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A QUEUEING ANALYSIS OF HASHING WITH LAZY DELETION*

JOHN A. MORRISONTY, LARRY A. SHEPPt Anp CHRISTOPHER J. VAN WYKT

Abstract. Hashing with lazy deletion is a simple method for maintaining a dynamic dictionary: items
are inserted and sought as usual in a separate-chaining hash table; however, items that no longer need to
be in the data structure remain until a later insertion operation stumbles on them and removes them from
the table. Because hashing with lazy deletion does not delete items as soon as possible, it keeps more items
in the dictionary than methods that use more careful deletion strategies. On the other hand, its space
overhead is much smaller than those more careful methods, so if the number of extra items is not too large,
hashing with lazy deletion can be a practical algorithm when space is scarce. In this paper, we analyze the
expected amount of excess space used by hashing with lazy deletion.
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1. Introduction. The strategy of hashing with lazy deletion was proposed by Van
Wyk and Vitter [1] for use in the following situation:

A sequence of items is given; each item includes a search key, a starting time,
and an expiration time. The items arrive in the order of their starting times, and
each item must be kept in a dynamic dictionary (available for searching) until the
arrival of an item whose starting time is later than the item’s expiration time.

Algorithms that delete items as soon as possible have unacceptably high overhead in
space [1], even though they require less storage space for the items themselves. Hashing
with lazy deletion means keeping the items hashed by search key in a table of linked
lists (separate chains); each time an item is added to a list, any items on that list that
the new item shows to be expired are deleted from that list. This deletion procedure
is “lazy” because there is no separate operation associated with clearing expired items
out of the table: expired items are only deleted when they are encountered during an
insertion operation.

Hashing with lazy deletion was used to solve a geometric adjacency problem that
arose in the analysis of integrated circuits [2]. The items were line segments in the
plane: starting time corresponded to minimum Xx-coordinate, expiration time to
maximum x-coordinate, and search key to y-intercept. At any abscissa x all segments
that cross the vertical line at x must be in the dictionary. The artwork for a chip of
modest size (around 100,000 transistors) can involve three to ten million line segments.
But it is reasonable to expect that at most 50,000 segments cross any vertical line, so
the dictionary only needs to store about 50,000 segments. Hashing with lazy deletion
uses 24 bytes per segment, while hashing with careful deletion requires 36 bytes per
segment. Thus, using careful deletion, the dictionary can fill around 1.8 megabytes;
even if hashing with lazy deletion keeps 20% more segments in the dictionary than
are necessary, and thus requires 1.44 megabytes plus the size of the hash table, it still
uses less space than the careful deletion strategy.

Given a sequence of items, let N(¢) be the number of items that start at or before
time ¢ and expire at or after time . The statement of the problem requires that these
items be in the dictionary at time ¢, so any algorithm used to solve this problem must
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use space proportional to N(t) at time ¢; in this sense, an algorithm whose space
complexity is N(t) for all ¢ has optimum space complexity. Given the same sequence
of items and the number H of buckets in a hash table being managed with lazy deletion,
let Uy (t) be the number of items present in the table at time ¢; Uy(?) is the space
complexity of hashing with lazy deletion. Note that for all H and all ¢, Uy (#)= N(¢).

Under the assumptions that the starting times of items form a Poisson process,
that item life-times are independent and exponentially distributed, and that the hash
function is uniform on the search keys, Van Wyk and Vitter showed that the expected
value of Uy (t) is H more than the expected value of N(¢). This suggests that it is
possible to choose H so that the expected search time is constant while space complexity
is little more than optimum.

In this paper we obtain more information about the space complexity of hashing
with lazy deletion by studying the values of max, N(¢) and max, Uy (t), where0=t=T.
The quantity max, N(¢) is a lower bound on the space required by any algorithm that
solves the problem, while max, Uy(t) is the space required by hashing with lazy
deletion using H buckets. Suppose the amount of space available to solve the problem
is S. If max, Uy (t) > S = max, N(t), then hashing with lazy deletion cannot solve the
problem even though an algorithm with a more careful deletion strategy could solve
the problem in space S. Hence we wish to study the amount by which max, Uy(?)
exceeds max, N(t); note that the expressions N(¢) and Uy(t) may attain their maxima
at different values of ¢

In §2 we derive an expression for max, N(¢) using techniques from queueing
theory. In § 3 we derive an expression for max, U, (t) by studying the following queueing
problem:

The door of a bank is locked from the inside, so customers can enter at any time,
but customers who have completed their transactions must wait in the lobby for
an arriving customer before they can leave; assuming that customers are served
immediately, what is the total number of customers—in service and waiting to
leave—in the bank?

This queueing problem directly models the behavior of hashing with lazy deletion
using a single bucket (H =1). Section 4 shows how the results in §§ 2 and 3 provide
bounds on the space complexity of hashing with lazy deletion using H buckets. Section
5 presents some numerical results.

2. Analysis of N(f). We first consider the case of an M/M/ queue, with Poisson
arrival rate A, and mean service time 1/u. The equilibrium probability p; that there
are j customers in the system is [3]

(2.1) pi= e"“, =—,

Let N(t) denote the number of customers in the system at time . We are interested
in the distribution of maxy<,<r N(t), given that the system is in equilibrium at ¢ =0.
Let s;,(¢) denote the density of the passage time from j to k. Now, maxXo<,=1 N(?)
will be less than k if, and only if, the system is initially in some state j <k, and the
passage time from j to k is greater than T. Hence,

I,(T)=Pr {OmaxT N(t) <k|equilibrium at t = 0}
=t=

(2.2)

k-1

=Y p J; s (1) dt.

j=0
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We now turn our attention to the calculation of s;,(¢). We use the method of
Siegert (cf. [4] and [5]), which is possible because N(¢) increases in unit steps. Let

(23) a'm(f) = J e_gtsm,m+l(t) dt
0
be the Laplace transform of the upward passage time density at m. Then [6],
. oy k-1
(2.4) J e ¥s (1) dt= ] o.(6), k>j.
0 m=j
Also [6], since the departure rate from state m is mu,
(25) (§+A+mﬂ')0’m=/\+m#‘0’m—10—ms m=0, 19'
We define
m -1
(26) wm+1=< 0’1) s m=0, 1,° T w0=1’
1=0
and let
A

.7) n= -é, a=—,

© ®
Then, from (2.5), we obtain
(2'8) (n+a+m)wm=awm+l+mwm—l’ m=09 1’. o

Next, we let

2.9) 0,=a"w,/m!.
Hence, from (2.6) and (2.8), we find that
(2.10) (T’+a+m)0m=(m+1)0m+1+a(1_8m0)0m_l, 0():1,

where 8 denotes the Kronecker symbol. It follows from (2.10) that 6,, is a polynomial
of degree m in both 7 and q, and it can be related to a Poisson-Charlier polynomial.
In the notation of [7],

(2.11) O = Sm(m, ).
From (2.6), (2.7), (2.9) and (2.11), we obtain
k=1 ilaks.

jla’s(¢/p, a) .
2.12 o) =""7F"7"""3, 0sj<k
(212) ,ﬂj © k'a’si(¢/ u, a) J

The zeros of si(n, a), regarded as a function of 7, are negative and distinct [7],

and we denote them by n,=—«,(a), I=1,- -, k. Then

506/ a) _psy(~x1, @)
Sk(g/p'a a) s;c(_Kls a) ’

where the prime denotes derivative with respect to the first argument. It follows, from
(2.4), (2.12) and (2.13), that

(2.13) lim (é+pux))
E>—pKy

. k k
jta® & s(-k,a) _ ., )

- e M, 0=sj<k
K@ 2 sk(=ry. a) J

(2.14) sik(t)=p
But [7], for |u|<1,

(2.15) T osi(x, a)uf=e™(1—u)*=e™e 18",
k=0
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Hence,

Y si(x, a)u®=—log (1—u) e™ e *'oe(1"¥

k=0
(2.16) ,

=Y = T salx a)u™
r=1 ¥ m=0
This implies that
k—1

(2.17) si(xa)= 3 Sm%a)

m=0 (k-—m) )

We may now obtain an expression for II,(T). From (2.1), (2.2) and (2.14), it is
found that

k k-1 k¢ (—
(2.18) .(T) =2 y ¥ _“il_f__’"_’?)_ ereiT.
k! =0 1=1 Kki8i(—Ky, @)
But [7],
(2.19) Y 5(x, a)=s,(1+x, a).
j=0
Hence
k k 1_
(220) (1) = e 3 St K0 o
k! =1 kiSk(—k;, a)

Besides II,(T) we are also interested in

AMT)= E{OmaxT N(t)|equilibrium at ¢t = 0}
=t=

(2.21) . -
= kél K[ (T)-1IL(T)]= kz;,l [1-11.(T)],.

where we have used (2.2) and the fact that lim,_ . II,(T) =1.

3. Analysis of Uy(f). We now investigate the single-bucket model of a dynamic
dictionary considered by Van Wyk and Vitter [1]. This differs from the M/M/oo queue
in that customers whose service has been completed cannot leave until the next customer
arrives. We let N(t) and W(t) denote the number of customers at time ¢t which are
in service, and waiting to exit (having been served), respectively. It is evident that
N (t) is the number of customers in the corresponding M/M/ o queue. The equilibrium
probability p,,, that N(t)=m and W(t)= n satisfies the recurrence relation [1]

(31) (a+m)pm,n =(m+1)pm+1,n—l+a8n0 Z:Opm-—l,n
where p,, , =0 if min (m, n) <0. We have set 8 =1/u in [1], and A = au, as before.
If we set n=0 in (3.1), we obtain

(32) (a+m)pm,0:a gopm—l,r=apm—l'

Hence py,=0 and, from (2.1),
ame™ "

(3.3) Pm,o=m,

m=1’2,...
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For n=1, (3.1) implies that
(3'4) (a+m)pm,n =(m+1)pm+1,n—l-
It follows by induction on n, from (3.3) and (3.4), that

_(m+n)a™"T(a+m) _,

(3:5) Prn = m!T(a+m+n+1)
Note that
<) am © an an+l
mn = —ar + -
Eop, m!e (a m),,=o[l"(a+m+n) I‘(a+m+n+1)]
(3.6) n
-3 -a_
_m!e —pma

as it should.
We are interested in the distribution of maxy<,<r [ N(t)+ W(t)], given that the
system is in equilibrium at ¢ =0, namely

P.(T)=Pr {OIB‘ELXT [N(t)+ W(t)]<k|equilibrium at ¢t = 0}
(3.7) o

= Y Dmn Pr{orgixr[N(t)+ W(t)]<k‘N(0)=m, W(O)=n}.

m+n<k

But N(t)+ W(t) remains constant between arrivals, and W(t) =0 immediately after
an arrival. Hence, N(t)+ W(t) increases only when N(t) does, and

P(T)= Y pm,,,Pr{ollltasxTN(t)<k’N(O)=m}

m+n<k
(3'8) k—1 k—=1-m o
=2 X pm,nj Smic(t) dt.
m=0 n=0 T
Now, from (3.5),
k—1-m a™ k—1-m a" a™! ]
man = _ar + -
69) Z, Pra=j e Tlatm) 2 [F(a+m+n) T(a+m+n+1)
' _e_‘“[a,.._akr(am)]
T m! T(a+k) |

Hence, from (2.14), (3.8) and (3.9), we obtain

a* "“[ F(a+m)] ko s.(—Kp, a)
10 P(T)="¢"" —ak g,
(3.10) KD =0 217 "Tarn | esicna) €

m=0

Besides P,(T) we are also interested in

QUT)= E{OxganT [N(t)+ W(t)]|equilibrium at t=0}
(3.11) o

= £ KPen(T)=R(D]= ¥ [1-P(T)]

where we have used (3.7) and the fact that lim,_ . P.(T)=1.
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The expression in (3.10) should be compared with that in (2.18), which corresponds
to the M/M/co queue. We note that P,(T)=0. Also, from (3.7), we have

k-1

(312) Pk(o) = z pm,n = Z 2 pm,n'

m+n<k j=0 m+n=j
Now poo=0 and for j=1, from (3.5), we obtain

_jaTle® [I‘(a+m+1)_ml‘(a+m)]

m+z,:z=,~pm’"—l‘(a+j+l) m=0 m! m!

(3.13) .

TGome The

from (2.1). Hence, from (2.2) and (3.12), for k=2,

k—1 k-2
(3.14) P(0)= ¥ Dji-1= ) Dj =1II;_,(0).
j=1 j=0
4. Application. In this section we show explicitly the queue parameters that were
implicit in the last two sections. That is, we write N(¢, A, u) to denote N(¢) of § 2 and
W(t, A, u) to denote W(t) of § 3. We also define the following:

(4.1) IL(T,A, u)=Pr {OmaxT N(t, A, u) < k|equilibrium at t=0},
=1=

(4.2) AT, A\ p)= E{OmaxT N(t, x; u)|equilibrium at ¢t = 0},
=t=

(4.3) P(T, A, u)=Pr {omaxT [N(t, A, u)+ W(t, A, u)] < k|equilibrium at ¢ = 0}
=t=

and

(4.4) QT A p)= E{OlgtasxT [N(t, A, )+ W(t A, w)]|equilibrium at ¢ = 0}.

To apply the results of §§2 and 3 to the case H > 1, we treat the processing in
each bucket i as an independent M/M/o queue with Poisson arrival rate A/H and
mean service time 1/u; for bucket i, we denote the number of items in service at time
t by Ni(t,A/H, ) and the number of items waiting to be deleted at time ¢ by
Wi(t, \/H, w).

Under these assumptions, the space complexity of hashing with lazy deletion using
H buckets is

(@5) Un(t 2 )= T N6 A/ )+ WA B o))

Let

(4.6) Qyi(T, A, pn)=Pr {Oréltaéxr Uy (t, A, u) < k|equilibrium at t=0},
and

4.7) V(T A p)= E{Ogléxr Uy(t, A, w)|equilibrium at ¢t = 0}.

The value of ¥4 (T, A, 1) can be bounded from below and from above [1].
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Since the operations in each hash bucket are independent, the input to the whole
algorithm is the same as that of an M/M/c queue with Poisson arrival rate A and
mean service time 1/u. Hashing with lazy deletion using H buckets inserts each item
at the same time as hashing with lazy deletion using only one bucket, but the H-bucket
algorithm cannot delete any item sooner than the single-bucket algorithm. Therefore
U, is a lower bound on the space complexity of hashing with lazy deletion:

(4.8) Ul(t, A, w) = Uy(t, A, ).

It follows from (3.7), (4.6) and (4.8) that

(4.9) P(T A p)Z2@u(T, A, p);
and (3.11), (4.7) and (4.9) imply that

(4.10) UT N p)=Yu(T A, p).

The maximum space used by the algorithm is no larger than the sum over the
buckets of the maximum space used in each:

H
(4.11) max Uy (s, A, p)= ¥ max [Ni(4, A/H, p)+ Wi(t, A/ H, u)].
== i=1 0st=

It follows from (4.4), (4.7) and (4.11) that
(4.12) V(T A p)=HQT, A/H, p).

To summarize, (4.10) and (4.12) give the following upper and lower bounds on
the space complexity of hashing with lazy deletion using H buckets:

5. Numerical results. We evaluated numerically formulas (2.18), (2.21), (3.10) and
(3.11) for several choices of A and u. This required computing I1,(T) and P.(T) for
k=0,1, - - - until they were close enough to one that they made no discernible contribu-
tion to A(T) or Q(T). Since the evaluation of II,(T) or P.(T) requires finding the
zeros of the kth degree polynomial (2.11), we chose A and u so that both 1 —IT,(T)« 1
and 1— P, (T)« 1 for all relevant values of T. We used subroutine IMTQL2 [8] to
determine the zeros of (2.11) by finding the eigenvalues of the appropriate symmetric
tridiagonal matrix.

In Figs. 1 and 2 we have taken A =10, u =2. Figure 1 shows II,(7, 10, 2) and
P,(T,10,2) for selected values of T. The curve for T =0 shows that P(0,10,2)=
IT;_4(0, 10, 2), illustrating (3.14). The graph shows that the difference between
P(T, 10, 2) and I1,(T, 10, 2) is already quite small at T =1, and has almost vanished
by T =10.

Figure 2 shows A(T, 10, 2) and Q(T, 10, 2). Since the Markov chains studied in
§§ 2 and 3 are irreducible, we know that both A(T, A, u) and Q(T, A, u) grow without
bound as T - oo, for any choice of A and p; this figure shows that the growth is slow.
As one would expect from Fig. 1, A(T, 10, 2) and Q(7T, 10, 2) start out differing by one,
but quickly become much closer. The data structure interpretation of this is that hashing
with lazy deletion using one bucket has almost optimum space complexity.

Figure 3 shows HQ(T, 10/ H,2) for several values of H. The curve for H=1,
Q(T, A, u), is a lower bound on ¥, (T, A, u) by (4.10). The upper bound given by
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(4.12) becomes progressively larger as H increases. It appears that ¥, (T, A, u) exceeds
Q(T, A, &) by an amount that is at most O(H). Since Q(T, A, p) is only a little larger
than A(T, A, u), thissuggests that W (T, A, u) — A(T, A, u) = O(H), which would imply
that H can be chosen to be O(A/u) in order to give constant expected search time
and almost optimum space complexity.

Observations about A(T), Q(T) and ¥4 (T) based on Figs. 1-3 can be applied
to the case of constant A/u by an appropriate choice of scaling factors. Other models
are appropriate for some applications. For example, to model the analysis of integrated
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circuits discussed in § 1, we take A to be the chip size, u = ¢vA, and study A(1) and
Q(1) as A increases [1]. Figures 4 and 5 show results for ¢ =2.
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manuscript.
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