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Abstract

Robin Hudson’s work on quantum central limit theorems, quantum
Brownian motion, quantum stopping times and “formal” quantum
stochastic calculus is reviewed and reappraised.

1 Introduction

Quantum stochastic calculus was created by Robin Hudson and K.R.
Parthasarathy. The key paper which contained almost all the basic results
was published in 1984 in “Communications in Mathematical Physics” [19].
Here we find, in particular, the construction of quantum stochastic integrals,
quantum Itôs formula, the existence and uniqueness of linear quantum sto-
chastic differential equations (QSDEs), necessary and sufficient conditions
for unitarity of solutions and the dilation of quantum dynamical semigroups
(at least for one degree of freedom). In this article I will focus on the “pre-
history” of quantum stochastic calculus with a particular emphasis on Robin
Hudson’s contribution. This will cover work that was published in the period
1971-84. As can be seen by a quick journey to MathSciNet, this was a highly
productive period for Robin. I am not going to survey all his papers from this
period in this article or even all of those that he wrote in the area of quantum
probability. What I will present is four key milestones - the quantum central
limit theorem, quantum Brownian motion, quantum stopping times and the
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heuristic version of quantum stochastic calculus that preceded its rigorous
development in [19].

A brief comment on the title. In the ancient Chinese philosophy of Tao-
ism, the mysterious tao is often described (at least in contemporary English
translation) as a “pathless path”. Of course in quantum theory, a parti-
cle does not have a “path” in the usual sense and consequently path space
techniques are inappropriate tools for studying quantum processes.

Notation. If H is a complex Hilbert space then B(H) is the algebra of
all bounded linear operators on H. If T is a densely defined closeable linear
operator defined on H with adjoint T †, then any proposition involving T#

should be read twice, once for T and once for T †.

2 Quantum Central Limit Theorem

Robin’s first paper on quantum probability was joint work with his PhD
student Clive Cushen [9]. The opening words of the introduction to this paper
are almost a clarion call for quantum probability: “In recent years there has
been an increasing awareness that the foundations of quantum mechanics lie
in a non-commutative analogue of axiomatic probability theory.” In order
to formulate a quantum central limit theorem (CLT), Cushen and Hudson
first needed to decide what should a “quantum random variable” be and how
could a sequence of these be “identically distributed and independent”? The
basic (bosonic) quantum random variable is a canonical pair (q, p) of linear
self-adjoint operators acting in a complex Hilbert space H and satisfying the
Heisenberg commutation relation

[p, q] := pq − qp = iI,

on a suitable dense domain. The distribution of the pair (q, p) is determined
by a mixed state which is identified with its density operator ρ. Now consider
an infinite sequence ((qn, pn), n ∈ N) of such canonical pairs satisfying

[qi, qj] = [pi, pj] = 0; [pi, qj] = iδijI,

for each i, j ∈ N and equipped with the state ρ. They are said to be indepen-
dent if all finite subsets are independent in the sense that if A ⊂ N is finite
with A = {i1, . . . , iN} then ρA is unitarily equivalent to ρi1 ⊗ · · · ⊗ ρiN . Here
ρA is the reduced density operator defined on L2(RN) by

tr(ρAT ) = tr(ρι(T )),
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for all T ∈ B(L2(RN)) and ι is the canonical embedding of B(L2(RN)) into
B(H) that is determined by von Neumann’s uniqueness theorem. The re-
duced states ρi1 , . . . , ρiN are similarly obtained by taking A = {i1}, . . . , {iN}
(respectively). The sequence ((qn, pn), n ∈ N) comprises identically distrib-
uted quantum random variables if ρi1 = · · · = ρiN for every finite set A ⊂ N.
Now we average. For each n ∈ N, define

pn =
1

n
(p1 + · · ·+ pn), qn =

1

n
(q1 + · · ·+ qn).

It is easy to see that (qn, pn) form a canonical pair and the main result of
the paper is to prove the quantum central limit theorem:

lim
n→∞

tr(ρnT ) = tr(ρσT ), (2.1)

for all T ∈ B(L2(R)). Here ρn is the reduced density operator corresponding
to the canonical pair (qn, pn) and ρσ is a quantum Gaussian state on L2(R),
i.e. a thermal state of the quantum harmonic oscillator having variance
σ ≥ 1 (see Example 2 in [3] for insight into the sense in which this state is
“Gaussian” and [28] for an expository account of quantum Gaussian states.)

A key ingredient in the proof is the use of what are here called quasi-
characteristic functions which are defined for x, y ∈ R by

fp,q(x, y) = tr(ρUx,y),

where U(x, y) = ei(xp+yq) is the Weyl operator. Indeed the authors establish a
Glivenko-type convergence theorem to the effect that for (qn, pn) to converge
“in distribution” (i.e. in the sense of 2.1) it is sufficient for the associated
sequence of quasi-characteristic functions to converge pointwise to a function
on R2 that is continuous at the origin.

This paper was followed by the fermionic version [13]. In this case, the
appropriate analogue of the canonical pairs are fermionic annihilation and
creation operators (an, a

†
n), n ∈ N) which satisfy the canonical anticommuta-

tion relations (CARs):

{ai, aj} = {a†i , a†j} = 0; {ai, a
†
j} = δijI,

for i, j ∈ N, where {A,B} := AB+BA is the “anticommutator”. Once again
we get a new representation of the CARs by averaging:

a#
n :=

1

n
(a#

1 + · · ·+ a#
n ),

and the fermionic central limit theorem yields convergence of corresponding
reduced states to a fermionic quasi-free state (i.e. a fermionic Gaussian).
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In this work, the key tool was cumulants rather than quasi-characteristic
functions. The development of the appropriate fermionic version of the latter
required the use of Grassman algebra techniques [2].

The Cushen-Hudson work is without doubt a landmark paper, and not
just for its influence on quantum probability. The study of quantum central
limit theorems is a flourishing enterprise in its own right which has attracted
the attention of a large number of authors since the early 1970s, see e.g.
[11], [10], [12] and [21]. Indeed the recent article [21] lists seven distinct
areas in which quantum central limit theorems have been developed and
applied including quantum information theory, graph theory and combina-
torics. K.R.Parthasarathy told the author1 that “reading this paper for the
first time deeply influenced his subsequent mathematical life” (sic.)

3 Quantum Brownian Motion

The first paper to study quantum Brownian motion was published by Robin
together with another of his PhD students2 Anne Cockcroft in 1977 [7]. In
this paper, the passage of time is modelled by the closed interval [0, 1] ,
but the authors could just as easily used R+ := [0,∞) and this became
the standard choice in later work. A quantum Brownian motion3 is a pair
(P (t), Q(t), t ∈ [0, 1]) of self-adjoint operator-valued functions acting in a
complex Hilbert space H together with a distinguished vector ψ to determine
expectations such that:

(i) [P (s), P (t)] = [Q(s), Q(t)] = 0; [P (s), Q(t)] = is ∧ t

for all s, t ∈ [0, 1].

(ii) P (0) = Q(0) = 0.

(iii) For ∆ := (a, b] ⊂ [0, 1], define the canonical pair (p∆, q∆) by

p∆ :=
p(b)− p(a)√

b− a
, q∆ :=

q(b)− q(a)√
b− a

.

For arbitrary pairwise disjoint (∆n, n ∈ N), the sequence

((p∆n), q∆n)), n ∈ N) consists of independent and identically distributed
(i.i.d.) canonical pairs having quantum Gaussian distributions with
mean 0 and variance σ2 ≥ 1 in the state determined by ψ.

1E-mail communication in April 2010
2Robin has always been extremely generous in sharing his ideas with others and many

PhD students, including the author, have been beneficiaries of this largesse.
3In [7] the authors used the terminology “quantum Wiener process”, but “quantum

Brownian motion” became the preferred usage amongst practitioners.
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Note that each of (Q(t), t ≥ 0) and (P (t), t ≥ 0) are separately equiv-
alent to the probabilist’s Brownian motion but the non-trivial commuta-
tion relation in (i) ensures that these are not simultaneously diagonisable.
The key probabilistic input of the definition is in (iii) which extends to a
non-commutative framework the fact that a “classical” Brownian motion
(B(t), t ≥ 0) has stationary and independent increments with each random

variable B(t)−B(s)√
t−s

∼ N(0, σ2).
The main result of this paper is to show that any quantum Brownian mo-

tion is unitarily equivalent to the pair of “co-ordinate” and “momentum” field
operators which are indexed by the indicator function 1[0,t) and are associ-
ated to a cyclic representation of the extremal universally invariant quasi-free
state ωσ on the Weyl CCR algebra over H defined on Weyl operators W (f)
by

ωσ(W (f)) = e−
1
2
σ2||f ||2

for each f ∈ H. The case σ = 1 is the Fock state.
In later years, the development of quantum stochastic calculus, made it

more convenient to identify quantum Brownian motion with the annihila-
tion/creation operator valued process (A(t), A†(t), t ≥ 0) defined by

A(t) =
1√
2
(Q(t) + iP (t)), A†(t) =

1√
2
(Q(t)− iP (t)),

which satisfy the commutation relations (CCRs):

[A(s), A(t) == [A(s)†, A(t)†] = 0, [A(s), A†(t)] = s ∧ tI,

for all s, t ≥ 0. The Cockroft-Hudson theory then tells us that every quantum
Brownian motion for which σ = 1, is unitarily equivalent to (a(1[0,t)), a

†(1[0,t)),
t ≥ 0) where a(·), a†(·) are the Fock annihilation and creation operators
acting in boson Fock space Γ(L2(R+)) with distinguished vector the Fock
vacuum Ω. When σ > 1, quantum Brownian motion is often said to be “non-
Fock”. In this case, the reference Hilbert space is Γ(L2(R+)) ⊗ Γ(L2(R+))
and we have

A(t) = λa(1[0,t))⊗ I + µI ⊗ a†(1[0,t)), A
†(t) = λa†(1[0,t))⊗ I + µI ⊗ a(1[0,t)),

where λ2 − µ2 = 1, λ2 + µ2 = σ2. The distinguished vector is Ω ⊗ Ω. The
non-Fock quantum Brownian motions have a deep and beautiful mathemat-
ical structure (see e.g. [16]) and it may well be that they haven’t yet been
exploited to their full potential.

The Cockcroft-Hudson paper is justly celebrated as marking the birth of
quantum Brownian motion. Perhaps less well-known is the follow-up paper
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[8] by the same authors (but now augmented with S.Gudder) which directly
followed it in the same volume of the “Journal of Multivariate Analysis”.
Here the authors establish a functional central limit theorem for quantum
Brownian motion. The set-up is as follows. Suppose that we have a sequence
of canonical pairs ((pn, qn), n ∈ N) that are i.i.d. with respect to a state ω
for which

ω(qn) = ω(pn) = ω({pn, qn}) = 0; ω(q2
n) = ω(p2

n) = σ2,

for all n ∈ N, where σ2 ≥ 1. For each t ∈ [0, 1] consider the operators defined
by

Pn(t) =
1√
n

(p1 + · · ·+ p[nt] + (nt− [nt])p[nt]+1),

Qn(t) =
1√
n

(q1 + · · ·+ q[nt] + (nt− [nt])q[nt]+1).

It follows that for each s, t ∈ [0, 1]

[Pn(s), Pn(t)] = [Qn(s), Qn(t)] = 0, [Pn(s), Qn(t)] = i(s ∧ t + rn),

where limn→∞ rn = 0. The authors demonstrate that the sequence ((Pn, Qn),
n ∈ N) converges “weakly” to quantum Brownian motion of variance σ2. A
large part of the paper grapples with the question of what weak convergence
might mean in this context. The authors build an elaborate technical appa-
ratus which inter alia requires the “compact uniform closure” of a C∗-algebra
with respect to a sequence of states. Readers who want to know more about
this are referred to the original paper.

The importance of the Cockroft-Hudson paper [7] lies firstly in its identi-
fication of what would become two of the key fundamental noise processes of
quantum stochastic calculus and secondly in providing a model for latter ver-
sions of non-commutative Brownian motions appearing in different contexts
such as the fermionic [2], free [32], “twisted” [6] and monotone [25]. There
have not been many developments in the literature on quantum probabilistic
properties of quantum Brownian motion outside its use as noise in quantum
stochastic calculus, although a recent paper by the author [3] has established
a Lévy-Cielsielski type series expansion in terms of a Schauder system. On
the other hand, classical Brownian motion remains a topic of intense study
for classical probabilists as it continues to yield deep and fascinating secrets
(see e.g. [26] for an account of recent progress.) Is quantum probability
missing an opportunity here?
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4 Quantum Stop Times

Stopping times play a very important role in classical probability, proba-
bilistic potential theory and many applications (e.g. consider the problem of
pricing an American option in mathematical finance.) In the classic book by
Chris Rogers and David Williams there is a wonderful quote from Sid Port
that I can’t resist including here (see [30], p.9 4): “The one thing probabilists
can do which analysts can’t is stop - and they can never forgive us for it.”

In [14] Robin introduced the concept of a quantum stopping time and
proved the strong Markov property for quantum Brownian motion. Before
going on to describe this it may be worth recalling the classical result. Let
(B(t), t ≥ 0) be a Brownian motion defined on a probability space (Ω,F , P )
and adapted to a filtration (Ft, t ≥ 0). Let T be a stopping time, i.e. a
random variable defined on Ω that takes values in [0,∞] such that the event
(T ≤ t) ∈ Ft for all 0 ≤ t < ∞. The strong Markov property asserts that
(B(T + t) − B(t), t ≥ 0) is a Brownian motion adapted to the filtration
(FT+t, t ≥ 0) and independent of FT := {A ∈ F , A∩ (T ≤ t) ∈ Ft for all t ≥
0}.

In [14] Robin works with the quantum Brownian motion (P (t), Q(t)), t ≥
0) of variance σ2 ≥ 1 with distinguished state vector ψ. The role of the
σ-algebra is played by the von Neumann algebra N := {P (t), Q(t), t ≥ 0}′′,
i.e. the smallest von Neumann algebra containing all the spectral projections
of the P s and Qs and a filtration in this context is the family of increasing
sub-algebras (Nλ, λ ≥ 0) where Nλ := {P (t), Q(t), 0 ≤ t ≤ λ}′′. A stopping
time T is then a positive self-adjoint operator having spectral decomposition
T =

∫∞
0

λdE(λ) which is such that E(λ) ∈ Nλ for all λ ≥ 0.5 At least
formally the random time-shifted quantum Brownian motion should be

PT (t) :=

∫ ∞

0

(P (t + λ)− P (λ))dE(λ), QT (t) :=

∫ ∞

0

(Q(t + λ)−Q(λ))dE(λ)

for each t ≥ 0. In order to give these formal expressions a rigorous mean-
ing, Robin defines them indirectly as infinitesimal generators of the unitary
operator-valued spectral integrals defined for each x ∈ R by

UP (t)(x) :=

∫ ∞

0

eixP (t+λ)e−ixP (λ)dE(λ), VQ(t)(x) :=

∫ ∞

0

eixQ(t+λ)e−ixQ(λ)dE(λ),

(4.2)

4The page reference is to the Cambridge University Press edition.
5Later literature on quantum stop times usually defined these directly in terms of

projection-valued measures - see e.g. [29].
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so (UP (t)(x), x ∈ R) and (VQ(t)(x), x ∈ R) are each strongly continuous one-
parameter unitary groups and we have

UP (t)(x) = eixP (t), VQ(t)(x) = eixQ(t),

for each t ≥ 0, x ∈ R. Much of the technical work in the paper involves the
construction of integrals of the type considered in (4.2) as limits of Riemann
sums in the strong operator topology.

Before we can state the quantum strong Markov property, we need the
concepts of pre-T and post-T von Neumann algebras which we’ll denote as
NT ] and N[T respectively. These are defined by

NT ] := {A ∈ N , AE(λ) = E(λ)A ∈ Nλ for all λ ≥ 0},
N[T := {PT (t), QT (t), t ≥ 0}′′.

The strong Markov property states that NT ] and N[T are independent in
the state ψ 6 and that ((PT (t), QT (t)), t ≥ 0) is a quantum Brownian motion
of variance σ2.

A corresponding strong Markov property was established by the author
for fermion Brownian motion in [2]. A key later development of quantum
stopping times was the paper [29] by Parthasarathy and Sinha in which
the tensorial factorisation of Fock space over L2(R+) corresponding to the
splitting f → f1[0,t) + f1[t,∞) was extended to the case where t is replaced
by a quantum stopping time. Another paper worth mentioning (which sadly
has never been followed up in the literature) is a very interesting study of
first exit times by J.-L.Sauvageot [31]. Although there has continued to be
sporadic work on quantum stopping times (see e.g. [15] for a recent survey
article by Robin) it seems that a breakthrough is still needed to forge it into
a tool that is of similar value in quantum probability to its commutative
counter-part.

5 Formal Quantum Stochastic Calculus

In the last part of this survey I will focus on work carried out during the
early 1980s. A great deal of the standard conceptual structure of quan-
tum stochastic calculus was developed by Robin and co-workers (principally
K.R.Parthasarathy and R.F.Streater) from a heuristic viewpoint. The rigor-
ous development came a lot later. In many ways these formal calculations
(which are quite satisfactory to most physicists) constitute the essence of the
subject.

6i.e. 〈ψ, ABψ〉 = 〈ψ, Aψ〉〈ψ, Bψ〉 for all A ∈ NT ], B ∈ N[T .
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At this time, the basic quantum processes were understood to be the an-
nihilation/creation pair (A(t), A†(t), t ≥ 0) (where A#(t) = a#(1[0,t)) acting
in boson Fock space Γ(L2(R+)) and equipped with the vacuum vector to
determine expectations. The filtration was induced by the canonical isomor-
phism between Γ(L2(R+)) and Γ(L2([0, t)))⊗ Γ(L2([t,∞)) which maps each
exponential vector e(f) to e(f1[0,t)) ⊗ e(f1[t,∞)). In order to define formal
quantum stochastic integrals we write “dA#(t) := a#(1[t,t+dt))”. Everything
follows from the eigenrelation:

A(t)e(f) =

(∫ t

0

f(s)ds

)
e(f),

for each f ∈ L2(R+). Taking a deep breath, we then find that formal differ-
entiation yields:

dA(t)e(f) = f(t)e(f)dt, (5.3)

and so for suitable operator-valued processes (F (t), t ≥ 0) we can define
the quantum stochastic annihilation integral

∫ t

0
F (s)dA(s) by its action on

exponential vectors:
(∫ t

0

F (s)dA(s)

)
e(f) =

(∫ t

0

F (s)f(s)ds

)
e(f).

The creation integral is obtained by formal adjunction:
〈

e(f),

(∫ t

0

G(s)dA†(s)
)

e(g)

〉
=

〈(∫ t

0

G†(s)dA(s)

)
e(f), e(g)

〉

=

∫ t

0

f(s)〈e(f), G(s)e(g)〉,

for each f, g ∈ L2(R+). The celebrated quantum Itô formula is summarised
in the following table:

dA†(t) dA(t) dt

dA(t) dt 0 0
dA†(t) 0 0 0

dt 0 0 0

These formal relations are suggested by the following type of calculation
using the CCRs and (5.3):

〈e(f), dA(t)dA†(t)e(g) = dt〈e(f), e(g)〉+ 〈e(f), dA†(t)dA(t)e(g)〉
= dt〈e(f), e(g)〉+ 〈dA(t)e(f), dA(t)e(g)〉
= (dt + o(dt))〈e(f), e(g)〉
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The preceeding heuristic calculations were all given a precise rigorous
meaning in the seminal paper [19].

The non-trivial Itô correction term dA(t)dA†(t) = dt will only contribute
to formal differentiation of terms that violate Wick ordering. This insight
was the basis of a short note by Hudson and Streater [20] whose title says
it all - “Itô’s formula is the chain rule with Wick ordering.” They consider
processes that take the Wick-ordered form

M(t) :=
∑

j

cjfj(A(t)†, t)gj(A(t), t),

where each cj ∈ C and fj and gj are smooth. Define formal partial derivatives
by

∂M(t)

∂A(t)†
:=

∑
j

cj∂1fj(A(t)†, t)gj(A(t), t),
∂M(t)

∂A(t)
:=

∑
j

cjfj(A(t)†, t)∂1gj(A(t), t)

and
∂M(t)

∂t
:=

∑
j

cj[∂2fj(A(t)†, t)gj(A(t), t) + fj(A(t)†, t)∂2gj(A(t), t)],

where for i = 1, 2, ∂i denotes partial differentiation with respect to the ith
variable. The authors then show that

dM(t) =
∂M(t)

∂A(t)†
dA†(t) +

∂M(t)

∂A(t)
dA(t) +

∂M(t)

∂t
dt.

In the two papers [17] and [18], Hudson and Parthasarathy investigate
quantum diffusions. These are prototypes for the quantum stochastic processes
(in the sense of [1]) that eventually became know as quantum stochastic flows
or Evans-Hudson flows (see e.g. [24] and [27]). The authors work in the space
h := h0 ⊗ Γ(L2(R+)) where h0 is a complex, separable Hilbert space which
carries a representation of the CCRs. So we have a pair (a, a†) of mutually
adjoint linear operators acting in h0 and satisfying [a, a†] = 1. This bosonic
system is then perturbed by quantum noise under the constraint that the
commutation relation is preserved in time. So we obtain mutually adjoint
processes (a#

t , t ≥ 0) that satisfy [at, a
†
t ] = 1 for all t ≥ 0. These are required

to be adapted to the Fock filtration in that each a#
t = a#

1 (t)⊗ I where a#
1 (t)

operates non-trivially on h0 ⊗ Γ(L2([0, t))). The form of the perturbation is
given by

dat = F (t)dA(t) + G(t)dA†(t) + H(t)dt,

and applying quantum Itô’s formula to the CCRs yields the restraint equa-
tions (which are to be read pointwise in t):

10



[F, a†] = [a,G†] = 0,

[H, a†] + [a,H†] = F †F −GG†.

Furthermore they obtain formal conditions for the dynamics to be induced
by a unitary operator-valued process (U(t), t ≥ 0). Indeed the unitarity
requirement implies the form:

dU(t) = U(t)

(
LdA†(t)− L†dA(t) +

(
iH− 1

2
L†L

)
dt

)
,

with U(0) = I, where L and H are (ampliations of) linear operators acting
on h0 with H being formally self-adjoint. In order to obtain

a#(t) = U(t)(a# ⊗ I)U(t)†

for all t ≥ 0, it is shown that we must have

F = [L, a], G = [a, L†], H = i[H, a]− 1

2
(L†La− 2L†aL + aL†L),

so H = L(a) where L is the Lindblad generator. Indeed it is precisely the
generator of the quantum dynamical semigroup (Tt, t ≥ 0) defined by

Tt(X) = E0(U(t)(X ⊗ I)U(t)†),

for each X ∈ B(h0), where E0 denotes the vacuum conditional expectation.
A fermionic version of some of these ideas was developed in [4].

As was pointed out above, these ideas were made fully rigorous in [19]
which also introduced the conservation process7 into quantum stochastic cal-
culus and thus completed the trio of basic integrators. The theory developed
therein has been described and extended in a number of monographs and
surveys (see e.g. [27], [24], [5], [23]) so the reader will surely forgive me if I
stop at this point.

In conclusion, the period 1971-1984 saw a remarkable period of activity
from Robin and his collaborators which led from the quantum central limit
theorem to quantum Brownian motion and then to the development of quan-
tum stochastic calculus. It is perhaps a little unfair to compare this to the
gap between the first use of the central limit theorem by Abraham de Moivre
in 1733 and the discovery of stochastic calculus by Kiyosi Itô in the 1940s
(see [22] for a concise historical account of developments leading to the birth
of the latter), nonetheless it is certainly a considerable achievement.

7Sometimes called the “gauge” or “number” process
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[6] M.Bożejko, R.Speicher, An example of a generalized Brownian motion,
Commun. Math. Phys. 137, 519-31 (1991)

[7] A.M.Cockroft, R.L.Hudson, Quantum mechanical Wiener processes, J.
Mult. Anal. 7, 107-24 (1977)

[8] A.M.Cockroft, S.P.Gudder, R.L.Hudson, A quantum mechanical func-
tional central limit theorem, J. Mult. Anal. 7, 125-49 (1977)

[9] C.D.Cushen, R.L.Hudson, A quantum-mechanical central limit theorem,
J. Appl. Prob. 8, 454-69 (1971)

[10] T.C.Dorlas, A non-commutative central limit theorem, J. Math. Phys.
37, 4662-82 (1996)

[11] N.Giri, W. von Waldenfels, An algebraic version of the central limit
theorem, Z. Wahrsch. verw. Geb. 42, 129-34 (1978)

[12] D.Goderis, A.Verbeure, P.Vets, Non-commutative central limits, Probab.
Th. Rel. Fields 82, 527-44 (1989)

[13] R.L.Hudson, A quantum-mechanical central limit theorem for anti-
commuting observables, J. Appl. Prob. 10, 502-9 (1973

[14] R.L.Hudson, The strong Markov property for canonical Wiener
processes, J. Funct. Anal. 34, 266-81 (1979)

12



[15] R.L.Hudson, Stop times in Fock space quantum probability, Stochastics
79, 383-91 (2007)

[16] R.L.Hudson, J.M.Lindsay, A non-commutative martingale representa-
tion theorem for non-Fock quantum Brownian motion, J. Funct. Anal.
61, 202-21 (1985)

[17] R.L.Hudson, K.R.Parthasarathy, Quantum diffusions, in Theory and
application of random fields (Bangalore, 1982), 111–121, Lecture Notes
in Control and Inform. Sci., 49, Springer, Berlin, (1983)

[18] R.L.Hudson, K.R.Parthasarathy, Construction of quantum diffusions,
in Quantum probability and applications to the quantum theory of ir-
reversible processes (Villa Mondragone, 1982), 173–198, Lecture Notes
in Math., 1055, Springer, Berlin, (1984)

[19] R.L.Hudson, K.R.Parthasarathy, Quantum Itô’s formula and stochastic
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