VISITS IN THE PROVINCES.

THE BARROW FLAX AND JUTE WORKS.
The Barrow Flax and Jute Works, was one of the principal objects of interest on the occasion of the recent visi
of the Institution of Mechanical Engineers to Barrow The history of the establishment of these works is of a very interesting character. As is well known, the town of Barrow sprang into existence owing to the very spirited development which took place years ago, and which is still going on, in the hematite iron trade of the district. The inauguration of the iron and steel works, which are gigantic industrial establishments, soon brought together a very large and yearly increasing population,
but, of course, employment in these works could only be found for men and boys, and in the case of working men with large families they had either to leave the town and find employment in other places where not only they but the other members of their families could get work, or their
daughters, and in many instances their wives, had to go elsewhere and secure work in factories and in other
places. The consequence was that it was found difficult places. The consequence was that it was found difficult
always to secure the services of steady men, for they naturally could not be expected to live away from their
families any longer than they could possibly help. Sir families any longer than they could possibly help. Sir
James Ramsden, the managing director of these works, and a gentleman to whom all honour is due for the zeal
and assiduity with which he has promoted the welfare of and assiduity with which he has promoted the welfare of
the town of which he is one of the foster fathers, developed a scheme for establishing a flax and jute works
with the object of making Barrow much more than it with the object of making Barrow much more than it
had been in years gone by a "home" for those who were employed in it. Through his instrumentality the Barrow
Flax and Jute Company was established in 1870. The town, it may be remarked, possesses many advantages for the successful working of this trade, for not only does
it furnish employment for a large number of persons it furnish employment for a large number of persons
who previously had nothing to do, but by the direct shipment of jute from India to Barrow a new trade was introduced into the port, and the raw material was
secured at a small cost of freightage, which has added very materially since to the increase in the tonnage of imports. The largest class of ships can series of warehouses has been built for the storage of the raw material as it is discharged from the vessels.
Another important feature in connection with the trade is the fact that a great proportion of the jute goods now manufactured are for the American market, and
now that large vessels are leaving Barrow almost daily to now that large vessels are leaving Barrow almost daily to
all parts of America, while on the other hand a fortnightly service of steamers has commenced plying in connection with the Anchor Line between Barrox and
New York direct, the facilities for the transportation of goods to the New Continent have been greatly in-
creased, and thus the jute trade is not only adding very materially to the tonnage of imports, but also to the tonnage of exports connected with the port of Barrow.
There is, perhaps, no trade which has shown greater progress during late years than the jute trade, for jute yarns and jute fabrics are now extensively applied, as
Mr. W. Fleming, the general manager of the works of which we are speaking, told the Mechanical
Envineers a few weeks ago, in the production of
"telegraph cables, wire ropes, oil-cloth and linoleum manufactures, ropes, twines, cords, \&c., even down
to artificial hair." this cheap material is now being produced in the shape of men's and women's clothing, and it is not unreasonable to suppose from the present tendency in the
direction of further development that jute will play much more important part in the future than in the past. Kalemeit is now produced by the Barrow Flax and Jute being more and more generally used every day. The process is a secret, but it is understood to consist chiefly of dyeing and printing, and some good and fast cloth before the Mechanical Engineers at their late meeting, and they met with general favour. The works of the Barrow. They have a frontage to Hindpool-road of 580 ft ,, and they extend back a distance of 360 ft . along Abbey-road. The style of architecture is attractive. The centre of the main front is occupied as general side of the offices are wings two storeys in height, with towers at each corner three storeys high. The buildings are of
stone.
The works are within a hundred yards of the main fifty yards from the Devonshire Dock. A special branch line has been made from the railway into the works, along which the raw material, fuel, dce., is conveyed, and delivery by railway or shipping. The jute bales are landed at the rear of the works. "A daily supply of the
raw material is brought into the "batching-room," where raw material is brought into the "batching-room," where
the bales are opened and the jute pulled into stricks, after which it passes through softening machines, con-
sisting of heavy fluted rollers, which crush and crimp the fibres, and make them easier to work. On passing through these machines the batching process consists of the sprinkling of the stricks with oil and water. Four into bundles and carried into the preparing room adjoining, which is 260 ft . by 248 ft . The machines here are in
rows. In the first place the jute is received by breaker cards, of which there is one row, then a row of finisher cards, a row of first drawing cards, a row of second row of winding machinery. The process in this department is much the same as in a cotton mill, but of course
the machinery is more adapted for the heavy work it has
to perform. All of these machines are usually in motion,
and the material on leaving one row of machines finds and the material on leaving one row of machines finds its way to the next in rotation, so that there is a con-
tinual progression of work from the rear to the front of this part of the building. The process carried on up to this point is all confined to the ground floor to the left of the entrance gate, and the jute in the shape of cops,
bobbins, and chains, is conveyed to the right side of the entrance gate. Here is a room for preparing the beams for the looms. From this place the beams pass into
the weaving-room, 210 ft . square. Here 416 looms of various sizes are at work in the production of sacking, bagging, tarpauling, hessians, striped bedding, jacquard in this room and it is observable that all the machinery is in operation. The shafting is all underground, so that all
belting from the roof is obviated, and the room in consequence has a more airy aspect,* The looms are material made from line yarns for the Kalemeit process to the roughest bag cloth, and from counterpanes of cloths for bedding. Leaving the weaving room, the cloth is conveyed to the preparing and cloth-receiving room, which occupies the front of the building on the right of the weance, and receives its light from Hindpool-road, the roof. Here the work is inspected, and the calender ing and finishing process, for which there is special machinery, is conducted. The cloth leaves these
machines, and by means of slits in the roof of this room it is wound in means obo ther lapped by machinery ready for packing, and where the bagging is cut into proper lengths and then sown by
machines which are of various styles, and do their work by means of various stitches. The cloth in bundles passes by means of small wagons on rails through a
corridor behind the first floor of the general offices to a room over the winding and warping department at the
north end of the building. Here are several printing machines for printing the names of firms, \&c., on the
finished bags, and at the extreme end of this room are hydraulic presses receiving pressure from a special
engine. The goods are placed in these presses, and when intended for shipment they are pressed into bales of great solidity. These are covered with jute cloth and then secured with steel bands, which are specially
manufactured by the Barrow Steel Wire Company manufactured by the Barrow steel wire Company. goods are made ready for transmission by rail or by sea, and much celerity. It is estimated that the average output much celerity. It is estimated that the average output
of the Barrow Flax and Jute Works is 140 tons per week, and it is noteworthy that 1700 hands are employed in the in different parts of the town in sack-sewing, depôts having been opened in some half dozen districts where the jute bags are taken ready for sewing, and distributed shillings per week at home. When these sacks are
finished the women employed on them take them back to the depôt, and they are paid at brief intervals for the result of their labour. There are three large engines in the works. The spinning mill engines are a parr of com-
pound beam engines made by Messrs. J. Musgrave and Sons, Bolton, who also supplied the weaving and calendering engines, the high-pressure cylinders being sure cylinders 48 in . diameter with 7 ft . stroke. The actual power of these engines is 750 -horses. The weaving being 32in. diameter with 3ft. stroke, and the low-pressure cylinders 42 in . diameter with 6 ft . stroke, the actual are of being about 400-horse. The calendering engines cylinder being 20 in . diameter with 4ft. stroke, and the engines is put down at 180. These engines are supplied with steam generated by ten Galloway boilers which are at a low level, and the railway trucks are enabled to There fire-extinguishing purposes, and also for feeding the boiler, and it is worthy of remark that these pumps did very great service on the occasion of the late fire. The company always keeps up steam in its boilers, so as to their works. The company has also provided a manual fire engine with all the necessary apparatus for a speedy supply of water in the case of fire, and the reservoirs in the yard, with which the condensed steam inds its way, are also the arra a plentiful supply of town water. The whole of character, and as all the modern appliances, mechanical and otherwise, have been adopted with the view of enabling the management to compete satisfactorily with the markets of the world, the works are considered as
one of the most model establishments connected with this fast-growing and important trade, and it was there fore not to be wondered at that the Mechanical Engineers, on the occasion on their visit to Barrow, should have manufacturing facilities possessed by the Barrow Flax and Jute Company. The excellence of the manufactures of this company won for them the gold medal at the Paris
Exhibition in 1878. It should be mentioned that the Exhibition in 1878. It should be mentioned that the
disastrous fire which occurred at these works eighteen disastrous fire which occurred at these works eighteen months ago destroyed the whole of the weaving shed
and other departments in its neighbourhood, but care and other departments in its neighbourhood, but care has been taken to reconstruct the building on the safest
principles possible, and further, the opportunity has been principles possible, and further, the opportunity has been taken advantage of to adopt more modern appliances for
manufacture, as in the jute trade as well as in other trades, progress of a very marked character has been made since 1870 , when these works were first established

THE VIENNA INDUSTRIAL EXHIBITION.
Local exhibitions, even when they embrace the col lective produce of an entire country, have only, as a rule, a circumscribed interest to the world at large, unless characterised by some special improvement or progress which threatens to affect their mutual relations of commerce with other lands. In a country like Austria, which has hitherto been mainly dependent on other markets for the higher classes of manufactured goods, the progress and improvement displayed in nearly every branch of industry represented in the present collection have a powerful significance on its future relations to foreign producers.
Any one who saw the ill-fated Exhibition of 1873 cannot fail to be astonished at the rapid advance made in the last seven years, and those who have hitherto looked upon Austria as a market for their wares must be prepared in the future to meet her as a powerful competitor on their own ground. Bohemian glass is proverbially good, and the mathematical instruments of Vienna will bear comparison with any in the world ; but up to the present no one ever attempted to substitute native material for imported glass in their construction, and not only lenses, but even the few lighthouse lanterns on the Adriatic, were imported from abroad, when nothing but want of enterprise prevented their oeing manufac-
tured with superior material at home. Messrs. Kraft and Sons, of Vienna, one of the largest instrument makers in Austria, have at last succeeded, after an immense outlay in experiments and unheard-of difficulties in stimulating the glass manufacuarers to attempt anything out of their ordinary line-one firm asked 8 s . per lb. for the lighthouse lenses in their rough statein constructing several for the Austrian marine, and as $£ 600,000$ are to be spent in the next
few years on the coast of the Adriatic, have secured for their manufactory a greater part of the above sum, which must otherwise have found its way into London or Parisian workshops. A lantern of the third degree is exhibited complete, with specimens of one of the
first degree already erected, side by side with English and French lenses, and it cannot be disguised that the latter suffer by comparison. The lesson to be read is that not only is the door shut on future importation, and a new branch of manufacture secured to the country, but the chance of competing with foreign producers on their
own coasts is increased by the superiority of the materials and work
The machinery department is not as well filled as one might have expected, and one or two specially interesting novelties-viz., an electrical railway, by B. Egger and Co.,
and an improved motor, by Julius Hock and Co.-are not sufficiently advanced to fill the space allotted to them. The contemporary Exhibition at Munich has absorbed so large a quantity of brewing and milling appliances that nar can hardy expect the same firms to exhibit
largely at both places at once. The well-known firms of Escher-Wyss, Pini, Nemelka, Nagel and Raemp, Wannieck, and Carl Senz and Co. make, however, a very fair show. The latter exhibit a new Non-pareille Grieser, or nuts, \&c., in a very compact and powerful form. The internal arrangement consists of two cast iron discs with T-shaped projections, one of which is attached to the spindle and revolves, the other fastened to the casing. The feed is regulated by a belt from the spindle. As soon as the projections or teeth are blunted, the driving belt is reversed and the opposite edges brought into play, so that the discs are self-sharpening, require no labour, and can be easily and cheaply replaced when worn out. the performance and it promises to become a powerful auxiliary to the roller system, and a good independent disintegrator for brewers and dyers. The action is something between that of a pair of stones and that of the cutters exhibited by Pini and Bollmann, in the Paris Exhibition, madibed in The Engineer. There are other milling machines on the stand, but the incompleteness of their mann's Austria, is shown on a 20 -H.P. engine by Schulz and Goebl, of Vienna. Langen and Wolf of course exhibit one of their gas engines-an 8-H.P.-at work, but as we with the electric occasion to refer to this in connection nity of comparing the expense of gas versus electricity we must defer a notice of it. Messss. the Florisdorf Engine Works, exhibit one of Brown of Winterthur's tand why the graceful the one at Paris, we cannot underbeen hampered with "architectural" additions, which have no bearing on its effectiveness, and say more for the ingenuity of the foundry than for the taste of the engi-
neer. Messrs. Wannieck, of Brunn, have a very powerful horizontal engine, with a sort of Corliss expansion, and fat valves.
Some mention must be made of the marked improvement in general manufactures. The china, more especially
the artificial flowers, the glass, furniture, textile fabrics, sanitary appliances, \&c., are far superior to anything in Paris in 1878. The effect of art schools is beginning Paris would do well if they could only see how far they have been surpassed in what hitherto they have considered their special productions. The general arrange-
ment of the cases, the introduction of "collective" exhibits, and the admirable classification of the goods, reflect the greatest credit on the taste and energy of the Commission. It would be, perhaps, too much to say that it is as a whole the most perfect and interesting of its it is as a whole th
kind we have seen.

DUTCH TRIALS OF COMPETITIVE PROJECTILES.
A report has recently been printed by the Dutch Government on the trial against armour of projectiles supplied by Ekman-of Finspong-Krupp, and Griuson. The experiment took place at Scheveningen, on June 16th, 1879. It has a special interest from the fact that the projectiles were all fired with a reduced velocity, calculated purposely to give bare penetration as nearly as possible. We have results obtained with the new 8 in .
and 6 in. Armstrong guns-which we propose to notice and 6 in. Armstrong guns-which we propose to notice shortly-where the same idea was carried out, beginning at about the same thickness of plate, but increasing up to a very high standard. The Dutch experiments, if they did not embrace an ambitious programme, were at all events carefully carried out, and are therefore instructive.
The plate fired at is shown in Figs 1, 2, and 3. It conThe plate fired at is shown in Figs 1, 2, and 3. It con-
sisted of a section of our English Bellerophon target, sisted of a section of our English Bellerophon target,
namely, iron plates of 6 in . and 8 in . above and below, as shown in Figs., on 10in. of teak, with $1 \frac{1}{2}$ in. skin: For this, a penetrating figure of 60 foot-tons per inch circumference was found to be sufficient for the upper portion, and 93 foot-tons per inch circumference enabled the projectile shown in Fig. 2 to get its point through the inner skin of the lower portion. The guns employed were a cast iron and a steck gun, each of 24 centimetres calibre-th
547 yards.
${ }^{547}$ yards. The projectiles supplied were as follows : - From
Ekman, chilled iron-(vide Fig. 4)-of two sizes, namely, ${ }_{2} \cdot 6$ calibres long, weighing 147.75 kilogs. ($325 \cdot 73 \mathrm{lb}$.), and ${ }_{2}^{28}$ calibres long, long, weighing $152: 34$ kilogs. ($335^{\circ} 85 \mathrm{lb}$.). These were chilled nearly to the centre in the head, and the body was left unchilled-vide Fig. 4. From Grüson, chilled iron-vide Fig. $5-$ of two sizes, namely, 2.6 cali-
bres long, weighing 149.65 kilogs. (329.93 lo.) and
 These were chilled to a certain depth over both head and

1800 metres (1969 yards) range ; and a heavier projectile from the steel gun, fired with a velocity of 472 metres (1549ft.), would pierce an 8in. target and backing at about 1800 metres (1969 yards)
As regards the projectiles, none of the Ekman(Finspong) chilled iron projectiles were broken up on impact, except

that the point of one was broken off to the length of 142 mm . ($5^{\circ} 6 \mathrm{in}$.). The remainder of the projectiles underwent no alteration in form beyond setting up to Grison chilled iron projectiles, seven broke up eing a great many fragments, while one, which remained entire,

INDIAN RAILWAYS.

The following statistics are given in the recent report to the the year 1879-80, by Mr. Juland Danvers, Government Director of the Indian Railway Companies :-
"The length of the whole railway system of India now open
for traffic is 8611 miles, of which 6073 miles are in the hand of for traffic is 8611 miles, of which 6073 miles are in the hands of
guaranteed companies, 2363 miles are State, and 175 are native Suaranteed companies, 2363 miles are state, and 175 are native 1918 on a narrower gauge. During the past year 395 miles-including the Candahar line-of new railway have been opened for traffic. The railway system is not now terminated by the frontier A line has been taken from Sukkur on the Indus as far as Sibi, a
distance of $133 t$ miles, in the direction of Candabar. Its further extension to a place about 12 miles from Quetta is now being carried on, but operations beyond this point to Candahar are confined to surveys. On the north-west frontier energetic measures have been taken to continue the Punjab Northern Railway
to Peshawur across the Indus at Attock. The bridge which is in to Peshawur across the Indus at Attock. The bridge which is in of 314 ft ., and three of 264 ft . each. It is expected that the line will be so far advanced as to be ready for use up to the left bank of the Indus in November, and from the right bank to Peshawur in January next. Turning to Central India, the remaining Bombay by way of Ajmere will be finished in the course of the present year. The Rajputana State line will then be opened for traffic throughout. Eighty-two miles of the lower portion between Pahlunpoor and Ahmedabad, where the narrow and the
broad gauge systems meet, were opened in November last. The broad gauge systems meet, were opened in November last. The
other part of the Rajputana and central Indian system connecting Ajmere with Indore and the Great Indian Peninsula Railway, will probably be opened in the course of 1881. With the exception of a gap of 50 miles, it is expected to be opened on the 1st of January next. The bridge over the Ganges at Benares has been
undertaken as part of the system of the Oude and Rohilkund company, and will be commenced forthwith. It will be the largest work of the kind in India, and is to consist of seven spans
of 416 ft ., the pier foundations being formed of a solid block of of 416 ft ., the pier foundations be
masonry 65 ft . long by 28 ft . wide
"The net revenue derived from all railways in India during the year 1879 amounted to $£ 5,372,596$. That from the guaranteed year. The guaranteed interest paid by the Government was covered, leaving a balance in favour of revenue of $£ 313,955$. The net receipts of the State lines amounted to $£ 310,408$, compared
with $£ 200,374$ of the year 1878 . The gross receipts of the

body, as shown in Fig 5. From Krupp, steel, 2.8 calibres long, weighing 161 kilogs. ($354^{\circ} 94 \mathrm{lb}$.)
More was expected from the steel projectiles than the chilled ones. They were heavier, and were fired with a higher charge at the lower portion of the target from the steel gun, which was polygrooved, the projectiles being rifled by means of copper rings near shoulder and base, as seen in projectile in Fig. 2, whereas the chilled projectiles had studs, being fired from the cast iron gun at the upper portion of the target.

In all, seventeen rounds were fired, namely, four heavy and ons ond five heavy and three light of Griison's, and four of Krupp's. The following table gives the details :-

The following conclusions were arrived at as regards the calculated penetration, namely, that a projectile 373 metres, 1224 ft , would pierce the 6 in . plate at about
showed a crack along the tapering portion about the shoulder of it, but was set up in length only 2 mm . (0.079in.). The Krupp steel projectiles all remained entire. They underwent a slight deformation, setting up longitudinally to the extent of from 22 mm . to 28 mm . (0.866 in . to $1 \cdot 102 \mathrm{in}$.), while above the shoulder the diameter increased to the extent of from 1.5 mm . to 2.5 mm . (0.059in. to 0.098 in .) ; also all the points for a length of from 16.5 mm . to $21^{\circ} 5 \mathrm{~mm}$. (0.64 in . to 0.84 in .) were deformed. The Swedish projectiles of Ekman were considered very superior to those of Gruson. The say whether the steel showed a superiority sufficiently decided to justify their high price as compared with the decided to justify
chilled projectiles.

chilled projectiles.

the the report, it may be remarked that the behaviour of the Finspong projectiles to a certain extent agreed with the results obtained in our own projectiles were harder than the Finspong. At Shoeburyness in 1878 , one Griuson shot broke up badly, but another did remarkably well (vide The Engineer, April 12th, 1878.) The Finspong metal is, of course remarkably excellent ; but no observation is made in this report as to its price. The chilling of the body, still kept up by Grüson, has been abandoned long ago by most manufacGruson, has been abandoned long ago by most manufacturers. In the abstract, the unchilled metal having hardness, it would seem sound to retain a little unchilled in the centre, to hold the shot together, while the entire ring of chilled metal might prevent setting up. Practically it has been found better to leave the entire body mottled. The crushing strain there must fall much less heavily than in front, and tenacity throughout the body seems the desideratum,

The Jamin Eleotric Light. - The directors of the Compagnie Générale des Panoramas have decided upon the adop-
tion of the Jamin system for the illumination of exhibition which they are now arranging in Leicester-square
guaranteed lines were $£ 9,765,284$, and the expenses $£ 4,703,096$. On the State lines the gross receipts were $£ 1,465,824$, and the
expenses $£ 1,155,416$, showing an average proportion of net expenses e $£ 1,155,416$, showing an average proportion of net
receipts to expenditure on the guaranteed lines of 51 , and on the State lines of 22 per cent. In making these comparisons, he says, it must be observed that the State railways are for the most part either political lines recently opened, or small
branches with little traffic on them and expensive to work, but branches with little traffic on them and expensive to work, but
serviceable as feeders to the main lines. The Rajputana, line running south from Agra and Delhi, may be regarded as an running south from Agra and Delhi, may be regarded as an
exception to this description. The total net earnings divided
over the total over the total capital outlay, both guaranteed and State, yielded
are turn at the rate of are turn at the rate of $£ 47 \mathrm{~s}$. per cent. per annum. The
guaranteed lines earned at the rate of $£ 54 \mathrm{~s}$. per cent. per annum.
"The capital expended on the Indian railways up to the end
of the official year was £123,124,514. Of this £977,327,851 had
been expended on guaranteed lines, $£ 24,403,797$ on State lines, been expended on guaranteed lines, $£ 24,403,797$ on State lines,
and $£ 1,392,866$ on lines in native States. The capital expendiand during the period covered by this report-fourteen months in the case of the State railways, nine months in that of the East Indian Railway, and twelve months in that of the other guaranteed lines-was $£ 5,388,772$, being $£ 883,185$ on guaranteed and $£ 4,505,587$ on State lines.
year 1878 to $43,144,468$ last year. The proportion per in the year 1878 to $43,144,468$ last year. The proportion per cent.
of first-class was $\% 19$, of second 2.049 , and of the lowest classes, ${ }^{97} \cdot 432$. Th .
to $7,876,766$ tons as compared with $7,296,335$ of the lines amounted to $7,876,766$ tons as compared with $7,296,335$ of the previous year. The amount received for the conveyance of the same was
$£ 7,248,752$, compared with $£ 6,734,059$ in 1878 . The chief articles carried were cotton, grain, rice, piece goods, military stores, salt, seeds, tobacco, and opium.
"The expenses of working and maintenance during the year
amounted to $£ 5,774,510$, compared with $£ 5,101,335$ of the amounted
vious year. The cost of mainten with $£ 5,101,335$ of the pre vious year,
working $£ 4,310,960$.
"The rolling stock employed in working the railways consisted of 1850 locomotives, 4294 passenger carriages, and 34,856 trucks.
The total train mileage during the year was $28,915,144$ The total train mileage during the year was $28,915,144$, compared with $26,570,395$ of 1878 . The passenger train mileage was
$5,392,544$, the goods $13,546,878$, the minerals 357,561 , and the mixed goods and passengers $8,964,032$.
"The goods shipped to India from this country for the use of the railways amounted during the year to 207,743 tons, of the value of $£ 1,578,404$, the freight and insurance of which was coke, and 8393 tons of patent fuel were sent out

HASWELL'S IMPROVED COUPLING BETWEEN ENGINE AND TENDER.

Abstract

We published some time ago, drawings and description of a coupling between engine and tender constructed by the Austrian States Railway, and pretty generally adopted throughout the country, Mr. since that time introduced further improvements, which be readily understood from the accompanying engravings. bevelled and supported below by a spring b, as a double security against their falling away when the engine and tender are uncoupled. The front and back surfaces are planed, the buffers D D are of hardened steel, and their spherical ends care- well as to those on the Roumanian lines. Passenger engines fully fitted so that the surfaces when properly oiled work with 5 ft . coupied wheels, constructed with all the wheels smoothly. When the drawsprings A and B are tightened up there is no play on the engine and tender bolts as P P, is the there is no play on the engine and tender bolts as P P, is the Case with all other kinds of coupling on descending gradients. With this system when the load pushes the tender against the A, while the tender spring B, receding backwards in the oblong slit, keeps the serew coupling perfectly tight. The improved system has been applied on a large scale to a number of engines for the Russian Railway, Brest Kiew, as wheels. On the Raab line engines of this description, fitted with the the Raab line engines of this description, fitted kilometres per hour without any unpleasant ascillation on of the great advantages it offers is that the construction of the ocomotives can be improved, as the weight can be equally distributed over the wheels without the assistance of dead weights.

PATENTSELF-ACTING CRAB BUCKET CRANE.

[^0]chains A_{1} are for lifting the load. The lower barrel marked B and \mid sufficient speed to fill itself. The lifting barrel A is then chain B_{1} open the bucket D for discharging its contents. The thrown into gear again, and the chain A_{1} closes the bucket at arrel B is driven from the lifting barrel A by means of a its required height and position for discharging the barrel is held fast by a powerful brake \mathbf{E}; the lifting barrel A is then thrown out of gear by means of suith barrel A is nary steam cranes, These machines can also be used as ordiever, whereupon the bucket opens and empties itself. The to unhook the messenger chain drom the barrel A. This lever, whereupon the bucket opens and empties itself. The
brake E is then released and the open bucket is lowered with

SOAP-MAKING MACHINERY.

The various operations to which toilet soap is subjected, in order to bring ing headings:-(1) Slicing or dividing inder the slices the purified soap cakes extracted from the boilers ; (2) pounding, or trituration of the solid masses, colouring matters and perfumes ; (3) sifting the products ; (4) reducing the soap strainings into a paste, and mixture of the colouring and perfumery ingredients ; (5) kneading and running out the paste in a continuous film in certain forms; (6) cutting upinto cakes or squares; (7) pressing and marking the squares. These machinery constructed by Messrs. Beyer Frères, illustrat
The manufacture of toilet soap by this system requires the soap bars not to be more than 1\& square inch in section. These bars are then placed in the "slicing mill," shown by
Fig. 1, which slices or cuts up these bars in fine soap shavings,

Fig. 1
so as to accelerate the desiccation and to facilitate the mixin in of the colouring and scenting ingredients. The slicing mil consists of two discs, mounted on a horizontal shait, carried a cast iron frame. These discs are fited with tweive blades, which cut up the bars placed in two inclined hoppers, the mill.
The soap now reduced into shavings is next ground or pounded in a grinding mill worked by steam, as shown in
Fig. 2. The object of this operation is not merely to obtain

Fig. 2

a homogeneous paste thoroughly well mixed, but also to ecure an intimate combination between this paste and those be desired to assimilate with the soap; a soft, unctuous, and well bound paste is thus obtained. This crushing mill consists of four granite cylinders, set in pairs one above the other, so that the four grind from bottom to top. After the soap shavings are charged with the scented and colouring matters, they are deposited by the attendant into a hopper, whence they are taken up between the first
and second cylinder, and so ground for the first time. By a

Fig. 8
differential rotary motion the soap arrives automatically between the second and third cylinders, and after being thus ground for thesecond timeit issimilarly passed between the third
and fourth cylinders, and again crushed. This top roller is so constructed as to be able to deliver the soap paste it receives into the fore-mentioned hopper, so that this grinding operation is repeated over and over again till the attendant, by shutting off the passage between the top roller and the hopper, forces the soapy paste to fall off the top cyluder into perfect mixing, a comb is inserted to divide the soapy paste as it passes through the machine. Fig. 3 shows a grinding mill
working with three only instead of four crushing rollers. The capacity of the machine shown in Fig. 2
The soap paste having undergone the preceding operations, may be now delivered to the machine represented by our Fig. 4. An internal endless screw forces the paste in a highly

Fig 4
compressed state out of a small opening in front of the machine, and delivers the paste in a kind of endless roving or sliver, remarkable for its neat form and its lustrous polish.
This machine has, however, been supplanted to some extent by the kneading mill shown in our Fig. 5. The latter, though entirely different in its construction, fulfils the same functions as the preceding machine, in addition to delivering the squares

Fig. 5
ready cut to any desired weight, which additional operation was formerly done by hand. It is by the aid of this last-
named machine that the perfumery trade has been able to suppress many repeated and costly manipulations often taking upfive orsix weeks' timeto perform, and of thusrapidly manufacturing toilet soaps in large quantities. This kneading mill

Fig. 6

consists of a mechanical pestle, which rams or beats down the soap paste into a metal cylinder. Beginning by extracting the air contained in this paste, increased pressure applied thereon forces the paste out of an opening of determined size and kind of manufacture required the paste in ta manner that each piece is exactly out to the same size, and
consequently is also of the same weight. If larger or smaller of the outlet pirece and to alter the wheel geas working the fore-mentioned knife.
The soap thus obtained in squares of a certain size and weight has now merely to be stamped and shaped, and this is done by the press shown in Fig. 6, which illustration explains itself. It is only necessary to add that soap manufactured in this style, in a dry state, is at once ready for the market, without fear of its losing its shape or its lustre. In a future article we will revert to the machinery constructed by the same firm for making ordinary household soap.

THE DUSSELDORF EXHIBITION. The accompanying illustration gives some idea of one of the most tastefully and effectively arranged trophies in the Dusseldorf Exhibition. It comprises the chief part of the
collection of tubes exhibited by the well-known firm of J. P. collection of tubes exhibited by the well-known firm of J. P.
Piedboeuf and Co, of Oberbilk, near Dusseldorf, the tubes Piedboeuf and Co, of Oberbilk, near Dusseldorf, the tubes
made by whom have not only a large sale in Germany, but made by whom have not only a large sale in Germany, but
their superior quality has enforced their adoption for locotheir superior quality has enforced their adoption for loco.
motive and other work in this country. The tubes are made motive and other work in this country. The tubes are nade and through dies. In the Dusseldorf Exhibition, tubes so made are shown from a little over one millimetre to about

12 in . in diameter. The trophy, it will be seen, is constructed of tube and fire-box plates for the pedestal and capital. The base, die, and cornice of the pedestal consist of one flanged fire-box plate and two tube plates, while the capital consists of similar parts of boilers, all of which are pressed from flat-
plates by Piedboeuf's stamping machinery as used to some plates by Piedboeuf's stamping machinery as used to some
extent in this country. The entablature is of wood, as no extent in this country. The entablature is of wood, as no
parts of boilers would come in for representing this. The tubes forming the column are about 16 ft . in length, and bent to the curvature necessary for the optical preservation of a true form of the column. The trophy has a very fine and striking appearance not conveyed by a small engraving.

A New Telegraph Machine-Mr. Royal E. House, the last of the original telegraphers of the Morse time thirty years ago,
has, it is said, perfected a system by which from 250 to 300 words a minute can be transmitted, received and permanently recorded, and which is automatic. The first is built on the general principle of the type-writing machine, but instead of printing characters cuts long slits of greater or less length in some strip
of hard and stiff Manilla paper, with pointed knives, which are of hard and stiff Manilla paper, with pointed knives, which are
raised alternately through the lower and upper edges of the paper by a system of levers worked by a series of brass keys, the strip of paper passing from a wheel through a narrow brass galley and under a constant pressure over the little slots through which the
knives work. The length of the slit indicates the loter knives work. The length of the slit indicates the letter
to a small fraction of an inch. The strip of paper, whose marks are not those of a punch, but cut slits in a rapidly moving strip, is then placed in a machine connected with a battery, and moves quickly through it. Two constantly revolving wheels
with sharp but not keen edges fall readily into the slits and lower alternately-of the paper, and thereby make an electrical connection with a receiving instrument at another office, with a set of knives similar to those in which the original slip is placed. The knives in the second machine cut slips of a length corresponding to those in the original and can be read by
an expert, although they can be printed in the fourth an expert, although they can be printed in the fourth machine
with such rapidity as to make handwriting comparatively tedious and useless. This last instrument prints on somewhat the same principles as the gold and stock automatic telegraph, but the letters are printed from the cut slip without any interference
than that of the power, by which the machine is run. These than that of the power, by which the machine is run. These
messages record themselves, and the presence or absence of an messages record themselves, and the presence or absence of an
operator at the receiving end is of no consequence. They can be sent with all the rapidity of which perfect mechanism is capable, and will, it is claimed, average 200 to 250 words per minute, or approximate 15,000 words per hour of constant work.
All delay will be in preparing the Al delay will be in preparing the instruments, and the
work then can be accomplished by operators at such times as the wires are occupied from other stations.
Perators at such Perhaps the most remarkable feature of the system and the one which will strike operators and electricians as the most improbable is the simplest. It is that all messages can be sent to any
particular station and to no other, and without being head or particular station and to no other, and without being heard or
repeated at any other. The "call" is so arranged in its automatic way that while the machinery is in movement in every office, the knife-like wheel only fills the call slits on the tape in the office
for which it is for which it is intended, giving an automatic reply, and the similarly moving wheels in every other office, failing to fit the

LAWRENCE'S BOAT LOWERING APPARATUS. The accompanying engravings illustrate a new block, invented by Captain G. Lawrence, Fenchurch-buildings, Fenchurch-street, for lowering boats. This block is made of two cheeks, rivetted together through a cast iron arched piece, round which the hauling chain is passed. The chain is kept in its place by a boss or stud, which prevents it coming
out of the groove in the block. The end of the chain termiout of the groove in the block. The end of the chain termi-
nates in a slotted shackle, C, which is passed over the two nates in a slotted shackle, C, which is passed over the two is a fixture, whilst the other, B, is free to swing upon a pin
illustrating this boat lowering from the piers of the Thames \quad zontal engines, and the upper end in the case of vertical deck by the tackle anchor having been lifted off the vessel's engines. The suction produced by the small jet of steam releasing chain or block and the davit-head, becomes is made fast between the is utilised to draw the lubricant into the cylinder, which falls release of the anchor is effected. In order to keep down the on to the cup O in a measured quantity. A valve F is size of the stopper chain or "sling" used for ceprrying the arranged to prevent the return of the oil. G is a cistern anchor, one end of it can be placed in the hook, and the other fided with a loose cover I the lubricant, and which is proend after passing through the ring of the anchors, in the jaw. tity of lubricant-falling drop by drop out of the cistern G The jaw end being slipped, the sling, when away from the on to the cup 0 -to the greatest nicety. At each successive again. can be brought back on the hook ready for use again.

in its upper end. This latter is the detaching hook, whilst will thus draw the sling away when one end is released. The detaching is effected by a light releasing cord, carried back over the davit of the crane to the man in charge, or it may be secured, and the hooks will act automatically. One essential characteristic of this detaching block is that it may be arranged so that the weight cannot possibly be set free intil it is safely landed. detaching or releasing cord is very light, and is attached is very light, and is attached the weight is on the fall, the whole weight must be lifted before the releasing action could take effect. When, however, the load is safely landed, the weight is taken off the block, which and canted, as shown. By the removal of the strain on the fall chain, the shackle and swinging link fall perpendicularly by their own weight, and allow the sling ing chain to be released. This block has had a considerable application to cranes and davits for lower ing cargo at sea, and boats piers. The boat is de tached before she is water borne, and can be released automatically and instantaneously from the pier. For the prompt release of boats before they are water-borne, the releasing chain is made sufficiently strong to be belayed so as to take the weight sufficiently to re-water-borne. The block bas now been tried extensively, and all the reports we have heard of it are highly favourable. Captain Lawrence is a practical sailor, and his experience at sea has kept him clear of mistakes made by those who lack his knowledge. The block is mechanically right, to give satisfaction.
"This "block," as a means of expediting and simplifying the A is the body or injector portion provided with the cones B "letting go", of anchors from ships, \&c., has only to be and C, which are fixed in position and require no adjustment. tackle, now in use for "catting" and "fishing" the anchor, $\begin{aligned} & \text { The inlet cone B is connected to the main steam pipe or other } \\ & \text { source of steam supply, and the rear of the outlet cone com- }\end{aligned}$ and used in a manner similar to that shown in the drawing municates with the engine cylinder about the middle in hori-

The oleojector is an invention for lubricating steam engine cylinders and slide valves. A small jet of steam taken from any high-pressure part of the engine is allowed to play into the cylinder, and the suction created by this well-known and positive action is employed to carry the lubricant into the cylinder even against considerable pressure. Fig. 1 is a side
sectional view, and Fig. 2 a side elevation of the oleojector

opens the valve F and draws in any oil or other lubricant that has been fed to the cup 0 , and carries it into the cylinder in the form of a fine spray. At the period of high pressure in the cylinder the valve F closes, and so prevents the oil re-
turning. The makers are Messs. W. H. Bailey and Co., turning. The makers are Messrs. W. H. Bailey and Co., completing of gauge testing cabinets for the East Indian State Railways.

Trial Trip of a TyneBuilt Steamer.-On Monday the s.s. has been built by Messrs. Wigham Richardson, and Co., of Newcastle-on-Tyne,
and is of the following and is of the following
dimensions :-Length, 290ft.; dimensions :-Length, 290 ft .; 256 ft .; classed 100 Al at Lloyd's, under special survey of hull and machinery. She is constructed on the threedecked rule, and fitted with
water ballast on the bracket system, has short poop and topgallent forecastle, and is covered in amidship for oneprotection to her machinery in heavy weather, and providing shelter for cattle or deck passengers. Special facilities are afforded for the rapid working of cargo, and
the vessel is steered from amidships by Higginson's patent steam-steering gear. She bas lofty 'tween decks, 8 ft . high, suitable for carry-
ing troops or cattle, carefully ing troops or cattle, carefully
ventilated, and all holds are fitted with special apparatus for extinguishing fire. The engines, also by Messrs. Wigham Richardson, and
Co., are of the following Co., are of the following
dimensions:-Cylinders, 3lin. and 62 in . diameter, by 48 in . stroke, designed to indicate when under full steam 1000 horse power. The boilers, of
Siemens-Martin steel, are constructed for a working pressure of 90 lb . to the square
inch. On the measured mile she averaged eleven knots per hour, the high - pressure
engine indicating 487 and the low-pressure 492 , making a
total of 979 -horse power, the pressure at the time being
84 lb ,, vacuum 27 2 in ., and revolutions 64. This very satisfactory result was attained |in the face of a strong north-east breeze and a heavy beam sea. This
tine vessel, owned by Messrs. Stumore, Weston, and Co., of Liverpool and London, is intended for the American and East Indian trades.

CONSOLIDATION LOCOMOTIVE FOR THE PHILADELPHIA AND READING RAILROAD. W_{E} are indebted to our centemporary, the American Railload locomotive, which we illnstrate this week on page 288. This sone of several heavy goods engines recently built for the Reading Railroad by the Baldwin Locomotive Works, of Philadelphia. These engines have the Wootten fire-box, for burning fine coal. Its construction is shown clearly by the engravings, from which it will be seen that it extends ater-
ally over the frames and trailing driving wheels, so as to be Sft. wide inside. The following are the principal dimensions

The fire-box slopes downward and is stayed on top and sides with stay bolts. The engines also have feed-wate that we are not able to give the weight of these engines nor any report of their performance.

THE CAUSES OF EXPLOSIONS.-ATMOSPHERIC CHANGES AND BLOWN-OUT SHOTS
By A. H. Leech, Staveley Colliery, Chesterfield.* ALL the readers of this journal are no doubt greatly interested
in this subject, which was brought before us by Mr. Cobbold in the November number. It is one which has for some time had the careful attention of our most scientific men. The Royal
Commission on Mines, which is now being held, has this for one Commission on Mines, whicb is now being held, has thi
of its prinincipal subjects for oosideration, and its report
compiled by such an array of clever, scientific and practical men, will undoubtedty be of very greant value atmospheric yariations and the discharge of fire-damp, interest by the min orward to with considerable hoped that it may conduce to the safaty. of mines, and
five positive proof as to the soundness of theorie relative to the predisposing causes of explosions which although they may be correcest are are after all only
inferences taken from a few cases. Mr. Cobbold says that the majom a ty of explosions of firedamp
occurred most frequently when the barometer was on the yove, a and he might have added that they
happened most often when those baro happened most often when those barometric changes
were most rapid. When it is considered that a fall of an inch of the mercury is equivalent to a diminution
in the atmospheric pressure of about 70 llo. per square
and may affect not only the discharge of gas, but the
stability of the roof and sides of the roads in mines, to a very considerable degree. This is easily under-
toood, but the fact that there may be si stood, but the fact that there may be as great a
discharge with a rising barometer is at present inexdischarge with a rising barometer is at present inex.
plicable. In looking over the deputies or firemen's pieaste, it is generally found that much more gas is
reports reported when the barometer is changing than when
it is steady. The writer has in his possession a copy
of some observations which were made some montes of some observ
ago at a collier
pressure to the the aro at a coliliery, as to the relation of atmospheric
pressure to the discharge of fredamp and having
thought that they may be of some interest as illus. trating this subject, he has appended them to this paper. It will, perhaps, be necessary to explain briefly
how these observations were taken. At the colliery in nuestion a fire had occerred which had spread so
qued question a fire had occurred which had spread so
rapidy that it had beenn neeseary to isolate that
portion of the workings in which the fire had taken portion of the workings in which the fire had taken
place. This was done by building strong air-tight place. This was done by building strong air-tight
brick stoppings round the district. A A 6in. pipe with a Hlop-valve opening outwards was inserted in the
stopping at the return end, and in this pipe a stopping at the return end, and in this pipe a
water gane was fixed which was registered four
times each day, and at the same time the heiur times each day, and at the same time the height
of the barometer was read. This was carefully lone for a period of about six months, until the stoppings were
broached, and the district re-entered. The stoppings were all perfectly, air-tight, and consisted of two 9in. brick walls about a
foot apart, with sand rammed between them. It was found that the pressure of gas given off did did noen vary. It inversely with that of
the atmosphere, as might be expected; but with the the atmosphere, as might be expected; but with a settled
barometer the water gauge showed a moderately uniform line the more important changes only occurring when the barometer
was unsteady. It was also noticed that for the most part the pressure of gas was lower during the night than in the day time,
which may perhaps be accounted for by the difference in density of the atmosphere due to the lower temperature. These observations do not exactly prove, but they go a long way to confirm
the theory that the discharge of gas in mines is ruled to some extent by the barometric variations. It doos not follow that with a high barometer there is least gas given off, nor does it
follow that with alowatmospheric pressure there is most gas, butit appears to the writer that it is in sudden changes, whether up or down matters not, where lies the danger of unus, ual quantities of paradox which allows a greater escape of gas with a higher baro metric pressure, while what coliiery managers have to do io to be
well prepared for such ocurrences.
There is strong proof that Che unsettled statate of the atmososperere has oromething to po with the
known.
Here
it may be well to consider the practical application of this guard against any danger arising from these baewer main tions? It is absolutely impossible to carry out a rule that no shots must be allowed when the barometer is unsteady, and it is
equally impracticable to enforce a rule which requires that mmediately any anmossheric change is predicted, or as soon as speed, or the furnaceman must use more coals in order to keep up bigger fire than usual ; nor would it be at all practicabe
enact that on being told of such changes of atmospheric pressure the deputies must use more care in examining the placess which
ordinarily he is supposed, and compelled by Act of Parliament to ordinarily he is supposed, and compelled by Act of Parliament to
thoroughly inspect and report upon; for a manager in adopting

- Read beforo the British Association of Mining Students.
such rules would give a tacit admission that great caution is not
always exercised in his pits. It is necessary at all times, whether the barometer is behaving in such a manner as to foretell innumerable thunderstorms and an excessive exadations of fire-darnp, or
whether it is as steady as a clock, that the workings in any mine whether it is as steady as a clock, that the workings in any min
should be carefully inspected and the lamps thoroughly examine and tested, so that the mines should be comparatively safe. say comparatively, because, with the contingencies of defective
safety lamps and outbursts of gas, perfect safety is impossible. safety lamps and outbursts of gas, perfect safety im impossible.
And if the viewer were to receive a warning that the barometer was about to drop or rise as much as 2 in. in one night, he could of his workmen, unless he were to bring them out, and shut the pit up until the barometer had finished its vagaries, and had warnings of the barometer should be disregarded altogether ; far rom it, but that without using any extraordinary caution a pit state of the atmosphere has anything to do with the discharge of siven of will be affected most by those barometric variations which are
approach.
Assuming then that a mine is as safe as it can possibly be made as regards ventilation and system of working, and that it would
not altogether be a misnomer to call the lamps used by the name of safety lamps, there still remains one very important question, and
that is the use of powder. It will not be disputed that a great num ber of colliery explosions have been attributed to blown-out shots; and although the wrong cause has been assigned in some instances, yet undoubtedly many explosions have been the direct ressults of
blown-out shots. In dealing with this question it will be well perhaps, to consider the conditions under which one of thes hots must be fired so as to produce an explosion. It is necessary
of course, that there shall be gas present with which the flame of the blown-out shot, or that of alamp, may come in direct contact.
The flame of the former has been known to reach as much as fifty yards in the presence of finely divided coal-dust, and experi.
 he a fact, and that it is necessary by Act of Parliament for the
fireman or shot-lighter to examine carefully the place where the hot is to be fired, and all the places contiguous thereto, it in which blown-out shots have really been the cause of explosions, the gas has been iinnited through concussion in the
air, and at some distance away from the shot-hole; for it is only loes comply with the 8th general rule, and does really examine the places carefully before fring the shot. The writer has see
one case himself in]which the evidences of the explosion wer

most severe three or four hundred yards away from the blown-out hot, and they showed to him most clearly that if the shot ha come in direct contact with the gas, but that through concussio the flame of a safety lamp had been blown through the gauze, and so caused with shaster; and dis object in writing this has been to and ventilation, it is possible to have an explosion. Nobody wil care to deny that the use of powder has resulted in explosions,
and it would indeed be useless to argue about its being dangerous The question is really one of $\&$ s. d., and one which depends in a sreat measure for its settlement on the decision of the owners
It will be a long time before legislation will venture to deal with it, for the great difficulty would be in drawing a hard and fast
ine as to what mines are to be labelled dangerous; and it would be perhaps rather hard on those colliery proprietors who worl seams which can scarcely be got without the e use of some strong
force like powder. It appears on the face of it rather strange that the miners themselves, who are the persons most affected and terribly affected too, have rarely, if ever, taken the initiative in suggesting the prohibition of powder. In most instances
where its use has been discontinued it is the masters themselves who have first made the suggestion that it should be no longer When, however, it is considered that to them as to the owners, the question resolves itself into one of \mathcal{E} s. it is perhaps,
scarcely to be wondered at. One cannot help thinking that if those among the miners' agents, who call themselves champions of the working classes, had only applied their energies toward instead of having sown seeds of discord between them, there might have been fewer accidents of all kinds, for the master would have known that whatever he brought forward towards lessening the dangers of mining would have been received in a good spirit by
his workmen. The difference in the cost of working is after all not much in many hard coal seams with a good roof and floor,
and where the long wall system can te adopted, because the coal and where the long wall system can ke adopted, because the coal
will generally come down easily after bsing holed. It is, however,
in winning out where power in winning out where powder is most required, and here the great
danger lies. Its une may be most strictly prohibited in the long
wall, or broken districts, where it is possible gas may lodge in the wall, or broken districts, where it is possibleg gas may lodge in the
goaf; and yet if it is allowed in the whole or headings some
distance away, a blown-out shot may occur, which may through concussion blow the flame of a hampin explosion.
In some cases the danger of using powder in a fiery mine ha been acknowiegged oy anlowng stop towards sufety, as it only risk
time. This is undoubtedly one step the lives of some ten or twenty men, instead of perhaps two or three hundred. Bal even his is nota provensive, it is only a lessening of the probable fatal resuls hat their good example may be speedily followed by othero who work seams equally fiery. However desirable it may be to know how far meteorological changes affect the discharge of firedamp it can never be so important a question in mining as that of the
use of powder. It it is a hard but stubborn fact, that by a single
und號 of man, which incites him to invent theories, and wander about
of mate seeking some possible predisposing cause, whilst the immediate
one lies neglected before him staring him in the face at every one lies neglected before him staring him in the face at every
turn in his research. What earthly practical use is there, and what possible benefit can be obtained from even a perfect know. ledge as to the quantity of firedamp given off under different tmospheric conditions, whilst flame-producing explosives coninue to be used? The time will certainly come when powder in fiery mines will be a thing of the past, but not until that time does
come will the minimum number of colliery explosions be reached. Since writing the above the writer has had the opportunity of perasing Mr. Bunning's paper in the December number. He says that "experiments have been made which show that fredamp
xists at a common tension of some hundred pounds on the square inch in the solid coal.") This is no doobt true in a great many uch an enormous pressure exists in all coal seams which give of firedamp. It would, in the writer's opinions, be a very good thing if Mr. Bunning would kindly publish the experiments he mentions in this journal, as they would be exceedingly interesting whilst
the subject is under discussion. If it be true that such a great pressure as this does exist, then barometric variations can have very little effect on the discharge of gas from coal, and it is to
goaves we must look for any abnormal exudation of firedamp, which may be caused by atmospheric changes.
Mr. Bunning's suggestion as to the isolation of goaves by nor is it desirable that goaves should be entirely shut out, as it would only be creating huge reservoirs brimfull of gas, by
keeping the firedamp in, and any derangement in the brick toppings or walls might fill the woikgs with an explosive weep past the edge of the old goaves, and carry away the gas as it is given off direct to the upcast pit. He also suggests that the is probably true to the ventilation of a mine. This are ventilated by a furnacee, and especeially in ihkallow
mines. Many cases are known, in the West Durbo coalfields, in which the air current has been almosi
reversed by a sudden change in the wind. It is oues tionable, however, whether the direction of the wind does materially affect the ventilation in deep mines,
or $w h e r e ~ a ~ f a n ~ i s ~ u s e d ~ a n d ~ t h e ~ m o t i v e ~ c o l u m n ~ i s ~ h i g h ~$ Mr. Bunning is certainly correct in thinkiog that it is essential that a complete series of observations
should be made at one particular pit, in order to ascertain what deinite law does really exist as to th
relation of atmospheric variation to the exudation o gas. If the state of the atmosphere be not noticed a gase
the same colliery at which the discharge of firedamp i observed, very conflicting results will be obtained.
Meteorology in its relation to mining is a mos interesting study, and offers great mining for abserva the deputies' report might be made the subject of very useful diagram; and from a periodical examina-
tion of the return air by one who understands the use of the spectroscope,
might be made, whin excedingly interesting char might be made, which would show with a great degree
of accuracy the quantity of gas given off daily in the
mine and this compared with the atmospherie variations, and the velocity of the air for the same period, would perhaps throw considerable light on the The object of this passer
The object of this paper has been to show that however desirable and even necessary it may be to
understand the amount of danger to be apprehended from sudden atmospheric changes, through the exuda tion of unusual quantities of gas, yet we should no to use a flame-producing explosive, disasters will happen in our mines, which may justly be attributed
to the use of powder. This is not mere sentiment, bu a plain fact. Is valuable property to be destroyed are still more valuable lives to be sacrificed, and
homes made deasolate, for the sake of at the most fow pence per ton? Who . Whis to answer this question?
The owners, or must Legislation step in and compel The owners, or must Legislation step in and compel
the discontinuance of the use of powder in fiery mines?

Tranway to the Glant's Causeway.-In the last sesgion private Bill was passed through Parliament, viz, "The Giant"
Cuaseway, Portrush, and Bush Valley Railway and Tramway
Ace Act," which anthorises the construction of road tramways on ystem differing from that in ordinary practice, and by which very great saving
ture in working expenses is obtainable. The construction of tramways upon this system, at a cost of about $£ 2000$ a mile,
 advantage to countries like Ireland, or remote districts in
England, where tramways constructed at the usual cost could Ent land, where tramways constracted at
not possibly be remunarative. The proposed new system is suitabie rather for road tramways, as distinct from street tram-
wass, for connecting outlying towns, villages, quarries, or mines ways, for connecting outlying towns, villages, quarries, or mine
with the large centres or ttractive bits of scenery wherea n rail way would be most objec tionable. The tramway is laid on a raised siding along the margin ors , road, wich forms an ordinary pathway for foo gravelled or asphalted throughout its length. This siding or pathway is raised about 3in. to 5in. above the surface of the road, so as to prevent the passage along it of carts or other vehicle and so dispenses with the necessity of having to pave the tram
way with square sets-a very large item in the usual cost of con struction-and also prevents the wear and tear of the surface by other vehicles than the tramcars. The formation width of the tramway is from 6 ft . to 7 ft ., on the outside of which the usual country rood fence or wail is placed ; the gauge of the tramway
is 3 tt ., laid with ordinary railway rails weighing about 38 lb . to the yard. On the Giant's Causeway and Portrush Tramway the ployed, powers for such having been obtained. It is expected that by this tramway a very large tourist traetfic to the Giant's
Causeway will be accommodate Cocal passenger tractic, and and a lare, in additition to thaffic in theods, iron or ore,
lond limestone. The tramway will run alongside the platform
and of the Belfast and Northern Counties Railway Station at Portrugh and be also connected directly with the harbour at
Portrush, it will also form a junction at Bushmills with the Bush Valley narrow gauge railway; the tramway is expected
be open for traffic by next summer. Mr. W. A. Traill, C.E,
late of H. M. Geological Survey of Ireland, is the engineer.

CONTRACTS OPEN.

RAILWAY BRIDGE ACROSS THE TEES

The works comprised in this contract consist of the erection of a railway bridge across the river Tees, on the north side of the present railway bridge; the excavation for the lowering of the Bridge to a point about 240 yards eastward from the present of the Thornaby-road and Mandel-road so as to pass over the aid bridges; the construction of a carriage drive from the Mandel-road to the intended passenger station ; the construction of a horse and carriage loading bank, and of various retaining and fence walls, and of culverts, drains, and embankments. Our of the specification as applies to the bridge, and a bill of quantities for the whole contract.
Excavation. - The excavations for the foundation of the land piers must be conducted carefully, so as not to endanger the railway or present bridge on the river banks. The width and necessary, and the sides and ends must be properly planked and strutted or shored. The material excavated must be deposited either in the line of the railway embankment, or taken to sea in barges ; if any of it is deposited in embankment, the engineer may require it to be taken an average distance of 55 yards, and
carefully laid in horizontal layers. The engineer shall decide how much, if any, material is to be put into embankment, and how much taken to sea; but for the purpose of their estimates parties tendering may assume that 525 cubic yards will be deposited in
embankment, and the remainder taken out to sea. In preparing embankment, and the remainder taken out to sea. In preparing present bridge to the depth shown in drawing No. 3, but no deeper, unless he takes efficient means, by driving piles of wood or iron, to prevent the slag from being removed from the sides of
the present piers. The material within and underneath the the present piers. The material within and underneath the cylinders must be removed by means of scooping or dredging in
such a way as the engineer may approve of, or by excavating in the ordinary manner after the water has been excluded from the cylinders by the pneumatic-plenum-apparatus. Pumping the sand will not be allowed. All this material must be taken out to sea in barges.
Cylinders.- The cylinders, which are shown in the drawings, are
to be of cast iron, of the quality described under the general head Cast Iron. The parts of the cylinders which are 7 ft . in diameter are to be cast in rings ; those of larger dimensions in segments.
of good sound Memel, red pine or pitch pine timber, and must be
driven by a ram weighing 1 ton, and having a fall of 6 ft ,, and must be driven until they will not move more than $\begin{aligned} & \text { in. }\end{aligned}$ each blow. The lower part of the piers will consist of brick mortar to be of the same quality as those prescribed in the specification for the other piers. The upper part of the pier must consist of ashlar masonry set in cement mortar. The girder seats must be secured to the masonry with proper holding down
bolts and stone with molten lead.
Girders.-The girders must be of wrought iron, of the best Cleveland make, the brand and make to be submitted to the engineer for approval before the materials are purchased. Trial strips must be cut from such plates or other material, and tested
at the expense of the contractor, and must stand the following tests :-All plates must stand a tensile strain of 20 tons to the square inch of original area without breaking. The trial strip must then be broken by tensile strain, and the reduction in area before tearing must not be less than 10 per cent. All T-irons and L-irons must stand 22 tons to the inch, and the reduction of and bolts throughout the bridge must be of the best scrap iron, and capable of bearing a strain of 26 tons per square inch. The bolt heads and nuts must be clean, and perfectly formed, and the screws deeply and properly cut. All rivet and bolt holes are to
be drilled. Those in the top and bottom langes, and wherever be drilled. Those in the top and bottom langes, and wherever
it is practicable must be drilled with all the plates in position through the full thickness of the flange, and the whole of the rivet holes in the various plates, T-iron and L-irons, must fit one another perfectly. No drifting will be allowed, but in cases where the misfit is very slight, the holes must be carefully rimed
out, and larger rivets inserted. All bending and crankig of the out, and larger rivets inserted. All bending and cranking of the
T-irons and L irons must be done when they are pieces showing splits, or cracks, or other damage will be rejected. The abutting edges of the plates must be planed and fitted together with great accuracy. The whole of the ironwork before it is rivetted up, and when practicable after it is drilled, must be
dipped in boiled linseed oil. It must be previously scraped clean, dipped in boiled linseed oil. It must be previously scraped clean,
and if required by the engineer, dipped in a weak acid solution to ensure a perfectly clean surface. It must receive two coats of good red lead paint before being sent out of the works.
Cast Iron Work. -The cast iron work in Cast Iron Work.-The cast iron work in cylinders, parapets,
bed-plates, and wherever it is used in the bridge must be of bed-plates, and wherever it is used in the bridge must be of
thoroughly good quality, straight, and true to the drawings, and thoroughly good quality, straight, and true to the drawings, and
free from sand holes, flaws, or other imperfections. The metal must be tough and close-grained. Test bars, $3 \mathrm{ft}$. . 6 in . long by
2in. by lin., must be cast from such meltings as the engineer may

Fixing ditto
 11 in . bolts for cast fron bed plates, run with lead each
 Bolts and spikes in above

Bolts in cross girders over piers
Works other than Tees Bridge

Excavation for widening and lowering railway, deposited in

Excavation from railway, as above, placed in $12 i n$.
layers in approaches to bridges, and in filling up
subways, and well beaten..
subways, and well beaten. . $\begin{aligned} & \text { laced in approaches to }\end{aligned}$
bridges in 12 in. layers, and well beaten
bubpares.
nubish for to bridges, and in alterod roads
Ballast found by railway company, unloaded and
placed in approaches to bridges, and in altered Ballast found by railway company, unloaded and
placed in approaches to bridges, and in altered
roads .. Loading up, and placing in embankment, excava- \ddot{a}
tion from foundations of intended passenger
 Culvert as per drawing No. $2 \ddot{5}$, Fig. $\ddot{2}$, exclusive of
cone concrete in fourdations
Concrete in foundations of bridges, and walls, and
and culverts made with Barrow lime cubic yards Concrete in foundations of culverts if made with
Portland cement.. Portland cement $\because \ddot{ }$ Brick work in bridges and walls set in mortar of
Barrow
 Aycliffe lime
ddidges and walls set in mortar of dditional price for facework of pressed b̈ricks .. sup," yards ${ }_{7069}^{3083}$ rains of 9in. sanitary pipes properly seated and ${ }^{\text {andic yards }} 1417$
 Junction pipes for the above drains

The capitals and top rings must not be cast until the test load has been removed from the columns. Any variation in height due to settlement must then be allowed for. The boit holes in the hori-
zontal flanges zonta inanges must be drilled, and also those in the vertical flanges,
unless the contractor can satisfy the engineer as to the latter, that he can insure accuracy of fit by casting. The abutting edges of the cylinders, both horizontal and vertical, must
be planed and the whole of the joints be made perfectly be planed and the whole of the joints be made perfectly
water-tight. They must be caulked with iron cement composed water-tight. They must be caulked with iron cement composed
of iron filings and sal ammoniac. The vertical joints of
the cyling the cylinders must line alm the way down. The cylinder castings sin the lower part of the cylinder up to the level of 3 tit.
above low water mark are to be diped in a hot liquid, consist. ing of a mixture of coal tar and pitch, of such a consistency as to give a hard surface when cold. Concrete for a thickness of 6 ft .
must as soon as possible be laid in, must as soon as possible be laid in, and be properly trimmed,
and beaten solid. The concrete must be well packed, and rammed under the flanges of the cylinders. The concrete must
be formed of four and a-half measures of broken slag, no piece being larger than will pass through a $1 \frac{1}{2}$ in. ring, one and a-balf measures of clean sharp river sand, and one measure of Portland
cement. The Portland cement must be of good quality, and very cement. The Portland cement must be of good quality, and very
finely ground, weighing not less than 110 lb. per striked bushel, and must stand the following test. It must be capable of maintaining a weight of 850 lb . on an area of 2 in . by 2 in ., seven days
after being made and immersed six of these days in water. The after being made and immersed six of these days in water. The
brickwork resting upon the concrete must consist of plate-bricks from the Weardale Iron and Coal Company, or other firm in the Auckland district, and they must be fully equal to the sample must be carefully set, and well bonded in such way as the engineer may direct. The whole of the joints, vertical as well as corizontal, must be carefully fushed with mortar, which must
consist of one part by measure of Portland cement, such as been herein before described, and three parts of sharp river sand
bent intimately mixed together. Each pier must be tested with a load of 275 tons equaliy distributed over the surface of the brickwork, and this load must be allowed to remain
on it until a fortnight has elapsed without any settlement. It must in any case remain on the pier for four weeks. The quality specified for cast ironwork. Both the upper and under bearing surfaces must be planed perfectly true and parallel, and between the girder seats and the masonry must be a sheet or stratum of 12 lb . lead covered with a sheet of vulcanite to pre-
vent contact between the iron and the lead. The piers in the vent contact between the iron and the lead. The piers in the
embankment at each end of the bridge are to be founded on piles
direct. These bars, when placed on their edges on bearings 3 ft . apart, must not break with a load of 28 cwt . applied on the be less than s in. The way beams and floor planking of the bridge must be of the best Memel timber creosoted. They must be carefully bolted to the cross and rail girders as shown on drawing No. 8, and the rail timbers must be so cut out as to require no packing or dressing to insure the rails having a regular and even gradienc.
works at Hartlepool. The contractor will be charged 5d. per cubic foot for the creosoting, and he must pay for the carriage of the timber each way The whole of the bridge works must be completed by the end of the year 1882 .
The quantities in the case of the Tees Bridge are as follows:Excavation for foundations of abutments depositod Quantitios. Excavation for foundations of abutments depositod in
ombankment inclusive of all planking, strutting, slioring,
 Cast irón cylinders ftted togethor and made water-tight Bolts in ditto

 Portland cement concreto eisewhere Brickworke of plate bricks, in cement mortar̈, set "Inside
cellindera Crick workerk as aböve in abutments
 . cublc yards Asshar masony nap tones of pien cublc feot Ashlar rusticated, dratted, and broached as in abeatments of prosent bridge and elsewhere
Piles
driving, and contions
ond driving, and contingenceies
Crown troes, and planking fitted and $\ddot{\text { Al }} \times \ddot{\text { ed }}$

Bolts and spikos in ditto

Wrought tron pilo shoes, 20 lb . aach, fttod and fastened
Wrought fron girders, including scaffolding and ereetion.,
Wrought iron straps round tops of cylinders, 14in. by fin .
Cast iron parapets, fitted and fixed
Bolts in ditto
Cast iron bod plates, planed .

Ashlar masonry in string courses, coping, caps,
quoins, girder-stones, dc. $\ldots \ldots$
Wrought fron girders in road bridges, fixed in
Floor plates, fixed and rivetted

Wrought iron bolts

Cast iron in parapets of bridges, fitted and fixed
Concrete of hard coke on bridges Wood brick paving, creosoted and fixed Broken slag in roads, well rolled..
Fine screened slag on footpaths
Top cover of whinstone and limestono, well rolle Flagging, 2 lin. thick New masonry in fence walls New granite steps, fixed. ©
Paled foncing, as per specification
\qquad

FITZGERALD'S MAGNETO AND DYNAMOELECTRIC MACHINES.
The improvements in magneto and dynamo-electric machines we now illustrate are the invention of Mr. Desmond G. Fitzdecided advance in the right direction. The main idea of the decided advance in the right direction. Terfecting the Gramme machine, and so, instead of rotating the ring between the poles of a magnet on the ordinary system, he wholly or partially surrounds the ring both lorgitudinally and transversely, thus increas-
ing the effective inductive action. The ring is thus magnetised ing the effective inductive action. The ring is thus magnetised
directly, and with the least possible loss, aud the direction of the inducting magnetic polarity is in the circle constituted by the ring itsolf, as it should be. Fig. 1 shows a transverse
sectional elevation of a dynamo-electric machine, Fig. 2 is an elevation partly in section
looking on to the left-hand side looking on to the left-hand side
of Fig. 1, with the driving of Fig. 1, with the driving
pulley removed. In Fig. 1 A pulley removed. ring carrying
is the soft iron
sixty, more or less, coils \mathbf{B} of sixty, more or less, coils B o
wire, all wound in one direc
tion. The ends of these wires are connected to the collector C The ring A, with its coils, i mounted on a disc D attached
by a boss E to the shaft F, mounted in suitable bearings on end carrying the driving pulley end carrying the driving pulley
H. The ring A is almost wholly surrounded by a hollow electromagnetic ring I I I^{2}. For con-
venience of manufacture the ring I $I^{1} I^{2}$ is divided into several por tions, of which the two represented by I^{1} and I^{2} are annular while two are semi-annular, and
make up the largest diameter I make up the largest diameter I,
the division between the halver being preferably at the top and bottom. The separate portions are so wound with coils of wir as to constitute two magnet on the vertical plane poles opposed the ring A. The reverse to tion of the winding near the polerequired to produce this effect is
shown at sections of the electro various ring are united and held innetic tion by thin lugs J projectinfrom their cores between the coild of wire. These lugs J are bolted
to other lugs K to other lugs K cast on the
frame L. The ring A has pre frame L. The ring A has preit circumferentially, as shown. The collector C consists of a
cylinder of wood or other noncylinder of wood or other non-
conducting material rigidly atconducting material rigidly at-
tached to the boss E, and
having let flush into its inner circumference a series of strips
of conducting material, M, insulated, and in number equal to the coils on ring A. The extremities of the coils are brought to the outside of the collector, and con-
nected so as to form a closed nected so as to form a closed circuit, the points of connection
between adjacent coils being between adjacent coils being with the conducting pieces
M as shown at $m \mathrm{~m}$. Fig. M as shown at m. Fig.
4 shows clearly the collecting brushes, the current being taken off at the horizontal central line, or the line of greatest po-
larity. Fig. 4 also shows a front view of the collector C. The brushes are flat springs of copper
O^{\prime}, each having end a contact piece 0 , and being attached at the other end to a round bar P , passing through a terin position by a set screw R. A short lever $\mathrm{S}_{\text {d }}^{\mathrm{S}}$ is bar P , having an adjusting screw ' S^{\prime} tapped
through it, and bearing through it, and bearing This screw enables any required tension to be put on to the springs O^{\prime}, tact friction. the conminal Q is fixed to and insulated from a plate T, connected by screws U ,
to the end standard
the the machine. The whot of the current collecting portion of the machine is these screws.
Considerable modifica-
tions are made in the tions are made in the con-
struction of the ring. The struction of the ring. The
method of construction is shown by Fig. 5. Ordinarily, in winding a number of coils of wire upon a ring, more especially if it be of circular section and if the number of turns
of wire be the same in each layer, interstices are left between the coils. These interstices are filled by Mr. FitzGerald with soft iron wedge-shaped blocks V. These blocks can either be made with the ring, or separately and slipped on, the ring being made in halves to receive them, as shown.
Fig. 6 shows a modified form of the ring A and the encircling magnets I I $I^{1} I^{2}$, the ring being cylindrical instead of circular, The principle is the same whichever form is used. Figs. 7 to 10 however, illustrate a modification in which the ring A is wholly encircled on its cross secticn by coils W , in lieu of inducing magnets.
the ring A is whastrate a totally new form of machine in which the ring A is wholly encircled on its cross section by coils W
of wire in lieu of inducing magnets. These encircling coils W are supported in a suitable framing X , and the ring A , to Y rotate through them, is mounted between three or more rollers
Y, by one of which-preferably the upper-it is driven by fric-
tional contact, the surface of this roller or pulley being of indiational contact, the surface of this roller or pulley being of india-
rubber, as seen at i i, Fig. 8. The extremities of the coils of ring A are attached in a manner similar to that before described to a series of strips of conducting metal, Z, let flush into the external surface of an ebonite or wooden ring A fitted round the outside of ring A. The current is taken in each between the coils of wire. Preferably, the coils W are wound so as to leave a longitudinal groove W on their inner surfaces, where they pass over the ring Al^{1} on the outsice of ring A. Aeing anough into two surfaces of the ring and encircling cons being brought into very
close contact. Fig, 8 is a transverse section taken at $a b$. Fig. 9 is a sectional plan of ring A at centre line, and Fig. 10 a section It is obvious that line c d, Fig. 7.
It is obvious that in the three forms of machines shown permanent magnets may be substituted for the electro-magnets,
the permanent magnets retaining substantially the same shape,

The opening address to the evening classes department was given ou Friday last, by Professor Huntington, to a large
audience. The Deas of this department, the Rev. S. Wiltahire who was in the chair, before introducing the lecturer briefly referred to the last academical year, during which there had been 1500 students. The number of the staff was now 50 , a very great many subjects being tanght. Two new professorabips, "metal.
lury" Vargy" and " ine arts", had been founded by the aid of the City
tion. Clothworkers' Company had with much liberality created further scholarships and prizes.
Professor H Huting
Professor Huntington then gave his address, which had special reference to the use of iron and bronze amongst the ancients,
Referring to the dictum of archeologists regarding the succession
of the stone, bronze and iron ages, he pointed out that the
statement so often made that copper was more likely to have
been first used than iron because the latter is difficult to reduce from its ore and the former is found native, is erroneous. There is no reason to suppose that the
ancients obtained their copper in ancients obtained their copper in
the native condition ; we know of no locality whence at that time it could have been obtained, considering the great quantities which must have been used. It and Romans obtained their cops per from Cyprus. We learn from Pliny and Dioscorides the nature of the ore worked in Cyprus in the days of Agamemnon. Pliny
calls its chalcite and speaks of the "scolesia" which forms upon it This "scolesia," or malachite, is also referred to by Dioscorides, who speaks of it as "rust of
copper," a felicitous expression. copper," a felicitous expression.
At the present day copper pyites
and malachite are Cyprus. From Pliny's descrip tion of the methods pursued to obtain the metallic copper, which
he states was very malleable and due states was very malleable and principle of the method of that day is identical with that of our own. In fact there is but one way of obtaining copper from its
ore on the large scale by the dry process, and that, we have reason to believe, was known and practised in pre-historic times. Supposing for a moment that the
copper had been obtained in the copper had been obtained in the
uncombined condition, we have still to take into account the tin, which does not occur native, and for the reduction of which char-
coal must have been employed coal must have been employed
aided by a high temperature. To aided by a high temperature. To
obtain copper and tin from their ores and alloy them successfully,
argues considerable skill even at the present time
The lecturer then referred to whom, he justly remarked, there has never yet lived a more learned and trustworthy motallurgical author. Dr. Percy says:
"From suitable ores, of which abundant and readily ac cessible supplies exist in various localities, nothing
more easy can be con ceived than the extraction of malleable iron processes it may be re garded as amongst the
most simple. Thus if a most simple. Thus if a hematite be heated for a few hours in a charcoal
fire, well surrounded by or imbedded in, the fuel,
it will be more or it will be more or less
completely reduced, so as to admit of being easily forged at a red heat into a bar of iron. The primiing good malleable iron which is stili practised in India and in Africa, re. very far inferior to that which is implied in the
manufacture of bronze." This part of the sub-
ject was well illustrated by diagrams, and a cle-verly-fashioned assegai made in the way just
described was exhibited. Professor Huntington
concluded this part of the subject by stating it as his opinion that from a metallurgical point of
but being necessa
The coils on the ring \mathbf{A} and those on the inducing electromagnets I $\Gamma 1^{2}$, or the inducing coils W , may be connecte may be advantageously constructed in duplicate, the current from one of the rings A being employed to magnetise both of the hollow electro-magnetic rings and the current for the external portion of the circuit being taken from the second in ring A. The coiled ring A may be enclosed in a casing of soft iron pro-
vided with a circumferential slot to allow of the passage of the wires from the coils. The arrangement of the inducing magnets I I $I^{1} I^{2}$ and the coils W is applicable to ring-armatures generally. The saddle-back magnets-as they are called by Mr. FitzGerald -of double or single curvature, are, the Electrician says, appliable to a great variety of purposes,

An iron railway bridge is to be built at a cost of $£ 30,000$ over
why iron should not have
been used before bronze. Whether it was so or not depended on other circumstances. The remainder of the discourse was principally occupied in discussing the evidence of the early rise of iron afforded us by the
study of history and philology and the "finds" in Babylonia and Egypt, all throwing considerable light on the question and of much interest. It was pointed out that the rapidity with which iron oxodises fully accounts for the small number of "finds" in
that metal. A number of weapons and implements of that metal. A number of weapons and implements of iron found
at Nimroud although intact when unearthed fell to pieces at Nimroud although intact when unearthed fell to pieces
directly afterwards, being entirely converted into rust. Two of them-a pick and a saw-which have been preserved, are to be seen in the British Museum. They are computed to date from not later than 880 B.C., so that they are now 2760 years old. They are identical in shape with those in common use at the present time, but are entirely converted into oxide. The lecturer
urged that we should not finally decide that bronze was known before iron. It is very possible it was, but we do not as yet know the reason why. He for one should welcome any discovery throwing light on the question, as a valuable contribution to the
world's general history. In conclusion Professor Huntingworld's general history, In conclusion Professor Hunting.
don said - Looking back the the work of these ancient nations,
who who existed 4000 or 5000 years ago, and the result of whose
labours we to-day collect in our museums, we cannot but labours we to-ay collect in our museums, we cannot but
feel that intellectual power was as great then as now. If we are superior, it is due to the humanising effects of the Christian religion, and the truly wonderful progress
which science has made within recent years. Until lately, education was entirely classical and mathematical, to the entire exclusion of the so-called natural sciences; ; but now the tide has
turned, and institutions in which science is the principal object are springing up with increasing rapidity throughout the country. err in going too far as formerly we erred in not going far enough. At the present day to give a person a scientific education and
neglect literature would be like building a ship on lines calculated neglectle erature woumid be ilke building a ship on lines calculated then forget to throw in the ballast. For literature gives to the mind weight, dignity, and all those characteristics, which blended, then that those who are engaged in scientifice pursuits should seek in literature their recreation. And those whose daily occupations
are of a literary nature should make science their pastime. The are of a literary nature should make science their pastime. The days in which education was considered complete without a
knowledge of science have been swept away with the wooden walls of Old England, Our walls are of steel now and the future greatness of our country depends in no slight degree on those who
strive to utilise the subtle powers of nature, clothing themselves strive to utilise the subtle powers of nature, clothing themsel ves
around with the invulnerable truths brought to light by the trutharound with the invuln
loving hand of science.
Those specially interested in metallurgy then inspected the

TENDER.

BARMOUTH.
Fon extension of promenade and works connected therewith,
Thomas Roberts, Portmadoc, engineer. $\underset{\substack{\text { Evins and Jones, Dolgelly } \\ \text { Owen Portmadoc }}}{ }$
Jones, Barmouth
Davies, Portund
R. Wiilians, Harlech

Davics, , Wannfuwr...
Hughes, Portmatoc
Priche
Prichird, Portmadoo
Jeftreys, Cowyn ioy
G. Willimm, Harlech-

THE PHOTOPHONE.

Is our impression of the 24th September we gave an account In the paper read befor which we then alluded, Professor Bell said :-"In arranging the pparatus for the purpose of reproducing sound at a distance, any powerful source of light may be used, but we have experimented chiefly with sunlight. For this purpose a large beam is concen-
trated by means of a lens upon the diaphragm-mirror, and, after reflection, is again rendered parallel by means of another lens The beam is received at a distant station upon a parabolic reflector

in the focus of which is placed a sensitive selenium cell, connected in alocal circuit with a battery and telephone. A large number of trial ing instruments so far been mart that sounds could not be heard directly through the air. In illustration, Ishall describe one of the most recent of these experiments. Mr. Tainter operated the trans mitting instrument, which was placed on the top of the Frankin arranged in one of the windows of my laboratory, 1315 L street, ta a distance of 23 metres, Upon placing, the telephone

the words :- Mr. Bell, if you hear what I say, come to the
window and wave your hat.' In laboratory experiments the transmitting and receiving instruments are necessarily within earshot one another, and we have, therefore, been accustomed to pool ing the electric circuit connected with the selenium receiver, so as oplace the telephones in another room. By such experiments
we have found that articulate spech can be reproduced by the oxy. hydrogen light, and even by the light of a kerosene lamp. The loudest effects obtained from light are produced by rapidly
interrupting the beam by the perforated disc. The reat interrupting the beam by the perforated disc. The great
advantage of this form of

noiselessness of its rotation, admitting the close approach of the receiver without interfering with the audibility of the effect tones arem the latter; for it will be understood that musical trases are emitted from the receiver when no sound is made at the
transmitter. A silent motion thus produces a sound. In this way musical tones have been heard even from the light of used. By plan distant effects are sought another apparatus i beam can be entirely cut off by a slight motion of the hand, and musical signals, like the dots and dashes of the Morse telegraph code, can thus be produced at the distant receiving station..."
nature of the rays that affect selenium. For this purpose we
have placed in the path of an intermittent beam various absorb ing substances. Professor Cross has been kind enough to give me his assistance in conducting these experiments. When a solu tion of alum or bisulphide of carbon is employed, the loudness of the sound produced by the intermittent beam is very slightly
diminished; but a solution of iodine in bisulphide of carbon cut off most, but not at all, of the audible effect. Even an apparently

the sheet of hard rubber was held near the disc interrupter the rotation of the disc interrupted what was then an
invisible beam, which passed over a space of about 12 ft . invisible beam, which passed over a space of about 12 ft .
before it reached the lens which finally concentrated it upon the selenium cell. A faint but perfectly perceptible musical tone was heard from the telephone connected with the selenium. This could be interrupted at will by placing the hand in the path o the invisible beam. It would be premature, without further
experiments, to speculate too much concerning the nature of

hese invisible rays; but it is difficult to belieye that they can be bent rays, as the effect is produced through two sheets of hard Although effects are produced as above shown by forms of radiant nergy which are invisible, we have named the apparatus for the produc,' because an ordinary beam of light contains the rays which are operative. It is a well-known fact that the molecular disturbance produced
in a mass of iron by the magnetising influence of an intermittent

electrical current can be observed as sound by placing the ear in lose contact with the iron. It occurred to us that the molecular intermittent beam of light should be audible in a similar manner without the aid of a telephone or battery. Many experiments
were made to verify this theory without definite results. The were made to verify this theory without definite results. The
anomalous behaviour of the hard rubber screen suggested the anomalous behaviour of the hard rubber screen suggested the
thought of listening to it also. This experiment was tried with thought of listening to it also. This experiment was tried wit
extraordinary success. I held the sheet in close contact with

FIC. 7.
ar, while a beam of intermittent light was focussed upon it by lens. A distinct musical note was immediately heard. We ound the effect intensitied by arranging the sheet of hard rubber ried crystalline selenium in the form of a thin disc, and obtained a similar but less intense effect. The other substances which enumerated at the beginning of my address were now succes-
sively tried in the form of thin discs, and sounds were obtained

from all but carbon and thin glass. We found hard rubber to ing antimony and paper and other substance we tried exceptsounds. On the whole, we feel warranted in announcing as our conclusion, that sounds can be produced by the action of a variable light from substances of all kinds, when in the form of thin diaphragms. We have heard from interrupted sun light
very perceptible musical tunes through tubes of ordinary vulcan
ised rubber, of brass, and of wood. These were all the materials of extending the observations to other substances." se now reproduce illustrations from Science, which show in the experiments leading to the final form of the photo-

phone. It will be seen that the ray of light falls on a mirror, by In our illustrations, Fig. 1 shows the interposition of hard rubber plate. Fig. 2 shows the light passed through opening in rapidly-
revolving diaphragm, and reflected in selenious recesses. Fig. 3

shows application of Fig. 4. Fig. 4 shows action of voice on
thin plate of silvered mica. Fig. 5 shows application of Morse system of telegraphy to photophone. Fig. 6 shows listening
directly to receiving plate. Fig. 7, another form of receiver. directly to receiving plate. Fig. 7, another form of receiver.
Fig. 8, one of the first forms ; voice passed through slits. Fig. 9 shows the direct action of voice on gas flame. Fig. 10 shows the shows the direct
action of candle

Dr. Phipson takes sulphide of barium, or some other sub. stance which is rendered phosphorescent by the solar rays, and incloses it in Geissler tube, through which he passes a constant obtain in this manner a uniform and agreeable light, at a cost lower than that of gas.-Les Mondes.
A New Orl Can.-A New England man has lately invented an
illuminating oil can. It is so arranged that the can ilfuminating oil cand is adapted for oiling machinery in the dark, and when in use, the light, which is made after the bull's eye pattern, strikes upon the point of tube that ejects the oil, and
enables the oiler to see just what he is doing. Its usefulnes to enables the oiler to see just what he is domg. Its usefulness to it a ramble tool for them. The oil cannot harden or become stiff as the light in the can furnishes heat enough to keep it
warm, and it can easily be carried in one hand. Different sizes, warm, and it can easily be carried in one hand
intended for all kinds of work, will be made.

Gunpowder in Coal Mines.-A correspondent writing on this subject to the Times says, in an interesting letter, "The prohibi-
tion of the use of explosives would render the working of many of our coal mines so unremunerative that it would be impossible to keep them open, the pits would have to be closed and the
hands discharged, the supply of coal would be lessened, the price would be increased, and our great iron and cotton industries would suffer to an extent disagreeable to contemplate. These were some of the reasons which led the Home Secretary to reply co a deputation which waited on him on this subject, that he could not recommend the compulsory discontinuance of the use
of gunpowder in coal mines, but that he hoped next Session to of able to submit a plan by which the danger of its use could be got rid of. To many of your readers this hope of Sir William
Harcourt's will appear as a Utopian idea; nevertheless, it is a Harcourt's will appear as a utopian ine ine neverther in some the fiery pits in theighburhood of Barnstion to gunpowder, with the best possible results. The system is
simple in the extreme and, so far from its being costly, is is an simple in the extreme, and, so far from its being costly, it is an conjunction with gunpowder, a greater amount of v ork is dene with The value of the foregoing will be best appreciated by a short description of the operation. Ordinarily, blasting with gun-
powder is done somewhat as follows :-A bore-hole is made in powder is done somewhat as follows :- A bore-hole is made in
the face of the coal about 2 in. in diameter and 4 ft . or 5 ft deep. Into this hole a powder cartridge is inserted, with a slow fuze
attached ; the hole is then tamped - that is to say, it is filled with attached; the hole is then tamped- that is to say, it is filled with
any available dry refuse rammed in tight; the fuze is lit, and the cartridge fired. In this operation a flame, very dangerous in fiery pits, is created, and carbonic acid and sulphurous acid gases and smoke are generated. Blasting with water and gunpowder is
performed in the following manner:-Into the bore-hole is inserted a powder cartridge, with fuze attached, next to the powder cartridge is inserted into the bore-hole a tube containing water. These tubes should be as large as the bore-hole will
admit, and of any convenient length; the longer the better admit, and of any convenient length; the longer the better.
They may be made of any convenient, cheap material, thin tin plate, or of stout brown paper turned round on a wooden roller and pasted together, the ends closed with corks; the bore-hole is then tamped, the fuze lit, and the cartridge fired in the usual manner. The result of this operation may be briefly summed up.
The powder, in exploding, bursts the tube containing the water ; the rending force of the powder is extended through the water ago by Bramah over the enlarged interior area of the bore-hole, due to the space occupied by the water tube. A much larger quantity of coal is thereby brought down with a smaller quantity the gases converts a portion of the water into steam, the elastic force of which assists in the operation of blasting; the steam and absorb and neutralise the the flame and flash of the powder, and resulting from the explosion. It will readily be seen that herein simple as it is effective, and it is to be hoped that, in the best interests of humanity, our large and intelligent coalowners wil not be slow to adopt an amelioration in their present crude and dangerous practice of blasting, which will tend in a great measure to make explosions in coal mines a thing of the past, rather than

PARLIAMENTARY REPORT ON THE

THUNDERER GUN

WE publish herewith part of the report of General Gordon's committee on the Thunderer gun experiment, together with the conclusions to be drawn from them as to the accident. Those who read the reports we were enabled
to furnish of the successive experiments will find no to furnish of the successive experiments wilh find no
essential difference, we think, in this authoritative essential difference, we think, in this an successive
summary of them. The conclusion on the sin stages of breaking up of the projectiles in the bore, and the bursting of the gun itself, is clearly and boldly expressed. The committee even speak berse portion of conidence on the wedging action of the base portion the wass pred in there is much gon was shattered the belief that the account they suggest is more or less correct. As we remarked, however, comparatively little interest attaches to the modus operandi of a process which occurred after the far. The important part, and happily that about which there is most certainty, is the identification of each feature which indicates explosion of both charges, of the peculiarly violent action of the front one, and of the setting up of the front-common-shell; on this point setting scratch noticed in C 2 is important. In speaking, in our judgment, with much force and ability on this subject, we wonder that the fact of the cartridge choke being driven unburnt into the head of the shell is not noticed a more conclusive proof of abnormal behaviour, we thin wads and air space, it is to be observed that the committee in a final note wisely abstain from committing themselves beyond the conditions under which they experimented. The superintendent of the Royal Gun
Factories makes a remark much to the same effect in an Appendix.
This report, in our opinion, ought to be most satisfactory in all respects. We only regret that it should not have appeared long ago, as it appears to have been signed by the president on April 30th last.

Deductions.
First Series. - Air-space Trials. - As already mentioned in
Report No. 9-see Appendix II.-there is a general reduction of Report No. 9-see Appendix II.-there is a general reduction of
presure in the bore as the air space between the cartridge and
projectile is incteased.

The following table compares the pressures obtained in the experi-
ment with those due to the explosion of powder in closed

Charge of P. powder.			Pressure tons per square inch.		$\begin{gathered} \text { Pressures } \\ \text { tons per } \\ \text { square inch } \\ \text { in elosed } \\ \text { vesseds } \\ \text { at oqual } \\ \text { densitios. } \end{gathered}$
Weight.	Density.		Base of cartridge.	Base of projectile.	
lb.		Common Shelis.			$49 \cdot 6$
85	24.97	Niil.	$20 \cdot 2$	$15 \cdot 2$	
	1.69 40.4				
"	$\begin{gathered} 0.686 \\ 56.78 \end{gathered}$	1	$12 \cdot 4$	$10 \cdot 8$	18.3
"	0.488 89.44	2	9.9	8.0	$10 \cdot 1$
"	0.310	4	4.0	3.6	$5 \cdot 6$
	122.08	6	$2 \cdot 2$	117	3.8
	${ }_{15}{ }^{0} \cdot 2 \cdot 27$				
"	0.179	8	1.5	$2 \cdot 0$	$2 \cdot 8$
	$187 \cdot 37$	10			
"	0.148		1.0	1.75	2.4
110	$21 \cdot 34$	Nil.	21.8	18.1	52.5
	1.132 $36 \cdot 57$				
"		1	$15 \cdot 2$	12.8	$22 \cdot 5$
	49•2	2	$12 \cdot 7$	$9 \cdot 9$	12.7
"	\% 74.564				
"	- ${ }^{0.372}$	4	$12 \cdot 6$	8.9	i. 0
"		6	$8 \cdot 9$	6.4	$5 \cdot 0$
	$124 \cdot 86$		$7 \cdot 4$	6.4	
"	$\begin{array}{r} 0.222 \\ 150.09 \end{array}$	8			$3 \cdot 6$
	0.184	10	6.2	$7 \cdot 6$	3.0

It will be seen that the pressures now obtained are, in the case
of the 85 lb . charge, lower, and in that in the 110 lb . charge with an air space exceeding 2 ft., higher than those due to the simple he fact that a larger amount of gas is generated in a given time by the larger charge, so that while with the smaller charge the slipping away of the projectile permits of a reduction of pressure,
the more rapid evolution of gas in the larger charge sets np a certain amount of relief with smaller-grained and more rapidly igniting powders this Second Series.-Wad Trials. Thi
eems to show that the effect of leaving a wad in the bore 5 goes, front of the shot is insignificant. Although there was a slight increase of pressure on the base of the projectile as compared with a similar round fired under normal conditions, an examination of the gun gave no indication that any obstruction in the bore had mittee have no further remarks to offer on this subject
Third Series.-Double Loading.- After a careful examination of the facts of the case in all their bearings, the committee offer the fol-
lowing hypothetical description of the various phenomena of the burst, taking them in their order, from the ignition of the charg to the finaldestruction of the gun:- (a) The rear charge having
been ignited in the middle near the top, the gas generated

- before the pressure became sufficiently great to expand
: "Rosearches on Explosives. Fired Gunpowder," by Captain Noble
(nate R.A.) F.R.S. F.R.A.S. F.C.S, \&., and F. A. Abet, F.R.S.
Prest, C.S., \&c. Phillusophical Transactions of the Royal Society. 1875.
the gas.check and thus seal the windage-rushed over the opp of the Paliser shell and throug ne tho heoove round ite
incumberence filling

 Palliser shell to set it in motion, and raise the presure in the
hamber to the maximum usnally indicated by the erusher sanges
 charge proceeded, the gas escaping round the common charge proceeded, the tas escapiek ; the common shell
shell before expanding the gas check
then moved forward, a short interval elapsing between the commencement of its motion and that of the Palliser shell. common shell, gained upon it and therefore caused the front charge to burn up in a gradually diminishing, instead
of gradually increasing, space, as is the case in a round fired under ordinary conditions. (The pressure was thus increased
instead of being relieved. (e) The common shell had moved forward about 27 in . when the advancing Palliser shell caused so great a compression of the front charge-which by this time was ody of the common shell was set up and forced into the grootari wedging the shell in the bore, which at once yielded all round. The fracture of the gun at this moment probably extended from
the circumferential fracture at 82 in. from the muzzle forward to about 66in. from the muzzle and back to the breech piece, the destructive effect on that portion of the gun between the breech
piece and the circumferential fracture being no doubt intensified by the action of the rear charge. The evidence on which the opinion here given is based is-(1) The circumferential fracture of the steel tube at 82 in . from the muzzle. (2) The
longitudinel scratch, extending over fragments 83,88 , and 84 , the longitudinel scratch, extending over fragments 83 , 8 , and , exi, the studs of the common shell before firing. (3) The line of fracture of the common shell coinciding with the rear ring of studs. (4) The appearance of the fragments of the base of the common shell.
(f) The front portion of the common shell, the fragments of its f) The front portion of the common shell, the fragments of its
base end closely accompanying it, now passed through the bore and out at the muzzle. The uninjured condition of most of the studs in the front portion of the common shell proves that they did not the butt, of the front of the shell and of the fragments of the base (g) The fore part of the chase from the muzzle to about 66 in . back was detached from the rest of the gun by the explosion,
and had altered its original position slightly when the Palliser and had altered its original position slightly when the Palliser
shell reached it and entered the bore obliquely, the shock break-
ing shell reached it and entered the bore obliquely, the shock break.
ing off the head of the shell and also fragments of the gun. This view is borne out by the marks on the fragments at about
66 in. from the muzzle $(21,56,23,40,16,57,042,27)$ which indicate that this was the rear end of the then unbroken portion of the chase of the gun when it was struck by the Palliser shell.
(h) The head of the Palliser shell, on being broken off, passed chrough the bore. (i) The body of the Palliser shel
being oblique to the axis of the bore acted as a sort of wedge; its sharp front edge cutting into the metal
of the gun on the right side, and its base breaking off
fragment after fragment on the left. When this front edge of the shell had thus advanced to within 27 in . of the muzzle, the steel tube was so deeply gouged out on the right
that it broke; the base of the shell meanwhile breaking np the other side of the bore into small pieces. The tube and shell were probably turning in the air at this time, as when found in the butt the front of the tube pointed to the rear. The evidence for the above view is :-(1) The appearance or the at one part, the
Palliser shell, the wearing down of the base at impression of the rifling near the same place, the peculiar sheering of most of the studs, and the compression of others. (2) The
marks on the various fragments of the steel tube. Comparison of the "Bursts" of the two "Thunderer" Guns.
It will be observed, by comparing Figs. 9 and 11 with Figs 19 very similar. The disruption extends from the same point in
both guns, viz., the front of the breech piece, and the fragments gree closely in size and shape. Taking the guns in detail :- $-(a)$ In shoulders of this coil are broken awway, and a longitudinal crack extends the whole length of the coil on the left side. Fig. 1 shows
that this lifference, though great in appearance, is but slight in reality, the 1 B coil at the point of fracture being nearly equal
in strength to the shoulder of the C cill, so that in the one case short in rear, and in the other the same action carried away the
shoulder of the C coil. The tearing action thus induced, aided by the expansion of the gun from the interior pressure, caused
the longitudinal crack in the C coil. (b) The burst in both cases xtends from the breech-piece forwards, the breech-piece itself
being uninjured. (c) The fractures of the 1 B coil in the two guns are remarkably similar in character and direction. (d) The B
tube of the first gan, as far as recovered, has fragments closely esembling those of the corresponding parts of the secon
gun; but the portion of the first gun which was in breech piece, is identical in character in the two front ; and the mall number of fragments of the first gun that have been
recovered agree closely in size and character with those in corresponding positions in the second gun. There is an indication of a circumferential crack at 84 in . from the muzzle in the first gun,
just as there is at 82 in , from the muzzle of the second gun. The just as there is at 82 in , from the muzzle of the second gun. The
graze marks of projectiles occur at about the same place in both projectiles, the common shell in the second gun had lost none of hand, was fractured through the front ring of studs, four of which were detached from the shell; ; one of these was picked up in the
gun cell, four were not found. In the first gun, one Palliser front gun cell, four were not found. In the first gun, one Palliser fron
stud was picked up in the turret. The recoil of both guns wa
of exceptional violence.

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our

 correspondents.)Cold air machines.
Sir, -In reference to the letter on cold air machines whic appeared in your issue of the 1stinst, will you permit us to point erating machines now being constructed by us and those mad which your correspondent was probably not aware when he for warded to yourthe statistics of the every large machines required
for the cooling of the meat chambers on the Bell. Coleman for the
system.
Premising that in the case of either of the machines dry air is man plan that liquefaction of the aqueous vapour contained in he air and the depositing of the water before the air is admitte tially cooled compressed air through bent ranges of pipes in th meat chamber, in order that its temperature may be lowered so as to cause the moisture to be deposited. This naturally entail - Practically the same Mlustrations have already appeared in our
considerable heat to the cold air in the chamber, so that although
the large machines mentioned in W. W. F. C. © s^{0} " letter may dis. charse their large volume of air at a temperature of from © © deg. tion of fuel; yet all this cooling is of little avail in the mest chamber, as the heat given off from the compressed air in the pipes raises its temperature to comparatively a few degrees of the freezing point, the result being that on this system, for even quite
moderate temperatures in the meat chamber, very large and powerful machines are required.
In our dry air system there is none of this loss and no cumbrous discharged at a temperature of 60 deg. or 100 deg. below zero Fah., all this cold is available in the meat chamber for cooling purposes, the consequence being that a much smaller machine is
required with a proportionately less consumption of fuel required with a proportionately less consumption of fuel
We must not at the present time further occupy space mith a description of the apparatus we employ valuable proof of what we have stated, we have the pleasure to enclose
for your perusal an outline description of our system, which at for your perusal an outline description of our system, which a
some future time we hope to see illostrated in THE ENONER. Dartford Ironworks, Dartford, Kent,
stern wheel steamers on the magdelene river. Scr,-Having read in your valuable paper some twelve months ago, an account of two stern wheel steen steamers, built by Messr8.
Yarrow, and Co.., Poplar, London, for navigating, the river Mag. delene in the United States of Colombia, South America, and na I have been engaged to superintend their reconstruction here, I
thought it might be interesting to some of your numerous readers to kive an account of thesteam trial of the first, which is now in running order, and named Gieneral Troujillo. Therun wasfrom Baran-
quilla to Honda; estimated distance 202 leagues, or 606 miles, against an average current of five miles per hourr, in some places \&c., as we ascend the current increasing; amount of cargo about 100 'tons. Draught leaving Baranquilla, with fuel sufficient for five hours steaming, ald wood,
mark that this is the driest time of the river, and most dificult, of navigation. Left Baranquilla 12.33 p.m. 10th August, 1880 arrived in Honda 10.20 a.m. 19th August, day rumning. I give
below an account of the distances and running time from station to station :-

		${ }_{8}{ }^{3} 9$
	Calamar to sambrano ${ }^{48}$	0
	Yati to E1 Banco ${ }^{93}$ "	
	Rejidor to Puerto Nationa	
	Puerto National to Diquo	
	ue de Paturin to	
	Pab to Pur	
	Purto Berio to Aungostura	
	Aungostura to Nare ${ }^{3}$	
	退	
	ans to Honda	

Between the two last stations are three strong rapids. The boora is a pile of rough-cut wood, averaging 3 fit, by bytiony by ft. of other steamers here of the same carrying capacity, as, for
of example, the s.s. Maria Pino, side paddle, high pressure, carrythe same journey in longer time.
The many advantages of the surface condenser are very marked when working in the invariably muddy waters of tropical rivers 140 found from actual experiment when on fairly deop water, with making twenty-one. Then under precisely similar conditions for steam, and running on very shallow water, I got fourteen revolu-
tions off main engines. I hope I have not trespassed to far upon your valuable space. Bara, Jons Tobis, Engineer. Baranquilla, U.S. Columbia, Sept. 12th.

the yacht wanderer.

Sir,-We think perhaps your readers may be interested in the performance of the steam yacht Wanderer with the new engines letter dated Madeira, August 25 th, from her chief engineer. "I beg to inform you of our arrival here ; we have been con-
suming 1.6 lb . or rather less of coal per indicated horse-power per hour from diagrams taken. Our engines are working very nicely engines. We have not had a sign of hot bearings since starting,
and leave to-morrow for Teneritfe, thence to Cape de Verdes, St. Helena, Ascension, \&c."
The Wanderer's
The anderer's present pair of engines are of the ordinary
averted compound type, with cylinders 25 in . and 50 in . diameter by 2 ft . 6in. stroke. There are two circular boiler made of
Landore-Siemens steel and loaded to 80 lb . per square inch. The pecifications for this machinery were drawn up by Mr. Harring ton, of Gracechureh-street, who acted as consulting engineer for
the owner of the yacht, Mr. T. Lambert, and also designed the
new poop and forecastle which we constructed, and which added very largely to the accommodation and comfort of the vessel. As the owner made it a condition in our contract with him for few hours only on the measured mile, should be of at least
fow that wenty-four hours at sea, it was determined to make a run from Southampton to Plymouth and back. The Wanderer got under weigh from Southampton on Monday, June 28th, at 1.15p.m., leaving
Cowes Roads at 2.15 and the Needles at 3.45 . She proceeded down Cowes Roads at 2.15 and the Needles at 3.45. She proceeded down
Channel, steaming easily ten knots an hour, until 6 p.m., when not wish to arrive at Plymouth before $6 \mathrm{a} . \mathrm{m}$. the next morning, at which hour he had arranged to take on board some of the crew awaiting the yacht's arrival there. The engines were therefore
eased down, and the Wanderer anchored in Plymouth Sound at assed down, and the Wanderer anchored in Plymouth Sound at
he appointed time. She left again at $9.15 \mathrm{a}, \mathrm{m}$., passed the the appointed time. She left again at $9.15 \mathrm{a}, \mathrm{m}$., passed the
Start at 11.10 , Portland 3.20 , and the Needles at 7.15 , thus making the passage from Plymouth to the Needles in ten hours,
From this, however, must be deducted half an hour which was taken up by the adjustment of the yacht's compasses in the
Channel. The actual time under weigh was therefore nine and Channel. The actual time under weigh was therefore nine and of rather over eleven knots per hour.
 engines worked exceedingly well, without any priming or hot
bearings, and averaged eighty-two revolutions per minute, indi26 in to about 550 -horse power ; pressure of steam, 80 lb .; vacuum, short time, and gave the yacht a speed of twelve knots per hour, and the resuits were entirely to his satisfaction both as regards the working of the machinery and the speed of weights on The Wanderer was in sea-going trim, with all her weights on board, the draught of water and aft, 15ft.; coal, 100 tons ; ballast, 105 tons; fresh water, 20 tons ; displacement, 855 tons.
The Bevis feathering propeller, previously fitted to the Wanderer, was set to 16 ft . pitch during the trial, the slip being about
15 per cent.
DAY, SuMMERS AND Co . 15 per cent. Ironworks, October 7th.
Northam
In

Day, Sumarers and Co.

RAILWAY MATTERS

THe use of native coal on railways in the Middle Island, New Eealand, is expected to effect a saving of E8500 for the current

 year: a simiNorth Island
The French Minister of Public Works has announced that tenders are required for 2200 tons of steel, in part pancenent for
which an equal quantity of old iron rails are to be taken by the
MEsprs. Berry and NewMas's tender for the Waingongoro
section of the Foxton and New Plymouth-New Zealandsection of the Foxton and New Plymouth-New Zealand-
Railway has been aceepted, the amount being \&11,3400. This
section will bring the line up to within

Is the district of St. John, Canada, track-laying on the Grand Junction railway was, at eparture of last mail, proceeding at
the rate of aile per day. The grading of the line had been expected, according to the Colonies and India, that the whole of the track would be laid by Nomber.
The Engineer-in-Chief of the Victorian Railways has been
directed to devise a cheap method of contran directed to devise a cheap method of constructing railways at a
cost not exeeding ezooo per mile, so that such lines could be carried out in localities where no high rate of speed was required will only allow of sino being completed, unless the cheap method
can be brought into operation. Tus Louisville Car-wheel and Railway Supply Company have
closed a contract with the Louisville and Nashville Railroad Nashville railroad system for the year 1881, estimated at from 30,000 to 40,000 wheels. This will require from 7500 to 10,000 to be taken from the railway company, and the pigi irons to be be
employed are exclusively the Red River, Woodstock, Dover,
The directors of the London and North-Western and LancaRail way, Yave resolved to erect a fine hootel in connection with
the Preston new station, the Preston new station, the largest passenger depot that is not
a terminus in Europe. The tender of Messs. Neild and a terminus in Europe. The tender of Messrs. Neild and Co.,
Manchester, has been accepted. Major-General Hutchinson, who has just completed his inspection for the second time of the
railway extension between Euston and Preston states that rail way extension between Euston and Preston, states that he
will report favourably. The new West Lancashire railway is progressing rapidly.
The following statistics relating to the annual production of Zeitung from a private estimate, and show what a large per.
centage of the whole steel-making capacity of the country is centage or the whole steel-making capacity of the country is
dhe making, the total production of iron and steel for
the the 11 great German Bessemer steel rolling Works - Krupls,
Essen, 110,000 tons ; King and
Dond Dortmund Union, 96,000 tons; Bochum Association, 96,900 tons $;$;
Osnabruck Steel Works, 7,000 tons; Red Earth Works, near
Anchen 60,000 tors Osnabruck Steel Works, 72,000 tons; Red Earth Works, near
Anchen, 60,000 tons; Phonix, in Ruhrort, 6,000 tons; Good
Hop Works at Oberhusen, 60,000 tons ; Hoerder Association
60,000 tons. Ot 60,000 tons; Queen Mary Works, 60,00 itons;
milian Works, 50,000 tons ; total, 820,000 tons. Acconbisc to the report of Colonel Rich on the accident on
the 3rd of August, to the Wemyss Bay train at Ralston, the
engine and train were thrown off the road by the engine and train were thrown of the road by the detachment of
the brake air reservoir from the engine. examining the roeservoir from the engine. He the accident marks were fousd on "On the
sleeper 50 yards east of the tunnel, and from thence an tintervals up the crossing where the permanent way was broken up. A
broken stud has been found 106 yards east of the tunnel, and
some blocks of wid some blocks of wood and a piece of the iron back strap by which
the Weestinghouse air reservoir was fixed to the foot-plate of the engine were found 194 yards east of tixed tunnet, the toot-pate of there can te be
no doubt that the permanent way at the crossing was torn up by no doubt that the permanent way at the crosing was torn up by
this air reservoir becoming detached from the engine The air
reservoir referred to was fixed under the foot-plate of the eeservor referred to was fixed under the foot-plate of the
engine by two iren straps, which are 2 隹. broad and \bar{t} in. thick.
The ends of the leading strap were passed through the foot-plate and were fied tod oit by double nuts
at the top side of the foot-plate. The ends of the back strap
and were bent at right angles so as to form lugg, and were bored for
a stud to pass through each ly. The train came to a stand
about 500 yards from where the first and about 130 yards east of the crossing where the tender first
got off the rails."
Moss of our readers have no doubt, been surprised by some
of the accounts which have been published of the accident to the
Midland Soutch express, near Kibworth. There seen
little Midaland Scotch express, near Kibworth. There seems to be a
little of truth in most of the first accounts, but a very little,
inaemuch as the running lickwards more than a start to run backwards, the whole eaffair beeng the
work of a few seconds-we cannot say few minutes. The truth work of a few seconds - we cannot say few minutes, The truth approaching Kibwrth station, but as he neared them they were
taken off for him. Whine he was s.ackening, however, he heard
the big end of one of the connecting rods knocking; and after
passing Kibw
 was, gointead of forw, hard gear, and started his engine, thinking he
neecting rod, and his stiontion being fixed on listening to the connecting rod, and his fireman's attention was taken up in putting
on the ijiector. The night was very dark, and neither of the
men notice that they were going backwards. The train ran
back some shor occurred almost before the driver found out his error. How it
was that a second train could or was allowed to follow the express soclosely, we are not yet informed.
Durivg the
Ways a total of month of August there were on the American railWays a total of 112 accidents, whereby forty-nine persons were
killed and 214 injured. Sixteen accidents caused the death of one
or more or more persons, twenty-eight caused injuries, bat not deth,
whine in sixty-ight, or 60 7 per cent. of the whole number, there
was no injury was no injury seriousenough for record. Ascompared with August,
1879 , there was an increaze of thirryy.three accidents, of thirty in
the number killed and of 155 in are classed by the Railroad Gazette as to their nature and causes

 misplaced switches ; four by trains breaking in two ; two by
mistakes in in ivingor reeeving orders ; one each by bad brakes,
by fog, and by a runawy eng month -at May Ma's Landing- Lis was cansed, as naecrly as can be
nacertained, by the ignorance of an engine driver, who did no know how to use the excellent brake with which his train was
provided." A rough classification shows fifty accidents caused lefect coressness or darefects in management; of rwenty-four by
cor equipment; six by unforeseen or or
scidental obstructions; five directly by the elements

NOTES AND MEMORANDA

of the Beiblietter, which is constructed in in such a manner that make-shift pump
in the laboratory,
in the laboratory,
$\underset{\text { Herr }}{\text { Humber of difickrtiel }}$ h
has determined the fusing-points of those alloys of gold and platinum in various proportions, with gives the fusion-point of basalt as 1166 deg . C.; that of adulari - ran 1420 deg.; and nickel between 1392 deg. and 1420 deg.

THE origin of the intermittent action of geysers forms the subject of a paper by Herr Otto Lang, recently presented to the
Gottingen Society of Sciences. Bunsen's theory he considers inadequate, and he proposes another, which bears a remarkable
likeness to that of Mr. R. Mallet, F.R.S., which has special reference to the mechanism of the rhythmical action of the olcano Stromboli.
AT a recent meeting of the Paris Academy of Sciences a paper tion of the 'unisian and Algined by M. Rondaiane in his explora-
Rondaire's conclusions are entirely favourable to de Lillingseps. Rondaire's conclusions are entirely favourable to filling the basin
situated between the Gulf of Gabes and the projected line of railway from Biskra to Tuggert. This would make an interior
res railway
gea about
ference.
Dr. Werner Siemens has lately described to the Berlin Academy a new series of experiments on the electric conductivity
of carbon, and the way it is affected by temperature. He finds of carbon, and the way it is affected by temperature. He finds
that of gas retort carbon at 0 deg. C. 0.0136 -mercury $=1$-and the coefficient of increase of conductivity 0 -0000345 per degree Celsius. The artificial carbon rods produced by compression of
carbon powder also show rester carbon powder also show greater conducting power with
increasing temperature, but the increase is not so great as in
retort
THE electric conductivity of gas-carbon and its variability under pressure has been re-examined by MM. Naccari and
Pagliani, and in such a way as to throw some doubt and some light on the theories sadvanced respecting the common microphone. Carbon prisms were inserted in a Wheatstone's bridge to deter-
mine their resistance. When subjected to great pressures the resistances of the rods of carbon showed scarcely any change.
Henceic Hence it appears that the changes of conductivity which carbon
exhibits in varying pressures are due to mere changes in the external

ON the 1st inst. a message of sixty-nine words was forwarded Melbourne Exhibition on that day. This message was despatched the same Allowing, however, for the difference of time between the two
cities, it occupied only 23 min. in transit. The route of the message, according to to the Elecetrician, tras over the lines of the
Victorian and South Australian Co the lines of the Indias Gasiarn, and China Telegraph Company, Telegraph Company, and the lines of the Egyptian and Frenc
Governments Governments, and the rapidity of its transmission shows the
harmony with which these various administrations work together.
Accondive to some recent investigations by Professor Righi on the effects of magnetism on iron and steel, magnetism pro-
duces in iron and steel (1) an increase of dimension in direction of the magnetisation. (2) On cessation of the magnetising force a part of this increase remains, and more or less of it according
to the ceercive force. (3) The elongations are proportional to the square of the current's intensity when this is not very great. (4) is sent in the opposite direction, it produces a shortening; bu even when it is strong enough to demagnetise the bar, the latter retains a greater length than in the normal state. (5) Durin reversal of the polarity of a bar its length becomes momentarily
less, and it oscillates in lenyth. (6) A bar of wire or iron traverse by a current contracts at the moment of closing the circuit. (7) On opening the circuit it elongates, but this elongation is less
than the initial contraction, indicating that transverse magnetism partly remains, (8) In reversal of the transverse polarity the
bar elongates for a moment, and thus oscillates in length. (9) The contraction produced by the current is greater when the bar
has before been longitudinally magnetised.
(10) Some iron bar show a tendency to spiral magnetisation, i.e., to rotate the mag.
netic axes of their molecules in the direction of the spiral. This passing through the bars, which are different according to the
directer directlon of th
magnetisation
Tue following note on the length of a single convolution of wire in a telegraph cable has been contributed to the Electrician,
by F. C. Webb :- "I cannot find in Clark and Sabine or any other book a method for finding the length of a single or any tion of a wire in a submarine cable, the diameter of the cable and wire and 'length of lay' being given. The following may,
therefore, be useful:-If a line be drawn as a helix round a
cylinder, so as to go exactly one turn round, the line will evidently be the hypothenuse of a right angle triangle, of which
the circumference of the cylinder is the base and the distance
 between the the
expressed by

$\mathrm{L}=\sqrt{(3 \cdot 1416 \mathrm{D})^{2}+r}$.

In the case of a telegraph cable, the length l is the length of
cable made by one turn of the machine and is called 'the length of lay.' To get the length of the wire in one con volution we
must take for Din the formula the diameter on the centre line of ${ }^{\mathrm{D}}$ the outside diameter of the cable, then we must to get 1 the length of one of the wires in making a complete convolution in

$\mathrm{L}=\sqrt{\left(3.1416\left(\mathrm{D}^{\prime}-d\right)\right)^{2}+l^{\prime} . "}$

Berone the recent meeting of the American Association of
Science, a paper was read by Mr. E. T. Cox, on the oxide of antimony deposits in Sonora, Mexico, about thirty miles from the
Gulf of California. The districtis mountaninus the hills being
in short narrow ranges, with tableland in short narrow ranges, with table-land lying between, composed
for the most part of broken and highly porous material. The
formation consists mostly of granite and subcarboniferous stone, with porphyry, quartzite, and trachite dykes. Extensive
fissirese exist in the rocks, and in these the metal occurs from fit
to 20 tit wide, and so far as is known at present, to a depth o
 Tive miles long and half a mile wide. They are being worked
by a Boston company, who possess extensive claims, on some of
俍 which antimony ore stands up in ridges above the surface, and
can be traced for some hundreds of feet. The oxide contains ing 77 per cent. The principal impurity is silica. It is believed deposits will be found to change gradually to sulphide of
antimony.

MISCELLANEA.

The new Queen-square station, Glasgow, is to be lighted by
ectricity, by means of Mr. R. E. B. Crompton's lamps, as used in the Enoch-square station. Two engines will be fixed, so that no accidental stoppage of the light need ever occur.
BarrERIEs are to be erected at Barbadoes, Demerara, and
Jamaica, and armaments are being forwarded for their effectual Jamaica, and armaments are being forwarded for their effectual
equimenent, in accordanee with the remmendations of the
Select Committe of Inquiry into the defence of the Colonies,
Francis J. Bancroft, a junior of sixteen, in the engineers' medal for his drawings of timber and iron roof construction, suspension bridge, road construction, and ornamental iron work. Two new factories have lately been established in New Zea-
land; ;one for making oil from Copra-dried land one for making oil from Copra-dried cocoanut-which is
imported into Auckland from the South Sea Islands; the other
for subliming the rich sulphur ore found in large quantities at for subliming the rich sulphur ore found in large
White Island, a few miles from the Auckland coast.
The fatigue experienced by the eyes from reading with artifi-
cial light is $-M$. Javal says-due more to the want coal light is-M. Javal says-due more to the want of light than
to the excess. Even in a room brightly illuminated the pupils are much more dilated than by daylight, and this dilation prochemical rays, the inectric light contains a large proportion of
neutralised by neutralised dy giving a yelow tint to the globes.
Mr. P. J. Mrssant, engineer to the River Tyne Commis.
sioners, who had been called in to advise the Whitby Port and Harbour Boardas
provement provement of eome plans, distinguished by numbers, the names of
seven compethan
the authors having been obliterated, and bas reported in faveur the authors having been obliterated, and has reported in favour
of that of Mr. Sandeman, of Newcastle-on-Tyne. This was on the 6th inst.
ThE Public Works Department, owing to the restriction placed by Government on expenciture, had, at departure of last mail
little or no occupation, and it was stated to be the intention of the Government to employ its officers and labourers in the
Colombo Waterworks as soon as the consulting engineer, Mr. Bateman, announced that he was ready to commence work. The drying up, so that the need of the eandy comene lhere was fas works was daily becoming more alparent. The preliminary
work, according to the Colonies and India, on the new railway extengio wes well in hand
A return issued from the Treasury Office to the House of Patent-office. The total receipts at the office in 1868 were

 the twelve years from 1868 to 1879 inclusive amounts to £1,779,891 16. 4d., of the expenditure to $£ 504,322$ 5s. 2d., leav.
leaving thus a total excess of receipts. leaving thus a to to
$£ 1,275,569$ 11s. 2 d .
The manufactories of agricultural implements have, says the
American Manufacturer, doubled in the United States during the last ten years. In 1850 this industry gave employment to
5361 hands. This year it tyives employment to 00,680 . Ohio leads off, employing 10,248 people in this branch of manufacture
Illinois follows closely with 8000 ; New York next with Ilinois follows cosely with 8000 ; New York next, with 7237;
and then Pennsylvania, employing a few over 3000 . As the
West, with its broad acres, demands plows and ing machines and harvesters, the men who manufacture them are moving this way. Twenty yearsago all this class of manufacture
was confined to New York and the New England States. Now Illinois has more capital invested in it than all the Eastern IT is generally very well known that the late Professor Rankine wrote a great many papers, which were published in the transac-.
tions of the different learned societies and scientific journals, and in our own columns he was a frequent contributor of scientific prising a large section of these papers, is now in the press, and prisl shortly be published by Messrs. Grifin and Co The ovolume
whas been compiled and edited by Mr W. hac been compied and edited by Mr. W. S. Mipar, C.E.,
secretary to the Institution of Engineers and Shipuilders in
Soctand, and an introdutory memor has been written by Pro
fessor P. G T Tait fessor P. G. Tait, M.A., which will be accompanied by a portrait
eegraved on stee.. The collection of the known scattered papers
by Rankine will without doubt afford a valuable and interesting

The present consumption of water in New York is at the rate of 100 million gallons per day; but as it is felt that, should any
accident happen to the Croton A Aueduct very uuences would ensue, it is proposed to build a new conduit one-
balf larger, which will be capable of delivering $150,000,000$ gallons per day, whereby the present service and the projected one from
the Bronx and Byram rivers would be increased to a daily supply of $250,00,000$ gallons. The cost of the new conduit is estimated reservoirs. Another scheme is to tap the water of the Hounatone
River, which rises in the Berkshire Hills of Massachusetts, and by this means a atream could be diverted into the Croton at a
rate of $100,000,000$ gallons per day, at a more moderate cost than the former scheme. From whatever source the new supply is to
be obtained, a new aqueduct will have to be built in either ${ }^{\text {case }}$
Wriring on the defences of the City of London, the City Press
says : "In 1642, shortly after the breaking out of the Civil War, the Parliament ordered that trenches and ramparts should be
made on the highways leading to the City and in different parts about London and Westminster. These fortifications oconisted
ab
a strong earthen rampart, flanked with bastions and redoubts surrounding the whole City and insed ilerties inclions ing Soothoutark,
In Tyburn-roa in 1643 there were three forts erected-namely, at the east end of the road, and a largo fort, with four hant bulwarke, across the rand, opposite to Wardour-street. From
The Perfect Diurnal of this period we gather that many thousands of men, women, and servants assisted in the works, ns also did a
great company of the Common Council and other chief men of great company of the Common Council and other chief men of
the City and the train bands with spide, shovels, and
pickaxes ; 'likewise feltumakers, capperd, shoemakers, and por.
ters, to the number of many thousands, assisted in raising the
defences." as described by the Detroit Tribune, the yare likenty toon, become
an important article in commerce. The advantages claimed are
an

 other f
in this
ment ment withound injer, can be dropped from a wagon to a pave-
longer than whed in these receptaces keeps
lout up in the usual way, being dryer and longer than when put up in the usual way, being dryce and
excluded from the air. The barrels for ligid substances are made by subjecting the first form to a asimple process, and oil can
be kept in them without any leakage. The saving in cost in about 50 per cent. Steps are being taken for the formation
of a company to manufacture barrels, tubs, \&c., by the new
process.
Consolidation locomotive, philadelphia and reading railway. (For description see page 282.) (

FOREIGN AGENTS FOR THE SALE OF THE

TO OORRESPONDENTS.

Troleey wheels.

BULLEN'S HIGH-PRESSURE BALL-COCK.

melting scrap.
(To the Editor of The Bnginer.)
 catting halt an finch thick?
porous castings.

subscriptions.

A complete set of The Enonsers can be made up, comprising 49 volumea,
price 40 guineas.

 Newt Zoaland, Portugal. Roum, Mnia, Switzorland, Tasmania, Turkeg,
United States,
Wost Coast of Africa, West Indios, China via Southampton

\because The charge for Advertisements of fome tines and under is three sillings,

DEATH.
On the 8th Oct., suddenly, at Tufnel Villa, 47, Tufnol Park-road
Holloway and of Gasgov, Wimtisu Thoms Hexiny, C.E., agod 47

THE ENGINEER

OCTOBER 15, 1880.

the purification of london fogs

DURING the winter months of $1879-80$ fogs killed a arge number of persons in the metropolis and its environs They lasted longer, were more dense and more deleterive than any London fogs within, perhaps, the memory of man, and we are not surprised to find that a great many persons look forward with no small dread to the winter now close upon us. November used to be notorious for ts fogs ; but of late years they are even more plentiful in January and February. Nothing, one would imagine could be urged in favour of a London fog; but one gat with has stated recently they may nevertheless act as disinfectants. We hold in common with most people that they are an unmitigated evil, in defence of which not hat f people begin to think that "something should be done, and this something, so far, consists in stating that London ogs are due to London smoke-are in fact frequently could get rid of smoke we should probably be rid of fogs at the same time. Dr. Alfred Carpenter has urged that tax should be put on all grates which do not consume their own smoke, and that a non-illuminating gas should per 1900 ft . In this way he thinks that the nuisance could be abated. We fancy that Dr. Carpenter has written without taking time to think, for it is certain on a want of knowledge of the facts. The subject is of sufficient importance to claim some expression of opinion from us.
In dealing with the questions involved, it is above al things necessary that we should keep the facts constantly in mind. Sentiment will creep into all dealings with careful to keep it out ; and in the statement that London fog is London smoke, we cannot help thinking that sentiment plays a part. In the first place the fogs of the London. in the south, to Liverpool in the north. The whole English Channel was shrouded in them. River traffic was stopped repeatedly by them in Liverpool. But it is none the less true that what in the country was a clear a dirty and noisome fog. The vesicles of water become, it is supposed, coated with carbon and hydrocarbons, which prevent them from breaking up, and so give perare specific London fogs when there are no fogs elsewhere To these last we may confine our attention, and endeavour to find out whether smokeless grates could or could not pre vent them. "Smoke is a compound of atmospheric air, sulphurous acid gas, carbonic acid gas, carbonic oxide and several other gases which we need not stop to name It likewise contains small quantities of tar and ammonia. it its dark colour. The quantity of carbon thus presen Williams was the first, we believe, to point out this fact We make no apology for quoting the following passage from his "Treatise on the Combustion of Coal and the cubic foot of black smoke is not equal to that of a single grain. Of the extraordinary light-absorbing property and coll produced bivid ear ef ectable part of the cloud some ides may be formed by artificially mixing some of it when in the deposited form of soot mixing some For this purpose collect it on metalli plate held over a candle or cas jet and touching th flame. Let a single grain weight of this soot be gradually and intimately mixed on a palette, as a painter would with a palette-knife - first with a few drops of gum On this mixture being poured into a glass globe contain-
ing a gallon of water, the whole mass, on being stirred opaque, and of the colour of ink. Whatever then, may be the quantity or number of its atoms, we this carbon is so intimately associated as smoke, that even attempting its separation and collection independently of its combustion borders on absurdity." The meaning to be extracted from this passage and the lesson we desiretoconvey is that the quantity of carbon in smoke is so exceedingly small that it is next to impossible to prevent its evolution from any grate in which coal is burned, no matter how perfect as a smoke consumer that grate may be. In other words, an engine furnace burning coal under conditions which render its combustion nominally smokeless, yet gives off enough unconsumed carbon to discolour an enormous volume of air. But even if it were possible to totally prevent the evolution of carbon a finely divided state, we should have advanced but a short way on the path to be trodden. The carbon
renders, it is true, a fog dirty and dark, but it is not the carbon whis true, a fog dirty and dark, but it is not the bronchitis, and "colds in the head". which are beyond question brought on by the persistent inhalation of
London fog. These are more than probably due to the presence in the for sulphurou prid gas, and carbonic acid, and carbonic oxide, the two last fruitful causes of violent headache. No matter how perfect the combustion of the coal might be, these gases would be as plentiful as ever. 10 illustrate this truth, we may cite the Metropolitan Railway. The engines on it burn Welsh smokeless coal, and the conditions of combustion are made as perfect as science can make them ; but the tunnels are filled with an atmosphere charged with car-
bonic acid, carbonic oxide, and sulphurous acid. The utmost that could be attained by smoke-preventing grates vould be the prevention of the discharge of carbon in powder the fogs would be cleaner, and that is all same ; the fogs would be cleaner, and that is all.
Beyond question this would be a great advantage gained-but is it practicable to gain it? We fear not by any form of grate or other contrivance for ensuring the parais pion is ample ; and the smoke is evolved only because the temperature is not high enough to cause the ignition and combustion of the gas and suspended carbon It is not practicable in any open fire to get is sufficiontly high tem prature to secure the required end. If a partially closed grate were employed the effect would be disagreeable in a room, and the grate would have to be continually replenished, for only a small quantity of fuel would be burn ing at once. In the ordinary open grate we have a compara tively considerable mass of coal ignited at the same time The effect if the whole were burning at a high temperature would be intolerable. Therefore high temperature and small quantities of fuel on fire must go together, and as the fuel will burn with great speed, constant replenishing of the grate, as we have said, would be necessary. The performance of this by manual labour is out of the question; nor is it easy to see how an automatic grate occupy too much space. These objections may also be urged against all manner of stoves. These are constantly put forward as the cure for all ills in heating houses; but coal-burning stoves make just as much smoke as an pen grate, only it is not seen till it escapes at the ecause they burn wood, as is the case abroad; or anthracite as in the United States, or coke or Welsh coal. The niversal adoption of stoves to-morrow would not purify accomplished in a different way or ways. The first, and by accomplished in a different way or ways. troublesome, would consist in establishing a gas producer in the basement, and leading the gas from his in iron pipes to each room; the gas would then be furnace would require replenishing but once every twelve hours. A great deal may be urged in favour of this scheme, but we believe it to be totally impracticable ; in the first place, because a certain amount of danger of explosion attends the use of gas furnaces ; and secondly, becanse the gas producer must work constantly, and as fires are not - with a few exceptions-kept up all night, the nestem is inapplicable to the demands of modern life. our open fires and our coal just as they are. It consists in depriving the smoke of its suspended carbon. To arge extent this is done for us already by our chimneys. The sweep every year takes away enough soot to render London fogs-were it found in them-ten times worse than they are. There is every reason to believe not at il beyond the cleanh of of household smoke is approach the subject with an intelligent perception of acts. Why is it that much of the soot is now deposited in our chimneys? The answer is that the particles come in contact with the sides, lose their velocity, and fall, or addyere to the bricks. It well known that wherever an ddy can be formed in a chimney there will soot be depo chimney solely because the particles are very small, so mank in a solidity of cosily of the chimney. Once there the current is gone, and are not permitted to be cougt up a current and the are not permitted to be caught up by a current again, we get rid of them we must do just what is done in gettin moisture out of steam-permit the current to getting series of flat surfaces from which it is deflected. These surfaces, so to speak, "knock" the water out of the steam. The principle has been very elegantly employed long gas purifier which we illustrated in our pages no suspension in the gas. To do this the gas is passed
through a large number of holes and strikes against a plate in front; the carbon is deposited, the gas goes on
its way purified. This is the principle which must be adopted if we would have smoke from house fires cleared leave it to inventors to decide. That the scheme can be applied we have little doubt, and that it would equally certain, but that trouble and expense would be equally certain, but that trouble and expense would be
incurred must not be denied. Its great claim to popular incurred must not be denied. Its great caid and consist in the fact that its adop would interfere with no popular prejudice in favour of open interfere with no popular prejudice
fires and their existing management.

the phenomena of explosion.

The letter from a practical miller which appeared in our columns last week raised one or two questions of con-
siderable interest, and will not have been written in vain if it directs renewed attention to the phenomena of explo. sion. These phenomena make themselves unpleasantly
prominent now and then, as for example in the case prominelosion at Tottenham-court-road, and more recently in the the wonderful story of the disaster at Minneapolis, when three huge flour mills were destroyed almost
in a moment, and other property was extensively damaged. In the present day explosions may be said to
play a large part in the world's business and plea play a large part in the world's business and plea-
sure. Gas engines depend on explosions for their action. Whenever a shaft has to be sunk, a quarry opened, or a
tunnel driven, recourse is had to gunpowder or dynamite. tunnel driven, recourse is had to gunpowder or dynamite.
We need say nothing of great guns. As for small arms, the sportsman is absolutely dependent on the explosive power of gunpowder for the killing of game. At every
turn we find explosions either purposely induced by elaborate contrivances ; or intruding themselves on ou notice unsolicited, and, indeed, after every precaution
has apparently been taken to avoid their recurrence. It cannot be said that the phenomena of explosion are unfamiliar; and considering all has been given to the phenomena by scientific men, and that we may seek in vain for trustworthy and complete of attempting to supply what is wanting. We write now in the hope that those who have the time and the means, and the requisite skil, whe dote their attention and give us some definite information, which can hardly place before our readers certain considerations which lead up to queries, which may or may not admit of being answered.
When a mixture of hydrogen and oxygen is ignited, an explosion takes place, and water results. Two atoms of
hydrogen $\mathrm{H}-\mathrm{O}-\mathrm{H}$ combine to form water. Two volumes of hydrogen combine with one volume of oxygen
to form two volumes of aqueous vapour. If more than the right proportion of either gas be present, an explosion
will nevertheless take place, but there will be left just as much of either gas as was present in excess. Thus if 100 mexygen, there would, after explosion, be 30 measures oxygen, there would, after explosion, be 30 measures
oxygen left, quite pure-as far at least as hydrogen频 what takes place during explosion dilation of the gas attended with the evolution of light and heat, subsequently a reduction of pressure, and, lastly, a verygreat reduction of pressure, as tulesteam formed in the
first instance is condensed. It would appear from what we have said that it is impossible to make hydrogen and idea is sumported by the fact without an explosion. This noise made when hydrogen burns in air is attributed to the rapid succession of a multitude of minute explosions.
On the other hand, however, there is some reason to believe that the mixture can be made to flame quietly without any approach to an explosion, as, for example,
in a Bunsen burner, or, indeed, in any ordinary gas jet and it should be borne in mind that in the laboratory the combination of the two gases is generally effected by
the electric spark. When gun-cotton is inflamed a some what complex chemical reaction takes place, akin in some respects to that occurring when gunpowder is
burned. But gun cotton presents a peculiarity of very great importance, namely, that if ignited in one way it
will burn rapidly away without exploding, whereas if it be ignited in another way it explodes with great violence Dynamite behaves in much the same manner, and can at
will be made either to explode or to burn quietly. The will be made either to explode or to burn quiety. The not possible that many other things besides dynamite way in which they are ignited? Fine flour dust or stive can, there is every reason to believe, be burned quietly cumstances; and it is not impossible that the same statement may be quite true of mixtures of air and coal gas in mires or gas mains.
As to the conditions determining explosion or not in gun-cotton, to which for he moment we may confine our cotton can hardly be induced even to burn; but if a whole will explode with just as much violence as though the cotton were dry. Before we can attempt to arrive phenomeno it is necessary to know why gun-cotton explodes at all. We have already referred to explosions his advisedly, because such explosions are typical With certain comparatively unimportant exceptions, all explosions are caused by the combination of oxygen with nitrate of potash uniting with the charcoal and sulphur. The precisely takes place during explosion is not certainly
known, but we have at all events hydrogen and carbon ready to form a new combination with the oxygen. The blycerine-is nitric acid, $\mathrm{NO}_{2} \mathrm{H}_{0}$ and nitric acid gives explosive vitality to its compounds solely by virtue of explosive vitality to its compounds solely by vict nitric
the ease with which it gives up oxygen; in fact acid is, broadly stated, a very unstable compound of oxygen and nitrogen. It is the most easily decomposed of all the acids, and cannot be kept pure in the su
rays, the actinic rays causing it to give off oxygen. is accordingly one of the most powerful oxidising agents ittle strong nitric acid be dropped periments are well known to every student of chemistry proving the same thing. When nitric acid is employed to produce an explosive, it appears that nitric peroxide NO_{y} is an excessively unstable compound, giving up its oxygen on the smallest provocation. Wortant exceptions to the rule that oxygen is always present in explosions. As to play much the same part as oxygen, and which enters into the composition of some of the most unstable chemical compounds known. We may put these on one
ide however, and turn now to what are known as side, however, and turn now to what are known as
fulminates. One of these is fulminating mercury $2(\mathrm{HgO}), \mathrm{Cy}_{8} \mathrm{O}_{3}$, another is fulminate of silver $2(\mathrm{AgO})$ $\mathrm{Cy}_{8} \mathrm{O}_{3}$. In both these we have again nitric acid
present as the oxidising agent. The first is readily caused to explode either by heating it or striking it. Ith fulminate of silver, which can be exploded by touchwith another detonating material, namely, fulminating powder, composed of three parts of nitre, nate of potash, and one of sulphur, intimately and dried. If this powder be touched with a hot iron it will burn away slowly; indeed, it is difficult to cause tin over a slow fire, the powder as it heats will gradually assume a pasty condition, then a lambent blue flame wil begin to burn on its surface, and then the whole explode proportion t, the tremendous noise of which is out of an explosion is strangely enough practically harmless, and incapable of displacing even a light sheet of tin. We have any een able to fird a reference to this powder, giving mentioned in some books, but that is all. Chloride of nitrogen and iodide of nitrogen are violently explosive They contain, however, neither oxygen nor carbon, and
their effects seem to be due to the sudden liberation of a very large quantity of nitrogen from a very small
quantity of the powder. Again, all chlorates-as, for quantity of the powder. Again, all chlorates-as, for more readily than nitrogen, and this is one reason why chlorate of potash is more powerful as an explosive ingredient than nitrate of potash.
Now what we have said
prove that combinations exist which can be caused to assume new relations, and to form new combinations further shown that mere mechanical concussion will cause explosion without the application of heat in any shape or form. Again, there is one subscance certainly namely, the fulminating powder, to which we have just referred, which can be made to detonate only by some what long-continued heating. We have thus certain forms identical results explode, no matter how great the heatto which it is exposed. Heat alone is powerless in this case to bring about the to say heat, and what we may call mechanical shock will induce an explosion at once. The same statement will mate it eyla but ther percination of the two, a tity of alminate of mercury is fired in contact with it, has the desired effect. Thus then, as we have said, explosions result in some cases from the
application of heat alone; in others from the appliapplication of percussion alone ${ }^{*}$; and in yet other cases from the application of both heat and percussion alone ; and we have also seen that forms of matter which under ordinary conditions burn slowly or quickly away, can under other conditions be made
to explode with awful violence. May we not now ask, are we at all certain that we can identify all the forms of matter which certainly cannot be made to explode under the combined influences of heat and perussion? If we cannot, we may, perhaps, have not far beyond our reach the key to the cause of such events as occur, alas too frequently, in our coal mines. If coal or flour dust hangs in the air we have oxygen and carbon in very close proximity. The nitrogen of the atmosphere plays only the part of a diluent; the oxygen has no he coal uce a flame. But it is quite as certain that fhese proinations may produce an explosion, and what is required to bring about the explosion is apparently percussive ions followed kach No doubt thocks followed each other. In the same way it is by no means impossible that a shot fired in a coal-mine may play nearly the same part with the mixture of air and gas present as the percassion cap does in a cake of wet gun-cotton. When the electric spark supplies the equivalent of the taneous combustion which causes so much mischief when it is effected on a large scale. We might pursue this section of our subject and go on heaping up are known as unstaple compounds, but it is not, we think,
necossary. The lesson to be drawn from what we have ments to that the believed to be tolerably staple. It may, for instance b shown, perhaps, that a mixture of coal gas and air which cannot be exploded in the ordinary way may be caused to explode by a detonator. The same experiment may be stive. It is obvious there charged with coaldast the way suggested something, very important in the study of this department of molecular physics ought not to be delayed any longer.
harbour works at colombo and madras.
The harbour works at Colombo and Madras have for some years been runninga race towards completion, and for a long time it had been thought, and confidently predicted,
that the slighter construction given to those at Madras that the slighter construction given to those at Madras
would lead to failures which would insure the winning the later commenced works at Colombo. But to all appear-
ances this prediction seems likely to be falsified, and ances this prediction seems likely to be falsified, and
so much delay has arisen at Colombo owing to the unsettled nature of the ultimate design to be adopted, that there can now be but little doubt but that the Indian
port will be safely enclosed some time in advaice of Colombo being in a state of preparedness to give entire shelter to the shipping resorting to it. We have from time to time noticed the relative progress madeat both places, and each work. Mr. F. W. Thorowgood, the superintending engineer of the Madras harbour works, reports the advance engineer of the Madras harbour works, reports the advance
on the two piers there to have been satisfactory, in spite of the heavy sea which seriously impeded diving operations the heavy sea which seriouse The number of blocks set in that month in the superstructure of the north pier had been 272 , which had added 157 ft . to its length, he total
completed having reached 3025 lineal feet. The curved work at the changing sea face had been finished, and the Titan was being advanced in a straight line to the proposed pier head, which, as has determined upon by 685 ft . in good writes:-"The construction of the curved work of the north pier gave us from the commencement some anxiety, as it has never been before attempted under similar conditions. It is satisfactory to be able to report its completion without one single mishap, and with a deviation of only 8 in . at its extreme end-637ft. from the tangent point-from the exact spot where theoreti-
cally it should terminate, notwithstanding the great and cally it should terminate, notwithstanding the great and varying settlement of the blocks as the Titan passed over
them." The rubble base to this pier had not made quite corresponding progress, owing to the occupation of the two steamers at the south pier. During June 8558 tons
had been tipped, making the advance in front of the superstructon on the made up. On the south pier the superstructure had not progressed at the same rate as at the north pier, owing
to the difficulty in accurately marking out the curve to the difficulty in accurately marking out the curve
arising from the swell from the south east, the site arising from the swell from the south-east, the site
receiving the full force of the waves and currents. The receiving the full force of the waves and currents.
rubble base at the able progress, it extending at the date of the report
390 ft . in advance of the blockwork, and being fairly made up for the whole of that distance. Generally the progress on each pier during the first six months of the year had been greater than in any corresponding six months since the commencement of the work. The following statement proves this :-January 1st to June 1878 , north pie pier, 2288 s. , 3 anary 381 ft , total 801 ft . January 1st to June 30th, 1879, north pier 356ft., south pier $627 \mathrm{ft} .$, total 983 ft. . January 1 st to Jnue 30th, 1880 , north pier 653 ft, south pier 688 ft , total 1341 ft , The
expenditure on the works as a whe expenditure on the works as a whole has hitherto been had been exceded. Whilst on the plant and preliminaries there had been an excess of expenditure of 107,587 rupees, and on the establishment charges of 57,811 rupees,
being a total excess of 165,668 rupees, there had been savings on the estimate for the north pier of 32,837 rupees, on the south pier of 143 rupees, on blocks in stock 11,361 rupees, and on contingencies 244,797 rupees, being otal saving of 431,847 rupees, against the excess item
of only 165,688 rupees. In English money, therefore, of only 165,688 rupees. In English money, therefore,
the works, as far as they have advanced, have been completed for $£ 26,61718 \mathrm{~s}$. less than was estimated for them. Mr. Parkes would consequently appear to be well justified in his anticipation that his original estimate for the Fhole scheme is not likely to be exceeded
there was expected to shortly there was expected to shortly commence, and preparaThe Titan had been hauled out and anchored down to the blocks within about l5oft. from the sea end of the work. The service road had yet to be completed, and on that being done, the Titan would be advanced to the setting end. A large number of artificers were engaged on these preliminary operations.
space available in the immediate neighbourhood of the space available in the immediate neighbourhood of the
works, the resident engineer, Mr. Kyle, experienced great difficulty for want of a convenient site upon which to store the concrete blocks already prepared and some 300 or 400 of these would have to be stacked along the top of the now completed breakwater. The yard can only contain 900 blocks, and these, with the 300 to be stacked as before described, will only be sufficient to build 600 ft . of breakwater wall. It will be necessary, therefore, to press forward the manufacture of further
blocks as the work proceeds seaward blocks as the work proceeds seaward, The dredging
operations within the line of the breakwater, as far as it is already advanced, had been much delayed completion of the steam dredger Merak, buckets had not been received from England, and it was admit of the dredger being fairly at work before the end
of October at the earliest. This delay was said to have the buckets, many of which had the steel mouthpieces of was preparing a plan of the mode of working out and epening the harbour, and some of the dredge punts d been locally built and were already launched. Of these there will be two trains of five, each punt being apable of carrying 20 tons, A 500 -ton steam hopper reach Colombo before January or February next, and in the interim the punts above referred to will curry the dredged stuff to the foreshore now being reclaimed in being built by Messrs. Green and Co., of Blackwall, for their towage.
We understand that Sir John Coode has sent in to the Government his final proposals for the ultimate of them has not yet been made public. The Ceylon Government is particularly reticent on all such matters. As will have been seen, full details are periodically published by the Madras Government, but that of Ceylon withholds all such information, and we are indebted for the above particulars given as to the Colombo works to
the Ceylon Observer. Were it not for periodical notices -necessarily only of a general character-in that jourthe colonists themselves, would be ignorant of what was being accomplished, and even from these last, all information as to expenditure seems to be strictly withheld.
This is a perfectly useless course, and one which gives rise to much unfavourable comment.
the performance of locomotive engines,
The sums expended on the haulage of trains constitute an important portion of the expenses incurred by a
railway company, but they by no means represent the railway company, but they by no means represent the
whole of its expenses. They are, however, sufficiently great to make economy in the working of locomotive
engines a matter of no small interest. Indeed, it is not engines a matter of no small interest. Indeed, it is not
too much to say that while a railway must be very badly
off if it cannot if it cannot pay some dividend if the locomotive expenses are kept down, it must be very wealthy
indeed if it can pay dividends and maintain a lavish outlay on its engines. A great deal of the success of some of our great lines is beyond question due to the
skill and caution of their locomotive superintendents. skill and caution of their locomotive superintendents.
But a wide diversity of opinion seems to exist as to what is and what is not cheap coaching and goods traffic. This diversity is not to be found so much among our
own engineers, as between the engineers of different countries, and what is called cheap in one country may countries, and what is called cheap in one country may
be regarded as dear in another. All things considered it seems that British locomotives are the most economical in the world, though it is not easy to prove this posi-
tively, because different conditions prevail in different countries. For example, there is every reason to think that Austrian locomotives are very economical ; but they burn to a large extent lignite, which is far inferior to
coal as a fuel. Concerning American locomotives, it is not easy to get at figures, for American railway accounts are not kept with the same minnte accuracy as English on this subject, houdging from the statements made nearly so economical as the British engine. We shall give some figures in a moment to support this statement.
It will not be out of place if we tell such of our readers as are not familiar with the working of railways that what are known as locomotive expenses are made up
under the heads of Fuel, Oil, Tallow, Waste, Wages, Material for Repairs, Labour for Repairs, and Proportion
of General Charges. For different railways these expenses vary very much. Thus, for instance, the London, Brighton, and South Coast Company paying
about 20s, a ton for coal will have a larger outlay for fuel per mile, other things being equal, than, let us say, the
Great Western Come Great Western Company paying less than one-third of
the sum named per ton. We have lying before us a set
of old reports-charge sheets-for locomotives working of old reports-charge sheets-for locomotives working
the Liverpool and Manchester Railway, and some of the figures are so suggestive and interesting that we reproduce them here. These accounts begin in March, 1840,
and we find that the average consumption of coke per and we find that the average consumption of coke per
mile per passenger engine was 33.5 lb , the average load
being about six being about six coaches, the trips were thirty miles
each. The goods engine burned 45.5 lb . of coke per mile, each. The goods engine burned $45 \% \mathrm{lb}$. of coke per mile,
the heaviest load being twenty-two trucks hauled by the the heaviest load being twenty-two trucks hauled by the
Mammoth with a consumption of 52.51 lb per mile, and the
lightest lightest being twelve trucks hauled by the Milo with a consumption of 44.3 lb . of coke per mile. In August,
1840 , we find that premiums at the rate of $7 \frac{1}{2} \mathrm{~d}$. and 5 d . were, wiven to the drivers and firemen respectively of the goods trains, but none to other drivers. The result
seems to have been an immediate reduction in the conseems to have been an immediate reduction in the con-
sumption of fuel to 33.6 lb , of coke per mile, the loads being heavier than in March ; the passenger engines
burning 27.1 lb . per mile. A little further on the preburning 27.1 lb . per mile. A little further on the pre-
mium was raised to 10 d . for drivers and 7 d . for firemen, mium was raised to 10d. for drivers and per mile, so the following week
6 d and 4 d. , the consumption being $34^{3} 3 \mathrm{lb}$. In September the premiums were done away with, and the consumption rose to. 399 lb . per mile, the loads remaining about the
same. In the week beginning the 6th of November, 1840 , a premium of 2 d . and $1 \frac{1}{d} \mathrm{~d}$. was given to the
drivers and firemen of the coaching engines, with the drivers and firemen of the coaching engines, with the $27^{\circ} 9 \mathrm{lb}$ to 25.9 lb . per mile. The week following it fell to 23.7 lb , but it rose again slightly. We cannot extend
our figures on this subject, and it must suffice to say our figures on this subject, and it must suffice to say 7arying from 3d. to $8 \frac{1}{2} \mathrm{~d}$, and the coachingengines were burn-
ing but 23.3 while the goods engines were burning 32.3 lb all the loads being heavier than in the March preceding, and before the expiration of the year they had got down to less than 20 lb . per mile for passenger and 28 lb . per
we find them for the six months ending June, 24th, and goods-to 819 d . per mile, including charges under all the heads we have orven abo Coke cost $2^{2} 24356 \mathrm{~d}$. oil, $0 \cdot 42428 \mathrm{~d}$.; tallow, 0.06584 d .; waste 0.01286 d .; wages $1 \cdot 43708 \mathrm{~d}$.; materials for repairs, 0.32583 d .; wages for repairs, $0 \cdot 39085 \mathrm{~d}$.; proportion of general charges, $3 \cdot 28562 \mathrm{~d}$. per mile ; the outlay on new engines building, being charged as locomotive expenses, raised the total cost per mile run to 19.07 d ., but the latter item we may neglect. As we examine these reports, we find that the cost gradually decreased, while the work done augmented ; and so in 1845 the average cost was but 6.124d. per mile run. The saving was principally in general charges, 12.07 d . As to the mileage of the engines, the greatest for the six months was made by the passenger engine Puto-12,337. Among the goods engine the best per-
formance was that of the Petrel-9915 miles. A total of forty engines, of which seven were employed in shunting, ran 282,146 miles, or an average of 7053 miles each in the six months. Two engines, however, ran only a few about miles, and may be excluded, about , 400 miles, or nearly 15,000 miles per annum is considered that engines in 1845 were not nearly so well built as they are now, and that the roads
traversed were much worse than modern permanent way. Indeed the expenses, as a whole, compare very favourably with modern locomotive charges, the great advance of the present day over the past
being in the speeds and the weights hauled. The consumption of fuel per mile is nearly the same now that it was in 1840, but the loads and velocities are very much greater. The superior economy of the
modern locomotive is to be sought more in a small expenditure for repairs, perhaps, than in anything else but it is evident that the heavy trains of the present day could not be hauled with from 25 lb . to 35 lb . of coal
per mile if the engine itself were not better than its predecessor. The modern locomotive is more economical n this way than its ancestors, because it uses steam of a higher pressure more expansively. In 1845 expansion
was hardly used at all, and pressures of about 75 lb . were then commonly adopted. Again, great improvements have been ellected in burning coal and in the means clear that finality has been reached in any department of locomotive construction as yet.

An American contemporary supplied last week some figures apparently trustworthy, which enable us to compare the working cost of a modern American locomotiv refers to the Pauhandle Railes in 1845. The statement refers to the Paunande Railway, on which are employed
101 engines, and it is claimed that the last monthly sheet shows the most economical outlay on engines to be found. We give the figures in the words of the Pittshurgh T'elegraph. "During the month of June the combined distance traversed by the engines was 263,919 miles. During
the same period, the total mileage of cars of all kind was $4,052,586$. In order to accomplish this, the large sum of $47,111.52$ dols. was spent for the motive power, which includes the repairs to engines, fuel, stores, engineers, and firemen. With all of the latter causes of expense taken into consideration, it is shown that the average cost of running each passenger engine on the road was only ballast engines 3c. less. The average cost of running switching engines was about 912.c. per mile. The above
figures are estimated on an average mileage of 2613 for figures are estimated on an average mileage of 2613 for each engine per month. In a recapitulation the report
shows that the average cost of running each engine on the road, counting mortive cost of running each engine on the above statements, to have been 17.85 c , made up as follows -Cost per mile run for repairs, $5 \cdot 28$ c.; cost per mile run
for fuel, $2 \cdot 92 \mathrm{c}$.; cost per mile run for stores, 35 c .; cost per mile run for engineers and firemen, 5.55 c .; ; cost per mile run for cleaners, 41 lc .; cost per mile run for all other motive power accounts, 334 c . In the above the cost of coal is estimated at 82 c . per ton, and wood at 2.50 dols. per
cord. The average number of miles run to one ton of coal was by passenger engines, $45^{\circ} 12$; by freight engines, $24^{\circ} 85$." These figures give an average of 31,356 miles per engine 116 cars only. The total mileage of vehicles being very small compared to that of engines, it would be interestin to know how the mileage of the later was reckoned The cost of repairs a motives on the Liverpool and Manchester Railway in 1842 when it reached but 71668 d . per mile. The cost of fuel is low, $1 \cdot 46 \mathrm{~d}$. per mile, as against $2 \frac{1}{\mathrm{t}} \mathrm{d}$. nearly, on the Liverpool and Manchester Railway, but then the American engines get coal for 5s. 2d. a ton, a price at which coke was never supplied to a railway to our knowledge. The
passenger engines burned 443 lb . of coal per mile, while the goods engines actually contrived to get rid of no less than $80^{\circ} 4 \mathrm{lb}$. per mile. From this it appears that the engines on the Panhandle Railway burn about 75 per cent. more coal per mile than English engines doing we have given which will interest our readers. The return is, however, incomplete, in that it gives no idea of the tonnage moved. If we take the very high figure of 222 tons 350 to 450 tons gross, without the engine, and the passenger trains on most of our main lines will average over 120 tons. As for our speeds they are, especially for goods trains, far higher than are ever met with on Panhandle line are to be taken as representative, American locomotive engine builders have little to boast of. The excellence of their engines appears to consist in beating in all those thinus which English engineers like to keep as small as possible.
railway projects next session
There are some indications that next session of Parliament will be a busy one in railway matters. Already there are One of the lat of projected raiways and of amalgamation. for the leasing by the Midland and Great Northern Railway Companies of the docks, canals, and railways of the Mandisposed of by the official denial, but numbers of projects are still spoken of as more or less probable in various parts of the kingdom. It is said that there will be a struggle between some of the great companies, and that the extraordinary growth of the revenue of the mineral railways is likely to bring about attempts to enter some of these districts, by com-
panies which, by those "in possession" will be considered panies which, by those in possession" will be considered
intruders. It is as yet too soon to speculate as to the truth intruders. It is as yet too soon to speculate as to the truth or otherwise of hese rumours; buat ere are some considera-
tions that may be well urged. Last year Parliamentary contests were generally discountenanced, and were very few. But despite this fact they were very large. The North-Eastern Railway charged to revenue in the last six months not less charged over or parliamentary and law charges; the Midland London and North.W ; the Great Northern, $£ 8000$; and the in six months must be considered in considerable degree waste of money, so far as the shareholders are concerned; and the latter might fairly consider how they shall take steps to prevent the recurrence of such expenditure. Still,
it must be confessed that generally the cause for the attempt of one company to enter the "district" of another renders found in the fact that the occupying company towns, for instance, between the Tees and the Tyne are urging district. Whether or not it is likely to do so, we need not stop to inquire-it is sufficient to say that if the wants of the district were met by the company which has of that part a
monopoly there would be no such urging. The wisest course, and that most likely to keep down the unsatisfactory parliaa wise liberality in meeting the wants alike of the Legislature and the districts they are supposed to serve, and thus increasing gradually their revenue, preparing for the time when Parliament will make more stringent traffic regulations, and which are ever and again urged to go forward and "possess the land."
the north of england's puture.
The industrial district extending from the Tyne to the Tees, which is known by the name, "The North of England," has various times, and the predictions as to its future position have been tinged by the hues of pessimist and optimist opimion alternately. The rapid development of a district is a lad who atenced whards reaction. shick which a more advanced district would bear quietly and without apparent harm, causes a serious degree of ruin and alarm to it. The iron and coal industries in the north have made such都 hung over them for a lengthened period was felt as a national calamity. Then, when from the depths of commercial woe of apprict arose upon a suddenly revived trade to the heigh dream which flies with the morning light. Eighteen month ago it was declared that nothing but an application of cheap Cleveland district from utter collapse. Twelve monthe the when orders for pig ion litenly pored over from Americh the raw material was in great favour, and attention wa diverted once more from steel to iron. We are glad to observe that lately the intoxication of reaction has worn away, and without any spur upon them in the shape of the wolf at the door the attention of those engaged in the iron trade has been
directed to the future of the district, and efforts are being made to provide for that future. A faint resemblance of the growls against the North-Eastern Railway Company which used observable. There is actually the halcyon days of ' 73 is now Midland Railway Company into the domains of the great monopoly. But while perhaps there are grounds for complaint high che North-Eassern Railway Company on the score of been harges, it must be admitted that that company has for the future greatness of the iron and coal industries. The t docks recently opened at West Hartlepool prove fut the North-Eastern Railway Company believes in a great Limited, who might have rested satisfied with their enormous profits, have been actively working and spending a large amount of capital upon developing their manufacturing tion, to rank as a steel-producing district. In every way, either by improved machinery for the production of manufacture refuse bas bel, or by bition of a laudebo to the there is an exhi what it never before has been-stable. In the coal trade there is more providence amongst working men, and more been de indications of possible ten years ago. Taking these things as
inater of the future, it is now more than probable that, notwithstanding the commercial reverses which may come, the ruinous failures of firms which have
and disgraced the past few years will not be repeated

LITERATURE

The War Ships and Navies of the World. Containing a com plete and concise description of the construction, motive power,
and armaments of the modern war ships of all the navies of and armaments of hre modern war ships of all the navies of
the worrd, nuval artillery, marine engines, boilers, torpedoes,
and torpedo boats. By Chief Engineer J. W. Kino, United States Navy, late Chief of the Bureaur of Steam Engineering.
A. Williams and Co., Boston, U.S.A. E. and F. N. Spon, London. 1880 .
In 1877 the world was not a little astonished by the publication at Washington of a report by Mr. King on European ships of war and their armament, prepared for to be had nowhment. This report contained information first time obtained information about British ships of
war which they had before sought in vain, and the information was not confined to British ships; it was accurate and complete, in
It so happens that naval construction is constantly assuming new phases; noval ships are being added year by year to the strength of nations, Whe King marches with oso tima already virtually the times, and his report has already virtually gone large extent yet another edition ; but whereas the first leport contained but 273 pages, the present volume contains no fewer than 613. We have already fully reviewed Mr. King's book, and we have often quoted reviewed Mr. Kings book, and we have often quoted King has already published and more A large part of ts contents is pure compilation. This journal, for instance, is largely drawn upon. We may cite as an example the celebrated Meppen trials. The drawings which we gave of the targets have been reproduced by Mr . King, who duly acknowledges the source from whence they are derived.
illustrations, whichesting feature in the work are ther ing their size. There are no fewer than sixty-six full page engravings, however, and some of them, as for are very effective. For the rest it will perhaps be enough to say that the promise contained in the lengthy title, which we have quoted above is kept ; and that the book is a species of "Inquire within for everything" connected King's chapter on the United States navy is so interesting that we may have something more to say on the
subject. He has brought down information concerning all the navies in the world to a very recent date, and the book stands at present quite without a rival. The publishers have done the author justice, type and paper
being alike good. If we have any objection to urge against the volume it is that it is rather too ponderous in its dimensions.

Resultate aus der Theorie des Bruckenbaus. By R. Kohrn, Inge-
nieur und ausserordentlicher Lehrer am Konigl. Polytechnicum zu Aachen.
This work, as its title implies, does not bring forward any new methods for dealing with the stresses in bridges, but is intended mainly to illustrate by practical examples
the application of theory to practice. The author in this the application of theory to practice. The author in this volume limits himself to girder bridges, proposing in a
future treatise to investigate arched bridges and bridges of combined forms. The work is, however, by no means of combined forms. The work is, however, by no means ciples on which the methods of procedure are based are rationally explained. The worked numerical
In his preface the writer appears to favour analytical in preference to graphic methods, stating that the former canmediate application by the "less theoretically trained engineer." Scattered through the work, however, numerous graphic processes will be found, and whenever the ous graphic processes will be found, and whenever the
latter afford unquestionable advantages, preference has been very properly given to them. It is possible, indeed, that the writer assumes a greater familiarity with the employment of the familiar polygon than is at present
universal in this country. Graphic processes have, perhaps, the disadvantage that they are less easy to work after the mind has grown unaccustomed to them; and this, perhaps, has told against their more general adoption. The work begins with an introduction dealing with the general ideas of the elasticity and resistance of materials,
and defining the nature and limits of the class of problems under consideration. The exterior forces acting upon beams are then discussed in two sections-the first dealing with beams on two supports, the second with continuous beams. The latter part of the subject is more
fully treated than is usual in English works. Interior fully treated than is usual in English works. Interior
stresses, and the determination of the requisite form of stresses, and the determination of the requisite form of
section to resist them, are dealt with in the case of beams of uniform and of variable section, followed by girders with parallel booms and single triangulation, and trellis girders. The stresses in girders with polygonal booms of
general form, on two supports, under various conditions of loading, are next investigated. In the above subject matter a large number of formulæ are introduced which are subsequently turned to account

The general questions having been thus disposed of thirteen important numerical examples are given, five of which relate to continuous girders. The travelling load
is treated both as an equivalent uniformly distributed is treated both as an equivalent uniformly distributed formula being adopted for the safe load. The thirteen formula being adopted for the safe load. The thirteen examples are well
The work is throughout remarkably straightforward and systematic, and it will be found very easy to follow rather small scale plates, though giving the figures at a very cummon complaint against works of this class that one cannot find what one wants in them, and that, even if they contain the information required, it is not presentedin a form which will not be brought against Herr Krohn's book, and the latter cannot fail to recommend itself to practical men. There is, perhaps, no English work of similar scope, but the small knowledge is fortunately value of a work of this kind will be little lessened by the language in which itis given to us.

The Council of Ministers at St. Petersburg have assented to the construction of
Siberian Railway.

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.
THE third quarter of 1880 , which has juat closed, has been an mprovement upon that which preceded it. The pigiron had got
have found a little better demand. Stocks at the furnaces down to less serious proportions, and this encouraged proprietoro
o blow in furnaces that a quarter ago were idle. Makers of part-mine and cind
bigh-class sorts. ny improvement. Large quantities of pigs have been sold made produced in Barrow and other Lancashire towns, in Cumberland and in South Wales, have found a market to only a limited
extent, the prices being mostly prohibitive

 Medium and common qualities of finished iron have been ur
quite active demand during the quarter for home and export.

 been the market price, but numerous sales have been effected at
as low as $£ 7$ This branch has assumed additional prominence
by the assocition lately formed to keep up the price of the gauges known as aubse
and small rounds have stood next in orders of demaps. And A Arreat
nany but not a commensurate number of orders. Common bars have been plentiful at $£ 6$ to $£ 65$ s.
"Marked "iron has been very slack of sale, and two or thre of the leading works have had hardly anything to do. This led
Messrs. Philip Williams and Sons, and Messrs. William Milling.
 round, leaving bars at $£ 7$ 10s. The little additional business that
resulted was not, however, deemed sufficient to warrant other houses in pursuing a similar course at that time. Now, however,
this quatation has become general throughout the marked iron bainach of the industry. The ditermination of the other "list ",
houses to drop their prices 10s. per ton-which was come to during 'Charge hours in Birmingham upon Thursiay last week,
and which I announced at the time-has been followed by the issuing of circulars establishing the drop.

best, $£ 18$; rivet iron, single best, 410 10s.; double, $£ 12$; and
treble, £14; angle iron, trrips, and hoops of the ordinary sizes

 to quality.
Messrs. B. B.H., $£ 710$. $;$ best, $£ 9 ;$ and best best, $£ 10 ;$ best chain bars
an $£ 9$; best best chain bars, $c 10$; and best charcoal bars, $£ 16 ;$ Plate
bars become from $£ 8$ to $£ 910 \mathrm{~s}$; and rivet iron, $£ 910 \mathrm{~s}$; ; B. B.H.
 £8 5 w. to, El 910 s .
The altered prices of Messrs, E. T. Wright and Son, of the
Monmoor Ironworks. Wolverhampton, are:-Monmoor best boiler plates, $£ 9 ;$ Monmoor sheets, $£ 8$ 10s; Monmoor Crown
bars, $£ 7$ 5s, ;and Monmoor hoops, $£ 7$ 15s. The "Wright" qualities are 10s. lower as usual.
The Patent Shaft and Axletre
bury, inform me that instead of giving open market quotations bury, inform me that instead of giving open market quotations
at the present time they prefer to quote pon definite specifica-
tions. Moreover, they state that the recent reduction was anticitions. Moreover, they state that the recent reduction was antici-
pated by them some time back. Declared prices have now touched the low point which they
reached two years ago. It was in September, 1878 , that by reached two years ago. It was in September, 1878 , that by a
reduction of ect per ton, bars last became $\& 7$. 10. , and they
remained at that tgure for twelve months. Since that date there remained at that ngure or twelve months. Since that date there
has been an advance of 11 10s. per ton. In November, 1879 , a 10s. rise was declared, and at the end of the year an additional et was put on. Mowaras the close of May this year the 2os. was,
however, taken off anan, and by the present declaration the other
10. has been sacrificed. At the quarterly meeting yesterday-Wednesday-in Wolver-
hampton, the above prices ruled the transactions in high-class解别 the quotations for all other kinds but shenetrand and gas strin. The combination among the sheet
makers kept medium singles at $£ 7$ 10s.; doubles at $£ 9$;and latens at $£ 10$ 10s., High-class singles sold in small lots for prompt deiivery at £8, and some doubles at $£ 9$ los, Gas strip was also
strengthened by makers action, a meeting bein held in the
afternoon with the object of hringing back certain firms to the afterroon with the object of bringing back certain firms to the
observance of the old rule affecting the sizes which for many years have been regarded as extras.
Common bars were abundan
£5 12s. 6d. "Severn" sheets, singles $£ 6$ down to $£ 515$ s. and
 tendency towards chan
the marked bar firms.
I.ikewise
Likewise at yesterday's meeting the Lilleshall Iron Company, which has now six furnaces in blast producing, half of them hot
and the other half cold blast iron, announced its and the other half coll biant iron, announced its quotations at
$£ 35 \mathrm{~s}$. for the former, and $£ 45$ s. for the latter quality. This is a drop in quotations of 5s, per tor. A similiar quotation drop
was announced by the proprietor of the Spring Vale furnaces, who was announced by the proprietor of the Spring Vale furnaces, who
asked $£ 2$ for his common, $£ 2$. 10 s for his in hydrate quality. Moos a from $£ 35 \mathrm{~s}$, to $£ 37 \mathrm{~s}$ s. 6 d . Hematite was mostly purchasable at $£ 3$ 10s. This was the quotation of the
Tredegar Company, and buyersregarded the quotation as "easy." Cinder pigs were plentiful at from $£ 2$ down to in a few instances
even 1117 c 17. 6 d . and $£ 1$ 16s.3d. Northampton pigs were quoted been bought for slightly less money. general price was 6 s. Gd. per ton for forge qualities at the pits, and with about 23 cwt. to the ton in boat loads.
In Birmingham to-day-Thursday-there
In Birmingham to-day-Thursday-there was an overfowing actual business. There was a tendency to ease in the sale price satisfy consumers. Sheets were to be had for galvanising and
for working up at, in a few cases, from 5 s . to 10 s . under the association prices, but galvanisers held off.
Alike in Wolverhaten strengthened by the expectation of the firms th the market wa be a considerable business once more doing on account of the United States. The purchase recently for that market of the
15,000 tons of steel rails announced in the Sheffeld correspondence of The Enariser was not without its beneficial effect; and there was one broker on 'Change to-day who spoke of much
heavier quantities of steel and iron being about to he required
by Transatlantic consumera.

The galvanisers yesterday reported the receipt that morning of much better orders for roong sheets than by any one post for
some time past. The orders were mostly upon Australian some time past. The orders were mostiy ppon Australian
account. Some brands were quoted $\ell 1510 \mathrm{~s}$, per ton for 24 w .g. packed in cases, delivered in London, and £17 10 s. for 26 w.g.
In Woverhampton, which is an inportant centre of the
incycle trade, machinery upon what the inventor claims is an entirely newp, principle, is being employed in the manufacture of
teel rims for velocipedes. Any sized rim can be made, and with four rimes the rapidity possible by the methods mostly in vogue The requisite length of grooved steel is first scarfed down at each end upon an emery wheel, and it is then taken to a bending and
"trueing" machine. This consists of an action table, provided with five rolls, which is attached to a stationary surface plate of
arge dimensions. The strip assumes a circular shape when it has
 it is again brought under the action of the rolls tor the circle to
be ""trued" and the joint tested. Under most processes the "trueing, "has tobe done by hand, whereas, ex cept in the rivetting,
the use of the hammer upon the, rim iz, nder the new enethod,
altogether avoided. Machinery is also being adopted in the seme town with much success in the production of every description of
brass, and brass and wood combined, coal vase furniture. Thus fur casture in particular, which is of an intricate design sis in price. Cut nails, which during heclared lower by 10s. per ton. Cut clasp nails from lin. apwards
hee
 anchors, are se contrary, fairly well maintain, for the present, the
tubes,
laet teclared At a meeting of the Staffordshire Potteries Board of Arbitration on Monday, a resolution was passed of erfect that the
Board having fully considered the euestion of workman's prices with a view to a settlement, and being unable to arrive therent, Sir Henry Hunt, C.B., has issued his award fixing the price to be paid by the Tipton and Oldbury Local Boards for their
respective portions of the gas undertaking of the Corporation of
Birmin
 was $£ 70,750$.
At a meeting of the Tame and Rea District Drainage Board,
on Tuesday, in Birmingham, it was decided to lease 123 acres of land at Tyburn as an addition to their present sewage farm for
period of 99 years, at a rent of $£ 3$ an acre for the first seven years and $£ 4$ an acre for the remainder of the term.
In accordance with the instructions of the Sanitary Authority
of the Tamworth Union, the Sanitary Inspector and the Medical Officer have made a joint report on the condition by sewage and chenical matter, causing it to be a serion nuisance to the district, highly dangerous to heal.i, and
to the adjacent land throughout the whole of its course.

NOTES FROM LANCASHIRE.

Durisg the past week there has again been very little doing in be felt here more keenly than, in the other centres of iron indastry.
Of course this district is largely dependent upon the cotton trad. and this branch of industry has not yet shown sufficient recover to encourage any very large new devolopment of the means of
production. The consequence is that there is very little local
work coming into the hands of machinits many of them have been kept tolerably busy with foreign orderx,
and for their present consumption the chief users of iron are generally well covered by the tolerably large purchases which were
made several months back. The bulk of the consumera are there made several months back.
fore, in no immediate want of ion, and even those who into the market only buy from hand to mouth, the weakness show in prices inducing them to hold back until the last moment, with the view of purchasing what little iron they do want at the lowe possible figure. But amidst the general depression which prevain
throughout the district there is still a certain feeling of hopefulabout entering into ho future; and amongst speculators the opinion is gaining ground that
prices are not likely to recede much further is evidenced by the prices are not likely to recede much further is evidenced by the
fact that just now there is a considerable business doing here in

warrants

There was a disinclination to do any business pending the result of the quarterly meetings this week, , and I could hear of very few
orders being given out. The firmer tone reported fro orders being given out. The firmer tone reported from Middles-
brough had very little effect, as north country iron is for the present almost completely out of this market on the face of
the much lower price at which other outside brands can be bought Lancashire makers of pigich inon, at athough hathey yare ctill be delivering
a good deal of iron on account of old contracts, report very a good deal of iron on account of old contracts, report very fow
new orders coming in. For delivery into the Manchester district their quotations nominally remain at 47s. 6d. for No. 3 are not firm holders at these figures, and for early deilivery they
would no doubt be open to ffers at less mone would no doubt be open to offers at less money.
Of the outside brands coming into this dis

and Derbyshire brands continue to be offered at at extrecolnshire

 figures. Some makers are holding for 48s. less 24 for No. 3 chester, but I I have heard of offerse del as as low equal as 4 s , per ton.Middlesbrough iron is nominally quoted at about 47 s s. 4 d . to 47s. 10d. per ton for g.m..b.'s delivered equal to Manchester.
In the finished iron trade there is a tendency towards less firmness. The reductions in the Staffordshire list rates, although they ness previously been pretty fully discounted, naturally having a
had
weakening effect upon the market here. The quoted prices are not materially altered from last week, but manufacturers who
are findin are finding very little new work coming into their hands are as a
rule open to both orders for prompt specification at nndercurrent
rates. For bars delivered into the Manchester district the average quoted prices are about $£ 6$ to $£ 6$ an. 6 d . per ton.
In the coal trade there is a rather stronger to fire classes of fuel are concerned. For these there is now generally a tolerably fair demand, and some of the pits have been put
in to full time. In a few cases advanced lists are being sent out, but there is not yet any general action amongst coal owners,
most of whom are still working short time, and in many cases most of whom are still working short time, and in many cases
have heavy stocks on hand. The quotations under list rates made during the summer are, however, general
being withdrawn, and there is not much disposition to making and general manufacturing purposes are still without change, works in this district are not taking any larger
quantities, and as supplies continue abundant, low prices have still to be taken. Engine fuel continues steady, the increased upon prices. The average quotations at the pit mouth are about as under : Best coal, 8s. to 8 s .6 d ; ; seconds, 6s. 6 d . to 7 s.
common coal, 4 s .9 d . to 5 s .6 d ; burgy, 3 s . 9 d . to 4 s . 3 d .; and good slack, 3s. to 3s. . d . per to
In shipping a moderately fair prices taken are still very low, steam coal delivered at either and house coal from 7s. per ton upwards according to quality,

The demand for hematite pig iron is not sustained, and the
past week or two has shown evidence of weakness not experinsed or a considerable period ofidence of of weakness not this is only regarded
ons a lull in the demand which, after the guarterly meeting
ond as a lull in the demand which, after the quarterly meetings, and
atter so much attention ceases to the directed to the shipping
orders, will receive new life. The orders in hand are still very considerable, and the works are very actively employed. Out of considerabie, and the works are very actively employed. Out of
eighty-forr furnaces sixty-three are in blast, and two or three of
those standing idle are old charcual furnaces which have done nothing for years, There is a very large delivery of both iron
and steel, and this is likely to continue, as the orders in hand expected to furnish employment for a a considerable part of the
winter. From all quarters there in known that with the very active future in store for the steel
rade there must be a nadre there must be a good market for both Bessemer and ordi-
nary qualies of hematite pig iron. Prices are easier and are now quoted at 65s. for Bessemer and 60s. for forge iron, but
several sales are noted for Bessemer below this figure. The
iron ore trade is very steadily employed. Shipbuilders and finished iron workersary are busily employed.
There are evidences of an extension in the coking industry in West Cumberland.
The stern post of the steamer City of Rome, weighing 34
tons, has arrived at Barrow from the Mersey Iron and Steel
Works, Liverpool. It is said to be the Margest or this purpose.

 United Kingdom, Barrow stands third in respect to the ton-
nage of metal exports, Middlesbrough being first and Liver-
pool the second.

THE NORTH OF ENGLAND.

(From our own Correspondent.)

WE are evidently in the period of fluctuations. For several
weeks I have had to record alternately good and bad trade. Last week the outlook was gloomy. This week it is much
brighter. The inquiry for pig iron has been brisk, and prices
have consequently had an upward tendency. Makers are now have consequently has an upward tendency. Makers are now
holding back in the hope of securing better prices. N. 3 is very
firm at 39 s . No. 4 forge at 38 ., and the other qualities in pro. firm at port The Amergean demand shows other qualities in pro-
peviving, and shipments to continental countries of again
rontinue large.
It m
it
merif a period of undreangt of prosperitiy yast iseary, whentrasting with district
arose from tits ashes on the springing up of the American demand.
The frct is that The fact is that although trade is very quiet now as compared
with the corresponding period of last year, it is very with tere corresponding period of last year, it is is very much
brighter than the most sanguine expectations could have believed. of $£ 13,740$ on the corresponding veek of last year, and $£ 1825$ on
the ocrresponding week of 1878. The large anount of $£ 8694$ is attributable to minerals. For the fifteen weeks which have now
expired of the corrent half year the total traffic returns have $\begin{aligned} & \text { expired } \\ & \text { amounted to } £ 1,880,833 \text {, as compared with } ~ \\ & 1\end{aligned}, 668,870$ in 1879 , and \&i, $, 847,774$ in 1878 . Te manafactured iron trade is much improved. Large orders for plates have been given out owing to the briskness of the ship-
building trade to which 1 referred Iast week. Prices are stiffer, and manufacturers are more sanguine of a good winter's work.
Indeed, plate-makers especially are almost safe from the orders they have recently received.
Messrs. Bolckow, Vaughan machinery, and will very shortly be abje to to turn out outhy thel rails new a gigantic scale. The Preeident of the Board of Trade, on his
visit to this district last week, was shown over the splendid works of this company at Eston.
There is noering manifestation of great enterprise in the shape of new undertakings apparent in the district.

THE SHEFFIELD DISTRICT.

I hear that next week several of the colliery companies intend to raise the prics of coal by 1s. per ton. Coalowners are at
present supplyin. Silkstone house coal as follows :-Hand-
picked branchi, 1ss. per ton ; best conards," 10 s. 6 d .: best
 mand something liks his own terms. There is every probability that the miners will again have
recourse to the demand for the eight hours' system of working.
At a conference held the other day at Barnsley, from which the At a conferenec held the other day at Barnsley, rom- $\begin{gathered}\text { representatives of the } \\ \text { more correctl }\end{gathered}$ the press were excluded, the men-or to peak restriction. Mr. Macdonald's panacea for the languor in the coal
trade was the trade was that the miners should not work so hard. His
dootrine of idleness was at first scouted by the men, but the delegates appear to be veering round to his way of 'thinking.
The coal trade continuese in a very disturbed state, and there are
many disputes still many disputes still unsettled.
Mr. Frith, the secretary of the South Yorkshire Miners' Asso-
ciation, has bee ciation, has been authorised to adopt a peculiar course in dealing
with the wages difftuolty. He has been instructed to forward a
circular letter to the circular letter to the coalowners of the district, requesting them to
increase the price of coal, so as to admit of a a dvance in wages
to the miners. It is all very well to increase the price, but will
隹 the euminers. It is all very well to increase the price, but will
the public continue to pay a higher price than the article can be supplied at
In the iro tions wisich trake phere is little change to report. The fluctua-
alter current price lists. In tom to day do not may or two quarters there is is aiter current price lists, In one or two quarters there is a good
deal of work doing in heavy orders, but generally these depart-
ments are not so busy as might be expected. In the lighter ments are not so busy as might
branches there is more briskness.
The wire mills are well employed. In addition to the order for
the Indian Government recently referred to, I hear of
good "ll Of late years wire has been abundentlies and towing purposes. firms in Sheffield are now engaged on large contracts for that

speciality. | speciality. |
| :--- |
| Several |
| | Several orders for rails, mainly for light weights, have been

placed बince my last. The priee of rails is maintained, and the
fall in the value of hematite and district pig must enable the maker to have a better profit. At the Atlas Works there is much briskness in the boiler and
ship-plate departments. Messrs. John Brown and Co. have a ship-plate departoents, Messrs. Jo, which secures them orders
special reputation for ship-plates, when
when firms elsewhere are almost idle. There is a slight improvement in the general steel trade, both
on home and foreign account. The demand for Bessemer slabs
for for America has not revived, but there is a continued improve-
ment in the call for manufactured goods, which is more satisfacment in the call for manufactured goods,
tory than the exportation of raw material.
by far the moseralt active, but the homeme markets are also better, in
view of the approach of the festive mate ably, not only on the hardware trade generally, but on silver
and electro-plated ted
and electro-plated gloods.
collie IVonteld Silkston Coal Company, Limited, offered their
cor sale
the coal rent was fixed as low as $£ 150$ an acre, with the small
minimum rent of $£ 1000$ a year. Great part of the coal was purchased by the Dronfield Company at $£ 300$ an acre, and the reduction of the price by one-haff was with the view of enabling the
purchaser to meet the possible event of continued depression in the coal trade. The output of the colliery has been 500 tons a day, Cammell, and Co., whose rail mills and steelworks adjoin the colliery. Still, with every possible inducement, not a abid conld
be procured for,thelproperty. In a few days, Sumerly Colliery - procured for, thetproperty. In a few days, Summerly Colliery

- Messs. James Rhodes and Son-wwill also be offered for sale.
Langley Mill Langley Mill Iron and Steel Works, in the parish of Heanor, Railway, are to be sold. The works are in the centre of the Derbyshire furnaces and collieries, and are said to be capable of an
output of 10,000 tons of merchant iron and about 750 tons of ingot steel per annum. The Midland Iron and Steel Works,
lately known as the Cardigan Works, in Saville-street East,解 offered by private treaty. 1 understan Building Society, to whom they are mortgaged, being compelled

NOTES FROM SCOTLAND.

The tone of the iron market has this week on the whole been steadier, with a very slight tendency to better prices. Although
the shipments last week were not quite so good, the warrant market has from various causes been firmer, prininipally owing to naces have been put in blast, there being now 104 in all blowing as compared with eight-five at the same date last year. Rather these imports on the year to date of not less than 14,105 tons. The poorer quailities of Scotch iron are in request for manuac
turing purposes in preference to the Middlesbrough pigs. There are now 474,953 tons of pig iron in Messrs. Connal and Co.'s
stores, or 1197 more than in the preceding week. From the stores, or 1197 more than in the preceding week. From the
United States the inquiry in flat, and lower rates are asked for all consignments; but it will pay makers at present to continue
increasing their stocks at the small current expense of produc tion, even although the demand should in the meantime not be very extensive.
In the warrant market on Friday prices fluctuated between 50s. 6 d . and 50 s . per ton. On Monday the price advanced from
50 s . 3d. to 50 s . 7 td ., but subsequently went back to the forme 5igure. The market was steady on Tuesday forenoon, with busi-
figure
 to 50s. 9d. one month, and 50s. 5 dd . to 50 s , 8d. cash. On Wednes.
day market fluctuated between 51s. and 50 s . 6 d . cash; there was steady market with a 5 good business to-day-Thursday-at
50 s . 6 d . fourteen days to 50 s . 8d. cash, and 50 s . 102 z d. one month The quotations of makers' iron show an upward tencency.
G.M.B. No. 1 is quoted 1s. bigher ; No. 3, 6d.; Gartsherrie, 2s. higher for No. 1; and the other special brands are from 6d. to The malleable iron trade continues in a satisfactory sta
far as the demands of home consumers are concerned, but there is room for improvement in the foreign department of the trade. Prices of all sorts of maileabie iron are practically unalered. Licluded $£ 18,283$ worth of ron manufactures from the Clyde
despatched to \& 1380 to Mauritius ; $£ 34,300$ worth Calcutta, $£ 3800$ to China, and $\notin 19,000$ went to Calcutta, $£ 3750$ to Madras $£ 1650$ to Mauritius,

 The coal trade in the west of Scotland is quiet, with the
demand for household sorts gradually improving. Some of the as a rule the rates are without alteration. The foreign shipments are moderate in extent. In the eastern mining counties the trade appears to be quieter, and a scarcity of shipping is reported at
the Fife ports. A good steady trade, nevertheless, seems to be done. ${ }^{\text {A meeting of the miners of the Glasgow district was held a few }}$ days ago in the neighbourhood of Rutherglen - Mr. John Steel
presiding-when it was reported that the Wellshot men were working on a sliding scale, based upon the selling price of coals
per wagon. When coals were 63. per wagon at the pit headd
the men were paid 3s,. and they received 6d advance up to 12 . Their present wage was 3s. 6 d . per day.
set of rules drawn up by Mr. Daniel Brown, writer, Glasgo was adopted, and it was resolved to orm the district into separate union, the objects of which were said to be the proter
tion of the miners from intimidation on the part of the employers and managers; securing the regulation of wages by arbitration; looking after correct weighing on pit heads; giving compensation of law cases altecting the meth.
Although the experimental trials of the Czar's yacht Livadia
bave been conducted privately on the Clyde, it has transpired that they have been most successful. Her three engines have a
horse-power of between 11,000 and 12,000 , and they have been found to propel her at a speed of about 18 s statute miles an hour,
whicis sis said to be two koots over the sped guaranteed by the
bwilders, Messrs. Filder and Co. She has been fitted with Sir William, Thomson's compasses, and all the apartments lighted
with the electric light. with the electric light.

WALES AND ADJOINING COUNTIES

The output of best coals continues excessive, and the competition in pushing business at the various ports is as keen as ever I
have known it. Cases have been instanced to me of late where prices have been ruled at the very lowest market quotations, and
then, as an additional temptation, a discount offered of 5 per cent., or an equivalent to 6 d . per ton. Viewed broadly the coal
trade is well sustained, and export coastwise, and railway busince,
Since sent from Cardiff foreign has been $3,707,670$ tons ; from Newort Mon., during the same period, 763,554 tons; and from Swansea,
618,336 tons. The quantity of coke from all Wales exported 618,3in tons. The quantity of coke from all Wales exported
during the same period has been slightly under 28,000 tons, and
of patent fuel 224000 tons of patent fuel
of the ereat specialities at Swansea, and in this article that place takes high precedence over the other ports. During this year
the quantity sent from Swansea amounted to over 137,000 tons, while from Cardiff, in round numbers, only 85,000 tons were sent,
and from Newport 4645 tons. Most of the Swansea busines and fom done in this article by the Atlantic Patent Fuel Company and Messrs. Cory and Co. The total exports of coal during the
week from all Wales was a little over 125,000 tons, of which Cardiff sent 97,000 tons, being an increase, as compared with the Week before, of 3000 tons. Newport showed a falling off to some
extent; Swansea an increase, in comparison with the two weeks of 5000 tons. I note that the Garth Anchor and Chain Works, Taff Well, near
Cardiff, are at last going to the hammer. They will be offered for
sale this month. If pries had not been so stiff, they might have sale this month. If prices had not been so stiff, they might have
been floated during the last American spurt, and the same thing applies to Gadlys,, Aberdare. I expect that if we get another
apmerican "boom," holders will show more sagacity. There are
hopes of another, I hear; whispers are abroad amongst iron-
masters that tenders on American account are coming into the market for 250,000 tons of steel rails.
Americans continue buyers, and Dowlais Works enjoy a fair
share. In the Swansea district iron rails have been sold for E_{5} f.o.b. During the year the shipments of iron and steel from all port, 143,940 tons ; and from Swansea, 13,496 tons. During the past week the total has only reached 4462 tons. Mills, Cwmavon.
There will be a start soon of the Western The new furnace at the Treforest Iron and Steel Works, to week. It is of the pattern known as the Middlesbrough kind, is
wot A strike is "on" at Brynaman amongst the puddlers. The managers wish to pay on the finished bar, and that the men
should watch their own iron. This is objected to, and the strike There was a meeting at S w confer on a grievance claimed to be suff weed of tin-plate workers to of sheets allowed by them to their employers as waste. Mr. Wm. Lewis occupied the chair, and deposed to a most varied arrangement ilates are weighed by the hundredweight. At Lydbrook, in
the plater the Forest, it was stated that the number of sheets detained from the men amounted to 3000 in the course of the year. The opinion
at the close of the meeting seemed to be that two sheets each box would about meet the case
Prices of tin-plate still rule slow. During the last month the
quantity of Middlesbrough pig sent into Wales amounted to 6416 tons, and of finished iron 84 tons only.
A railway is projected from Bridgen
movement going on to ""ap," sa it is called, the Rhondda Valley from the western side.
The colliers of the Neath district have
ing the other districts in regard to the nine hours movement and the appoinoment of working men inspecto The chief buyers of Welsh iron ttis y yar have been America
and India, South America and Bombay taking the largest shipmuling. These be seen by the price list that lower quotations are quantity stitl lower figures might be accepted. I hear of ordinary
iron rails sold for under $£ 5$.

South IVevsingoron Musgus.-Visitors during the week ending Oct. 9 th, $1880:-$ On Monday, Tuesday, and Saturday, free

 from 10 a.m. to 10 p.m., Museum, Thursday and Friday admisio Muscua, 1751, mercantile marine, building materials, and o.ther collection, ,419. Total, 13,735 . Average of corresponding weekin former years, 18,576. Total from the opening of the Museum, 19,399,29
Naval Engineer Appointiments. - The following appoint
ments have been made at the Admiralty ments have been made at the Admiralty :-William F. Coope
and Henry T. Liversedge, engineers, to the Superb, for temporary
service . Richard S Wile J. Warren engineer, to the Whitinger, to the Mallard; John neer, to the Zeerhyr; Henry Gallery, assisgant-engeverer, engi-
to
the Superb, and Herry Attwool, assistanteningineer to the Superb, and Henry Attwool, assistant-engineer, to the A sia
additional, for temporary service in the Mercury Lodge, chief engineer, to the Ine Incus, additional, for service, in the Little, engineer, Mor thay, engineer, to the Conkatrice; , Edward Ajax; and Richard Irwin, engineer, to the Duncan, additional,
for service in the Hydra.
The Invention of the Reaping Machine.- Since the pub lication of the particulars respecting the inventor of the reaping
machine in the Scoiety of Arts "Journal " (Vol. xxvi), Mr. G.
K. Thompson has continued his inguries on the . sends some further corroboration of the claims of John Common. Mr. Thompson writes as follows: "- "Sir,-Two years ago, you
kindly inserted in your 'Journal' some particulars respecting the invention of the reaping machine, and in support of the clain
of Mr. John Common to that honour. I have been since the making further inquiries on the subject, and I think the enclosed communication, which I have just received from a descendant of
the Mr. Thomas Brown, who made parts of the machine from Common's instructions, will strengthen that claim, and thus is the machine American, but wholly English. The dates given coincide with Common's statements in every way. (See
Journal' of Society of Arts, March 22nd, April 5th and 26th, 1878.) Perhaps you can find space in your Journal' 'or this
further light on the matter, and otlige yours faithally, . H .
Thompsov." The following is a cooy of the letter allude t above:-:" 74 , Brook-street, Toronto, March 1 Mth, 1880 .-My
dear Sir, -Your favour of Feb. 13th, and copy of Alnvick Journal are duly to hand. In reference to your inquiries regarding my
grandfather, the late Thomas Brown, and his family, grandfather, the
of Alnwick, I beg to say they emigrated to O Quebec, Canad
and and shortly after removed to tome town oi Sterling, Cayuga
County, State of New York, United States, where he
 respect to the invention of the reaping machine, all I know is
what my grandfather, the late Thomas Brown, and his time resided at Auburn, some 20 to 30 miles southt from Sterling, in the same county, having heard of my grandfather, came to
him and inquired about his reaping machine. He explained it
to to McCormick fully, and gave him a model of the machine (I
never heard patterns mentioned). This was never heard patterns mentioned. This was a few years (perthaps
five) before 1 came to see my grandather, in 1848 ; , therefore, never saw a pattern or model of the machine, and, consequently,
can give you no information regarding it; nor did I ever hear the name of a Mr. Common mentioned. Ihave in my possession a
scrap-book belonging to my late grandfather, containing a controversy, or series of letters, published in the Newcastle Clhronicle regarding the invention of turnip seed drill, and herein I enclose
you you a a copy of part of one of the letters, being the only mention
made of the reaping machine. During my residence with my grandrather and uncle Peter, I had several conversations in 'seed drills,' 'tobacco cutter,' ' turnip cutter,' ' tallow cutter,'
fruit 'fruit crusher,' \&c., also his reaping machine, but nothing
was ever elicited about the reaper but that McCormick, of Auburn, got the model, and soon commenced manufacturing
them. It is, therefore, beyond all doubt that McCormick got lis first idea of the reaping machine from my late grandfather,
Thomas Brown- Very truly yours, J. P. NichoL. Mr. G. H. Thompson, Alnwick." Extract from the Newcastle Chronicle,
August $8 \mathrm{th}, 1821:-$ Auve Mr. F. the lie direct in every statement. I never received castle Chronicle of October 19th, 1816, states that it was tried on Cctober 3rd, 1816, in a field of whent belonging to T. Dodds,
Esq., south side, and far exceeded the expectation of everyone who os it work, and bids fair to give satisfaction; it will cut
six or seven acres a day, and much more even and low than by
the the sickle, \&c. It was also tried before a number of gentlemen labouring people reproached me with taking the bread out of the mouths, and 1 was induced to desist from (making) the
machine, from the extreme opposition they showed to it.-

the patent journal.

\because Ht has come to our notice that some eppticants of the

Grants and Dates of Provisional Protection for Six Months.
${ }^{2546 .}$ Stean tratss or Drais Valves, W. Davis, Enfeld.

 - 10 ioh September, 1880 .
 W92. Dasask Looss, W. R. Lake, Southampton-
buildings, London.-A communication from J. L Dohmer, Crefold, Gormany,-10th September, 1880.
3694. Sprise MATTREsses,
London.-10th Septenber, 18so. Lazarus, Old-street,
 Ayr. - 11 Ek September, 1880.
3700. SABH FASTENER, W. Lea, Bloomsbury Foundry Wolverhampton--11th September, 1880.
S7o4. ScRew Properlens, C. Jones, Liverpool-11th

 London.-11th September, 1880 .
3714. BETNQ CRRERT, S. Simmons, St. Augustine-
road, Camden-square, London. - 11th Septenber, road, Camden-square, London. - 11 th Septenben
1880.
376. SEwino Machisss, T. Chadwick, T. Sugden, and
C. Shaw, oldham.- 13 Sh September, 1880. C. Shaw, Oldham.-13th September, 1880 .
1iverpool. 13ih September, 1880.
3720. Liviv MErERs, H. J. Haddan, Strand, West-
minster. - A communication from P. T. y Puig, Barcelons, Spain- 13 Sth Scptember, 1880 .
372. PIANororpys, R. Howson, Middlesbrough-13eh
September, 1880, 372. FURNACES, D. A. Horsnell, King's-road, Chelsea,
London. -13 , September, 1880. London. 13 St September, 1880 .
3728. GUNPowRR and CARTRDEs, G. V. Fosbery,
and Bouthampton-buildings, London.-A communication
from H. Studer, PariA-13th September, 18s0.
7730. GAs, A. Pope, Gotha Ironworks, Slough.-13th Spetember, 1800 . . . Henderson, Southampton-build-
 Dundee.- 1 14th September, 1880 . ${ }^{18}$. 3736. Rollisa MiLLs, G. W. von Nawroki, Lelpziger-
strasse, Berrin, Germany.-A communication from
J. Schmidt, Schwelm, Westphalia, Germany. -14th

 14th September, 1850 .
374. Brovcuss,
A.E., M. Webb, Junior Garrick Cle Club,
 garden, London. 15 th September, 1880.
Vallet, Liverpool.-15th September, 1880 . de., w. R.
3754. CoAnIvo Irov with ZINC or TIN, de. Lake, southampton-buidings, London,- A commu-
nication from . . B. Jones and H. W. Shepard,
Brooklyn, U.S. and R. Seaman, New York, U.S.-
15th Septenber, 1880, R. 3756. Rallways and Rolliva Stock, J. 1e Clair and
J. de Rees, Newport.-16ih September, 1880 . 3760. WheElsarrows, F. Wirth, Frankfort-on-the-
Maine Germany,
Pletsch, Landstuhi, Germany,

Inventions Protected for Six Months on the Deposit of Complete Speciflcations. 3066. Punvorontes, dc., F. Wolff, Copenhagen,-A com
munication from A. Hollig, Little Eerry, New Jersey.
 Laughlin, Boston, Massacher
1880 , 4034. Threadina or Screwing Bolt and Screw
BLanks. S. Pitt, Sutton-- communication from
S. L Worsiey, Bufalo Uis, -5

Patents on which the Stamp Duty of

 \&50 has been Paid.a708. Spinniso, ©c., Mauinery, M. Dunlop, Croft8762. Decorticatino, dc., Rice and other Grain, G.
H. Carbutt, Great Tower-street, London. - Dit October, 18777
3768. FABRICs,
11th October, 1877. 3720. Boors, SHoEs, de., H. C. Gros, South Hacknoy,
London.-6h October, 1877 . 8722. Prodvcing a TEMPORABY VAcuva in Conden-
sErs, do., of STRAM ENoinks, G. Rodger, Barrow-in-
FEurness Furness.- 8 th Octoier. 1877.
3742. DYEivo TexTLE FIREs, T. Holliday, Hudders-
field. $9 t h$ October, 1877 . field.- 9 th October, 1877,
3803. Working SrL-ACTing Grapple Bockgrs and
Forks, W. D. Prestman, Kingston-upon-Hull.-13th

 John's, South Norwood.-8th April, 1877 .
3712. SoBstruxs for Corver, J. L. de Montoison,
Manchester.- $6 i$ Och October 187. Manchester.-6ih October, 1877 ,
3736. SrEAM BowLes, H. Wedekind, Fenchurch-street,
London. -0 olh October, 1877.

Patents on which the Stamp Duty of $£ 100$ has been Paid.
3252. Cupola Furnaces, E. Voisin, South-street, Fins bury, London.- 7 th october, 1873 .
Mrlswold, Hop and
Malt ExTINo Machakr, H. J. Malt Exchange, Southwark-street, London. - 80
October, 1873 .
ant. Curtino SpLints, E. Pace, Warwick-road, Upper
 -10th October, 1873 . back of Canongate, Edinbury, and J. Ritchie,
Roseburn Works, Murray fisld, near Edinburgh.-
11th October, 1873.

Notices of Intention to Proceed with Patents.
2266. Ksives and Forks, W. E. Darwin, Sheffield.32rd. Tunc, 1880 Cotlery, T. McGrah and C. H. Wood,
 2277. Riso Spiningo, Doublivg, and Twistina
Frisms, T. Guest and T. Brookes, Manchester.-4t h June. 1880.
2281. STANDS for Decanters, Botrles, and JAR J.
Betjemann, Pentonville-road, London.-4th June,

 dilly, London.-sith June, 1880. 2298. STEEring Ships, dc., T. B. Heathorn, Knights230. Copyno PLANs, de., W. P. Thompson, High
Holborn, London.-A communication from A. Jol-
 Dick. -8th Jung 1880 . Lake, Southampton-buildings,
2315. VEHicLe, W. R. Lake Harbach.-8th June, 1880 . une. 1880. upon-Hull.- 0 het June, 1880. T. Hodge, Kingston
26in. Uubrelas, J. Forster, Vienna, - 11th 1880. Warkrproorino Lenther, Hides, \&c., W. W.
2377.
Lake, Southampton-buildings, London.-A comLake, southampton-buildings, London.-A com-
munication from Jallatschano aud C. Ballat-
schano. -11 . J June, isso. schamo. - -1 the ${ }^{\text {June, }}$, 18880.
2386. Metal Foundersi Blackino, J. S. Sawrey and
 Leeds. - $12 t h$ June, 1880 . Wise, Westminster.-A com-
247. BookninpINo, W. L. Wunication from Messrs. Martini and Co. -18th June,
mun 1890. S. J. Craven, Leon Planino Machines, J, Bind and

 Eccles. -22 nd Junc, 1880.
2595. INDAAROBER PRODUCTS, H. Gerner, New York. ${ }^{26360}$. 25 UM June, 1880 . 28th June, 1880,
2832. STAMP Cushons, G. W. von Nawrocki, Berlin.A communication from W. Haber.- $0 \ell h$ July, 1880 .
289. FUE PRoDUCr, W. ©orman, Glasgow. $-14 t h$
 and J. Hopkinson, Haddersfield. - $9 t h$ August, 1880. 3541. FAstrxin
$-18 t$ Siptember, 1880 . 354. Hopsessoz NaiLs, \&c., W. W. Clark and 3607. Gas ExoInEs, H. W. T. Jenner, Handsworth 4h September, 1880 .
3663. BoLLINo Egos, J. C. Mewburn, Fleet-street,
London. $-A$ communication from L M. . -9th September, 1880. September, Coasivo Inos with Ziva or Tin, W. R. Lake,
375. Couthampton-buildings, London.-Acommunication Southampton-buildings, London.-A communication
from J. B. Jones, H. W. Shepard, and R. Soaman.15th September, 1880.
3851. PLovous, . M. Justice, Southampton-buildings,
Indon, London.-A communication rom C. E. Sacket.
2230. Ro^d VEBIcLEs, \&c., L. Hardaker, Leeds.-7th ${ }^{23252}$. Discharoina Torpedozs, J. E. Atkinson, Green-wich.- 9 th June, 1880.
2332. FEEDNO ANIMALS, w. Griffiths, Shrewsbury.-
9th June, 3335. SLEURINo the Covers of Umarellas to their
Frames, H. Shaw and W. Spencor, Birminglaam.2336. Receptacles, H. Shaw and W. Spencer, Bir mingham. - 9 hh June, 1880 ,
2337. GASALERE, R. Phelps, Birmingham.-10th June,
1880. 2338. Condensing StEas Evgise and Boiler, J. G.
Wilson, Manchoster.-A communication from
\mathbf{H} Wilson, Manchoster. - A communication from H.
Hoffmeister and E. Friedrich.- $-9 t h$ June, 1880 . 2339. Howiva Tookrted LETERS, BLLLs, dic., T. T.
Birbeck and J. E. Miller, Sunderland.-9th June, 2345. Engine Governors, H. J. Haddan, Strand,
Westminstor.-A communication from E. Mas. $-9 t h$ Jone, is8s Generators, J. C. Mowburn, Fleet-street, London.-A communication from L. Dulac. - 10t,
June, 1880.
2352. METAL Heks, J. W. Jones, Holloway, and E. K.
Bridger, London,- - ith June, 1880 ,
 2367. Wire Heddles, H. E. Newton, Chancory-lane London.-A $\begin{aligned} & \text { June, } 1880 \text {. }\end{aligned}$ June, 1880.
2732. PAPE-
-11 th June, 1880 Machinery, J. Hird, Bishopston 2973. Corvino Letters, S. A. Cochrane, Dublin.-11 June, 1880 . 2385. Harvesting Machines, C. D. Abel, Southampton-
buildings London. 1 Lom communication from M.
Gorol. $-12 h$. June, 1880.
2410. Combsisa WooL, \&c., J. H. Johnson, Lincoln
inn-fields, London.- A. communication from A. Sken
and
 iun-fields, London.-A communication from A. Skene
and L. Devalleo.-14th June, 1880 .
416. Mainise Curosomerers, J. S. Matheson, Leith. - 15 Sth June, 1880.
245. Brake Levers, E. W. Lomm, Drixton. -17 h h
June, 1880 . June, HEatiso, Hardeniva, and Tempering Steri
Wire, J. Sykes, Lindloy, near Huddersfield.-19 June, 1880.
Rughy, Ruway Rrakes, W. T. Clark, Crick, near
R. Ashwell, The Oval, Bedford.23th June, 1880 c.

 199. Prepariso Grain or Corn for Brewing, de.,
E. R. Southby, Holborn Viaduct, London. - oith
 August, 1880.
477, Mrxver Medicinal Purposes, W. Williams,
Hampden-street, Clarendon-square, St. Pancras. $25{ }^{\text {Hap dupuss, }} 1880$.
${ }_{26}{ }^{26}$ Traps for Birds, kc., R. J. Sankey, Margate374. Exckutivo MAchineny, F. Hurd, Wakefield.2794. ELEETRIIILLAMPs, St. G. L. Fox, Telegraph-streot,
Mondon.-28ih August. 1880 .
 Scptember, 1880.
3622. Coupressing Black-LEADD, ©c., w. C. James,
Woodside.-6th September, 188). Woodside.- 6 th September, 188 .
3630. Reousativo the FLow or Presure of Illumi-
NATINO GAs, D. B. Peebles, Bonnington.- 7 th SpptemNariso
ber, 1880.
364s. Looss, W. Clayton, Macclesfield.-7th September, ${ }^{18780}$. Locks and Latches, J. M. Hart, Cheapside, Lon-
 buildings, Lotond,-A communication from J. M.
 S. I. Worsley.-6th October, 1880

All persons having an interest in opposing any one
of such applications should leave particulars in writing of their objections to such application at the
wffice of the Commissioners of Patents within twentyone days after date.
\square
List of Speciflcations published during the 2d.

duct is generally placed, is fixed two, throo, or more
ink ducets at distancos from each other equal with the widths of the channels in the ink-table, and below
each of these ink ducts having its axis in the side rame, is a distributing cylinder or mouse to which
is imparted, in addition to a continuocs revolutionary
motion, a literal or osellating motion for the more motion, a rateral or oscillating motio
oven distribution of the colour or ink.
676. Shart Brackets, de., J. S. Taylor and 8. IW.
Challen-Dated 16th Fcoruary, 1880. 10d. This consists partly in the construction of bracket
base pieces of various forms, such base piecos having

a split-boss or a half-bearing, respectively furnished
with lugs from cramping bolts, either straight or staple, formed for the purpose of gripping and rigidly
holding the adjustable ends of extension pleces alter their final adjustment.
 centres and covering the inner faces with rubbing is fixed by cement or otherwise to the projecting
inner portions of euch dise as to rotate with them. innee portions of cuch disc as to rotate with them.
The hollows of the diss serve to contain the
diesired quantity of emery or other powder between desired quantity of emery or other powder between
the corticine or like body and the dished back of cach
disc. disc, a hole being formed at the bulged edge of the
dishing for the hollow to be charged and closed by a plug or closer.
 The fax, hemp, or other yarn, which may be com-
posed either of a single thread or of a number of phreads stranded or twisted together, is warped in the
thrual manner
usid then wove in a loom with four usix, eight, ten, twelve, or any desired greater number of leaves, heddles or healds, the fabric in the process
of weaving being twilled in the direction of itt length. After being woven the fabric is stented or stretched,
and preferably tarred, after which it is ready for employment as a driving belt ored 24th February, 1880.
812. Brosies, J. Evans.-Dated This consists principally in the employment of a
band or back strap working upon pivots. 823. Jacquard and Clipping apparatus Applikd
to Hosiery Knitino Machines, J. Bettuey.Dated 25th February, 1880 . 6d.
The feeding needles, of which there are as many as The feeding needies, of which there are as many as
there are colours used in making the fartit, are acted
upon by the cards which travel in succession round,
and are presented to their worcesio to to poly.
gonal cylinder containing auy number of sides that and are presented to their work oy a poly.
gonal cylinder containing any number of stdes that
may be convenient the corcumstances of each partl
cular application of the jacquard. The cyilider is
made to rise and fall by a lever which receives its made to rise and fall by a lever which receives its
motion from a cam attached to and worked by the

machine. The cylinder is also made to revolve while (upon the feeding noedles every time it rises again. When a feeding needle es put into work by a card it is
held there by a spring while the cylinder and card
descends descends, and until it it is required to put another into
work, when it is released by a lever which is also
worked by a cam attached to the machine worked by a cam attached to the machine. Aftor a
feeding neede is thrown out of work it is necessary to feeding needie is thrown out of work iats necossary
clip of the yarn, which is immediantly done by a
revolving cutter worked by a small wheel suitably revolving cutter worked by a small wheel suitably
geared on head of machine. A is the circular knitting
machine, B are the needles, D is a bracket, F are the
. machine, B are the needles, D is a bracket, F are the
feeding needles, O is the yarn guide, M is the clipping 848. Walkino Stiok Umbrellas, A. C. Henderron--
Dated $260 /$ February, $1880 .-$ (A communication.) This consists in rendering umbrellas serviceable as
sticks by providing them with a metallicic case, tele-
scopic in construction, that is to say of tubular form, scopic in construction, that is to say of tubular form,
the tubes tapering and sliding one wwithin the other. 865. Metal Moulds yor Casting Copper Cylinders,
E. Haldestromand W. Sumner.-Dated 27ih
F. This consists in forming a chamber in or adjoining
the wall of the metal mould or moulds, which chamber is by preference made parallel to the axis of the mould;
A is the outer portion or wall of the mould ; B is the

interior in which the cylinder is cast; Cis tho mandrl
D is the cover of the mould ; and D^{1} the bottom plate;
\mathbf{E}^{1} is the chamber and \mathbf{E} is the aperture, tangontila, or nearly so, to the inner circumferonco of the mould,
connecting the ehamber with the lowor portion of the
interior of the mould; F is a hole out of which the
mandril drops when it is knocked out of the casting. The moulds are made in two parts, and are bolted
together, as shown at G. 870. Spinnixo And Twistino Fibres, J. Walth and J.
Farrann.-Dated 27th February $188:-$ (Provisionai
 attached, which is connected with the backing off
chain. There is
ta also an anti-friction bowl or puiey,
 the puley or bowl referred to, the curved or excentric
 the cop.
 In the bottom part of each bank or receptacle is placed an apparatus working on a dixed pivat con-
structed of a board or flap of meta, wood, hardened

Indiarrubber, or any appporpriate material adapted, by and falling movemento of the wator pike ance wave raming
taining in each of the cells a continual movement of taining in each of the cell
revolution in tho water.
891. Folodix, Douburg and Twistino Machinery,
 of a series of thrend guiding balanced weightod leverers each of which upon the thread it guides breaking,
releases a catch lever which holds two ends of at threeended lover clear of the teeth of two incline wheols or
plates, but upon the thread breaking the two ends of the e olever sto the said wheels without stopping the
driving shatt Jriving shatt.
To the existing chair. is applied a gib-piece of motal

 This consists in applying the brake to the nave of the whoel instead of the tiro, and in providing the
nave with a stop for arresting the rotary motion of the

Wheel, if this has not already boen effected by the
friction of the brake.
hoop provided with a proce tien encircles tho nave, Alicop porovided with a projec-
tion on a crakk lever wnder the 894. Cocks or Tars For Ftums, C. J. Waddell - Der. This rolateses to cocks or taps so formed that the plug

Hin

is accesisile and can be passed into or be removed
 Thisi relates to devices for supplying, steam and air
to the fire chamber of tearnaces
 ${ }^{-(\text {Partlly a communication.) }}$ (Not proceeded with.) This consists ina method for obtaining perfect com-
buation of the coal or other fuel in the furnaces.

 T This consists in the combination of a galvanic battery

body, whill at the same time the patient receives In the combination of a spiral conduction wiro with two beterios and pads, so that the current of electricity will pass throug both batteries and pationt's
900. Roluvo Muwe

Dated hit Mavelh $1880 .-(4$ communication. $)$-(Not An upper roll is provided with a segmental dio and
a lower roll
with a circulur or annular die, whereby the lower roll is enabbed to act as a support and guido
in preeenting the blank to the action of the upperdie, theroby dispensing with the guide bars usually
employed for thit OO1. Dress por purpose.
 This comsidiste) of
This consisiste of a garment made in one piece of with the exception of the face of the wearer. In the nection with one or more tubes provided with in con-
Q03. Fitingo ndo Fasteniso of Fishino Rod Joints, R. Wright- - Dated 1at March, 1880.-(Not proceceded
with.) $2 d$. This reantes to the fitting and fastontng of fifhing
rod joints by means of malo and female,scrowod tubes.

nation of the parts of a water flushing or service
supply and regulating valve supply and regulating valve chest or apparatus for
water closets, and other analogous uses, having, and

actuated by, a diaphragm with a servico chambe below and pressure controlling chamber above, con
trolled by a double or single faced valve, and small se
908. Ralls for Rallways and Tramways, c. Whacier
 Ono eature cousistsin forming the rail in two piece
the head of stel and the lower portion of iron. 907. Husking or Decorticatrina Corn, R, \quad. F F,This relates to treating corn by stoam, and in apparatus therefor, for the purpose of separating the
woody shioll from the corn before grinding withou

removing the gluten from the corn. The steam appa shaft carrying bell-shaped discs, from which the falling

corn is thrown by centrifugal force. The steam is admitted at the bottom, a taper millstone is enclosed in the stone is shelled thereby.
912. Moulds for Makina Castinas in Iron de ceeded The mould is made of ganister cement, or sand and cement. or plumbago, or
material, or mixture of such materials, as will give a smooth, compact, and coherent body for the surfac
of the mould. of the mould.
913. Umbrallas and Susshades, A. M. Clark:-Dated
2nd March, 1880.-(A communication.)-(Not pro-
ceeded vith.) $2 d$.
This consists in making the ribs of the umbrella
towards one side of the stick longer than those of the opposite side, so that the centre of shelter may bo
910. Hoisting BLocks, H. J. Haddan.-Dated 2nd This relates to differontial pulley apparatus consist-
ing of a double top-block, lower single block, endles hoisting chain, differentially moving spur geared

sheaves, spur wheels, pinions, and shaft. A double
top block, lower single block $B ; R$ chain, G infor entially spurred goared sheaves, C D spur wheels, E F
pinions, I shaft, M grooved hand chain wheel 911. Regulatino the Supply or Steam to Steas
Engines, F. W. Durham.-Dated 2nd March, 1880 . This. consists partly in connecting the shaft worked
by the engine with the shaft of the resisting fan D

through a spring S and a screw coupling A Se, soarrang them is caused to move long itudinally, and so work the
 This consists chiefly in providing a cutting tool or

implement formed with a number of cutting edges or
ponnts, between each one of which there is an open
915. Boltina on Sifting Machines, W. R. Lake.-

- Dated 2nd March, 1880. - (A communication.) 6 d. This onted 2 nd March, 1880.- (4 communication.) 6 did

vating mechanism, so arranged that the meal is diverod by the colovang whool directly at or above caused to pass repeatedly over the bolting surface,
whereby the meal is rapidly bolted or sifted. H is ced chamber, G is a sor 916. Lacing or Fastening Apparatus for Boots,
Stays, Gloves, \&c., W. T. Thompson.- Dated $2 n d$
 ing apparatus with hooks, studs, or other fastoning bent over, so as to form loops or rings on one side the
opening to be laced, but those on the other side open, in combination with the string or lacing arranged so as
no not to require tying.

919. Manufacture and Treatment of Cast Iron
Pites, dc., J. W. Macfarlane.-Dated 2nd March, This consists principally in the constructing of cor bars to be used in the manufacture of cast iron pipes,
columns, and similar articles, and more particularly the shaping of the core bar, so as in cross section to resemble a ratchet toothed wheel, and tho combination the projecting parts of the bar. The mould material is rammed into the space between the intornal surface of
the core box and the core bar, the rods being in posi-
tion, and the rods are afterwards withdrawn to form
air holes. After the casting operation the core bar is released. by turning it slightily, by which action the
most projecting parts of the ribs move into the air

holes, the inclined curved or excentric surfaces of the
ribs at the same time moving slightly, but sufficiently, ribs at the same time moving slightiy, but sufficiently,
away from the sand with which they were in contact,
and thus allowing the core bar to be easily withdrawn. 922. Discharaing aerated Waters or other
Lieuids rrom Bottes, dcc, A. Gascoigne.-Dated LIeuld Yrom Botries, \&c., A. Gascoigne.-Dated
2nd March 1880. 6d. This consists of a machine adapted to the discharge of internal stoppered bottles, and by which means any quantity of the contents of such bottles may be drawn

off, and at various periods. The bottle rests in the
socket C and is held by a rubber washer ; a blow given to the button A displaces the stopper. The contents are discharged through B. For liquids of high gas preussre a shorter piston and lever Da are used.
920. Working RaILwAy Brakes, de., J. Clark.-Dated This relates to means for working railway brakes so This relates to means for working railway brakes so
that they shall be self-acting in the event of the train
dividing accidentally, and to fit apparatus thereto dividing accidentally, and to fit apparatus thereto for
regulating the blocks and friction wheels of such
(1)

brakes. Two chain pulleys are fitted in pendulous
links, a third chain pulley is put betwoen the two ormer pulleys but at a lower position, and connected a bracket which is fitted to slide upon two vertical Spiral springs are fitted upon the rods in such
manner that when the third chain pulloy is raised it

compresses the said springs. Compound links connect the free ends of the pendulous links, and connect
them to the levers of the brake blocks. A chain along the centre line of the train operates the brakes. Tho age to work the brakes on a series or train of vehicles 925. Electric Lamps, J. H. Guest.-Dated 2nd March, Two or more fine wires are twisted together and passed through the glass; the glass is melted so as to
low in between the wircs, and thus prevent the

passage of air; and the wires being in a twisted form,
yield as they expand, and hence the glass is not
passage of air, and tha and hence the glass is not
yield as they expand and
cracked. The pulb contains the carbon H. The cups

B and C surround the conductors G, mercury in D and
E forms a seat. E forms a seat.
926. Introducino, dce, aerated Waters and other
Liquids into Bottles, R. L. Hoicard.-Dated 2nd March, 1880. 10d. securing the bottle in place, by the foot, or by one hand. The botste rests in a socket C. The rod
E g.es to the foot lever H , the air tube is

attached to a crosshead K sliding between guides
L. D is the frame, $\mathrm{M}_{\mathrm{N}} \mathrm{O}$ are links, communicating with the treade, and crosshead. The valve is to
altow the escape of air from the bottle, when the bottle allow the escape of air from the bottle, when the bottle
is in place, the treadle is depressed and the air tube is
In forced into, the upper part of the bottle, displacing the
ball stopper. The mineral water is then admitted, and ball stoppor. The mineral water is then admitted, and
the bottlu being filled the treadle regains its position,
the air pipe leaving the bottle and allowing the the our pipe leaving the
the apper to take its seat.
928. Castina Strreorype Plates, R. B. Reed.-Dated
2nd March, 1880.-(Not proceeded vith.) $2 d$. This apparatus consists of a semi-cylindrical support for the matrix of the plate, and which is mounted in
a suitable framework or stand. To this support is a suitable framework or stand. To this support is
hinged, or otherwise suitably connected, a hollow
metal cylinder having a radius equal to the concave metal cylinder having a radius equal to the concave
surface of the plate it is desired to cast, and this suriace of the plate it is desired to cast, and this
cylinder forms the bed on which the plate is cast. 929. Vehicies for the Carriage of Grain in Bulk,
\&dc., W. P. Thompson.-Dated 2nd March, 1880.- A This relates to .) 10 d .
This relates to carriages for railways, in which the
carriage Aitself or a surrounding shell B rotates, instead

of being supported on wheels, or a cylinder armed with
tires, and capable of containing freight, is used instead tires, and capable of containing freight, is used instead
of a pair of wheels. 932. Horserakes, E. H. Tooley.-Dated 2nd March,
18so. $6 d$.
This consists principally in effecting the discharge This consists principally in effecting the discharge
of the crop from horserakes by the rotation of the
wheels by means of a sliding bar upon the boss of one

or both travelling wheels or upon the axle, and which
is moved a short distanco radially, so that the outward xtremity shall be drawn forward and come in contac with the tire of the whecl, and thereby be carried
ound with the wheel as far as required, and by its round with the wheel as far as required
movement effect the raising of the tines.
931. Combunicatina between the Passengers in Railway Trains AETWEEN THE GUARD OR Engine
Drivers, H. Morris.-Dated 2 nd March, 1880.-(Not proceded with.) $2 d$.
dated 23 rd November, 1877, and consists partly in the
employment of an india-rubber ring, which is fixed in employment ot at india- of the carriage, through which the chain passes to the rod on the top of the carriage, link in the chain rests, thus acting in tho manner of a ball valve, preven
into the carriage.
933. Self-heatina Smoothing Iron, A. Norris.Dated 3 rd March, $1880 .-$-(Not proceeded with.). $2 d$.
Both top and bottom of the iron are finished for the smoothing process, and the iron is slung in the handle,
so that it may be turned over at will 934 Sowing Agricultural Semo in Rows, J. Scott.
-Dated 3rd March, 1880.-(Not proceded with.)
This consists essentially of one, two, or more wheels
with pockets in their circumference to hold the potatoes or seed, brushes to clean the wheels, elevator from a reservoir of potatoes or seeds below to supply
the wheels, a spout from elevator to wheel, reservoir hold the seed or potatoes, an extra wheel or wheels on 9 movable axis or axes and the framework and handle. 935. Keeping an Inaccessible Record of Writinas
or Impressions, and of the Issoe of Stamp, OR MPRESSIONS, AND OF THE RISSOE OF STAMPS, de
F. T. Bond.-Dated 3rd March, 1880. 6d. This relates to the construction of a box to be used
in connection with a slip of paper consisting of two leaves folded in the mi
of folding perforated.
936. Scribblino amd Carding Enoings, S. Tempest.Instead of having the doffers a considerable distance from the swift, they are brought in such close proximity that the swift will "lash" on to it the
material from the doffer instead of leaving it for the material from
angle stripper.
937. Starching Linen, \&c., T. Lancaster:-Dated 3rd
March, 1880 . $2 d$. This mixture consists of 28 lb . of sugar or saccharine matter, 84 lb . of borax, one quart
廿uart glycerine, one quart isinglass or gelatine solu tion (made one ounce isinglass to the quart of water),
one pint gum arabic solution or mucilage (made one one pint gum arabic solution or muciage (made one
ounce gum to the pint of water, and one ounce
essence of lavender.
940. Writing Instruments, W. E. Wiley.-Dated 3rd
March, 1880.-(Not proceded woith.) $2 d$. This ;elates to fountain ink pencils and penholders.
941. TELEFHONII APPARAUs, . H. Courtenay.-Dated In preference to carbon as now used in telephonic trausmitting, various carbonates or other suitable
salts of metals, and the metals also in a finely divide sats or nde also an alloy of metals of variable electrical
state, and resistance, are taken and heated in such a manner as to be easily mixed with water or other fuid and form-
ing a compound metallic substance easily moulded to ing a comppund metalice
the required size and form.
942. Knitina Machines, A. W. L. Reddie.-Dated
Brd March, 1880.-(A communication.) $18.4 d \mathrm{~d}$. This relates to improvements on patent No. 19:3,
dated 14th May, 1879, and consists partly in a nove construction of the stationary grooved bar over which the work is drawn, and the back of which is grooved
to receive and guide the needles, and in a novel arrangement of a toothed rolleredin relation to said bar,
and in a peculiar motion of said roller. 943. Sprinas For Fastenina Gloves, E. Horsepool.-
Dated 3rd March 1880. 6d. metel consists in metal plates of the fastening at the hingo portion, and
arranged so as to lie one on each side of the pin formin arranged so as the hinge pivot.
 Aoents to SUnken Shipel IV, R. Moubray and E.
Murley.-Dated 3rd March, 1880 .-(Not proceded with.) $2 d$.
Tubes are attached to or placed inside the ship and Tubes are attached to or placed inside the ship and
air is pumped into them to cause buoyancy, and tubes
are arranged side by side on the deck. aro arranged side by side on the deck. Chains or wire
ropes are passed round the ship. The tubes are clamped tight to the vessel by means of a lever and
air is forcd 945. Fected into them.

March, $1880 .-(A$ communication.) $)$ bdon.
The Dated $3 r a$ machine pass uponaroller A B and then are driven upon an apron which dips into a tub containing hot water
and soap, then the slubs pass between two wringing

rollers. The apron is made with a series of wooden
bars laid across and between a double cloth in order to keep same in straight position, and upon the saic
apron is sewn a band forming a pocket in which is apron is sewn a band forming a pocket in which is
placed the end of the slubs in order that they shall 946. Spinning Apparatos, B. Riley.-Dated 3rd March In lieu of the ordinary flyer and bobbin, an inverted flyer is employed, and the yarn is wound upon the spindle in the form of a cop.
948. Elastic Beds for Power Presses, de., L.

This consists in constructing power presses with

beds A and B, kept apart by a number of metal or
ndia-rubber or combined metal, wood rubber springs D .
947. GAs Retort Movthpieces And Lids, \&e, A.
Machie.-Dated $4 t h$ March, 18s0.-(Not proceded with. $)$
This relates.
sealing of gas rectortseans for insuring the hermetic 949 . of the retort lids. 949. Товлссо.
$1880 . \quad 6 d$.

A cover or cap plate is attached in a loose manne
by studs fitted to the sides of the bowl.
950. Jacquard Looms, T. Blackhurst. - Dated 4th

This consists in operating, by means of a single
card, both sets of hooks in a double lift dobby card, both sets of hooks in a double lift dobby by
causing partial rotation of the card barrel or cylinder

as each alternate pick only of the loom. A is the card throws the hook K out of action in its descent. 952. Mandacture of Steel, S. Pitt.-Dated
March, 1880.-(A communication.)-(Void.) 2 . ${ }^{\text {a }}$. A carburating material is employed which contain 953. Indu- Rubber Lingd Canvas Hose, F. G. Hen
cood.-Dated 4th March, 1880.-(Not proceded vieh) 2d.
This relates to means of strengthening the weak part or parts of wooven seamesess flax or canvas hose
when lined with india-rubber. 954 Autovatio
MonivMs, J. \boldsymbol{Y}. Smith. - Dated $4 t h$ March, 1880 . $8 \mathrm{~d} d$
This relates to improw This relates to improvements in automatic o
mechanical pipe and reed organ mechanical pipe and reed organs and harmoniums,
and to apparatus or means for playing or performing

pon the same or upon pianofortes or other musical or sound producing instruments, by the aid of electricity, magnetism, or otherwise. A perforated tune
band determines the admission of air to the speaking band determin
pipes or reeds.
955. Stopperiso Botrles, W. R. Lake.-Dated 4th

A wap fits over the mouth of the bottle, and withi his cap is fixed a piece of cork. To the upper part of the cap is fitted the upper end of a thick metallic
wire which is bent over and extends downwards on two sides of the neck of the bottle, and the lower sides of
this wire are bent inward at right angles, and project
. this wire are bent inward at right angles, and project
through curved portions of another pieco of thick wire which extend around one side of the neck of the
bottle. This second wire has upwardly extonding arms, whose extremities are bont in such a manner as bottle.
956 .
958. Windows, \&e., H. Brittain-Dated 4th March, 1880.-(Not proceeded with.) $4 d$.
This relates to windows and sashes, or glazed frames fabs, carriages, \&c.
 This consists, First, of an exterior clutch or friction motion, in combination with a foot lever or hand rrangement of spring rollor and set screw for regulating the stroke of the machine; Thirdly, adapting the slide or ram with a taper recess, and driving it by an
excentric and tumbler working therein and otherwise. 959. Driving and Reversing Gear for Washino, -Dated 4th March, 1880.-(Not proceeded voith.)
This consists principally in an arrangement of mechane the direction of its revolution every three (or ther desired number of turns, whilst the driving
pulley keeps continually revolving in the same direcpulley
tion.
980.
960. Hydraulic and Steam Lufts, J. and J. Shazo-Dated 4th March, 1880.- (Not proceeded with.) $2 d$.
This consists principaliy in connecting the piston directly with the cage to be lifted by means of a fiexible piston rod composed of metallic wire (or wires),
or by a flexible metallic band (or bands) passing over pulley above, one end of the wire or band being
attached to the cage and the other to the piston in the cylinder or tube, which latter may be as long as the lift is high.
981. Wind Chests And Sound-boirds, \&c., C. Kesseler.

- Dated 5 tht March, 1880 .-(A communication.)(Not proceeded with.) $2 d$. supporting bars, hinged so as to be capable of being levers bont at an obtuse angle and pivotted at the
bend; one ond of each of these levers is so placed that when moved sufficiently it may touch the overhnnging 982. LAMPs, D. Hydd.- Dated 5th March, 1880. 6d. formed of separate plates, supported from above, over
the jets or burners, and having a space between them,
and the adjustability of the burners to a greater or

less distance from the reflectors. A is the suspending
tubes. B is a ring for carrying the reflectors. A^{2} is the gas-tight stuffing-box.

963. Detecting and Estimating Quantity of Fire-
Damp, \&e., J. Aitken.-Dated 5 th March, 1880. $6 d$. This relates to apparatus for indicating the presence
and quantity of inflammable gases or vapours in the air of the place tested, the apparatus consisting in the the
combination of two thermometers, one of which is

placed so as to give the temperature of the air and
gases before they have come into contact with
 or of the catalytic substances after the said air and gases have come into such contact, whether such
apparatus be combined or not with means for artifapparatus be combined or not with means for artif-
calaly heating the siad air and gases. \mathbf{G} inlet, E tubes, 964. Distributina or Delivering Liquids in the
Form of Spray or Mist, $T . H$. Bentley. - Dated $5 l$ March, 1880 . $6 d$.
This consists in distributing or delivering liquids in This consists in distributing or delivering liquids in
the form of mist-like spray by causing the liquid to pass through two passages or channels arranged so as
to converge towards each other at a suitable angle to

cause the two columns, streams, or sheets of liquid
passing through them to come into contact with each passing through them to come into contact with earch
other with sumicient force to thoroughly disintegrate or divide the liquid into minute particles. The
tube conducted to the hose pipe. D is the nozzle. The chemicals to be mixed with the water are placed in F, d passago, a are adjutages.
964. Cricket Bat Handle, W. Rushton,-Dated 5th
March, 1880 .-(Not proceded with.) $2 d$. March, 1880 - (Not proceeded with.) 2 d .
p piece of cane is provided, the lower portion of which is smaller or of less diameter than the upper;
this is for taking into the blade upo which it is secured by splicing or other means. This handle is 968. 968. Stoves or Atr-heating Apparatus, S. C.
Davidson.-Dated 5th March, 1880. ©d. This relates to improvements on patents No. 4773,
dated 15th December, 1877, and No. 1011, dated 14th March, 1879, and consists in having the series of flat

vertical chambers situated upon the two sides of the fortical chambers stuated upon the and not extending ovor the top of
freplareplace as formerly. Y is the top of external
the 989. Rallway Carriagers.
. Reid, Mhis consists in fitting the carriages with an addi-
tional pair of wheels carried in journal bearings on
brackets formed on or secured to the outer sides of the
 foundation on each side of the ordinary track.
 The scroil forming the front and sides is cast in
several pieces in inon or chill moulds. The top bead is provided with two flanges, which are closed by pres. bead is mado separatoly. The several parts, together ected and formed into mounted on a frame, and are con. nected and
cast iron cast oned the opto a fender by
junction pieces of
nd pieces, and joining the pieces together
965. Wrisarso, Ma Noursa, Axd W Ashisa Machises, Thi framinn oconists of a puir of jaws A B and a
lover Cat each end of the rollers D and E , the jaws

boing held at the required distance apart by
strutcher rod, which acts at the sume time as structher rod, which acti at the same time as a fuls
orom tor the jaws. G is a spring prossing the rolls
topether 974. Lubricatino Spindles, \&e., W. and S. Taylor. This oonsists, Firrect, of on doublo collar bearing for lubricating spindeses and bobbin wheels; and Seconculy,
a back plate cast with or fixed to the footstep plate

and the end plate fixed to the same. A is inner collar
 en5.
 The fence iso ocostructed of of fat tilies pointod or the ground and provided with a horizontal (or perpendicular to the body of the tile) rim at the tor por pore-
venting the intrusion of destructive animals into tho beds or broeding placee,
966. Rotativo Forinces for tre Mantracture of
Sulphite or Soda Axd Potash, de., W. Jones

emploged, , preferably of a curved form, extending Irom near the centre of the pan to its circumference. 977. Sispssiso Mous, J. Hendry.-Dated 6th March,
 feronting spinning mules, specially designed yor bind
wound ory buillating the tonsion of the yarn being

allo the faller spindles P F. F. A weighted lever B has
fixed at oue end the strap
B^{2}, sector I, to which are fixed the under guide tension Yalers. Thhe lover acts on the fallers under the yurn
Y and raise or lower it as it it pases from the draw
rolle

This consista in the combination with the sliding
W of dog and

rocking of the trigger guard lever or oryst, throughivent the thhe same, and in its proper sequence a slow motion, increasing in opeco, is imparted to the cartrigo extrastor for the the purpose of removing the cartridge

from the gun. A is the stock, B is the breech case, C
is the barrel, D is the breoch block. The blook slidides, and is held shut by the vertical facing b. Eis the the
arigger Enard lever ty which the breet block is trigger guard lever by which the breech block is
raised and lowered, \mathbf{F} is the hammer, G the trigger, all working on the fulcrum $1, K$ is the manin spring,
L is a finger which is ifted by the cam of the forked Lis a finger which is lifted by the cam of the forked
lover E, and thus caused to tip back the hammer into tho coeked position.
980. Drawiva Lleving proa Corked Botrles, dec,
F. B. . H. Hooper and A. A. Luke.-Dated 6th March, This consists of a sharp edged or pointod tube which
can be serewed or forced through the cork until haterai holes of the tobe, accorring as they are presented
below the cork or not permit on the below the cork or not, permit or
the exterior mouth of the tube.
 This consists in the construction of a machine having
curved cylinder and plunger. AB are the jaws, D is

the rivetting tool, E E ${ }^{1}$ curved cylinder and piston; HCare the levers for working the machine, and packing
the slide automatically moved by h cuts off the water 982. Ventilating Mings, de., T. Sutherst.-Dated
6th March, 1880 .-(Not proceded vith.) $2 d$. This consists of a system of pipes so arranged within the mine or other place that a constant supply of
fresh air is introduced therein, and upon the escape of any foul air or gases occurring within the mine or
other place the same are so diluted and weakened as other place the same are so are carried off by means of
to become innocuous, and are
the fresh air so introduced into the mine through the fresh ai
such pipes.
983. Orxamenting Sraw Fans, bec, O. Thaege.-
Dated $6 t h$ March, 1880 .-(Not proceded with.) $2 d$. This consists in the employment of threads of cotton or silk of various colours, and also of gold or silver
threads, the said threads being introduced into the loom during the process of weaving the straws into
sheets or lengths from which the desired article is to sheets or le
be made.
984. Fire-Arms, J. S. Heath.-Dated 6th March, 1880. This consists, First, of arrangements for lifting the hammer or hammors of breech-loading fire-arms :
Secondly, in having a screwed opening in the loop of the gun through which is pasped a screw thread or
bolt which takes into an opening formed in the end of

the fore end, so that by screwing the bolt into the
fore end same can be adjusted at will. A is the lever fore end same can be adjusted at will. A is the lover
carrying the bolt ; B is a link secured thereto; to B when two hammers are required, a cross bar is secured
at C;D is body of gun, to which fore end E is secured. Into this takes F passing through the loop
G. The other figures show arrangement to be adapted G. The other figures show arrangement to be adapted
to the muzzle end of gun. These are screwed home by
the pies the pieces G1 and H

munication.) 10 d .
This comprises ${ }^{\text {a }}$ light framework constructed of wires, rods, thin metal tubing, and cordage, or other suitable material secured at the intersections in any
manner to obtain strength and Hightess, the whole being covered and encesed with silk, linen, thin
metal, or other suitable material secured to the framemeta, or other suitable material secured to the frame-
work, prosenting preferably the form of the grayling
or salmon fishes work, prosenting
or salmon fishes.
986. Reworkino the Shearings of Iron and Steel,
J. H. Rogers.-Dated 6th March 1880 , J. H. Rogers,- Dated 6 th March, 1880. $4 d$.
This consista in moulding the shearings into comThis consists in moulding the ehearings into com-
pact blocks and dissolving these blocks in molten iron
or metal or metal.
987 . Treataent and Manufacture or Iron, doc,
Sir H. and A. A. Beasemer.-Dated 6 th March, 1880 . $8 d$,
This relates partly to the purification of crude iron in such manner as to obtain a purified cast iron suit-
able for making such castings as are to be rendered
malleable by cementation in the solid state by
desilifonising molten crude metal, and also in some
cases alloying the metal with manganese. R is the

Iadle carried on wheels and provided with nozzle and stopper; Y is the gutter from which the metal flows the wheel G. 988. Bed Clothes Eleyators, J. W. Cousins.-Dated The elevator is formed of an upright having a spike with a clamp by which it can be clamped to the sid or the end of any bedstead.
989. Knittina Machines, IV, Cotton - Date March, 1880. 8d.
This consists in the employment of two narrowing

Care the knocking over bits secured to bar D, E are needles in narrowing or widening the work, and \mathbf{G} the 990. School Desks, \&c, J. Glendenning.-Dated Sth This single frame or stand consists of the base piece A^{*} and uprights $A^{1}, A^{2} ; B$ is the desk proper, on whose slope or writing board B*, the books or other articles
are placed while being used; Cis the seat. The desk
proper and the seat are both supported by and npon

the said stand or frame, that is to say, the desk proper
B is supported on one upright and the seat C on the other extending up from the base the seat A^{-}. The on the
firme i firmly securod by scrows or otherwise upon wooden cost or support for the feet of the pupil. Fis a pad,
rese G back support.
991. MANuFsct
991. ManuFacture or Nails. G. W. von Nazorocki--
Dated 8 th March, 1880 - (A communication.) $6 d$ The machine consists chiefly of two pairs of rolls o discs-A, B, C, D-placed at right angles to each
other, and between which the iron bar \mathbf{F}

The edges of these rolls are chamfored, so as to form pace being left between them, which varies during
ing section of the nail (being largest at the top thereof many times as there are nails produced boint), and revolution of the rolls. The rectangular space diminishing during the revolution of the rolls, determines thereby is produced by corresponding recesses in tho circumference of the rolls, One pair of rolls carry
cutters F which separate the nail blank or nail from the iron bar, and as the formation of a new
nail commonces immediately afterwards no loss of material occurs by this operation.
992. Vacuom Boxrs for Paper-- - aking Machines, R.
Brodie.-Dated 8th March, 188\%,-(Not proceded The sides of each vacuum box (which sides are transverse to the wire) are formed by rollers of brass or other suitable material, and which may be carriced
like the rollers ordinarily supporting the wire. The like the rollers ordinarily supporting the wire. The
bottom of the box is formed by a plate or closed frame, which can be adjusted so as to bear up in close contact with the lower parts of the rollers, and
the interior of the box may communicate with the the interior of the box may communicate with the
vacuum pumps by one or more pipes connected to the
bottom plate or frame.
993. Treatment and Manufacture of Phosphates,
W. J. Williams.- Dated 8th March, 1880. 4 . This consists in the use of coal, carbon, iron, or
other deoxidising agent, together with steam and air, for the purpose of decomposing chloride of sodium (or
potassium) and producing phosphates of soda (or potassium) and producing phosphates of soda
potassa) from natural or manufactured phosphetes. 994. Gas Burners, \&c., G. E. Webster and W. F.
Fisher:-Dated Sth March, 18so.-(Not proceded Thish, relates to burners wherein the current of air
Thsis passing between two sheets of flame is regulated and
fixed according to definite proportions for the quantity fixed according to definite proportions for the quantity
and quality of gas used through given sizes and kinds
of burners 995. Gas Furnaces for Meltang Glass, A. Each gasogene is formed of a closed chamber G divided into two compartments by a vertical partition,
which leaves under the general roof an open space of which leaves under the general roof an open space of
$0 \cdot 40$ metres in height. The anterior compartment serves as a gasometer. At a third of the height of the
anterior chamber is arranged an inclined metal plate, resting at one part on the separating partition
at about 1.50 metres from the ground, and at the other

相囯

part on the floor of the gasogene, which it joins by a
series of inclined steps or benches rising ono above series of inclined steps or benches rising ono above vertical, side holes. This arrangement has for its
object to shelter the holes from the inroads of the object to shelter the holes from the inroads of the
scoria. Below this plate is arranged a small air
chamber, into chamber, into which the vertical side hole
open, and which is in communication with the pip
of a ventilator, such as that of of a ventilator, such as that of a steam generator
This generator R as placed in connection $\begin{aligned} & \text { with the }\end{aligned}$ melting furnace, the waste waste conection with thom which it
them
und melinges, it being sufficiont for the action of the venti-
utilise
lator and for the production of the steam necessary for the gasogene.
998. Ocean Steamers, J. G. S. Anderson.-Dated st 996. Mackan 1880.-(Not proceeded with.) $2 d$. -Dak sth On each side of the vessel is constructed a waterof the vessel, so as to provide a clear passage from end to end, or for the greater part of the vessel's length
From this passage lateral openings, that can be secured by water-tight doors, are made into several cabins,
berths, or other compartments or passages within. 997. Lharps, \&c., F. W. Monck.-Dated 8th March, This relates partly to a means of constructing lamps
whereby they are made self-righting. C graduated

glass tube over oil reservoif, P a piston, H works in a
cylinder in the reservoir, K oil pipe, N ball valve.
 A is the knob; B its stem, circular in cross section

is a slotted motal plate which is caused to embrace the
stem where the saw cuts or grooves are made in it ; E stem where the saw cuts or grooves are made in it ; E
is a small hole in the plate D to allow of a small nail Pin- Dater 1000. Windiso Machises, A. C. Hendersi.
sith March, 1888.- (A communication.) 6 . This consists, First, in mechanically actuating the
windle or winder by means of a frietion roller acting Windle or winder by means of a friction roller aoting
in the groove of a fly wheel fixed to the axis of the in the groove of a fly whoel fixed to the axis of the
windle; ; Eecondly, in stopping the windle by afriction
dividing the silvers of thread by a click arrangement
actuated by a rack solid with the guide thread bar actuated by a rack solid with the guide thread bar
and receiving the habitual motion of tho counter o 1001. Brexele Stanps, de., C. Wicksted.-Dated $8 t h$ March, 1880 . bl.
This ccnsists in a bicyele stand, of the employment
of triangular pieces provided with legs or curves. A

Un

are triangular spaces, the ends of which are turned up:
the ends B form hooks for the handle bar when the the onds B form hooks for the handle bar when the
bileycle is inverted, and then C acts as legs when the tand is folded up
1002. Watcurs, \&c., W. R. Lake-Dated Sth March,
1880.-(A communication.) 6d. This comprises a novel manner of mounting and applying the escapenent, wheroby it may be readily
romoved and exchanged or replaced. 1003. Lock NuTs, J. F. Wiles.-Dated 8th March, Instead of cutting or splitting the nut and giving
oach leaf or part thereof a set towards the other, the each leal or part thereof a set towards the other, the
two sides of the uppor portion of the nut are compressed towards each other, thereby forming the bore
of the nut at the upper part thereof somewhat oval. 1004. PRoDVCTIOX or CYANIDES OF THE METALS OF
THE ALEALIES AND ALEALIE EARTHS, T H. the alkaliss and Alkaline Earthe, J. H. John.
anh.-Dated \$th March, 1880.-(4 communicstion.) This consists in the conversion of the oxtdes, mydrates carbonates, sulphates, or sulhphides of the by the employment of nitrogen gas in closed vessols.

The apparatus for supplying disinfecting liquid to tant, and provided with two pipes C and B , the upper
one, of which is connected with a water service pipe, one, of which is connected with a water service pipe,
throngh which water drips or flows into the vessel Δ,

whilst the lower pipe leads from the vessel A into the nfecting material as it reaches the level of the pipe D Within the vessel \mathbf{A} is the separate and distinct vessel B for disinfecting the closet room. F and G are two pipes, one forming an air inlet, and the other an air
outlet. 1006. Generation and Employment of Mixed
Vapours yor the Production of Motive Power, APours yor the Pro march 1880, cation.)-(Not proceeded with.) $2 d$.
This consists, first, in the use
actuating and propelling a pisto or a mixture for vapour generated by the sulphide of carbon and producing a motor actuating a piston the method for admittipg, or injecting bisulphide of oarbon into ancing, which should be first heated to a temperature of from 175 deg. to 200 deg.; and, Thirdly, in the method of
operating a piston, viz, supplying the cylinder of the operating a piston, viz, supplying the cylinder of the
engine with mixed vapour generated by the action
of heat in a mixture of saponified paraffine oill, water, of heat in a mixtture of saponified parafine oil, water,
and bisulphide of carbon. 1008. Securina the Ends
 This consists in the combination of the roller E, the

arranged, and operating, as to form a double fold or
lapped joint with or without the paper packing and lapped joint with or
without soldering.
 This conded reith.) $2 d$.
This consists in attaching to the bolt of any door or
valve suitable mechanism for indicating and register ing the number of times the said door or valve is F. Otto.-Dated 9th March, 1880.-(Not proceded
1011. Pulevs For Transuiriso Montos, de. E.C. Thith.) $2 d$.
Thsists in making a pulley of two discs of hect iron, steel. or other surely fastened together in any convenient manner the sides whereof are formed more or less convex by suitable pressure, or ortherwise, while the periphery of
each dise is so shaped that when united a suitable broove or surface is cormed for the reception of the 1012. Furnaces for Making Hard and Solt Stere,
de., S. and D. Thomas.-Dated 9th March, 1880.(Not proceeded vith.) 2 d .
The furnace is constructed at the sides, front, and of a current of cold water to pass through them; at opposite end of tho furnaco is a chamber heated from the flues of a furnace ; this chamber contains pipes
through which a blast of hot air is forced, the blast
entering the furnace at the sides, entering the furnace at the sides, end, and top.
1013. Esines To Be Drives BX WATER, E. Wigell The engines are constructod with a cylinder having
two conical plates which form the covers of the ylinder, and the cylinder is closed in by a cylindrical ng which is bored true to a globe, and from a radius
truck from the centre point of the cylinder. Within the cylinder is fitted a plate forming the piston of
the engine: this plate is either cast or ifxed on a globe
俍

cover plates of the cylinder, and the globe or ball is
kept in working position by means of the packing ring kept tin working position by means of the packing ring
and packing glands. Between the covers and within the cylinder is fixed a plate on which is passed a
slotted opening made in the piston plate, which gives a vibrating wabbling motion to the piston plate when
the water is acting on the piston plate, and which communicates a rotary motion to the steel arm
actuating the crank which gives motion to the driving 1016. Suspending Nosebags, F. H. Greenstreet.-Dated 10.h Marcl, 1880 . $2 d$. .
Attached to and continuing from the shafts are rods Attached to and continuing from the shatsian by a
which hook into eves, and aro kept in position
catch or saddle made to fit the shaft. The bag is then suspended from the ends of the rods and hangs mid1019. Manofactur
1019. Manuracture of Manesia, T. Tugmam.-Dated
9th March, 1880. $2 d$. This consists in the preparation of magnesia from
dolomitic lime by dissovivig out the lime from burnt
mand magnesii.
1020. Furnaces for Burning And Destroying
Refese, j. R. Picard, - Dated $9 t h$ March 1880 , $6 d$, The furnace (the inside of which is arched) is con. structed without partition and with an opening H (in
the the contre) the whole length of the furnace for the
reception of refuse, so that the carts or trucks bring-

ing the refuse can shoot it direct into the opening.
The exits for the heated gas are by flues constructed in the crown or top part of the furnace, which are
carried separately to a chamber where the flue dust is carried separately to a chamber whero the flue dust is
deposited and can be removed withont entering the
flues. M, fire-bars ; \mathbf{F}, flues ; \mathbf{H}, dust chamber ; \mathbf{I}, purifying fires.
9ih Carriage Fittings, de., c. Woolnough.-Dated This consists in constructing a carriage roller bolt or dragon tongue bolt with a movable head, capable of
beivg easily detached from the shank, so as to allow

of the trace being readily slipped off the same, and of
the horse or horses being almost instantaneously
liberated from the vehiclo in case of accident. 1022. Spinning AND Twisimino of Yarn AND Fibres,
J. Pollard.-Dated 9th March, 1880.- (Not proceded Neart the top of each flyer is attached a catch or
nipper. The catches or nippers are mounted on the nipper. The catches or nippers are mounted on the
wire board, rod, or rails as conveniont, in such posi-
tion that whilst the skin is good the nipper or catch tion that whilst the skin is good the nipper or catch
is clear of the yarn or thread, but as soon as the weft is clear of the yarn or thread, but as soon as the wert
gets under the bobbin, or itruns unevenly from other
cause, the thread is caught in the catch or nipper, and instead of snarling a lap is formed.
1023. Controlling By Hand the Moverents of
Enotnes, R. H. N. Alleyme.-Dated $9 / h$ March, 1880 , This consists in connecting the handle G which
This
works the slide or valves of the subsidiary cylinder Works the silde or valves of the subsidary cylinder movement of that piston resulting from a movement

of the subsidiary slide or valves shall tend to cut off
the supply of steam which is aoting on the subsidiary
piston. Δ, subsldiary cylinder ; B, cataract ; \mathbf{C}, arm
on rocking shaft $\mathrm{D} ; \mathrm{F}$, sildo rods $; h$ is an arm on the rocking shaft H. 1024. Savina Life in Case or Fire, H. J. Allison.--
Dated 9th March, 1880.-(A communication.)-(Not Two joists araratus ifted fittod in the loft of the building. jolst is connected to them by angle irons, The space
between the joists is filled in with firebricks to form between the Uno the joists is fitted an iron frame reach-
a floor. Upor
ing to the roof, in one side of which slides an iron ing to the roof, in one side of which slides an fron
door. Inside this chamber or a coll is a ladder reaching door. Inside
to the roof.
1025. Cutrino or Picking Coal iv Mines, deo, W. R

Lake-Dated 9th March, 1880.-(A communication.) | $\begin{array}{c}\text { Lake. } \\ \text { Ed. } \\ \Delta \text { repr }\end{array}$ |
| :---: |

A represents an ordinary pnoumatic rotary engine
in a case, which case is made in part of an air chamber. A a case, which case is made in part of an air chamber.
and the ports com on the upper part of the cylinder
andeate with it and the ports communicate with it ; these ports alter-
nately take from below the valve S to the cylinder and nately take from below the vave
atternately exhaust nir at the side of the cylinder ;
the valve S hus imparted to it a reciprocating motion

by means of a crazy wheel, that is to say, a wheel set
obliquely on the shaft of the rotary engine, this wheel obliquely on the shaft of the rotary engine, this wheel
operating in a grove, which is formed in the top of operating in a groove, which is formed in the top of
a knucklo joint countersunk into the to of the valve
S. On the end of the cylinder is formed a serrated or grooved bearing, on which is placed a sleove arranged
to bo rotated by a pininon. This pinion is upon a longitudinal shaft V parallel with the cylinder, and operated
by a crank or handle W to rotate the pick or cutting by a crank or handio of to rotate the pick or cutting
tol M.
1026. Preventino Dravohts of Air or Dust pron Enterina the windows, Doors, or Ventilators 9Fh March 1880 . $6 \mathrm{~d} \mathrm{~d}, ~ \& \mathrm{c}, \mathrm{C}$.
This consists of a or excluder A, made by preference of a trough like
section in sheet metal or other suitable material and

with one or more curved or straight deflecting plates
or tongue pieces D projecting therein, the wholo being
secured secured to the stile or side of the window or other
opening with box-like space left between the
said windguard, deflector, arrester, or excluder and 1027. Wenvino Loonoers, dc., C. Cross.-Dated 9th This consists, First, in apparatus for the positive
and accurate delivery of the "lap weft" or "whip threads" for forming the coloured borders ; Secondly,
in apparatus for stopping the loom when either of the In apparatus for stopping the loom when etther of the
lap threads breaks Thirdly, in weaving ornamental
cashmere borders to loongees or other ornamental cashmere borders to loongees or other ornamental
fabric by the employment of tie-ups which show the
warp threads only nid conceal the weft. warp threads only and conceal the weft.
1028. Printing Floorcloths or Oilcloths, de., A.
L. Klein.-Dated 9th March, 1880 . $6 d$. The dot or pin is slightly curved at the sides $a a$ and
a small rounded air cup $b b$ s formed at the bottom, a smal rounded air cup to th formed at the bottom,
and four lines cc are cot in the bevelled sides lading
from the surface to the air cup b b the said lines $c c$

∇ V W

commencing a little below the surface of the copper,
and extending to the entrance of the air cup. From the surface of the copper to the commencemont of
these four lines the oritice is slightly countersunk as at $d d$, and the sharp edgo left from the countersinking
is rounded off in order that it may not cut or other is rounded off in order that it may not cut or other-
wise injure the material whilst in the act of printing. 1030. Horseshors, de. J. Holt, J. Maude and B,
Jones. - Dated 9th March, 1850 .-(Not proceded veith. $2 d$.
This relates to constructing horseshoes with movable This relatess to
calking or slip cog
1031. Fastesiso Boots, ©c., M. L. Muller and H.
Hartjen. - Dated oth March, 1880 . - (Not proceded Thish.) $2 d$. each of which is composed of a spectally curved or knobe or head, and at the other with prongs or pin points, the said apparatus forming togethor, when
applied to the article, one pair of fastenings.
1029. Machinery fon Rolung Rallway on other
 A is the main frame of the machine ; two pairs of
horizontal rolls shaped to fit the sides of the whed K K
to be rolled, are fixed on a shaft carrying sliding bear-
$\left\lvert\, \begin{aligned} & \text { ings which carry the bearing rollers e; the ends of the } \\ & \text { shaifts furthest from the rolls revolve in pivot bear- }\end{aligned}\right.$ shafts furthest from the rolls revolve in pivot bear-
ings. The front bearings are connected by links to a cross head attached to a piston rod working in a
hydraulic cylinder, and to the back bearings aro fitte d

cylinder, so that the rolls on either side the wheel
can be moved nearer to or further from each other can be moved nearer to or further from each other.
The hydraulic cylinders traverse the bearings with The hydraluc cylinders traverse the bearings with
the rolls parallel to the sides of the wheel K . The
rollers for forming the tire or fan rollers or forming the tire or flange of the wheel to be
rolled are fitted with feather keys on the shaft. The rolled are fitted with feather keys on tho shaft. The
rollers are carried in bearings fixed to siling plates rolers are carried in bearings fixed to eliding plates
which are caused to adyance towards or recede from
the centre of wheel K by hydraulics. the centre of wheel K by hydraulics.
1032. Utilisina Excrenentition 1032. Utilisino Excrementitiovs Matrers, de.
J. Wadsworth.—Dated 9th March, 1880 . This relates to apparatus for evaporating and drying
urinous and excrementitious matter.
urinous and excrementitious matter.
1033. Rolusa TEa Leaves, Hosking and PoLishisa
Rice, \&c., A. C. G. Thompson.-Dated 9th March,
1sce, 6d.,
This relates to a globe revolving upon a vertical and This relates to a globe revolving upon a vertical and
horizontal axis simultaneously in combination with a lower fixed vessel.
1034. Carburetrino Arr, \&co., E. Bdmonds.- Datad
9 ith March, 1880 .-(A communication.)-(Not proThis consists in placing a hydro-carburet in contact
with a body heated to a temperature sufficient to vaporise to hydro-carburet immediately. and in
mingling the vapours thus produced with the an mingling the vapours thus produced
which it is desired to render carburetted
1036. Coil Sprisos, te., H. Smith.-Dated 10th
March, 1880.-(Not proceded woith.) $2 d$. Clips or staple clips are formed on the iron, steel, or wooden laths of mattresses in such a manner that the
rings at botb extremities of the coil will catch in same, and will be held secure in position.
1037 . Standard Lieuti Measures, D. Moulton.This consists of a mode of inserting in the sides of
jugs and cups of earthenware or china, a small plate jugs and cups of earthenware or china, a small phate
of pewter to receive the Government weights and 1038. Heamiva and Illuminating Gases, \&e., J. A.
Slephan. - Dated 10th March, 1880.-(Not proceciled Solid sewage matters are heated in retorts ; steam Solid sewage matters are heated in retorts ; steam is
then passed over the heated matters. The apparatus then passed over the heated matters. The apparatus
for incandescence consists of a material which, by preference, may be a composition of asbestos,
mapnesia, and whiting made into a plastic state with a solution of nitrate of potash.
1039. Trollies or Cabriage for Cibcular Saw
Beches, B. J. Weber.-Dated 10eh March, 18so... (Not proceaded vith.) $2 d$. Tre tronly is provided with two excentrics on a shaft
working in beurings and provided with a lever handle,
the trunnions being the trunnions being guided by a slot or slide. 1040. Fluid Pressure Requlator, c. C. [Barton,-
Dated loth March, 1880. Gd. The apparatus is constructed with a case or box A
which is connected on one side with a supply pipe \bar{B}
from the main, and on the other side with the dis-
 charge or delifery pipe C from which the water is to
be drawn. Within the cass or box A is arranged a
valve D suspended by a flexible sheet F , which is valve D suspended by a flexible sheet F, which is
closed by pressure in the outlet or delivery pipe
against the action of a controlling spring E or a weight. Injectons or Water-forcino Apparatus por Fekdino Steam Boilers, G. W. Garrett.-Datal This relates to an apparatus for injecting or water
forcing by gravity. forcing by gravity.
1042 Katried and Loored Fabrics, \&c., s. Thacker. This consists in laying in two additional threads
between succeeding courses of looped or knitted work. Prodeciso Ornamentation on Pobcelais,
1043. P., T. Bevington. - Dated 10th March, 1880.- (Not The article is coated with a solution of gum or
cement in water and "water slip" by means of a cement in water and "water slip" by means of a
brush, and then it is sprinkled with small particles of clay obtained by the mixture of gum clay, and water
clay. The article is then coloured and fred.
1044. Treathent of Concrete For Buldiso Puk-
poses, dece, C. Drale. - Dated 10th March, 1s8.(Not proceded veith.) $2 d$.
This relates to the manufacture of concrete slabs This relates to the manufacture of concrete slabs
and to apparatus for adjusting and holding them in correct position while being built.
1046. Compressino Atr by Electricty yor Obtarsing Morive Power, V. Poutet and E. Commelin.-
Dated 10ch March, 1880.-(Not proceded with Dated 10ih March, 1880. - (Not proceeded weith.) 2 d .
An electro-magnet attracts a rod, which serves as a piston, a lever being connected with the piston to increase the power. A connecting rod is connected do
a fly-wheel and an air pump in connection with a p pe,
and through which aif is compressed into the boiler. An
inlet pipe for air is fixed on the boflor, and communicates
piston.

 a periorated plate.
1048. Tasuss, B. Halstead.-Dated 10th March, 1880. The table is provided with a nut working on a scrow to which hotary motion so imparted so as the the thate at an anglio it is connected with the nut by a ghaft and
pinion engaging with an intornal spur wheol carried by the nut.
 vith.). $2 d$. A number of electro-magnets are arranged in as
bearting between two pirs of wheos and their roces
rest upon the face of the rails which form the armature roat upon the fac
of tho magnets.
1050. Rerrupriso Paprn, A. ATf Clark.-Dated 100h
March, 1850--(A communication.)-(Not proceded

Rag stock is boiled and then placed in a beator which wets upon it while the
water or other liquid.
1052 Locounovive Exaises, c. Broun.-Dated 10th Instead of guide eb
position haterauly, artadial rod is themploged, ono end
being connected with one of on being conneneted with one of tho paptes that ono oin tho
opposite axie boxes rigidily together land the other end
 framo is provided to carry the running gear of the
engiue independent of its frame, the two opposite
 ing springs of the engine are supported. The tires on
tho whecels are made so as to allow of their removal without displacing the body of the wheels An Amproved brake is appliied between the two shafts of the
Pocomotive. Metal bushes aro insecred in the ends of coupling and connecting rods, and are rolled out
with a Duageon expander until the diameter fits the crank pin. An improved
with washing out plugg.
1053. Requantina tue Supply or Air to Furnacrs,
T. S. Prideaux. Dated $11 t h$ March, 1880. $6 d$. This consists, First, of a furnace door, or furmace
door and front combined, having an opening for the

 the turnace throutg a agrating, so arranged as to intere
copt and absorb the heat radiated outwards when the

air valve is closed, and to heat and distribute the
stream of air which flows through it into the furnace
 valve When the firo door is opened tho cup C emptices
iteif of mereury through orlfices 0 and when the door
 cury roe.enters. Ad disci below the cup croliose it ata
shor distace and assists in regulatigg the flow of the
merury. mercury.
1054.
Oper

A rotary shutter is centred on a fixed disc so as to
roovvin
composed or on tw the leus aperture. This shutter is composed of two sectors which barence each o ther on
the contro, and alteratately obscure the lens aperture,

the e eposuro taking place during the intervening
interval The shutter is rotated by a ppring. In the
draw drawing Δ is the fixed diso with a fango A to protect
the shottor B, and an oponing A surround
by

 A lever works in a chamber on centres fitted betwoon
thio inlet and outlot for the gas, such lever being con-

chambor, D the inlet valve, and E the exit valve, to
both of which the lover F is connected and is pivotted

FIT

at G. In the second arrangement, G is the fulcrum,
B the inlet valleve, and C the exit valve on opposite
sides of the partition 1057. Makiso Cranarites, R. Gothiel.-Dated 11 th
March 1880 -(Not proceded with.)-(A communiThe cionarettes are made of various thicknesses by means of a band, attached at one end only, the othe
end being free, the cigarettes being made in a box
with a transverse partition and sliding cover. 1058. Nrokel and Cobalt, H., H. A. 'and W. W. W
Wiggin and A. S. Johnstone.-Dated 11 th March Metallic manganese is added small portions at a
time to the cobalt or nickel when in a state of fusion. 1059. Wrinaina and Manaling, J. Wilding.-Date Three rollers
upper ones being mounted at either end of a link, the pivot of which works in a vertical s.otot, so that the
rollers can accommodate themselves to the thickness

of the matorial being operated upon. A is the lower
roller in a fixed bearfng, and $B B$ the upper roller with rocking bearings D on either ond of a lever
having a having a central stud, ww
block sliding in the slot F .
1060. Workino the Expansion Valves or Steam,
Air, or Gas Enoines, J. Ramsbotom.-Dated 11th March, 1880. bd.
The valve rods D are made with knee or toggle joints E E E, sufficiently rigid in their action to opent the
valves B BI B ${ }^{3}$, either by a pull or thrust, so long as the joint pins remain in a right line with the other

part of the rods ; a stop is provided and arranged so
that when the required distance has been travelled by the valve the kuee or toggle joint is relieved o
tripped and the valve is at liberty to resume it tripped and tormer position, by springs, pressure of steam, or by
gravity. A A is the cylinder, and C C the rocking Yormer posith A is the eylinder, and C C the rocking
gravity. A.
lever to work the rods D D. 1061. Spindles or Braiding Machines, J. Booth.Dated 11th March, 1880. $6 d$.
The flyer a a is made of a piece of wire with a curl The flyer $a a$ is made of a piece of wire witha cur
opposite the bobbin, and a similar curl at the top, so opposite the bobbin, and a sim for the flyer, the bottom
that no throading is required
part a^{\prime} is made separate and is strongertban usual. The pat a the marreld d has a transverseoponinge e from fron
top of the
to back, and the drop f consists of a casting sliding up

and down outside the barrel, and has a projection
which takes into notches in the top of the which takes into notches in the top of the bobbin, an
a hole h is drilled through it in the same direction a e. The upper end of the weight i has a loop k, so that
when the weight is raised tho throad can bo drawn through the barrel d, the drop f, and tho weight i at
one operation, and then drawn through the hole l at
the top of the barrel one operation, and
the top of the barrel.
1062 . Peime 1062. Printino And Dyring and Stramino Cotton
Fabrics, J. King.-Dated 11th March, 1880. $6 d$. The goods are entered into the steaming chamber in
a slightly damp condition, and the series of drying a slightly damp condition, and the serles of drying
cylinders is abolished. From the washing apparatus

through which the goods pass after being printed or dyed, or from the padding or oiling apparatus, the
goods are taken through squeezing or wringing rollers. goods are taken throug squeering opparatus in which
The drawing represents an oling
T is a trough betwoen the standards $\$$ of a wringing
machine fitted with rollers P R , the lower one dipping
into the liquor in F and is liquor in in the trough, The fabric passes in at
at
 the steaming chamber
1083. Stoves and Fursaoss Heated by Gas, F. C.
Glazer,-Dated 11th March, 1880.- (A communicaThis consists of a transverso silit in the arch of the

generator close by the stoking place in combination
with the air inlet channel in the front wall of the with the air in
smoke casing.
1064 . Spect 1064. Spectacles, S ofenbacher-Dated 11th March The joint leaf is connected to the "side" or temple" by a screw pivot, so as to be able to vary
the angle of the glasses in respect to the sides or
comples. emples.
1065. Shere or Cast Iron Triss yor Roopisa, L
Gilquart.- Dated 11 th March, 1880.-(Not proceded
weith.) $2 d$.
The tiles are enamelied in both sides and have edges bent over one above and the other below, so a to overlap one another when placed in position. A
op is n hook to fasten the tiles to the laths, and in he middle about the top of each piece is rivetted in the groove a second ho
and hold the upper tile
 The upper part of the bracket containing the bush or is at right angles to the bush, and is hinged to a semicircular projecting bracket of a plate resting upon the bed plate of the bearng on who 1067. Generating Stean, F. J. Brougham.-Dated A quantity of water is forced by a force pump
between two boiler plates, almost touching and highly heated, whereby the water is converted into dry steam, which acts directly on the piston of the engine
the slide valve of which is aboulished. The feed pum

has a variable length of stroke, and measures the
necessary auantity of water to be converted int steam. A is the fire-box, B the steam converator, con sisting of two plates arranged closed to eachother, and
between which the water is forced by the pump $\mathrm{C} ; \mathrm{Bl}^{\mathrm{Bl}}$ is the chimney or flue for the escape of the pro
ducts of combustion, F is the engine, G the exhaus
valve. Filters, to., R. Schomburg.-Dated 11 hh March
1068. 1880.-(Not proceceded with.) 2d. The fitering medium consists of layers of slag wool
with layers of charcoal at the inlet end, in combina
tion with layers of spun glass at the outlet end. Tha tion with layers of spun glass at the outlit end. Th
inlet is formed at the lower end of the filtering 1070. Bioycles, D. T. T. Sparrove.-Dated 11th March, The small wheel is placed in front and forms the
shan strering wheel, whe steering is effected by a lever and
driving wheel. The connocting-rod at the height of the top of the steering
wheel. Tho propulsion is offected by treadle lever wheol. Tho propulsion is offected ry treadle Tevers
connected by cranks with the driving axles. The
socket and fork spindle, and the centre steering arrangements, are replaced by plates placed near th ront ond
being interposed, such plates being extended to pro vide the necessary leverage and connected with th
fork by a pin or bolt and nut.
 The axle arm adapted to rocolvo the bush securod to
the nave of the wheel is of wrought iro or gun-metal the navo ot tho whee the outer ond of the bush when
and projects byond
in position, the extended part being scrow-threaded and over it passes a collar with a bovelled inner sur-
face to fit on the outer end of the bush. The collar i

secured in position by a single scrow nut formed wit ane of which a key is passed. Two wheel plates are
provided on the under carriage, one attached to the top bed and the onder to the bortom bed, the upper
plate being made so as to cover the lower one plate being made so as to cover the lower one. The
drawing illustrates the axle Δ with its arm A^{1} prolonged drawing inustratest the axilo \mathbf{A} with its arm $\mathbf{A l}^{1}$ prolonged
and screw-threaded; B is the bush, \mathbf{C} the collar,
and D the nut, F , 1072. Broycles, \&c., A. Jennings. - Dated 12th March The driving wheel is actuated by colled or other
The springs, which are wound up or compressed by gea
ing operated by treadles worked by tho driver. 1073. Hoistisg or Loweriso Boats or Yards, E.
Bond.-Dated $12 \omega_{h}$ March, 1880 . $6 d$. A grooved pulley receives a loose endless rope for
actuating the apparatus, and is held by eyes or guards.
This pulley is connected by gearing with a wheel This pulley is connected by gearing with a whe
whose surface is formed to firmly hold the links of chain passing over it, and from which the bost is
suspended. Δ spring, block takes off sudden shocks. 1074. Plaitino Fabrics, N. Wilson.-Dated $12 t h$ March,
1880.
dd. A slotted vibrating lever works freely on one of the
feed roller shatts, and is actuated directly by a rod from an excentric on the fly-wheel shaft. This lever
carrics a pall lever and a detent lever, the former carrics a pall lover and a detent lover, the former
having double palls engaging with one or other of
two ratchet wheels with reversed teeth on the two ratchet wheels with reversed teeth on the axis of
one of the feed rollers. By varying the position of
the excentric rod in the slot of the lever the width of or carriers, as describod in paritent No. 1476, of the year 1877, the underlap is varied. An automatic leve trangement is employed for raising the presser bar
thement the plaiter or knifo aavances, theroby facilitating the
neath the bar.
1075. Boxes fon Muslins, \&o., G. Davica.-Dated 120 The box is of pasteboard, and has an opening cut in of the embroidery or other article is passed rond the flap, so that the pattern is seen through the front The back is provided with four flaps fortding inwards. xposes the whole of the goods.
1076. Fillino Botrles with Aerated Liguids, J.
McEioen and S. Spencer.-Dated 12th March, 1880.-

This consists in the application to a Paragon Turn orer Filling Machine of pin arrangement to throw the syrup pump out of goar when required to botlo sod
water only. 1077. Substitute ror Leather, Pabtenoard, \&c.,
T. L. Alemand. - Dated 12th March, 1880.-(Not Sawdust, oak bark, and all kinds of refuse matters in hide tanning are comprossed and rendered imputrescible and homogeneous by the aid of aggiom
such as tannate of kelatine and oxydated oils. 1078. Recoverina Soda Abi from Waste Liquors, The waste liguor flows from the supply tank through he tubes oin arning off furnace, and being heated steam generator, the steam from which passes to the first of a series of multiple effect vacuum pans, and
veaporate the liquor therein. The steam genorated
in this

Wiquor therein, and so on through the series of pans into the burning off furnace, where it is ignited and burnt. The vacuum engine is driven by the steam roduced in the generator. In the drawing A is the
iquor tank, B a surface condenser, C a tank to receive the liquor from the condenser, F^{\prime} is the steam gene-
rator, \mathbf{N} and \mathbf{R} tubes threugh which the liquor is pator, N and R tubes through which to heat it.
passer O8O. Hand Sianal Lamps, H. Defries.-Dated 12th In order to facilitate the raising and lowering of the coloured discs, E K the thumbpieces or catches are placed
above the haudles at the back of the lamp, and the

lasses or dises are connected to the thumb-pieces or catches by rods and links passing on either sido of
the lamp. The discs are shifted by pressing ou the
thumb-pieces or catches. F joint, Glink 1081. Telepphonic Apparatus, F. H. W. Higgins.DOATed 12th March, 1880.-(Not proceded with.) 2 .
The transmitter consists of a diaphragm, to the The transmitter consists of a diaphragm, to the
centre of which is attached a spindle passing through aro of which is attached a spindie passing thron, the ends of which rest on two blocks
of carbon between the rod and the diaphragm. The of carbon between the rod and the diaphragm. Tho
rod is pressed inwards and outwards by two spiral rod is pressed inwards and outwards by two spiral
springs on the spindle, which has nuts to adjust the springs on the spindio, which has nuts to adjust the
pressure of the springs. A Bell telephone is used as
the receiver, the vibration of which is increased by ncreasing the permanent magnetic stress upon diaphragmagm, is made of two iron plates comented
together. 1082
 Bars, tubes, or cylindors are drawn through dies by
means of a carriago upon a slide bed means of a carrigo upon a side bed, propelled by a
scrow, and when the carriage has travelled a certain distance it shifts a strapp and stops tho machine. I the article is round is is cansed to revolve during the
operation. Before ontering the dies the operation. Before ontering the dies the article moves
in contact with a cleaner, and then against an endless
俍 band covered with emery. If square or with other
number of sides the articlo requires turning number of sidos the article requires turning so that
each face may be operated upon. The dies are formed each face may be operated upon. The dies are formed
by making several apertures in the same plate, which
on being turned will bring any required aperture to the operating position
1083. Taps or apparatus for Drawino-ory Liemid
yrosks, Bottles
 A mental tube curve
other end through a central hole in a passes with it the bunghole of a cask or mouth of apper fitted in
certain distance from its open inner end it a certain distance from its open inner end is a partition
and on each side are holes. The cork has a lateral recess, which by turning the tube opens or shuts com 1084. E. Wher the in ber bottle. 1880. $6 d$.
The handle is fixed on a spindle separate from but in line with the screw, and the two are geared togethe may be multiplied, at will Longitudinal ribs or
shoulders are formed along the frame of the instrument shoulders aro formed along the frame of the instrument
forming a groove betweon them for the two parts forming a groove between them for the two parts
the chain to live in, and prevent any lateral displace ment of this part, of the chain which would tend to
drag the loop or bight of the chain out of the slot in he head of the frame.
1086. obtaining ammonia and Ammoniacal Salts

March, 1880.-- (A communicationns.) Gd.-Dated 13% The amroniacal liquid is drawn from the reservoi a by the pump b, as hoted pes through the worm D and
pipe C, where it is hoated, and then enters the vesse G, where it is still further heated by the worm
supplied with steam from the boiler A by the pipe H pipe. The 1 liquid then pansosg through the piler by
to the cistern, whence it is dity
chambers M by pipes, the chambers also being
heated by steam from the boiler \mathbf{A}, with which the dome B, in which they are placed, communicates.
These chambers are slighty inclined, zo that the liquid flows along the heated bottoms in a thin sheet
towards thoir lower extremity, being caused to flow a zig-zig direction, passing ulternately from one bamle plates, At the same timo a courrent of air is
Aused to pass through the chambers M from a fan

or blower in the opposite direction to the course he liqua, into the worm the air gerator. A portion of the steam is thereby con
densed in the worm, and the water and vapours then pass into chamber, the water escaping whist the air
with the uncondensed steam and ammonia passes
tind wirough tube and perforated bulb into the sulp pharsic
thrid in the vessel K , where the acid absorbs the
acid acid in the vessel K , where the acid absorbs the
ammonia. 1087. GLove Sprivos, J. Hinks and T. Hooper.-Dated
13th March, 1880. 4d. To reduce the friction of the two arms furming th spring, the washor whish secures the rivet in front is to afford space for a grease pad in the form of a ring, which surrounds the
rivet. The washer at the back of which it is enclosed rivet. The washer at the back of which it it enclosed
is countersunk on its face, so that the head of the rivet
is fush with the fee of the washer is flush with the face of the washer.
1088. Treativa Cane Jutce, ©c., yor Evapobatno
Purposes, F. G. Hatuey.-Dated 13 March, 1880 . This consists in the use of steam pipes or tubes
formed and arranged so as to prolong the aotion of the heat on the juice or hquor in its course along the March, 1880 . - (Not proceeded woith $) ~$
$2 d$.
This consists cessentially of a suitable flexible agent allowed to hang vertically or or nearly so from a a carrier
or carriers so as to have a free end or bight in the liquid of the wash tub or container. The articles to on washed are placed within the free end or bill
and a continuous alternating or rising and falling motion, or a combin.
to the flexible agent.
1090. Converting Skins into Leather, R. Brown
-Dated 13th March, 1880.-(Not proceeded with.)

The skins after being unhaired and subjected to the usual preliminary treatment aro steeped in a weak
solution of sulphuric, hydrochlorio, oxalic or acetio acid, and then in a solution of 5 to 10 parts bichro maintained at 80 to 100 deg . Fah. They are the steeped from twenty-four to forty. eight hours in a solution of 5 to 10 parts acetate or nitrate of lead in
100 parts water at 80 to 100 dog. Fah., after which 100 parts water at 80 to 100 dog. Fah., after whic
they are treated with a very weak solution of a sal 1091 Mac
 cutting principlos, a a cylindrical fulcrum, the doubholder
and tappet gear. The tool has two cutting edges and and tappot gear. The tool has two cutting edges and
cuts both on the and down strokes. The shank
passes through the holder and the olindrical fulerum The tool is a free fit on all its four sides in the fulcrum, and is secured by a scrow. The fulerum
cevolves in a hole in the holder in which it is held by

atail pin; and it is provided with a flange to whioh
be bent end of a tappet or fulcrum rod 18 attached by which a vibrating motion is imparted to the
fulcrum and tool. Tho tappet rod ts carried from fhe fulcrum and tool. Tho tappet rod is carried rome oentre, and out at the top end of a holdor
side to the
by a sliding block arraingement to enablo the holde ad tool to be set to cut at back or front, right or left otting or Ahaping machines the tappet and gear are o allow the holder, tappet rods, and tool with a slo across the face of the machine ram, 80 as t t older is fixed to the slotting michine ram by two pairs of gripping blooks.
1094. Core Ovess, W. O. Wood.-Dated 13th March,
1850. - Not procecded woith.) $2 d$. The blocks of which the arch of the oven is formed
have a longitudinal canal oxtonding from front to back and inclined upward from the lower half of the front
face to the upper half of the rear face, so as to direct
a current of air upward from the burning mass. This canal is traversed near each ond by a cross permornion, by the cross perforations. By inserting plugs into the canals the entrance of air may be regulated, or the air
may be made to traverse the whole or any number of may be m
the arch
the oven.
1095. Rasag Finders, T. Morgan
1880.- (A communication.) $6 d$.

The apparatus consists of two parts to be placed aternately at the two extremitios of a determined
base line. The first consists of two sighting lines-tele scopes \mathbf{B} and C or pinules on any suitable system-
rigidly connected together and arranged at an angle

which is never altered. One line of sight is directed on he desired object, and theothor along a given straight line. The two united telescopes are capable of three
different motions, i.e., two displacements parallel to of vertical planes passing through each of the not migh and a motiry motion round the right line which intersects these two planes. The second part is composed of a graduated bar, and may be arranged
similar to a stadia or levelling staff, or otherwise, with

or without a movable sliding vane and a vernier. Two upon the bar, commencing at zero. The drawing illustrates the two telescopes capable of three differont
motions and rigidly connnected at a determined anglo A, B. C, D, telescopes ; E F, spring jaws, by means of connected with the stand; $\mathrm{V}^{1} \mathrm{~V}^{2}$, adjusting screws
1096.
 The shaft A of the cowl fits on to the chimney top and has at its upper part an expanded portion or
chamber B contracted at tho top C to the diameter o the shaft or flue. Over the chamber B is a curve
portion D open at E and fitting over the chater portion D open at E and fitting over the chamber B

leaving a space between it and the chamber B at F
A dome or cover G is fixed over the chamber D. The eurved, the ther sides being flat, as shown, and on the oulge out
thee flat surfaces are fixed parts \mathbf{H} which butge and the flat
wards, leaving a space botween same wards, leaving a space botween same and the flat
surfaces. The arrows show tho direction of the
1097. Weiaunva And Messurino, M. B. Tetley,
Dated $13 h_{h}$ March, 1880 - (Not proceded vith) $2 d$ Dated 13th March, 1880.- (Not proceeded wilh) $2 d$
Δ scoop-shaped recoptace with a scalo of standard measures of capacity oxtending from top to bottom on
the inside has fixed to the bottom a handle containing the inside has fixed to the bottom a handle containing
a spring, the handle being in two parts sliding
ale the a spiral spring interposed between the two, so as to be
compressed by the weight of the contents of the receptacle. 13 Oh March, 1880 . - (4 communication.) 6d. The clay is placed in the mould without a bottom
fixed on pins on the table, capable of sliding on the sed. A piece of metal is placed on the mould and
orms the lid, its lower surface having the shape of

the dosired form of the upper edge of the articlo to be
moulded, and is so cut out at the centre as to loave a slight olearance botween it and the piston when the escape of superfluous olay. The casing, the table
and lid are firmly connected during the descent and lid are firmly connected du
the piston by the bars and bolts.

PRICES CURRENT

The following prices are corrected up to last night, but it should be borne in mind that in many cases
makers are prepared to quote different terms for spe makers are prepared to quote different terms ior spo-
cial contracts. It is obviously impossible to specify cial contracts. It is onviously impossible to specify
these cases and terms, or to give more than the market
quotations and makers' quotations and makers prices. Readers should also
refer to our correspondenta' letters.

PIG IRON AND PUDDLED BARS.

Tredegar-Monmouthshere
 $\begin{array}{ccccc}2 & \text { to } & 0 & 18 \\ 4 & \text { to } & 0 & 11 \\ 6 & \text { to } & 0 & 9 \\ 6 & \text { to } & 0 & 6 \\ 6 & 6 & \text { to } & 0 & 4 \\ 6 & \text { to } & 0 & 8 \\ 3 & \text { to } & 0 & 10 \\ 9 & \text { to } & 0 & 9 \\ 3 & \text { to } & 0 & 3 \\ 0 & \text { to } & 0 & 7 \\ 6 & 9 & \text { to } & 0 & 7 \\ 7 & 0 & \text { to } & 0 & 7 \\ 6 & 0 & \text { to } & 0 & 13 \\ 6 & 6 & \text { to } & 0 & 13 \\ 8 & 0 & \text { to } & 0 & 11 \\ 7 & 6 & \text { to } & 0 & 9 \\ 3 & 8 & \text { to } & 0 & 6 \\ 8 & 0 & \text { to } & 0 & 8 \\ 6 & 6 & \text { to } & 0 & 7 \\ 4 & 9 & \text { to } & 0 & 5 \\ 3 & 9 & \text { to } & 0 & 4 \\ 3 & 0 & \text { to } & 0 & 4\end{array}$
Olls, tun-
Linseed
ed, brown
Engl. nile
um, refined
$\begin{array}{cccccc}44 & 0 & 0 & \text { to } 44 & 10 & 0 \\ 28 & 10 & \text { to } & 28 & 15 & 6 \\ 29 & 10 & 0 & \text { to } & 29 & 15 \\ 31 & 0 \\ 0 & 10 & 0 & \text { to } & 31 & 0 \\ 0 & 0 & 98 & \text { to } & 0 & 0 \\ 10 & 97\end{array}$

- Supplied to railway companies and large woriks.

PRICES CURRENT OF TIMBER.
Teak, load.
Quebec pine
e, red.
yello
pitch
Hematire, at works, Millom
Messemer -
No. Ito No. 3
Forge, mottled and white
Maryport Hematite-No. 1 io
Puddied Bar-
Pudales-Rail quality, at works
$\begin{array}{lllllllll}\text { CLEVELAND, delivered on trucks } & 3 & 17 & 6 & \text { to } & 4 & 0 \\ \text { Clin }\end{array}$
quality, per ton 16 m ., plat.
3126 to 00

MANUFACTURED IRON

Ship, Bridge, and Mast Plates
GLAsoow, to.b.i. per ton
WALEs-At works, net...
MIDDLEsBROUOH, in trucks, at

$\underset{\text { Weish }}{\text { Boller Plates- }}$

 Siefrield
Bowlina and Low Moor-
Under $2 \downarrow$ cwt. each, up $\begin{array}{lllllll}8 & 0 & 0 & \text { to } & 10 & 10 \\ 0 & 0 & 0 & \text { to } & 8 & 5 \\ 0 & 10 & 0 & \text { to } & 1 & 5\end{array}$ 4 cwt. per owt.
4 cwt. up to 7 ewt.and upwards STAFYORDSHRE, per ton
MIDDLESBROUGB, free on trucks
GLASLow, $\begin{array}{lllll}1 & 2 & 0 & \text { to } & 1 \\ 1 & 10 & 0 & \text { to } \\ 9 & 0 & 0 & \text { to } & 12 \\ 7 & 0 & 0 & \text { to } & 9 \\ 7 & 10 & 0 & \text { to } & 8\end{array}$ Angle Iron- Bowlino and Low Moor, per

MISCELLANEOUS METALS

Copper-Chili bars perton	
British cake and inBest selected	
British sheets, strong.	
in-straits .. ${ }^{\text {a }}$	
British blocks, refined	
Lead-Spanish pig	
Sheet lead..	
White lead	
Spelter-silesian Zinc English sheet	
Phosphor Bronze-per ton-	

 Phosphor Bronze-per tonBearing me
Other alloys $\begin{array}{ccccc}0 & 0 & 0 \text { to } 112 & 112 \\ 120 & 0 & 0 & 0 \\ 0\end{array}$

COAL, COKE, OIL, \&o.

Doke- Durham
 Derbyshifo Bhoffield, melting
 $\underset{\text { Tredegar }}{\substack{\text { Tales-Rhonddä } \\ \text { and }}}$

988%
$06 \% 7$
$000 ?$

Visits to the Provinco
Dutch Trials of Pronectiles." (iliustrated.) \because_{277}^{2777}
 CRAB BUCKET CRANE, (illustrated.) Soap Makina. (Illustrated.)
Dusseldonf Exhibrion. (Illastrated.)...
.
 way. (Illustrated) Explosions in Coal Mines.
Giant's Caubeway Tramway
Contracts Open. (Illustrated)

King's College, London
The Photophove. (Illustrated.)
Report on the Thunderer Gun
Letrers to the Ediror
Cold Air Machines

Notes and Memoranda
Miscellanea
Leadino artion
The Portication of London Focs

 Future of
Literature-
War Ships
$\underset{\substack{\text { Kin } \\ \text { Result } \\ \text { R }}}{ }$
R. Kohrn ... Theorie des Bruckenbaus. By

The Iron, Coal, and Gereral Trades of
Birminohas, Wolverhampton, AND other
Districts Districts
Notes Froa
Notes from Lancashire
Notes From the Sheftel $\ddot{0}$ Distriot
Notes from the North of England

Eprs's Cocoa.-Graterul and Comforting which a thorough knowledge of the natural laws nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epp has provided our breakfast tables with a delicately flavoured beverage which may save ui many heavy doctors' bills. It is by the judiciou may be gradually built up until strong enough t may be gradually built up until strong enough to
resist every tendency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point. We may escape many a fatal shaft by keeping ourselve well fortified with pure blood and a properly nourished frame."- Civil Service Gazele. - Jo. of Epps's Chocolate Essence for afternoon use.

[^0]: THis crane has been designed specially to make the bucket or grab self-acting - to open and close and to fill and empty itself autematically. The bucket may be used for discharging grain, coal, or sand, \&c., as well as for dredging purposes, work, also for lifting coke and other gaterial of a like nature. The crane as shown is fitted with two chain barrels as seen on annexed sketch, and the bucket or grab is worked in the following manner:-The top barrel marked A and

