett., 317, 116 (2000)

K. L. Bak, J. Gauss, P. Jgrgensen, J. Olsen, T. Helgaker, J.F. Stanton, J. Chem. Phys., 114, 6548 (2001)
K. Ruud, T. Helgaker, K. L. Bak, P. Jgrgensen, J. Olsen, Chem. Phys., 195, 157 (1995)

A. A. Auer, J. Gauss, J. F. Stanton, J. Chem. Phys., 118, 10407 (2003)

J. Gauss, Encyclopedia of Computational Chemistry, Wiley, New York (1998)

J. Gauss, Modern Methods and Algorithms of Quantum Chemistry, NIC Proceedings, NIC-Directors (2000)

)ams

\(C@C MMER Summerschool 2014 - Electron Correlation 41/42



