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1. Introduction

Many authors have suggested through the years that the
overall morphological uniformity of passerine birds, which
encompass roughly half of all avian diversity, has made
their classification particularly problematic (Mayr and
Amadon, 1951; Beecher, 1953; Sibley and Ahlquist, 1990).
With the rise of molecular systematics and the use of
DNA sequences in particular, the overall relationships
among the major groups of passerines are beginning to be
clarified and numerous taxa are being found to have been
classified erroneously (Sibley and Ahlquist, 1990; Barker
et al., 2002; James et al., 2003; Barker et al., 2004; Fuchs
et al., 2006). One of these latter groups is the shrike-bab-
blers (Pteruthius), a small group of passerine birds endemic
to southern Asia. Recently, Cibois (2003) produced the first
phylogeny of the Timaliidae and discovered that Pteruthius

did not group with other babblers—as was expected on the
basis of previous classifications—but rather with corvoid
outgroups. Cibois (2003) did not investigate the placement
of Pteruthius within corvoids in detail, but her finding is
important because it expands our phylogenetic and biogeo-
graphic view of this large passerine clade that apparently
had its origin in Australasia (Barker et al., 2004).

Pteruthius has most often been placed within the ‘‘bab-
bler’’ family Timaliidae, which has often been regarded
as a ‘‘waste basket’’ because it includes species whose rela-
tionships to other Old World songbirds as well as to each
other have been uncertain (Mayr and Amadon, 1951;
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Sibley and Ahlquist, 1990). Shrike-babblers, as their name
suggests, have some characteristics typical of shrike-like
birds and others similar to babblers. They have strong,
hooked bills like shrikes, but have short, rounded wings
and relatively stout legs like typical babblers (Baker,
1922; Delacour, 1946). All species are sexually dimorphic
in plumage coloration, a trait that is not typically found
in babblers. Their habits and nesting behavior, however,
are similar to true timaliids (Baker, 1922).

The classificatory history of Pteruthius is complex.
Because they possess certain shrike-like characteristics,
especially a sharply hooked bill, the first species to be
described was originally named a shrike (Lanius erythropte-

rus; Vigors, 1830–31). Later, emphasis on other features,
such as wing and leg morphology, prompted their place-
ment into a separate genus, Pteruthius, by Swainson
(1832). Avian classifications since have variously grouped
this genus with babblers, shrikes, and various corvids
(e.g., Swainson, 1832; Oates, 1889; Sharpe, 1903; Baker,
1922). Subsequent classifications have followed Baker
(1922) in placing Pteruthius within the Timaliidae. Dela-
cour (1946), in his revision of the babblers, partitioned gen-
era into five tribes based on external morphological
similarities and differences. He placed Pteruthius into his
last tribe, the Turdoidini, whose members shared the char-
acteristic of being the most widely differentiated taxa
among the Timaliidae (Delacour, 1946). Later authors,
including Deignan (1964) and Sibley and Monroe (1990),
continued to place Pteruthius within muscicapoid higher-
taxa (e.g., Timaliidae or Sylviidae, respectively).

In order to understand corvoid history it is important to
resolve the relationships of Pteruthius within corvoids. The
main objective of this study is to build on the results of
Cibois (2003) and find the closest relatives of Pteruthius.
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We address this using sequences of two nuclear genes,
RAG-1 and RAG-2, for Pteruthius and analyze these
sequences within the largest available nucleotide dataset
for passerines (i.e. Barker et al., 2004), which includes rep-
resentatives of all but one passerine family. Additionally, in
order to make inferences about resulting biogeographic
and temporal patterns we estimate the timing of divergence
of this group from its closest relatives using both non-para-
metric and semi-parametric methods.

2. Methods

RAG-1 and RAG-2 (2902 and 1152 base pairs, respec-
tively) were sequenced for two species of Pteruthius:
P. xanthochlorus (American Museum of Natural History
DOT 5585; Nepal) and P. melanotis (AMNH DOT
10930; Vietnam). Standard PCR procedures were followed
to amplify genomic DNA as described in Barker et al.
(2002) and with previously published primers (see Barker
et al., 2002; Barker et al., 2004). Sequences were deposited
in GenBank (Accession Nos. DQ248105–DQ248108).
Incorporation of these new sequences of protein-coding
genes into the alignment of Barker et al. (2004) was
straightforward and performed by eye. Amplified
sequences were doubled-checked for stop codons and
indels that would indicate a pseudogene.

The dataset included a total of 148 taxa (including two
Pteruthius and two non-passerine outgroup taxa) and
4,126 aligned base pairs (see Barker et al., 2004 for more
details). A maximum parsimony (MP) heuristic search
using the parsimony ratchet (Nixon, 1999) was conducted
by employing PAUPRat (Sikes and Lewis, 2001) in
PAUP*4.0b10 (Swofford, 1998). Five runs of 200 iterations
each were conducted. All non-duplicate minimum length
trees from each run were saved. Nodal support was deter-
mined by bootstrapping (100 pseudo-replicates of 10 ran-
dom additions each), jackknifing (100 pseudo-replicates
of 50% replacement, 10 random additions each), and calcu-
lating decay indices (using TreeRot and PAUP*; Sorenson,
1999). Parsimony results were compared to model-based
reconstructions of phylogeny, mainly maximum likelihood
and Bayesian inference.

The large size of the dataset makes Maximum Likeli-
hood (ML) analyses computationally intensive. We con-
ducted ML analyses using three programs in order to
compare the performance of these different heuristic meth-
ods: PHYML v.2.4.4 (Guindon and Gascuel, 2003) with
additional NNI and TBR swapping in PAUP, as under-
taken in Barker et al. (2004); GARLI v.0.942 (Zwickl,
2006 unpublished Ph.D. dissertation; http://www.zo.utex-
as.edu/faculty/antisense/Garli.html), the best of five repli-
cates with different starting points; and PAUP, heuristic
searches of 10 replicates each using SPR and NNI
branch-swapping. Both PHYML and GARLI estimate a
model that best fits the data during the analysis. For the
PAUP search, the Akaike Information Criterion (AIC) in
Modeltest v3.7 (Posada and Crandall, 1998) was used to
select the best-fit model. ML bootstrapping (100 pseudo-
replicates) was conducted using GARLI. For all compari-
sons, likelihood scores were recalculated in PAUP using
the best model chosen by Modeltest unless otherwise
specified.

MrBayes v.3.11 (Ronquist and Huelsenbeck, 2003) was
used to perform searches of Bayesian Inference. Settings of
default prior probabilities and likelihood model settings for
GTR + I + G were applied. A six-partitioned analysis
using separate models for each codon position in each gene
was used. Two runs of 5,000,000 generations and four
heated chains each with every 500th sampled were per-
formed utilizing a high performance parallel computing
environment. Runs were checked for convergence and
examined for stationarity. The first 500 saved trees of each
run, a conservative cut-off, were discarded as the burn-in,
while a consensus of the remaining trees was computed
for the final outcome.

Divergence times were estimated using non-parametric
rate smoothing (NPRS) and penalized likelihood (PL) as
implemented in the program r8s v.1.70 (Sanderson,
2003). This program is designed to estimate rates of evolu-
tion and divergence times of phylogenetic trees that deviate
from the assumption of the molecular clock and works by
imposing a function that penalizes rates in order to smooth
changes along rate-heterogeneous branches. NPRS is a
non-parametric method, consisting of mainly the penalty
function, while PL is semi-parametric and uses likelihood
to optimize the smoothing function and data-fitting proce-
dure (Sanderson, 2003).

The ML tree was used to calculate divergence rates. As
in Barker et al. (2004), biogeographic evidence was used to
calibrate the divergence of Acanthisitta from all remaining
passerines at 82 million years ago (Cracraft, 2001). Also,
Gallus and Sitta, taxa with high levels of divergence, were
pruned prior to all rate estimates. In r8s, the age of the
Acanthisitta split was fixed and the relative ages of the
remaining nodes were estimated using NPRS and PL.
For each method, the ‘‘checkgradient’’ function and the
best of five iterations from different starting points were
used. For PL, cross-validation was first used to select the
optimal smoothing parameter, which was chosen by select-
ing the smoothing values with the lowest v2 error. Standard
errors for divergence estimates were calculated by first cre-
ating 50 pseudo-replicates of the dataset by bootstrapping
the characters. While constraining the topology of the ML
tree, branch lengths were calculated for each replicate data-
set using PAUP*. The divergence times of these phylo-
grams were estimated using r8s and the distributions of
nodal ages were used to derive the standard errors.

3. Results

The results of the maximum parsimony, maximum like-
lihood, and Bayesian analyses all show that Pteruthius does
not group with the Timaliidae but is deeply nested
within the ‘core Corvoidea’ with strong support for a sister
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relationship with a clade including Vireonidae and Erpornis

(Figs. 1 and 2). Maximum parsimony analysis of the data-
set resulted in 628 shortest trees of 9528 steps (Fig. 1).
Bootstrap, jackknife, and decay values show strong sup-
port for the monophyly of Pteruthius (100/100/20), as well
as the sister grouping of Pteruthius with the extended Vire-
onidae (100/100/10). Similarly, Bayesian posterior proba-
bilities and ML bootstrap values were 100% for both
these nodes.

The PHYML analysis using MP trees as starting points
(as in Barker et al., 2004) gave a worse score
(�lnL = 59473.24) than PHYML with a Neighbor-Joining
starting tree (�lnL = 59470.16). The resulting topology of
the latter analysis, however, was very different from Barker
et al.’s (2004) tree although none of the conflicting nodes
were well supported (i.e. >70% bootstrap). For this reason,
alternative ML programs, such as GARLI and PAUP,
were used. Both these programs found essentially the same
tree, yet GARLI took a few hours and PAUP took a few
weeks to complete the analysis. In Modeltest, both the like-
lihood ratio test and AIC chose the same best-fit model and
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Fig. 1. Strict consensus of 628 most parsimonious trees (9528 steps). Pteruthius

branches indicate nodes where both bootstrap and jackknife values P70%. No
are P70% are indicated with symbols. Decay indices (when > 1) are listed at
parameters: GTR + I + G using base frequen-
cies = (0.3331 0.2055 0.2071), rate matrix = (1.2007
5.6470 0.5909 1.6301 8.2215), gamma shape = 1.0154, pro-
portion of invariant sites = 0.3690. GARLI found the same
model but with slightly different parameters: base frequen-
cies = (0.3318 0.2063 0.2079), rate matrix = (1.1908 5.6459
0.5876 1.6238 8.1943), gamma shape = 1.0176, and propor-
tion of invariant sites = 0.3670. The topology of the trees
selected from PAUP and GARLI differed only in the reso-
lution of Batis mixta in the Malaconotinae/Vangini clade,
which was unresolved in the former (also in Barker et al.,
2004) and sister to the clade of Aegithina + Dryosc-

opus + Telophorus in the latter. Neither topology was well
supported. Both trees had the same scores using the param-
eters selected by Modeltest (�lnL = 59469.4289) and
GARLI (�lnL = 59469.3476). A Shimodaira–Hasegawa
test (Shimodaira and Hasegawa, 1999), performed using
PAUP, indicates that all the trees derived from the different
likelihood analyses are not significantly different (P values
ranged from 0.54 to 0.87). The GARLI/PAUP trees
were used in all further analyses. They differ from the
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Barker et al. (2004) tree only in the placement of Batis (see
above) and of Mionectes, which here is sister to the clade of
Tityra + Schiffornis + Rupicola.

The extended Vireonidae + Pteruthius clade is consis-
tently among the most basal splits of the ‘core’ corvoids.
In the parsimony and likelihood analyses, Daphoenositta

is the most basal split and the Vireonidae + Pteruthius

clade diverges next and is sister to the remaining Corvoi-
dea. All basal relationships of the Corvoidea, however,
are not well supported. In the Bayesian analysis, Daph-
oenositta splits first but the relationships of the Vireoni-
dae + Pteruthius clade and the remaining Corvoidea are
not resolved in the 50% majority consensus tree.

The chronogram generated by r8s is shown in (Fig. 2).
Divergence dates and bootstrap standard errors for nodes
of the Pteruthius + Vireonidae clade are listed in Table 1.
Estimates using both NPRS and PL are very similar. Both
the estimated timing of the split of the extended Vireonidae
(including Erpornis and Pteruthius) from the remaining
Corvoidea and the divergence between Vireonidae and
Erpornis are younger than the estimate reported in Barker
et al. (2004). We tested whether this difference was due to
the addition of new taxa or changes in the model parame-
ters and hence the branch lengths inferred. We found only
slight differences in the divergence time estimates of these
two events with the pruning of Pteruthius taxa and when
using other ML analyses with different model parameters
and branch length estimates (see Table 1). However, all
these estimates are not significantly different from one
another because they overlap when their standard errors
are taken into account.

4. Discussion

The results of this study corroborate the findings of
Cibois (2003) that Pteruthius does not belong in the Timal-
iidae (Passerida). Instead, this genus falls within the Cor-
voidea, with a highly supported sister relationship to the
Vireonidae + Erpornis. Erpornis (née Yuhina zantholeuca)
was recently discovered to be another aberrant taxon for-
merly placed in the Timaliidae (Cibois et al., 2002; Barker
et al., 2004). An extended Vireonidae (including Erpornis
and Pteruthius) is consistently among the basal-most diver-
gences within the core Corvoidea, although the nodal sup-
port for these groupings is low.

The relationships of the vireos have been confounding
avian systematists for a long time. For many years, they
were suggested to be closely related to wood-warblers
(Parulidae) because of their similar coloration, body size,
and distribution in the New World, or to shrikes (Lanii-
dae) due to their comparable bill morphology (Cicero
and Johnson, 2001). DNA evidence has consistently
placed vireonids within the Corvoidea, but an explicit
statement of relationships has been challenging to pin-
point (Sibley and Ahlquist, 1990; Cicero and Johnson,
2001; Barker et al., 2002). Now, with better taxonomic
sampling, we have identified at least two close relatives
of the Vireonidae.

Until recently, the grouping of the New World Vireoni-
dae within the Corvoidea, a clade consisting mainly of Old
World families, was perplexing in terms of biogeography.
The discovery of Pteruthius and Erpornis as close relatives
of vireonids clarifies the phylogenetic and biogeographic
relationships of this enigmatic family. Two biogeographic
scenarios for the history of Vireonidae in the New World
have been put forward. The first proposes that these birds
dispersed to North America via the Bering land-bridge in
the late Tertiary (Beecher, 1953; Cicero and Johnson,
2001). A second states that an ancestral vireonid–corvoid
form might have been present on the southern landmass
of Australia–Antarctica–South America that a vireonid
lineage diverged following the separation of South America
and Antarctica around 40 million years ago (Sibley and
Ahlquist, 1990). The latter hypothesis can be rejected
because the closest relatives of the New World vireos are
Asian and because the divergence estimates based on
molecular distance estimates (Johnson et al., 1998; Barker
et al., 2004; this study) are also more in line with a northern
biogeographic history. The origins and appearance of the
vireonid clade on mainland Asia are difficult to reconstruct
because there is not yet any strong evidence for the identity
of their sister-group within the more basal corvoids and
relationships among these groups are still poorly
understood. We can say that the vireonid clade is one of
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the earliest groups of corvoids to reach Asia, presumably
from Wallacea/Australasia. The divergence time estimate
for the split between the extended Vireonidae from the rest
of the Corvoidea (33.97 million years ago) is much younger
than other basal, noncorvoid passerines hypothesized to
have dispersed out of Australasia. Thus, the African
Picathartidae and primitively Laurasian Passerida were
estimated to have dispersed out of Australasia �45 and
44 million years ago, respectively (Barker et al., 2004).
These findings imply multiple dispersal events of passerine
groups out of Australasia, but our understanding of rela-
tionships among corvoids and of the detailed geological
history of Wallacea/Australasia place limits on our biogeo-
graphic scenarios. Interestingly, the recalculated estimate
for the split of the Vireonidae from its Asian relatives at
22.5 million years is concordant with other passerine dis-
persals into the New World (i.e. Mimini and Emberizinae
both estimated at 22 million years ago (Barker et al.,
2004)).

In conclusion, in light of the findings reported in this
study as well as in Barker et al. (2004) and Cibois (2003),
the classification of the genera Pteruthius and Erpornis
should be changed. These new phylogenetic results demon-
strate these genera do not belong in the Timaliidae but
rather that they should be placed within the Vireonidae.
As tissue samples and nucleotide data for passerine birds
accumulate, especially for poorly studied Asian taxa, it is
possible that other aberrant species might also be found
to belong in this redefined clade.
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