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ON DIVISIBILITY OF THE CLASS NUMBER /™
OF THE REAL CYCLOTOMIC FIELDS OF PRIME DEGREE !

STANISLAV JAKUBEC

ABSTRACT. In this paper, criteria of divisibility of the class number At of the

real cyclotomic field Q(¢p + (p_l) of a prime conductor p and of a prime degree

| by primes ¢ the order modulo [ of which is %, are given. A corollary of

these criteria is the possibility to make a computational proof that a given ¢

does not divide h* for any p (conductor) such that both ”2;1, ”4;3 are primes.

Note that on the basis of Schinzel’s hypothesis there are infinitely many such
primes p.

INTRODUCTION

Let I, p be primes such that p = 2] + 1. To consider divisibility of the class
number A of the real cyclotomic field Q(¢, + ¢, ") by primes ¢ it is suitable to
sort primes g according to their order modulo . The simplest case is the case when
the order of ¢ modulo [ is [ — 1, i.e. when ¢ is a primitive root modulo [. In this
case the problem is completely solved, because it is proved that ¢ does not divide
h*. The proof for ¢ = 2 can be found in [1] and for ¢ > 2 in [4]. According to
complexity, the further case is the case when the order of ¢ modulo [ is 1—717 hence
when ¢ generates the group of quadratic residues modulo !.

In this case we have:

1) ¢=2. If I =3 (mod 4), then 2 does not divide ~™. (For the proof see [2].)

2) ¢ = 3. The prime 3 does not divide h™. (For the proof see [5].)

3) ¢ =>5. If I =3 (mod 4) then 5 does not divide ht. (For the proof see [6].)

The divisibility of AT by a general prime ¢ under the assumption p = —1
(mod q), p#Z —1 (mod ¢*) was considered in the papers [7], [8].

The aim of this paper is to derive criteria for divisibility of AT by a prime ¢
without any restriction imposed on p (mod ¢). As an application of derived criteria

we shall prove Theorem 7 .

Theorem 7. Let q be prime, q < 23. Let I, p be primes such that p=2l+1,1 =3
(mod 4), and let the order of the prime q modulo I be l — 1 or l_Tl The prime q
does not divide h, the class number of the real cyclotomic field Q((p + Cp_l).

Note that if { = 2{; + 1, where [; is a prime, then each ¢ # 0,+1 (mod [) satisfies
the conditions of Theorem 5.
This implies the following Corollary.
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370 S. JAKUBEC

Corollary. Let l1,l,p be primes such that | = 2l + 1, p = 2l + 1. The prime q
does not divide ht, the class number of the real cyclotomic field Q(¢, + Cp_l), for
q < 23.

X ok x

Let g be an odd prime. Define the numbers Ay, A;, Ao, ..., A;—1 as follows:
I
Ag =0, A, :Z;, for j=1,2,...,q—1.

i=1
Let s be a rational g-integer. Put A, = A; for an integer j, 0 < j < ¢, s = j
(mod gq).
Let m,n be natural numbers, m = 1 (mod 2), (m,n) = 1. Associate to the
number n the permutation ¢y, , of the numbers 1,2, ..., mT_l s follows:
-1
Omn(z) = xnx (mod m), forz=1,2,..., mT
Further, associate to the number n the quadratic form Qp, (X1, Xo,..., Xm-1),

2

m

—1
2
Qun(X1, X2y X ) = XP+ X34+ X = Y XiXy, 00
i=1

The following theorem holds

Theorem 1. Let g be an odd prime. Let l,p be primes such thatp=2[+1,1=3
(mod 4), p= —m (mod ¢q), m =1 (mod 2), m > 0, and let the order of the prime q
modulo | be Z_Tl Suppose that q divides h™, the class number of the real cyclotomic
field Q(¢p + Cp_l). Then for each divisor n, (n,q) = 1, of the number p + m, the
following congruence holds:

(i)
p+mni~t —1
2q q
(ii) If ng|BE™, then
ptm _
22

EQm,n(A—_l,Aj,...,A_%) (mOd Q)

Qm,qn(A—Wl,A%f,...,A_ ) (mod q),

i
m

where t = mT_l

Proof. To prove this theorem, the following assertion from [4] will be used:
Proposition 1. Let I,p,q be primes, p =1 (mod 1), ¢ #2; ¢ #1; ¢ < p. Let K

be a subfield of the field Q((, + ¢, '), [K : Q] =1 and let hi be the class number
of the field K. If qlhk, then q|Ng(¢,)/q(w), where

w=b Y x@+b D> XA+ be > (),
i=1 (mod q) =2 (mod q) i=q—1 (modgq)

with the sums all taken with 1 <i <p—1, with x(x) a Dirichlet character modulo
p of order I, and b; defined by the expressions

p <(Cp — 1)1
g\ G -1
The following lemma will determine the coefficients by, ba, ..., bg—1.

_ 1) =01Gp + b2+ + byt (mod g).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON DIVISIBILITY OF THE CLASS NUMBER h't ... 371

Lemma 1. Let p =z (mod q). Then
b;=A-:, fori=1,2,...,q—1.

Proof. We note that the b; can be determined explicitly by multiplying the above
expression through by (f —1: In fact we get (taking by = 0 and each by = by, (mod p))

p‘l —1)7— (¢4 —1 ! .
;2 455(“17 L >>:;$<g>(_l)q_z<;
j= =

q—1 4

= C—p (mod q),

o

since

1<q>:%(q—l)(q—2)---(q—i+1) D" od g).

q\i (i —1)! i

Comparing coefficients we see that b;_q — b; = b_q — by + pd; (mod ¢), where
0 = % if1 <j<qg—1andd; =0 otherwise. Adding these congruences together
for j =0,—¢q,—2q,...,—(n—1)q and noting that by = 0, we obtain b_,, = nb_, +
& + ﬁ +- 4 ﬁ (mod g), where (m + 1)p > ng > mp and (jp), is the
least positive residue of jp (mod ¢), by an easy induction. Taking n = p gives that
0 = by pr_q+1+%+-~-+q+l = pb_4 (mod ¢) (since —+ﬁ = 0 (mod q)
for each j), and thus b_, = 0 (mod g). Therefore, if 1 < j < p — 1 we write
j=(m+1)p—ng, so that

1

1 1 1
bj=b_py=14+-4+-+—=14+-+--+4+ ——— (mod q).
! ! 2 m 2 (—i/P)q
Lemma 1 is proved. O
Let p = z (mod g). By Proposition 1 we have
p—1
w=2 Aux(@)
i=1
Denote
> Aux(@)
o<i<%
It is easy to see that w = 27.
Since the order of ¢ modulo [ is 1—71, according to [10], Theorem 2.13, we have

that ¢ is splitting to two divisors in Q({;). Because | = 3 (mod 4), it holds that
1) = —1, hence if ¢|Nq(¢,)/q(w), then ¢ divides 77.
The followmg formula holds

(1) T= Y Az Aix(if™h) = do + diG + doGP + - + i1 ¢
i,j<%
Then ¢|77 if and only if
dy=di=---=d;—1 (mod q).
Let p = —m (mod ¢), m > 0, m = 1 (mod 2). Hence b, = A . Denote by
r such a number that r < I, g" = +n (mod p). Let x(ij~') = (/. Then either
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372 S. JAKUBEC

ind(ij =) = r or r + [, therefore

(2) ij~l=%n (mod p), i,j < g.

The following lemma determines the coefficient d, of (1).

Lemma 2. Let p = —m (mod ¢), m >0, m =1 (mod 2), ¢" = £n (mod p). For
the coefficient d,., r < I, the following holds:

dr= 3 Apdmt > Adw,

i< P - _ 2
0<ji<y i<t
+ g A_J_A,Ln+2++ E A_,'LAﬂJ’_"_*la
5 3 m m B m m 2
2 cjc e tTr_.
T <I<h
forn odd,
d, = E ALAQ + E ALAJ'_"+1
i< P - _ 2
0<y< & g2t
Y A Ap D As A n
5 3 m m (n_1 m m 2
L j 2B 5 —1)p .
n SI< _Zn_<J<g
for n even.

Proof. By (2), ij~! = £n (mod p), i,j < &. Therefore either i = nj (mod p) or
i =p—nj (modp). Let nj < p. From (1) we get the term A An; x(ij~1) if
nj < 5 and A; Ap—nix(ij~') if nj > &. Clearly p_T”j =-1- %jnzm(;nd q). From
%” + ?—nl = —71 (mn(;d q) we get An; = Ap—ni. If p < mnj < 2p, then the coefficient
of x(ij~1) is A% A% and hence ;i% A%j_:;. Repeating this procedure we obtain

dr = Z A%A%—i_ Z A%A%_H"' Z A%A%_ﬂﬁ-.... [l

0<i<y Loj<i 2 i3

The following lemma determines the coefficient d,., ¢" = 4+n (mod p) in the
special case when n|p+Tm. The reason why we restrict ourselves to such special
coefficients is that in this case it is possible to give such criterion of divisibility AT
that has a simple form (see Theorem 1). If n does not divide ”Tm, then things are
more complicated and even in the most simple case when n = 3 and 3 does not
divide ;)+va the corresponding criteria have a more complicated form than Theorem

1 (see Theorem 2).

Lemma 3. Let p=—m (mod ¢), m >0, m =1 (mod 2), ¢" = £n (mod p). For
the coefficient d,, r <1, n|p+Tm the following holds:

qg—1 qg—1
+m
] OLTENES ST
=1 =1

(3) g-1 15
ot EA#A%#"T% +3 Z}A#Azl—;w%)

m—1
2

=D AAuiypmy (modg),
=1
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ON DIVISIBILITY OF THE CLASS NUMBER h't ... 373

forn=1 (mod 2),

qan i=1 " i=1 o i=1 mE
m—1
2
- Z A%A*nl_,’_[m] (mod q),
i=1

forn =0 (mod 2).

Proof. The following congruences hold

bim g—1 m2—1
E ALAﬂE n ALAM_ E A;1 —ni,
m m m m m m
0<j<t q i=1 [iz]=0
m—1
q—1 3
_p+tm
Y A Ap, = A A - S AsiAiw,,
%<j<gn2 i=1 [%]:1
m—1
q—1 3
+m
E AQ'LA"Ln_,’_nfl Ep ALAn_i+n71 — Af_iAfn'i_,'_nfl,
m o m 2 Qqn _ m m 2 ) ™ ™
pnfl o =1 [%]:ngl
n <J<2
for n odd.
And
—1
q—1 s
p+m
ALAHE " AL’AE— E A;«; —ni ,
m m m m m m
0<j<t q i=1 [iz]=0
—1
q—1 s
Z p+m Z
A] Ajn+1: qn A%A%—Fl_ A;;A*nl_,’_l,
%<]<gn2 i=1 [in]=1
m—1
q—1 3
p+m
E ALAj_"+£_1 = ALA"_i+ﬂ_1 - g A*_iA*"i_;,_ﬂ_l;
m m 2 qn ‘ m m 2 . m m 2
2ED ey = =31
n 2

for n even.

These congruences can be proved as follows. Let n be odd. If s =t (mod q),
then A; = A; (mod ¢). On the basis of this fact it is enough to prove that for each
k=1,2,...,%5 the following holds: the set {j|*2 < j < &FLey (| [in] =

ki < mT_l} gives p;‘—nm exemplars of the full residue system modulo g for k =
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374 S. JAKUBEC

1,2,..., T’ and p+—m exemplars of the full residue system modulo ¢ for k = %1

From n|p + m we get that (m,n) = 1. Hence [22] =k, k # 0 if and only if
km . (k+1)m
— <1< —
n n

:D+m

Denote = v, hence m = nqv — p. It implies

k k+1
kqv—gp<i<(/€+l)qv—ﬂ.

Multiplying by —1 and adding (k + 1)qv, we get

E+1 k
¥<—i+(k+1)qv<gp+qv.

Denote i* = —i + (k + 1)qv. Now we have

k k+1 kE+1 k
—p<i<( * )p; (k+ )p<i*<—p+qv.
n n n n

This provides qu successive natural numbers, hence we have v = E- 2 +m exemplars of

full residue systems modulo g. If &£ = 0, then the terms Ay and Ag, W111 be missing.
Since Ag = A4y = 0, the congruence will hold for £ = 0 as well. For k£ = ”T_l,
by the same method we get % exemplars of the full residue system modulo gq.
Summing the congruences we get the required congruence. The same procedure

applies for n even. Lemma 3 is proved. O

In the formula for d,., there is the sum

m—1
2

We shall prove that

Z AziAzni | [ni) Z XX, .y (mod q),

for X; =A_i, fori=1,2,..., 21

Clearly "
i i -1 i
= {ﬁ} = — <m —m {ﬂ}) (mod q).
m m m m
The number ni — m [%} is equal to the residuum ni modulo m. It follows
that if ni — m [%] < %, then ni — [%] = Pmn(i). ff ni—m [%} > 3, then
ni—m [2] = m — (i)
Consider the numbers

A_smn) TSP At _g )y

Since

(i) + = i) = 1,
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ON DIVISIBILITY OF THE CLASS NUMBER h't ... 375

there holds
A_bmn) = Ay, @) (modg),

which implies the required relation.
Now we shall express the coefficient dy corresponding to the value n = 1. The
substitution into (3) gives

p+m i
ZAZ oAz,
i=1 i=1

If g|h™, then dp = d, (mod ¢) and hence for n =1 (mod 2) there holds:

q—1 q—1
p+m<ZA Aws + 3 A w4 S A A s

qn = =1 =1

—ZA Amw)_p*mZA? S A%, (mod g).
i= i=1

It is easy to prove that Ef__ll A? = —2 (mod q). Therefore
—1

Q

p+m 1 :
( ZA AnL"— ZA An7+l+ ﬁ 71A#A%+n773
1
= _Qm,n(A;laAﬁa"'aA;t) (mOd (])7
where t = mT_l
By [8] (proof of Theorem 1), the following holds:
14 12 149
- A i A'n.i - 7 ni R - k3 ni n—
nz ™ W+nZARAH+1+ +n, ARA;JFT?’
i=1 i=1 i=1
1
+%;A;Anl+n71 +1
1ni—t—1
= —5% (mod gq).

The congruence (i) is now proved for n =1 (mod 2). Analogically, the congruence
(i) can be proved for n =0 (mod 2), on the basis of the congruence

14 1] 1
p AL AR T D ArAmp ok D) Arduyg o+
L o o

1n?~t—1
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376 S. JAKUBEC

Now we shall prove the congruence (ii). Substituting ng, where nq|p+Tm7 instead

of n into the formula for the computation d,., we get for n = 1 (mod 2) the following
sum:

Ay(Ar+ Ag+ -+ Agr) + Ag(Ay + Ag + -+ + Agy)
1
+"'+§AM;_1(A1+A2+"'+Aq—l)-

It is easy to see that Ay + Ay +---+ A;_1 =1 (mod ¢), therefore

Af(Ar+Ag+ -+ Ag ) + A(Ar + Ao+ -+ A1)

+---+%A%1(A1 +As+ 4+ Ag1) Eg (mod gq).
Analogously for n =0 (mod 2) we get
Af(Ar+ A+ -+ A1) F Ao(Ar + Ao+ 4+ Ay 1)
+ot Ana Eg (mod g).
Theorem 1 is proved. a

‘We shall show 12 corollaries of Theorem 1.

Corollary 1. Let q be an odd prime. Let l,p be primes such that p = 21 + 1,

[ =3 (mod 4), p= -3 (mod q), pZ —3 (mod ¢*) and let the order of the prime q
modulo | be 1_21, Suppose that q divides h™, the class number of the real cyclotomic

field Q(¢y + ¢, "), Then 2971 =1 (mod ¢?).

Proof. By Theorem 1, (i) putting n = 2 we have

p+329-1 -1
WT = QgQ(A—Tl) (HlOd q)
Clearly Q32(X1) =0, hence
32071 -1

If % # 0 (mod q), then 2q7ql_1 =0 (mod ¢). Suppose that q|pqﬁ. By Theorem
1, (ii) we have

p+3
_ o = Q37q(A%1) =0 (mod gq),
hence p+3 =0 (mod ¢®)—a contradiction. O

Corollary 2. Let q be an odd prime. Let l,p be primes such thatp=2l+1,1=3

(mod 4), p = —5 (mod q) and let the order of the prime ¢ modulo | be Z_Tl Suppose

that q divides h™, the class number of the real cyclotomic field Q(p + Cp_l). Then
F ( )EO (mod ¢?),

where F,, is the nth Fibonacci number (Fo = 0, Fy = 1, Fhy2 = Fop1 + F,, for
0<n).
Moreover, if p % —5 (mod ¢%), then 2971 =1 (mod ¢?).
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Proof. The number p + 5 has the divisors n = 2,4. Therefore by Theorem 1 (i)

+520-1 -1
pz—qT = Qs5(Ao,A2)  (mod g),
p+54i-t 1
Clearly
1 2 1 2
¢5,2 = (2 1) , O54 = <1 2) .
Hence

Qs2(X1, X2) = X7 + X7 — 2X1 X5 = (X; — X2)?, Q5.4(X1, X2) = 0.

It is easy to see that

2
1
(A% - A;?)Q = - (mod q).
‘ f<i< !
Therefore
2
52171 —1 1
pro2 — - = (mod ¢),
2q q —~ 0
E<i<H
P54 —1
————— =0 (mod gq).
Because 2—-=1 = 0 (mod q) if and only if ﬁ# =0 (mod q), we get that if
q|h™, then

EN R

Z -=0 (mod q).
#<i<

¥
By [11], for ¢ > 5 there holds

2 1
52 7=

- 2
E<i<#t

q—

F, (%) (mOd Q)a

Q| =

which proves the first assertion of Corollary 2.

If _2517;—1 # 0 (mod g), then 1;;25 = 0 (mod g). By (ii) we get 2225 =0

(mod ¢)—a contradiction. O

Remark. P.L. Montgomery [9] reports no solution of Fq_(%) = 0 (mod ¢?) with

q <232,

Corollary 3. Let g be an odd prime. Let l,p be primes such thatp =21+1,1 =3

(mod 4), p= —7 (mod q) and let the order of the prime q¢ modulo | be l_Tl Suppose

that q divides h, the class number of the real cyclotomic field Q(p + Cp_l). Then
2 2

(%) Z % + Z % + Z % Z % 0 (mod q).

4 i 2a 29 ~; 39 94 i 29 29 ~; -39
7 <1< = <1< 7 <1< = <1<
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378 S. JAKUBEC

Moreover, if p#£ —7 (mod ¢%), then 2971 = 3971 =1 (mod ¢?).
Proof. The number p+7 has the divisors n = 2, 3,6. By Theorem 1 (i) the following

holds

p+T7207 -1

Z—qT = Q772(A%1aA%27A%3) (mod g),

p+T73071 -1

Z—qT = Q773(A%1aA%27A%3) (mod g),

p+T7697 -1

Q—QT = Q?,G(A*TMA%;A*%) (mod q).

Clearly
1 2 3 1 2 3
12 =13 = <2 3 1>, br6 = (1 9 3>-

Hence

Q7,2(X1, X2, X3) = Q7,3(X1, X2, X3), Q7,6(X1,X2,X3)=0.

By rearrangement we get

Q7,2(A%17A%27A%3)

2 2
1 1 1 1
(T ] ] meda,

2<i<2e 29 cj< 32 1ci<a 29 cj< 32
Therefore we have
p+72071 1
2q q
2 2
1 1 1 1
= -1 + - + - - (mod q),
2 PR PRI
7 <t<F <<= 7 <1< <<=
p+73071 -1
2q q
2 2
1 1 1 1
S D3NS I D DR It : =] (mod ),
i< 20 i< 3 i< 20 i< 3
+76971—1
If
2 2
1 1 1 1
O el ! =] £0 (modq),
i< 29 i< 3 i< 20 i< 3
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then p2—+q7 % 0 (mod q), % = 0 (mod ¢) and 25,7;_1 = 3q7q1_1 (mod ¢) and
2(1771_1 # 0 (mod ¢). This easily yields a contradiction.
If

<24 &(1‘3(1 94 i 29 29 ~; -39
- <<= 7 <1< = <1<

"S\lbo

2
( Z % + Z % Z % =0 (mod gq),
and EC-

(mod ¢), then
2071 =371 =1 (mod ¢?).

If %}7 =0 (mod q), then by Theorem 1 (ii) ’;‘527 =0 (mod g) and therefore p = —7

(mod ¢3)—a contradiction. O

Corollary 4. Let q be an odd prime, ¢ =2 (mod 3). Let l,p be primes such that
=204+1,1=3 (mod 4), p=—7 (mod q) and let the order of the prime q¢ modulo
l be l—l, Suppose that q divides h™, the class number of the real cyclotomic field

Q((p—f—Cp_l), Then
1 1
Z 7= Z ;EO (mod gq).
2<ic<2e 29 cj<3a

Proof. The left side of the congruence (*) can be expressed as the norm of the field
Q(¢3) into Q. If ¢ = 2 (mod 3), then ¢ does not decompose in the field Q({s), and
it implies the assertion of Corollary 4. |

By [3] there holds: For 1 < a < 6, and any odd prime ¢q # 7,

a 7
Byt (3) = Bor = 5 (Ug(7.a.) =1) - (mod )

where b= 1,2 or 3 with b = +¢ (mod 7), and U, satisfies the recurrence relation
Upis = TUnso — 14Uns1 + TU.

The values of Uy, Us, Us are given in the table below

:|:CL :|:b U1 UQ U3
2 1 1 2 |5

3 2 2 |7 |26
1 3 2 |6 19
3 1 1 2 |6

1 2 3 11 |41
2 3 2 15 13
a a 1 3 10

From Corollary 4 and the just mentioned result we get:

Corollary 5. Let g be an odd prime, b = +q (mod 7) where b = 1,2 or 3 and
g = 2 (mod 3). Let l,p be primes such that p =21+ 1,1 =3 (mod 4), p = -7
(mod q) 51. Suppose that q divides
ht, the class number of the real cyclotomic field Q((, + Cp_l). Then

Uy(7,1,0) = Uy(7,2,b) = U,(7,3,b)  (mod ¢?).
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Corollary 6. Let g be an odd prime. Let l,p be primes such thatp=2l+1,1=3
(mod 4), p = —9 (mod q) and let the order of the prime q¢ modulo | be Z_Tl Suppose
that q divides h™, the class number of the real cyclotomic field Q(p + Cp_l). Then

2 2
1 1 1 1
Z -]+ Z I Z - Z =] =0 (mod g).
g<i< 2 i< f<i<2 M i<
Moreover, if p# —9 (mod ¢3), then 2971 =1 (mod ¢?).

Proof. The number p + 9 has the divisors n = 2,4, 8, which follows from p 4+ 9 =
214+ 10=2(l+5) = 2(4k 4+ 3+ 5) = 8(k + 2). Therefore, we have

1 2 3 4 1 2 3 4 1 2 3 4
“5972_(2 4 3 1)"‘5974_(4 1 3 2)’(‘5978_(1 2 3 4)'

Hence
Qo,2(X1X2, X3, Xy) = Qo 4(X1 X2, X3, Xy)
= X7+ X3+ X7 — (X1 Xo + X1 Xy + X Xy),
and
Qo,8(X1 X2, X3, Xy) = 0.
By rearrangement we get

QQ,Q(A%vA*Tsz*T?’aA%‘L)

2 2
1 1 1 1
= > 5]+ X 5]+ X 3 Y. -| (modg)
d<i<ie 29 i<t i< 2 i<y
The rest of the proof is the same as in the case of Corollary 3. O

To prove the remaining corollaries, the following fact will be used.
1. If n = £1 (mod m), then the permutation ¢, is identical and therefore
Qmn (X1, Xo, ... 7XmTfl) =0.
2. If nyng = £1 (mod m), then the permutations ¢, n,, Pm,n, are inverse and
therefore
Qmn, (X1, X2, ., Xmo1) = Qumns (X1, Xoy ooy Xm—1).

2 2

Corollary 7. Let q be an odd prime. Let l,p be primes such that p = 21 + 1,
=3 (mod 4), p=—13 (mod q) and let the order of the prime q modulo [ be Z_Tl
Suppose that q divides h*, the class number of the real cyclotomic field Q(Cp—l—(p_l),
Then

Qua(Ag s A, Aqy A As
= Q1373(A;_§,AI_§,AI_§,A74,Afs,Afs) =0 (mod q).
Moreover, if p Z —13 (mod ¢3), then
2071 =371 =1 (mod ¢?).
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Proof. The number p + 13 has the divisors n = 2,3,4,6,12. By Theorem 1 (i) we

have
p+1320-1 1
2q T = Q1372(AI_317AI_327A;_37A;_§L7AI—§’7AI—§) (mOd q)u
p+1330-1 -1
2q T = Q1373(AI_317AI_327A;_37A;_§L7AI—§’7AI—§) (mOd q)u
pr134e-t 1
2q T = Q13,3(AI—317AI_327A;_§’5A;_§7AI_357AI—§) (mOd q)’
pH13671 —1
g = QuaAg A Ay A A A (od )
p+13120-1 -1
—— =0 (mod q).
% . ( )
If either
Q13,2(A;_317A;_327AI_§7AI_§17A;—§7A;—§) $—é 0 (mOd q)
or

Q1373(A;_§’AI_§’AI_§’A;_;’A;_§’AI_§) ;7é0 (mod q),

then % # 0 (mod g), hence %:_1 =0 (mod ¢) and this yields a contradiction.
O

Corollary 8. Let q be an odd prime. Let l,p be primes such that p = 21 + 1,
1=3 (mod 4), p=—17 (mod q) and let the order of the prime q modulo 1 be l_Tl
Suppose that q divides h*, the class number of the real cyclotomic field Q(Cp—l—Cp_l).
Then

Q17)2(A—_1,A—_2,A—_3,A—_4,A—_S,A—_S,A—_?,A—_s)
17 17 17 17 17 17 17 17

EQ17,4(A;—717A;_727A;_$7AI_;17AI_;aA;_qu;_ZuAI—?)EO (mOd Q)
Moreover, if p % —17 (mod ¢?), then 2971 =1 (mod ¢?).
Proof. The number p + 17 has the divisors n = 2,4, 8. By Theorem 1 (i) we have

pH17201 1

2q T:Q17’2(A;—71’AI—727AI_$7AI_$’A;—$’AI—767AI_777AI_$) (mOd Q)a
p1749-1 -1

2q T:Q1774(A;—717AI—727AI_37A;_;17A;_;’7AI_767AI—777A;—$) (mOd q)u
pr178L 1

2q T:Q17’2(AI_717AI_72’A%?’AI_;L7AI_§,7AI_$’A;—77’AI_78) (mOd q)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



382 S. JAKUBEC

If either Q17,2 # 0 (mod ¢) or Q17,4 # 0 (mod g), then %q” # 0 (mod ¢) and
2(17(1# # 0 (mod g). The first and the third congruence imply that
2071 1 g1 _1
a  q

=0 (mod ¢)—a contradiction. O

(mod g),

therefore

29-1
q

From now on, the function values of quadratic forms will be omitted, i.e., instead
of Q1972(....) we shall write Q1972.

Corollary 9. Let q be an odd prime. Let l,p be primes such that p = 21 + 1,
=3 (mod 4), p=—19 (mod q) and let the order of the prime g modulo | be Z_Tl
Suppose that q divides h™, the class number of the real cyclotomic field Q((p +
¢, '), Then Qo2 = 0 (mod q). If Qo3 # 0 (mod gq), then 277! =1 (mod ¢?).
Moreover, if p# —19 (mod ¢?), then 2971 =1 (mod ¢?).

Proof. The number p + 19 has the divisors n = 2,3,6. Hence

+192¢1 -1
u o0 o = Q192 (mod q),
q q
+19397t -1
i 50 g = Q19,3 (mod g),
q q
+1969°1 -1
P 0 o = Qo3 (mod g).
q q

If Qo2 #Z 0 (mod g), then 2q7ql_1 # 0 (mod ¢). The second and the third
congruence imply that

a-1_1 @1-1_1
’ PR — (mod q),

which is not possible, because % Z0 (mod ¢). If Q19,3 #0 (mod ¢), then

30-1-1 6i-1-1
. = . (mod gq),

and it follows that 2971 =1 (mod ¢?). O

Corollary 10. Let q be an odd prime. Let l,p be primes such that p = 2l + 1,
=3 (mod 4), p=-25 (mod q) and let the order of the prime q modulo [ be Z_Tl
Suppose that q divides h*, the class number of the real cyclotomic field Q(Cp—l—(p_l),

Then
Q252 = Q253 =Q254=0 (mod q).
Moreover, if p £ —25 (mod ¢%), then 2971 = 39"1 =1 (mod ¢?).
The proof is analogous as for p = —13 (mod q).
Corollary 11. Let q be an odd prime. Let l,p be primes such thatp =2l+1,1=3
(mod 4), p= —m (mod q), p % —m (mod ¢?), m >0, m =1 (mod 2) and let the
order of the prime q¢ modulo | be 1—71 Suppose that there exist divisors ni,ns of the

number p+m such that nyny = +1 (mod m) or ny = +ny (mod m). If g|h™, then

n? ' =n2"" (mod ¢?).
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Proof. Since ning = £1 (mod m) or n; = +ny (mod m), we have

Qm,nl(XlaX27-- .,Xm—l) = Qm,rn&(Xl,XQ,.. ,X%) (HlOd q),

2

and hence
—1 qg—1
p+mni " —1 p4+mni -1
= mod q).
2q q 2q q ( )
The Corollary now follows from 252 2 0 (mod g). O

Corollary 12. Let q be an odd prime. Let 1, p be primes such thatp =2l+1,1 =3
(mod 4), p = —m (mod q) and let the order of the prime ¢ modulo 1 be l_Tl Suppose
that q divides h™, the class number of the real cyclotomic field Q((, + Cp_l). Then
for arbitrary ni,ng such that nina|p + m, (ning2,q) = 1, the following congruence

holds.
Qm,nlng(A;laAiv cee 7A—L)
= Qm,nl(A%l,A%z,...,A_#) +Qm,n2(A%1,A%2,...,A_#) (HlOd q),
where t = mT_l
Proof. Since (nan2)? o1 "T;_l + ngiql_l (mod ¢), the preceding congruence
implies Theorem 1 (i). |

The following example shows the possibility of applying the congruence of Corol-
lary 12 in order to find out the divisibility of the class number h™ of the real
cyclotomic field Q((p + ¢, b,

Example 1. Let p = —11 (mod 43). If p £ +2 (mod 11), then 43 does not divide
the class number ht. If p = +2 (mod 11) and 43|k, then

p+11=243°pi'p3* ... pom,
where p; = £1 (mod 11), fori=1,2,...,n.

Proof. Let 43°|p+11 and 435! does not divide p+11, where 1 < s. Put ny = 2411,
no = 2. Then it holds:

Q11,2n, (A9, Ass, Az1, Ag7, A23)

= Q11,n, (Asg, Ass, A1, Aor, As) + Qu1,,(Asg, Ass, Az1, Aoy, Azz)  (mod 43).

In the following we shall write quadratic forms without arguments. Because 43 =
—1 (mod 11) we have 2n;, = p:;)lsl = 4p (mod 11). Because Qum.n = Qm,—n, it is
enough to consider the cases p = 1,2,3,4,5 (mod 11).

1) p=1 (HlOd 11), then Q1171 =0= Qll,% + Q11)2 (HlOd 43) From Qll,% =
Q11,2 we have Q112 =0 (mod 43).

2) p=2 (mod 11), then Q11,2 = Q11,1 + Q11,2 (mod 43), hence in this case we
do not have any information, as Q11,1 = 0.

3) p = 3 (mod 11), hence Qui,3 = Q113 + Q1,2 (mod 43), 3 =7 (mod 11),
3.7=—1 (mod 11) therefore @1, 3 = Q11,3 and we get that Q11,2 =0 (mod 43).

4) p = 4 (mod 11), then analogically as in the preceding cases we get the con-
gruence Qll,B = 2@11’2 (HlOd 43)

5) p=5 (mod 11), then we get Q11,3 =0 (mod 43).
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By SU.bStitutiIlg A39, A35, A31, A27, A23 we have Q11,2 (A39, A35, A31, A27, Agg) =
Q11,2(9,33,15,20,10) = 11 (mod 43) and Q11,3(9,33,15,20,10) = 39 (mod 43).

Hence Q11)2 5_6 0 (InOd 43), Q1173 5_6 0 (HlOd 43), and Q1173 §é 2@11)2 (HlOd 43)
By this we proved that if p £ +2 (mod 11), then 43 does not divide h*.

The preceding calculations show that if p+11 had another divisor than 2 different
from +1 (mod 11), then 43 would not divide h*. Therefore p + 11 must have the
above mentioned form. O

Throughout the rest of the paper, we shall consider the divisibility of h™ by the
concrete primes ¢ = 7,11,13,17,19,23. Theorem 1 and its corollaries would not
sufficiently solve this task. The reason is that for some m (e.g. m = 11), only one
suitable divisor of p 4+ m is known, namely n = 2.

In what follows, B; resp. B;(X) will denote a Bernoulli number resp. a Bernoulli
polynomial.

Theorem 2. Let q be an odd prime. Let l,p be primes such thatp =21+ 1,1 =3
(mod 4), p=—m (mod q), form=1,3,5,...2¢—3, m=0,2 (mod 3) and let the
order of the prime q modulo [ be Z_Tl Suppose that q divides h™, the class number
of the real cyclotomic field Q(¢p + Cp_l). Then the following holds:

I. m =0 (mod 3).

(1) if ¢ =1 (mod 3), then

p+m3i-l—1 1 1\
oF . + QBq_g 5) = Ch, (mod q).
(i) if ¢ =2 (mod 3), m + 2 < q, then
prm3il 1 2 1
— +-B, 2 (- | =Cp .
oF . + oBi—2 |3 Cr,  (mod q)
(iii) if ¢ =2 (mod 3) and m + 2 > ¢, then
p+m3i-l—1 1 1\
2q p — 9Bq_2 3 = Om (mod q)

II. m =2 (mod 3)
(i) if ¢ =2 (mod 3), then

+m3 -1 1 1
pQ—qT + §Bq_2 <§) =Ch (mod q).

(ii) if g =1 (mod 3), m+ 2 < ¢, then

+m39t—1 2 1
prme — -4 —By_» <§) =Cp, (mod q).

2q q 9
(iii) if g =1 (mod 3), m+2 > g, then

+m3t—-1 1 1
P 1 (82 e,

2q q 3
where
=gt mp e
Cy, = A%q — A_iA_si ,+ - A_i,
; - ; R Z —?31 417 =

=1
3iZm (mod q)

and k= "2 (mod ¢), 0 < k < q.
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Proof. By Lemma 2, for the coefficient d,., where g" = +3 (mod p), we get

d, = Z A%A%-f— Z A%A%_H.

0<i<k E<i<t

Then we proceed similarly as in the proof of Lemma 3. The corresponding congru-
ence will be obtained from the fact that g|h™ implies dy = d,- (mod q), using the
following results of [8]. |

Theorem 3. Let g be an odd prime. Let l,p be primes such thatp=2[+1,1=3
(mod 4), p=—m (mod q), form =1,3,5,...2¢—3, m = 0,2 (mod 3) and let the
order of the prime q modulo | be l_Tl Suppose that q divides h™, the class number
of the real cyclotomic field Q(Cp + ¢, '). Then the following holds:

(i) m=0 (mod 3), ¢ =1 (mod 3), then

p+m+4g3971 -1

2 q = Qm+4q,3(A:_nlaA:_fa"'7A—%) (mOd Q)a
where t = 4tm=1
(ii) m =0 (mod 3), ¢ =2 (mod 3), then
+m+2¢3971 -1
b 2 a q = Qm+2q,3(A:_nlaA:_fa"'7A—%) (mOd Q)a
2g+m—1

where t =
(iii) m =2 (mod 3), ¢ =1 (mod 3), then
p+m+2¢371 -1

2q q
2g+m—1

= Qm+2q,3(A%1aA%27"'7A—#) (mOd q)7

where t = 5

(iv) m =2 (mod 3), ¢ =2 (mod 3), then
p+m+4g391 -1

2q q
4g+m—1
.

= Qm+4q’3(A7—rf’A7—f""’A— ) (mod gq),

.
where t =

Proof. (i) If m = 0 (mod 3) and ¢ = 1 (mod 3), then because p = 2 (mod 3) we
have p + m + 4¢ = 0 (mod 3) and the assertion (i) follows from Theorem 1 (i).
Further we proceed analogously. O

Lemma 2 of [8]. Let n,k be integers such that nk 0 (mod q). Then

qg—1

A;
P ni+k
niz—k 7(mod q)

_ %BH <§> (mod g).

Lemma 3 of [8]. Let n be an odd number. Then

qg—1
-1 1 -1 2
2 A1Anz En—(n — 2)Bq_2 <E) + F(TL — 4)Bq_2 (ﬁ)
-1 n—1 nd—1 _
+- +—5Bg2 <%> —-2- . (mod q)
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By Lemma 2 of [8] we get

= = 1 1
ZAiAni+1 = AiAni + —Bg—2 (—) (mod q),
P n n

=1

K K 1 1 1 2
AiAm' = AlAm —B,_ — —B,_ — d s
e St (3 2 (2) i

=1

a1 ik 1 1 1 9
Sttt o (3) 1 ()

n—1

1
4 —B,o [ 2 d q).
+ +nq2<n>(m0q)

Theorem 4. Let g be an odd prime. Let l,p be primes such thatp=2[+1,1=3
(mod 4), p=—m (mod q), form=1,3,5,...,2¢— 3, m =3 (mod 4), and let the
order of the prime q modulo | be l_Tl Suppose that q divides h™, the class number
of the real cyclotomic field Q(Cp + ¢, '). Then the following holds:

(i) if ™3 < q, then

prmast 1 1 1
2—(]T - ng_g Z = Cm (mod q)
(ii) of 2 > g, then
+m3771 -1 1 1
%T + ng—z (Z) =Cyp  (mod g),

where
k—1

mo1 m_1
Cm = ZZ:AZ:—;'_ i:A%Ai—:‘fH* 2 4i1+1A%’
=1 i=1

m

i=1
4iZm (mod q)
and k=23 (mod ¢), 0< k < q.
Proof. Analogous to the proof of Theorem 2. O

To prove that ¢ does not divide h™ for p = —1 (mod q), the following Theorem
5 will be necessary.
Let j be an integer, 0 < j < 2¢q, 7 =0 (mod 2). Define the sums

=N j—1 1 q—1 j—1 1
S, = AZ . - Az .. .
/ Z; ; 2ji+ k _z;l P 2ji+ k
= k=1 (mod2) =t k=1 (mod 2)
2jiZ—k (modq) 2jiZ—k (modq)

Theorem 5. Let q be an odd prime. Let l,p be primes such that p = 21 + 1,
=3 (mod 4), p=—1 (mod q), and let the order of the prime q¢ modulo 1 be Z_Tl
Suppose that for each j such that S; =0 (mod gq) there existsn, (n,2q) =1, n|p+1
such that Sj» # 0 (mod q), where j7* = nj (mod 2q). Then q does not divide h',

the class number of the real cyclotomic field Q(¢p + Cp_l).
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Proof. Let 2°|p + 1 and let 2*! not divide p + 1. Let n be a divisor of p + 1,
(n,2q) = 1. Denote M = 2°T1n. We shall compute the coefficient d,., r < [ in (2),
where ¢" = £M (mod p). By Lemma 2 we have

dr= Y Admi+ Y. Aidmigt....
0<i< & %<i<i—§

It implies that

—1lg—1
_ p+1
d- =5+ <q_N — 5) ZA Anritr  (mod q),

k=0 i=1
where
q71 q—1 q71 q—1
S =3 Ay + Z Aiasi +3° Az + Z AiAuivs
1=1 +1 i=1 +1
q 1 g—1
+ZA Apriy st o+ Z AAppip
=1 +1
Therefore
F-1q-1 q—1 51 1
S = A; A A; - .
, Mit2k + Z Z Mi+k
k=0 i=1 j—atl k=1
2 k=1 (mod 2)

MiZ—k (modq)
By Lemma 2 of [8] and Lemma 3 of [8] we get

T lg-1

M
M M1 1
SN Aidprian = — (2 ¥ —>
‘ 4 q
k=0 =1

1= k
— m Z Bq_2 M (mod q)
k=1 mod 2)
If q|h™ then d, = dy (mod q), hence

M M_q
p—l—l Lg— 12 Lg—1 p+1
S+—— |1+ — Z ZAiAMi+k —3 Z ZAiAMi+k = T (mod q).
k=0 i=1 k=0 i=1
By [8] we have
M_q.,q
1 3~ 1Mat—1
1+ M Z ZA Anpigr = 5 g (mod q).
k=0 =1

The congruence

1Mt —1 M /1MI1-1
_pr M -1 M (_—+1> +S=0 (mod q).
2q q 2\2 ¢

follows.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



388 S. JAKUBEC

Substituting for S we get

M M
21 51

p+1Mq1 - 11 k
2q +_zg;_A’ 2 Mi+k  2M 2 BH(M)'

,_-

1 k=1 k=1
2 k=1 (mod?2) k=1 (mod2)
MiZ—k (modq)

1=

By Theorem 1, g|ht implies that
p+1MI—L -1
2q q

Therefore

1]
=
=
+[7
iy
I
NJ‘}_l
Ml\)

Bys (%) (mod g).

-1 Yo T 1
) > WirEo 2 2 Gpag (edd
PapTe] k=1 i=1 k=1
2 k=1 (mod?2) k=1 (mod 2)
MiZ—k (modq) MiZ—k (mod q)

2g—1 1
Z Mi—i—kEO (mod q).

k=1
k=1 (mod2)
MiZ—k (mod q)

Therefore the congruence (4) can be rewritten as follows

qg—1 7j—1 7j—1 1
A; A; — =0 d q),
DR e
=T k=1 (mod 2) k=1 (mod?2)
2jiZ—k (modq) 2jiZ—k (mod q)

where j = 2n (mod 2q).

Let 2°|p+1 and let 2°* not divide p+ 1. If p runs through all primes of the form
2141, then the numbers 2 (mod 2¢) run through the set {j|j = 2,4,6,...,2¢—2}.
If S; # 0 (mod g) for all j = 2,4,6,...,2¢ — 2, then ¢ does not divide ™. Let
S; = 0 (mod q) for some j. For thls 7 there exists the Correspondlng coefficient

d., r < I, where g" = 42! (mod p). Consider the coefficient d,., ' < [, where
g" = +£2°"n (mod q), nlp+ 1, (n,2q) = 1. If g|h™, then d, = d,» = dy (mod q).
Hence Sj- =0 (mod ¢), where j* = nj (mod 2¢). Theorem 5 is proved. O

Theorem 6. Let g be an odd prime. Let l,p be primes such thatp=2[+1,1=3
_ . 1—

(mod 4), p = —1 (mod q), the order of the prime g modulo | be Tl and let the

congruence 2971 = 3971 =1 (mod ¢?) not hold.
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Suppose that q divides h™, the class number of the real cyclotomic field
Q(¢p + Cp_l) . Then for each k, (k,q) =1, the following congruence holds:

|

k‘.T = Q1+2kq,-2%(A—la A—Qa e 7A—t) (mOd Q)a
where t = kq.
Proof. By Theorem 1 (i) put n = W = % + k If g|h™, then similarly as
in the proof of Corollary 1 we get ’}—Zl = 0 (mod ¢?) and hence n = k (mod ¢?).
Clearly n = p“;;%q = 4. (mod 1+ 2kq) and Theorem 6 is proved. |

Theorem 7. Let q be prime, q < 23. Let I, p be primes such thatp=21+1,1=3
(mod 4), and let the order of the prime q¢ modulo I be l — 1 or l_Tl The prime q

does not divide h*, the class number of the real cyclotomic field Q((p + Cp_l).

Proof. If the order of ¢ modulo [ is I — 1, then ¢ does not divide A™ by [1] and [3].
Suppose that the order of ¢ modulo [ is l_Tl For ¢ = 2, 3,5, Theorem 7 was proved
in the papers [2],[5],[6].

Now we shall prove that ¢ does not divide h™ for ¢ = 7,11,13,17,19, 23.

Let p = —1 (mod ¢). By a computation we get that S; =0 (mod ¢) if and only
if either j =¢—1or j = ¢+ 1. Since 3|p+ 1, by Theorem 5 we get that ¢ does not
divide h*. On the basis of the Remark after Corollary 2, the case m = 5 need not
be considered.

I.Case g=17
By the assumption of Theorem 1, we have that the order of ¢ modulo [ is Z_Tl

Therefore
7 l
1=(-=-)=—-(=]).

Since I = 3,5,6 (mod 7), then p = 2l + 1 = 4,6 (mod 7). Therefore m = 1,3,
i.e. either p = —1 (mod 7) or p = —3 (mod 7).
For p = —3 (mod 7) by Corollary 1 we get

3201
% - =0 (mod?7).

By Theorem 2, I,(i) we have

6-1 1 1
p+33 + —B;s <—) =(C3 (mod 7).

14 7 9 3

By computation,

361 1
= 6 (mod7), C3=6 (mod?7), Bs <§> =6 (mod 7).
Hence
p+3 6
6 11 +9_6 (mod 7),
which is a contradiction
p+320 -1
1A = 0 (mod 7).

II. Case ¢ =11
Analogously for ¢ =7 we get m =1,5,7,9,17.
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1. m=7p=-7 (mod 11).
By Corollary 3, if 11|A™, then

2 2

1 1 1 1
1 o+ Z 1 + - -] =0 (mod 11).
IIZZZZ ZZZSSZ 112‘22Z ZZZSSZ ( )
= <i< 5 << = <1< <<
By computation, we get that this sum is 102 +32+3.10 = 7 (mod 11), therefore
11 does not divide h™.
2. m=9,p=-9 (mod 11).
By Corollary 6, we have
2
1 1
> T ) 7

11 ;22 22 44 11 g 22 22
5 <i<F <1< 5 <<% A

=6>+7°4+67=6 (mod 11).
Therefore 11 does not divide hT.
3. m=17,p=—17 (mod 11).
By Corollary 8, it is enough to prove that

Q1774(A;_;,AI_?,AI_3,A;_;1 A_ J,A G A A )5_’50 (mod 11).

“|oo

By computation we have
Q17.4(A;17A;27A;37A;47A;57A;67A;73A;8)53 (mOd 11)7
’ 17 17 17 17 17 17 17 17

therefore 11 does not divide h™T.
IT1. Case ¢ =13
In this case we have m = 1,5,7,17,19, 23.
1. m=7,p= -7 (mod 13). By Corollary 3,
2 2
1 1
)N R DD I (D DR i
18 i< 26 i< B2 1B ic26 26 i< B2

=32452435=10 (mod 13),

therefore 13 does not divide h™T.

2. m=17, p=—17 (mod 13).

By computation, using Corollary 8, we get that

Al = 1,A2 = 8,143 = 4,A4 = 1,A5 = 9,A6 = 7,A7 = 9,A8 = 1,A9 = 4,A10 =
8,A11 = 1,A12 =0.

For the permutation ¢17,2 we have

s (1 2 3 456 7 8
72=1\2 4 6 8 75 3 1)’
hence

Qur2(X1, X2, ..., Xg) = X7+ X5+ 4+ X7 — (X1 Xo + Xo Xy + -+ X X1).

By computation modulo 13 we get
A;_A3_4A__A6_7A_3
17 17 17
8 A6 =A5=9,A_r =Ag=1,A_s =

=6 =
1 17

I
e
I
<o
N
14
I
&
I

|
39
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Hence
Q17’2(4,7,4,0,8,9,1,1) = 11 (mod 13),

therefore 13 does not divide h™T.
3. m=19, p=—19 (mod 13).
By Corollary 9 we have that

Q102(8,1,7,1,8,0,1,4,9) =6 (mod 13),

therefore 13 does not divide ht.
4. m =23, p= —23 (mod 13).
By Theorem 1 (i), putting n = 2, we get

+23212 -1
p26 TEQQ&Q(AE_;,...,A;_};) (mod 13)
By computation we have
p+ 23
=1 13).
5% (mod 13)

Further we proceed using Theorem 2, III, (iii). The congruence (iii) can be
rewritten as

@l

q—4

p+m3it -1 1 1 -1 -1 i1
Sy S (e I Al d q).
2q q g2 \3 )t Tl+;1+z' (mod g)

By substitution m = 23, ¢ = 13 and by computation we get 31;_1 = 8 (mod 13),

B () =7 (mod13), Ay = As = 1, 37, 5 4: =2 (mod 13).
This implies the congruence

23
g2 ;—6 =1 (mod 13),
which is a contradiction with the congruence
2
p;a 51 (mod 13).

The case III, ¢ = 13 is solved.

IV. Case ¢ =17

By computation we get that the corresponding values of m are m =1, 3,7, 15,25,
29, 31.

1. m=3,p=-3 (mod 17).

By Theorem 1 (i) and Theorem 2 I.(ii), the following congruences hold:

p+329-1
—_— = 1
2 T 0 (mod 17),
p+336—-1 2 1
—" “Bis(=) = 1
31 17 + 9 15 3 Cs (HlOd 7),

where

12 1
A2
C3—A11+;1_Z_A—T1.
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By computation we get that Cs =5, Bis (3) =

p—|—3

3216

8 (mod 17). Therefore

—a contradiction.
2. m="7p=-7 (mod 17).
By Corollary 3 it is enough to prove that
2 2
1 1 1 1
21 o+ |+ - - | #0 (mod 17).
7 7 7 7
3. m=15,p=—15 (mod 17).
In this case by Theorem 1 () we have

p+ 15216 —
31 —1 =Q52(A-1,...,Ar)  (mod 17).
By computation we get
p—+ 15216 —
= 10,1,5, 10,2, 16,12 1
31 17 Q15,2(10,1,5,10,2,16,12) (mod 17),
hence
p+15 _
13 51 = 2 (mod 17).
By Theorem 2 I, (i) we have
p+15 _
10 a1 = 7 (mod 17),

—a contradiction.
4. m =25, p=—25 (mod 17).
By Corollary 10, it is enough to prove that
Q25,2(10,12,5,8,5,12,10,0,1,16,2,10) Z0 (mod 17).
By computation we get

Q25.2(10,12,5,8,5,12,10,0,1,16,2,10) = 6 (mod 17).

5. m =29, p=—29 (mod 17).
By Theorem 1 (i) we have

p+29216 1
34 17 = Q29 2( —1, Afz_%;l) (mod 17),

29
p+29416 -1
31 1— Qo2(A_1,...,Aus)  (mod 17).
By computation we get

p+29
1 =11 1
3 2 (mod 17),
29
9p+ =8 (mod 17),

34
—a contradiction.
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6. m =31, p=—31 (mod 17).
By Theorem 1 (i) we have

p+31216 -1 .
31 17 :Q3172(Ag_11,...7A—3_115) (mod 17),
p+31316 -1
34 17 EQ3173(AE_11,...,A73_115) (mod 17)
By computation we get two congruences
p+31216 -1 .
31 T = 13 (mod 17),
p+31316 -1
=1 1
31 T 3 (mod 17),

—a contradiction.

V. Case ¢ =19

By computation we get that m =1,7,9,11,13,17,21, 31, 33.
1. m=7,p=-7 (mod 19).

By Corollary 3 it is enough to prove

2 2
1

1 1 1
-] + - + n — | #0 (mod 19).
Qgiﬁ L xgﬂ L Q;KE L xgﬂ L
7 7 7 7 7 7 7 7
By computation we have that the left side is equal to 13 (mod 19).
2. m=9,p=-9 (mod 19).
By Corollary 6 it is enough to prove that

2 2
1 1 1 1
- + -1 + - - 0 (mod 19).
192'382 3SZ7SZ IQZSSZ 3SZ7SZ ¢ ( )
5 <t<g 5 <1< 5 <t<H ?<l<j
By computation we have that the left side is equal to 2 (mod 19).
3. m=11,p=—11 (mod 19).
By Theorem 1 (i) we have
p+11218 1
38 19
By computation we get that

QlLQ(AI_ll, ceey AI—f) = Q11’2(11, 14, 1, 15, 5) =15 (HlOd 19)

=Qua(A=r,.. . Azs)  (mod 19).

By Theorem 2 II, (ii) we have

+1138 -1 2 1
b 3] T + §B17 (—) =Cn (mod 19),

3
where
5 5 16 1
Cyy = Z}A% - Z}A%AI_ISH +; = As =17 (mod 19),
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1
By <§> =13 (mod 19).

Therefore
11
32 J?fg =15 (mod 19),
11
18p—; =12 (mod 19),

—a contradiction.
4. m =13, p= —13 (mod 19).
By Corollary 7 it is enough to prove

Quz2(A=1,..., A=) #0 (mod 19).
But
Q132(11,14,15,3,10,1) =3 (mod 19).
5. m=17, p=—17 (mod 19).
By Corollary 8 it is enough to prove

Qura(Ay, ... 1_78) #0 (mod 19),
but
Q172(15,1,3,11,11,5,14,10) = 18  (mod 19).

6. m =21, p=—-21 (mod 19).
By Theorem 1 (i) we have

p+21218 1
38 19 = QZI 2( -1, A*z_llf)) (mod ].9)7

7’
42141 — 1
p I Q2174(A5_11, . ..7A—2_110) (mod 19).
By computation we get

Q21.2(13,0,15,1,3,11,11,5,10) =4 (mod 19),

021,4(13,0,15,1,3,11,11,5,14,10) =3 (mod 19),
which gives a contradiction.
7. m= 31, p=-31 (mod 19).
By Theorem 1 (i) we have
p+31218 -1
33 19 =Q312(A SPp ’A%) (mod 19),

°°|

p+31318—1
38 19 =Q33(A=1,.. ., As)  (mod 19),

31

Q31.2(3,5,10,11,1,13,1,11,10,5,3,0,15,11,14) =4 (mod 19),

@31,3(3,5,10,11,1,13,1,11,10,5,3,0,15,11,14) =3 (mod 19).
By computation we get

p+31
38

3 =3 (mod 19),
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p+ 31
1 = 1
8 33 7 (mod 19),

—a contradiction.
8. m =33, p = —33 (mod 19).
By Theorem 1 (i) we have

p+33218 -1

33 19 EQ33,2(A5_3}7---,A*3_136) (mod 19),
p+33418 -1

33 19 = Q3372(Ag_31,...,A73_}36) (mod 19)

By computation we get

Q33.2(10,15,11,11,1,14,13,14,1,11,11,15,10,0,5,3) = 18 (mod 19),

Q33,4(10,15,11,11,1,14,13,14,1,11,11,15,10,0,5,3) =1 (mod 19),
—a contradiction.
VI. Case ¢ =23
The possible values for m are m =1,3,5,7,11,15,17, 25,31, 35.
1. m=3,p=-3 (mod 23).
By Theorem 1 (i) we have
p+3222 -1
46 23
By Theorem 2 1.(ii) we get
p+332 -1 2 <1

46 23 + 5321 g) = 03 (mod 23)

By computation we obtain that C3 = 19 (mod 23), By (3) = 13 (mod 23), —a
contradiction.

2. m=17,p=-7 (mod 23).

By Corollary 3 it is enough to prove

=0 (mod 23).

2 2

Z % + Z % + Z % - | Z0 (mod 23).

23 ;46 46 ;- 69 23 ., _ 46 46 ;- 69
= <<Z = <i<% << <i<%

By computation we get that the sum is different from zero (mod 23).
3. m=11, p=—11 (mod 23).
By Theorem 2 II.(i) we have

1132 -1 1 1
Pt + >Bo (-) = O (mod 23),

46 23 9 3
where
5 5 11 1
Ci=) A=Y AaAs, +) i Az =3 (mod 23).
=1 =1 =1
Hence
p+1132 1
=22 d 23).
16 23 (mod 23)
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By Theorem 1 (i) we have

p+11 222 _ 1
16 23 =Qua2(Az1,.. . Azs)  (mod 23).
Therefore
p+11 218 _1q
=17 d 23
38 19 (mod 23),
p+11322 -1
=22 d 23
46 23 (mod 23),

—a contradiction.
4. m =15, p=—15 (mod 23).
By Theorem 1 (i) we have
p+1522 1
46 23
By Theorem 2 I.(ii)

+15322 -1 2 1
b 46 23 + 5321 <—> = 015 (mod 23)

3
By computation we get a contradiction.

5. m =17, p=—17 (mod 23).
By Corollary 8 it is enough to prove

Q174( _1 .Afs);;‘éo (HlOd 23),

17

=Qi52(Az1,.. . Az) =4 (mod 23).

|
39

Q1774(A;_71,...,A;_$) =38 (InOd 23)

6. m =25, p=—25 (mod 23).
By Corollary 10 it is enough to prove

Q25)4(A;_51,...,A72_152) ;7é 0 (InOd 23),

Qasa(A-r, .., Aciz) =11 (mod 23).

25
7. m =31, p=-31 (mod 23).
By Theorem 1 (i) we have

pr3192 -1 -
% 23 =Q32(Ao1,.. . Asis) =13 (mod 23),
p+313%2 -1

6 o3 = W@ae(Agn,. Ass) =15 (mod 23),

—a contradiction.
8. m =35, p=—35 (mod 23).
By Theorem 2 II. (i) we have

+3532 -1 1 1
b 16 23 + §B21 (—) = 035 (HlOd 23),

3
by computation we get the congruence

p+1532 1
16 23

=10 (mod 23).
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By Theorem 1 (i) we have

p+35222 -1 _
16 T?,:QB&Z(AE_;’AE_}J):O (mod 23),
—a contradiction. Theorem 7 is proved. O

Now we give the values of j such that S; = 0 (mod ¢) for ¢ < 173 (see Theorem

5)
1. =29, j = 4,28,30,54 16. ¢ = 101, j = 38,100, 102, 164
2. ¢ =31, j = 30,32 17. ¢ = 103, j = 102, 104
3. ¢=37,j=236,38 18. ¢ = 107, j = 68,92, 106, 108, 122, 146
4. ¢ =41, j = 40,42 19. ¢ = 109, j = 108, 110
5. ¢ =43, j = 34,42, 44, 52 20. ¢ =113, j = 112,114
6. q =47, j = 46, 48 21. g = 127, j = 12, 26, 116, 126, 128, 138, 228, 242
7. q=53,j =14,48,52,54,58,92  22. ¢ = 131, j = 130, 132
8. ¢ = 61, j = 36,60, 62, 86 23. ¢ = 137, j = 76,80, 136, 138, 194, 198
9. ¢ =67, j = 66,68 24. ¢ =139, j = 56,138, 140, 222
10. ¢ =71, j = 70,72 25. g = 149, j = 2,126, 148, 150, 172, 196
11. ¢=173,j="172,74 26. q = 151, j = 84, 150, 152, 218
12. ¢ =79, j = 78,80 27. ¢ =157, j = 12,156, 158, 302
13. ¢ =83, j = 82,84 28. ¢ = 163, j = 162, 164
14. ¢ = 89, j = 88,90 29. ¢ = 167, j = 166, 168
15. ¢ =97, j = 96,98 30. ¢ =173, j = 80,172, 174, 266

By Theorem 5, putting n = 3, we obtain that g does not divide h™ for ¢ < 173.
By computation it was verified that the assumption of Theorem 5 (putting n = 3)
is satisfied for all ¢ < 857.
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