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Abstract

We present a mechanistic underpinning for various discrete-time population models that can produce limit cycles and chaotic

dynamics. Specific examples include the discrete-time logistic model and the Hassell model, which for a long time eluded convincing

mechanistic interpretations, and also the Ricker- and Beverton–Holt models. We first formulate a continuous-time resource

consumption model for the dynamics within a year, and from that we derive a discrete-time model for the between-year dynamics.

Without influx of resources from the outside into the system, the resulting between-year dynamics is always overcompensating and

hence may produce complex dynamics as well as extinction in finite time. We recover a connection between various standard types of

continuous-time models for the resource dynamics within a year on the one hand and various standard types of discrete-time models

for the population dynamics between years on the other. The model readily generalizes to several resource and consumer species as

well as to more than two trophic levels for the within-year dynamics.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Discrete-time population models have received a great
amount of attention for the complex and intriguing
dynamics they can produce even in the simplest systems.
With few exceptions, however, these models lack a clear
mechanistic interpretation in terms of underlying
ecological interactions that occur between two popula-
tion censuses. For example, the discrete logistic model
(also called the quadratic map) is usually presented as
the literal (but not dynamical) equivalent of the
continuous-time logistic model. The Hassell (1975)
model was introduced as a descriptive model and was
used for statistical data fitting (Hassell et al., 1976). In
this paper we present a single ecological underpinning
for various discrete-time population models including
the discrete logistic model and the Hassell (1975) model,
but also the models of Ricker (1954) and of Beverton
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and Holt (1957) for which different mechanistic inter-
pretations are well known.
An unstructured discrete-time population model must

be overcompensating (i.e. the population density xnþ1 in
the next year must have a local maximum as a function
of the current population density xn; Gurney and
Nisbet, 1998, p. 128) in order to produce cycles or
chaos. Undercompensating models (where xnþ1 in-
creases monotonically with xn) can produce only
monotonous convergence to an equilibrium. The me-
chanistic underpinning of between-year overcompensa-
tion is therefore of interest (see, e.g. Jensen, 1994;
Nedorezov and Nedorezova, 1995; Gyllenberg et al.,
1997; Sumpter and Broomhead, 2001; Gamarra and
Sole, 2002; Johansson and Sumpter, 2004).
Discrete-time models are used when reproduction

happens once a year as a discrete event, while deaths
may occur continuously during the course of a year.
Mere instantaneous density dependence of the death
rate, however, does not yield overcompensating be-
tween-year dynamics (Nedorezov and Nedorezova,
1995; Gyllenberg et al., 1997). One may assume
density dependence in fecundity such that it leads to
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overcompensation, but then overcompensation is in-
corporated by assumption rather than as the outcome of
an underlying ecological mechanism (Nedorezov and
Nedorezova, 1995).
In this paper we present a model in which density

dependence of fecundity derives from a resource–
consumer model for the within-year dynamics. By
applying a time-scale argument, we keep the between-
year dynamics of the consumer one-dimensional. We
demonstrate that within our framework, the between-
year dynamics of the consumer is always overcompen-
sating unless there is an influx of resources from the
outside into the system. In the second part of this paper,
we simplify the model by assuming no adult consumer
mortality during the season (all adult consumers die at
the end of the season). Using various standard equations
for the continuous-time population growth of the
resource, we then recover various standard overcom-
pensating discrete-time models for the between-year
dynamics of the consumer. In the last sections, we briefly
discuss similar models with multiple resource and
consumer species and with more trophic levels, and we
analyse the between-year dynamics of the consumer with
adult mortality during the season.
2. The model

Consider a population of consumers with population
density xnðtÞ at time t within year n ¼ 0; 1; 2;y; living
off some food source with density RnðtÞ; and producing
eggs at a per capita rate proportional to the rate of
food intake. The density of eggs accumulated since the
beginning of the year is denoted by EnðtÞ: Within each
year, time t runs from zero to one, and the within-year
dynamics is given by

’RnðtÞ ¼ aRnðtÞf ðRnðtÞÞ � bRnðtÞxnðtÞ;
’EnðtÞ ¼ gbRnðtÞxnðtÞ � dEnðtÞ;

’xnðtÞ ¼ �mxnðtÞ: ð1Þ

Here a is a scaling factor for the resource population
growth rate, b denotes the consumption rate, g the
conversion of food into eggs, d the rate of egg mortality
during the season and m the mortality rate among adult
consumers (note that in Sections 3–5, we shall assume
m ¼ 0). The function f is assumed to be continuous and
monotonically decreasing on ð0;NÞ such that
limRk0 Rf ðRÞ is finite and such that for some given
positive K ; f ðRÞ > 0 if RoK and f ðRÞo0 if R > K :
As a consequence, K is the unique asymptotically stable
positive equilibrium density for the resource dynamics if
no consumers are present.
At the end of the season ðt ¼ 1Þ all adult consumers

die, and the next year’s population is recruited from the
eggs that survive the winter. Eggs that do not hatch at
the beginning of the next year are assumed to be lost.
Next year’s initial resource density is equal to what
remains from the present year multiplied by a factor
describing winter survival. The between-year dynamics
is thus given by

Rnþ1ð0Þ ¼ rRnð1Þ;

Enþ1ð0Þ ¼ 0;

xnþ1ð0Þ ¼ sEnð1Þ; ð2Þ

where s and r denote the winter survival probabilities
for the eggs and the resource, respectively.
We simplify the model by assuming that the within-

year dynamics of RnðtÞ is much faster than the within-
year dynamics of EnðtÞ and xnðtÞ; i.e. a and b are large
compared to gb; d and m: A two-time-scale analysis of
Eq. (1) then shows that the within-year resource
dynamics has a unique asymptotically stable quasi-
equilibrium

#RnðtÞ ¼
f �1 b

a
xnðtÞ

� �
if xnðtÞA½0; x�Þ;

0 if xnðtÞXx�;

8><
>: ð3Þ

where xnðtÞ ¼ xnð0Þe�mt and x� ¼ ða=bÞ limR-0 f ðRÞ;
which may be finite or infinite. We assume that during
the year the resource density stays on the quasi-
equilibrium, i.e. RnðtÞ ¼ #RnðtÞ for all t: Note that this
implies that we allow for the full recovery of the
resource whenever the quasi-equilibrium becomes posi-
tive again after the resource density has become zero
earlier during the same year or at the end of the previous
year. The rationale behind this is that given the
assumption of fast resource dynamics, small perturba-
tions in the resource density instantaneously restore the
resource at its positive resource equilibrium density.
(Alternatively, we might assume that the resource does
not recover once it has gone extinct. The implications of
such an assumption are discussed in the second half of
Section 6.)
Substitution of the resource density RnðtÞ in Eq. (1) by

the quasi-equilibrium #RnðtÞ from Eq. (3) gives a first-
order linear differential equation for the egg density
EnðtÞ; which is readily integrated. Substitution of the egg
density Enð1Þ at the end of the season into the equation
for xnþ1ð0Þ in Eq. (2) subsequently gives

xnþ1ð0Þ ¼ xnð0Þ sgbe�d
Z 1

0

#RnðtÞeðd�mÞt dt

� 	
: ð4Þ

Eqs. (3) and (4) together completely describe the
between-year dynamics of the consumer species.

2.1. Overcompensation in the between-year consumer

dynamics

In the appendix we show that if limR-0 Rf ðRÞ ¼ 0;
then the between-year consumer dynamics is necessarily
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Fig. 1. Within-year resource dynamics (upper panels) and between-year consumer dynamics (lower panels) in the models of Sections 3 and 4. Note

that the between-year consumer dynamics is undercompensating only when resource growth ðaRf ðRÞÞ is positive at zero resource density (in ðdÞ and
ð f Þ), which indicates inflow of the resource from outside the system. In all models, R is scaled such that l � ðsgb=dÞð1� e�dÞ ¼ 1; by scaling x;b=a
(and hence b) can be chosen arbitrarily; a is absorbed in scaling the vertical axes of the upper panels. (a) The discrete logistic model (Eqs. (6) and (7)
with K ¼ 3:5 and hence a ¼ 3:5). (b) The Hassell model (Eqs. (8) and (9) with K ¼ 35 and y ¼ 0:8; it follows that a ¼ 35 and c ¼ 5). (c) The Ricker

model (Eqs. (10) and (11) with K ¼ 10 and hence a ¼ 10). (d) The Beverton–Holt model (Eqs. (12) and (13) with K ¼ 3:5 and hence a ¼ 3:5). (e) The
Maynard–Smith model (Eqs. (16) and (17) with a ¼ 10 and c ¼ 5; in the reconstructed resource dynamics, K ¼ 10). ( f) The Skellam model (Eq. (18)

with a ¼ 3).
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overcompensating in the sense that xnþ1ð0Þ as a function
of xnð0Þ has a global maximum and that at large values
of xnð0Þ either xnþ1ð0Þ ¼ 0 or xnþ1ð0Þ is strictly decreas-
ing. In most ecological settings limR-0 Rf ðRÞ ¼ 0 if and
only if there is no influx of the resource from the outside
into the system. In other words, undercompensating
between-year dynamics requires a continuous influx of
the resource, and without such influx, the between-year
consumer dynamics is overcompensating and hence
liable to exhibit complex dynamics such as cycles or
chaos.
To understand this proposition heuristically, note

from Eq. (1) that the rate of total egg production at the
quasi-equilibrium is proportional to Rnf ðRnÞ; and thus
most eggs would be produced if Rn were constant at the
optimal harvesting density *R that maximises Rnf ðRnÞ:
Large consumer densities, however, push the resource
density below the optimal harvesting level. If Rn is less
than *R throughout the season, then further increasing
xnð0Þ decreases the total egg production as long as it is
positive, i.e. we have overcompensation. Undercompen-
sation in this model is possible only if *R ¼ 0; for which
limR-0 Rf ðRÞ must be positive.
3. The case of zero adult mortality ðl ¼ 0Þ

If the mortality among adult consumers during the
season is negligible, i.e. if m ¼ 0; then xnðtÞ and #RnðtÞ
remain constant during the season, and the between-
year dynamics of the consumer simplifies to

xnþ1 ¼
lxnf �1ððb=aÞxnÞ if xnA½0; x�Þ;

0 if xnXx�;

(
ð5Þ

where xn ¼ xnð0Þ; l ¼ ðsgb=dÞð1� e�dÞ and x� ¼
ða=bÞ limR-0 f ðRÞ as defined as in the first line below
Eq. (3). Although the case m ¼ 0 may be somewhat
special, it reveals a relation between various well-known
types of continuous-time dynamics for the resource
within a year on the one hand, and other well-known
types of discrete-time dynamics for the consumer
between years on the other. Here are some examples
(Fig. 1 illustrates the various functions aRnf ðRnÞ used
for resource dynamics in the absence of consumers, and
the resulting between-year map of the consumer
dynamics, xnþ1ðxnÞ).

3.1. The discrete logistic model (Fig. 1a)

Suppose that if no consumers are present, the within-
year resource dynamics is given by the continuous
logistic equation

’RnðtÞ ¼ aRnðtÞ 1�
RnðtÞ

K

� �
: ð6Þ

Then f ðRÞ ¼ 1� R=K and x� ¼ a=b; so that from
Eq. (5) we recover a truncated version of the discrete
logistic equation

xnþ1 ¼
axnð1� bxnÞ if xnA½0; x�Þ;

0 if xnXx�;

(
ð7Þ

where a ¼ lK and b ¼ b=a: The truncation at xn ¼ x�

arises naturally from the underlying within-year dy-
namics and prevents next year’s population density from
becoming negative at values of xnXx�: Depending only
on the value of the compound parameter a, the
dynamics spans the whole range from a stable equili-
brium via periodic orbits to full chaos (see, e.g.
Devaney, 1989, for a detailed analysis). For a > 4; the
consumer population will go extinct in finite time for
almost every initial consumer density. Note that the
continuous logistic model (Eq. (6)) itself can be given
a mechanistic underpinning, e.g. by a continuous-time
site-based model with death and recolonization
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analogously to the metapopulation model of Levins
(1969); see, e.g. (Johansson and Sumpter, 2004).

3.2. The Hassell-model (Fig. 1b)

Suppose that without consumers the within-year
resource dynamics is given by the Von Bertalanffy
equation

’RnðtÞ ¼ aRy
nðtÞ � aKy�1RnðtÞ ð8Þ

for some yAð0; 1Þ: This equation is best known as
describing the growth of individual body size (with y ¼ 2

3
;

see, e.g. Thieme, 2003, pp. 33–35). With y ¼ 1
2
; the Von

Bertalanffy equation corresponds to the so-called sub-
exponential population growth of replicators with self-
inhibition and exponential decay (Szathm!ary, 1991).
More generally, the equation can be regarded as a crude
model of population growth when intra-specific inter-
ference leads to self-inhibited reproduction while the
per capita mortality rate remains constant. From Eq. (8)
we have f ðRÞ ¼ Ry�1 � Ky�1 and x� ¼ N; so that from
Eq. (5) we recover the Hassell (1975) model

xnþ1 ¼
axn

ð1þ bxnÞ
c ð9Þ

for all xnX0; where a ¼ lK ; b ¼ ðb=aÞK1�y; and c ¼
1=ð1� yÞ: Since c > 1; in the present context the model is
always overcompensating. The dynamics of Eq. (9) only
depends on the parameters a and c and is as rich as that
of the discrete logistic model (7), although extinction in
finite time cannot occur (Hassell, 1975).

3.3. The Ricker model (Fig. 1c)

Suppose that without consumers, the within-year
resource dynamics is given by the Gompertz equation

’RnðtÞ ¼ aRnðtÞ 1�
ln RnðtÞ
ln K

� �
ð10Þ

with K > 1 (see, e.g. Edelstein-Keshet, 1988). The
Gompertz equation describes a population where the
per capita growth rate declines exponentially with time,
e.g. due to a deteriorating environment. An equivalent
expression for Eq. (10) is ’RðtÞ ¼ le�vtRnðtÞ for certain
positive constants l and n: The Gompertz equation has
been applied to populations of bacteria (e.g. Lay et al.,
1998) and also occasionally to animal populations
(Pradhan and Chaudhuri, 1998; Chavarria and de la
Torre, 2001). From Eq. (10) we have f ðRÞ ¼
1� ln R=ln K and x� ¼ N; so that from Eq. (5) we
recover the Ricker (1954) model

xnþ1 ¼ axne
�bxn ð11Þ

for all xnX0; where a ¼ lK and b ¼ ðb=aÞ ln K : Note
that the present ecological mechanism is totally different
from the one proposed by Ricker (1954) himself. The
dynamics only depends on the value of a; and are
qualitatively similar to that of Eq. (9).

3.4. The Beverton–Holt model (Fig. 1d)

Suppose that the within-year resource dynamics in
absence of the consumer is given by

’RnðtÞ ¼ a�
aRnðtÞ

K
: ð12Þ

In other words, there is a constant influx of the resource
into the system at a rate a and an efflux or decay at a
per capita rate of a=K : Thus, f ðRÞ ¼ ð1=RÞ � 1=K and
x� ¼ N; so that from Eq. (5) we recover the model of
Beverton and Holt (1957)

xnþ1 ¼
axn

1þ bxn

ð13Þ

for xnX0 and with a ¼ lK and b ¼ ðb=aÞK : Thieme
(2003, pp. 40–42) used a similar approach to derive
continuous population dynamics with a birth term of the
form ax=ð1þ bxÞ: Note that this is our first example
with undercompensating between-year dynamics.
4. The inverse problem

Consider the inverse problem: given a specific expres-
sion for the between-year consumer dynamics, what
would be the underlying within-year resource dynamics?
With m ¼ 0 we can generate any type of between-year
consumer dynamics provided it is of the form

xnþ1 ¼
xngðxnÞ if xnA½0;LÞ;

0 if xnXL;

(
ð14Þ

where L > 0 may be finite or infinite and where, for some
K > 0; the function g : ½0;LÞ-ð0;K � is continuous,
monotonically decreasing and onto. The underlying
within-year resource dynamics in absence of consumers
is then given by

’R ¼ bRg�1ðlRÞ ð15Þ

for RAð0;K=l�; which is readily verified by substitution
into Eq. (5). Scale R such that l equals 1. K is then
the equilibrium resource density in the absence of the
consumer, whereas L is equal to x� as defined in the line
below Eq. (3). The details of the right-hand side
of Eq. (15) for R > K are irrelevant, because RðtÞ
cannot pass through the point R ¼ K ; which is an
equilibrium of Eq. (15). However, the resulting
within-year resource dynamics may lack a clear
ecological interpretation or may not be expressed in
terms of known functions. For example, suppose we
want to know the resource dynamics underlying the
model of Maynard Smith (1974, p. 53) and Maynard
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Smith and Slatkin (1973)

xnþ1 ¼
axn

1þ bxc
n

ð16Þ

for xnX0 and a > 0; b > 0 and c > 0: Since gðxÞ ¼
a=ð1þ bxcÞ; it follows from Eq. (15) that the within-
year resource dynamics is given by

’R ¼ aR
1

R
�

1

K

� �1=c

ð17Þ

for RAð0;K � and with K ¼ a and a ¼ bða=bÞ1=c (see
Fig. 1e). It is unclear, however, how Eq. (17) can be
interpreted as a difference of a separate growth term and
decay term. In other words, the Maynard Smith model
does not permit an obvious mechanistic interpretation in
terms of resource consumption, except when c ¼ 1; in
which case the model coincides with that of Beverton
and Holt (1957).
As a second example, suppose we want to find the

underlying resource dynamics that produces the dis-
crete-time model of Skellam (1951)

xnþ1 ¼
a

b
ð1� e�bxnÞ ð18Þ

for xnX0; and with a > 0 and b > 0 (written in the above
form, b only scales x). Thus,

gðxÞ ¼
a if x ¼ 0;
a

b
ð1� e�bxÞ=x if x > 0:

8<
: ð19Þ

While g is a strictly decreasing function and can be
inverted numerically (see Fig. 1f), its inverse cannot be
expressed in terms of known functions.
5. Generalizations of the model with zero adult mortality

ðl ¼ 0Þ

In this section, we briefly consider two extensions of
the basic model in Eq. (1), still assuming that adult
consumer mortality is negligible during the season
ðm ¼ 0Þ:

5.1. Multiple resources and consumer species

The basic model in Eq. (1) with m ¼ 0 readily
generalizes to multiple species (k resource species and
m consumers, where the dynamics of all resources are
fast compared to the dynamics of consumers). Let the
within-year dynamics be given by

’RðiÞðtÞ ¼ aiR
ðiÞðtÞfiðRðiÞðtÞÞ � RðiÞðtÞ

Xm

j¼1

bijx
ð jÞ

for i ¼ 1;y; k;
’Eð jÞðtÞ ¼ xð jÞ
Xk

i¼1

gijbijR
ðiÞðtÞ � djE

ð jÞðtÞ

for j ¼ 1;y;m;

’xð jÞ ¼ 0 for j ¼ 1;y;m: ð20Þ

Note that in this model, there is no direct competition
between resource species; they interact only via shared
consumers that prey upon them. In quasi-equilibrium of
the resources

#RðiÞ ¼ max 0; f �1
i

X
j

bij

ai

xð jÞ

 !( )
;

and therefore the between-year dynamics of the
consumers is given by

x
ð jÞ
nþ1 ¼ xð jÞ

n

X
i

lij max 0; f �1
i

X
l

bil

ai

xðlÞ
n

 !( )
; ð21Þ

with lij ¼ ðsjgijbij=djÞð1� e�dj Þ: If, for example, a single
consumer exploits two resources with, respectively,
continuous-time logistic and Von Bertalanffy growth,
then the resulting between-year dynamics of the
consumer is

xnþ1 ¼ xn l1K1 1�
b1
a1

xn

� �þ

þl2
K2

ð1þ ðb2=a2ÞxnÞ
c

� 	
;

i.e. the sum of a truncated discrete-time logistic term and
a Hassell term. In case of several consumers, their
between-year growth rates contain identical terms
except for different weighing factors lij :

5.2. Three or more trophic levels: ‘‘Echoing’’

Consider a model with three trophic levels, where the
bottom species ðRÞ exhibits density-dependent popula-
tion growth in absence of the others, whereas species C

exploits R and is exploited by the top consumer x that
has discrete generations

’RnðtÞ ¼ aRnðtÞf ðRnðtÞÞ � b0RnðtÞCnðtÞ;
’CnðtÞ ¼ g0b0RnðtÞCnðtÞ � bCnðtÞxn � d0CnðtÞ;
’EnðtÞ ¼ gbCnðtÞxn � dEnðtÞ;

’xnðtÞ ¼ 0: ð22Þ

Assume that the dynamics of the two bottom species
is fast compared to the top consumer such that RnðtÞ
and CnðtÞ attain a quasi-equilibrium (which is always
globally attracting; cf. Hofbauer and Sigmund, 1998,
Chapter 4.3, pp. 34–37). The between-year dynamics of
the top consumer is then

xnþ1 ¼ lxn
#Cn ¼

lxn

a
b0

f
bxn þ d0

g0b0

� �
if xnA½0;x�Þ;

0 if xnXx�;

8><
>:

ð23Þ
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Fig. 2. The between-year consumer dynamics for logistic within-year

resource growth and positive adult mortality, with (a) assuming that

the resource can recover from extinction (Eq. (24)) and (b) assuming

that resource density stays zero once it has reached zero. In (a), the

resource is extinct during the first part of the season when

x�oxnð0Þox�em; and it goes extinct during the entire season only if

xnð0Þ > x�em: In (b), the resource is extinct at the beginning of the

season and therefore during the entire season when xnð0Þ > x�: Note
that in the example shown in (b), no positive equilibrium exists (i.e.

there is no positive point intersection with the line xnþ1 ¼ xn) even

though the equilibrium at zero population density is repelling.

Parameter values: (a) sgbK ¼ 7; a=b ¼ 1; d ¼ 1 and m ¼ 0:2; (b)

sgbK ¼ 10; a=b ¼ 1; d ¼ 1 and m ¼ 1:2:
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with x� ¼ ðg0b0K � d0Þ=b and with l ¼ ðsgb=dÞð1� e�dÞ
as before. Note that with three trophic levels, the
function f itself is ‘‘echoed’’ in the between-year map of
the top consumer, whereas with two trophic levels, the
shape of the between-year map is given by the inverse of
f (see Eq. (5)). In addition, there is a translation term
in the argument of f (which is, however, small if the
consumption-independent death rate of the middle
species, d0; is small).
With more than three trophic levels, the stability of

the quasi-equilibrium may not be guaranteed. However,
if each trophic level has a different time-scale with the
bottom species being the fastest and the top consumer
being the slowest, then the stability of the quasi-
equilibrium is ensured. Depending on whether the
number of trophic levels is odd or even, the function f

or its inverse, a property of the species at the bottom
trophic level, is ‘‘echoed’’ in the between-year dynamics
of the top consumer. (Note that with more than three
trophic levels, translation terms appear in the between-
year growth rate both in the argument of f or f �1 and
outside of it.)
6. The case of positive adult mortality ðl > 0Þ

If the mortality among adult consumers during the
season is not negligible, i.e. m > 0; then the integral in
Eq. (4) usually cannot be calculated explicitly. Among
the examples in Sections 3 and 4, the case of a
logistically growing resource is a notable exception.
For this case we find x� ¼ a=b and

xnþ1 ¼

axnð1� bxnÞ if xnA½0;x�Þ;

a0xnð1� b0xn þ c0x
ðd�mÞ=m
n Þ if xnA½x�;x�emÞ;

0 if xnXx�em;

8><
>:

ð24Þ

where

a ¼
sgbK

d� m
ðe�m � e�dÞ; b ¼

bðd� mÞ
aðd� 2mÞ

ðe�2m � e�dÞ
ðe�m � e�dÞ

;

a0 ¼
sgbK

d� m
e�m; b0 ¼

bðd� mÞ
aðd� 2mÞ

e�m

and c0 ¼
m

d� 2m
ðb=aÞðd�mÞ=mem�d:

For 0pxnox� and xnXx�em we recover the truncated
discrete logistic equation in Eq. (7) (albeit with different
parameters), but for x�pxnox�em the two models are
different (Fig. 2a).
Whenever x�oN; the right-hand side of Eq. (4)

consists of three parts like in the example in Eq. (24).
The reason for this is the following: (i) If xnð0Þox�;
then xnðtÞox� for all t: Hence, from Eq. (3), #RnðtÞ > 0
for all t; so that eggs are being produced during the
whole season. (ii) If x�oxnð0Þox�em; then xnðtÞ > x� for
tot� and xnðtÞox� for t > t�; where t� ¼ ð1=mÞ ln xnð0Þ=
x�o1: Hence, #RnðtÞ > 0 only for t > t�; so that eggs are
being produced only during the later part of the season.
(iii) If xnð0Þ > x�em; then xnðtÞ > x� for all t; so that
RnðtÞ ¼ 0 for all t; and no eggs are being produced
anytime. In spite of consisting of three parts, one readily
shows that the right-hand side of Eq. (4) as a function of
xnð0Þ is continuously differentiable at xnð0Þ ¼ x� as well
as at xnð0Þ ¼ x�em (cf. Fig. 2a). Generally, it is not twice
differentiable at these points.
Till now we assumed that the resource population can

fully recover even after its density has become zero at
some earlier time, for example, by an otherwise
negligible level of immigration. If instead we assume
that the resource density stays zero once it has reached
zero, then (i) for xnð0Þox�; RnðtÞ is positive and hence
eggs are being produced during the entire season like
previously, but (ii) for xnð0ÞXx�; RnðtÞ is initially zero
and stays zero during the entire season, and therefore no
eggs are being produced anytime during the season, also
not after the consumer population has become so small
that the quasi-equilibrium of the resource has become
positive again. As a consequence, the right-hand side of
Eq. (4) as a function of xnð0Þ has a discontinuity at the
point xnð0Þ ¼ x�: Because of this, the between-year
dynamics can be dramatically different from that under
the assumption of full recovery of the resource. In
particular, there may not exist a positive equilibrium for
the between-year consumer dynamics even if the zero
population density is unstable, in which case the
consumer population goes extinct in finite time irrespec-
tive of its initial state (cf. Fig. 2b). We would like to
emphasize, however, that without the possibility of
spontaneous recovery of the resource population, the
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results are not robust against small perturbations in the
resource density.
7. Discussion

In discrete-time models, the population densities xn

and xnþ1 in two consecutive years can be seen,
respectively, as the input and as the output of processes
occurring during the intervening period here referred to
as the within-year dynamics. The output of one year is
the input of the next year. Suppose that the within-year
dynamics is given by a single ordinary differential
equation where the input determines only the initial
condition of the system (and nothing else), and suppose
that the dependence of the initial condition on the input
is monotonic. If also the output is a monotonic function
of the state of the system at the end of the season, then
there is necessarily a monotonous relation between the
input and the output, and hence the between-year
dynamics is undercompensating (Nedorezov and Ne-
dorezova, 1995; Gyllenberg et al., 1997; the latter
authors also show that if fecundity is traded-off with
density-dependent offspring survival during the year,
then adjustable reproductive strategies may lead to
overcompensation, but the evolutionarily optimal re-
productive strategy again gives undercompensation).
If the within-year dynamics involves structured

populations (Gyllenberg et al., 1997) or interacting
species (Gamarra and Sole, 2002), then the input–output
relation may be non-monotonous and thus gives rise to
overcompensation between years, possibly with complex
dynamical behaviour such as cycles or chaos. Note that
population structure or inter-specific interactions on the
level of the between-year dynamics imply time delays
across different years, which may further destabilise the
between-year dynamics (see Turchin and Taylor, 1992).
In our model, the within-year dynamics involves

population structure (eggs and adults) as well as inter-
specific interactions (resource and consumers). The eggs,
however, interact neither with the adults nor with the
resource, but merely accumulate. Moreover, by the
assumption of fast resource dynamics, the within-year
dynamics is confined to a one-dimensional manifold and
can be represented by a single ordinary differential
equation for the density of the eggs. How, then, does our
model lead to overcompensation between years? The
reason for this is that the input (i.e. the density of adults
at the beginning of the season) affects the rate of egg
production and therefore affects the differential equa-
tion itself and not just the initial condition. In fact, the
initial condition is independent of the input, because
the egg density at the beginning of the season is by
assumption always zero. The situation is comparable to
that described by Ricker (1954), where the adults affect
(through cannibalism) the rate of mortality of the eggs
(or juveniles), so that the input not only affects the
initial density of eggs (which are produced in a single
burst at the beginning of the season) but also the within-
year dynamics itself.
When the within-year dynamics depends on the input

in other ways than merely through initial conditions,
then overcompensation is possible because of delayed
density dependence. What our model contributes is an
explicit ecological underpinning for this time delay, and
hence for overcompensation. Assuming that the system
is closed, the between-year dynamics of the consumer is
always overcompensating and hence liable to exhibit
complex dynamics such as cycles or chaos. Under-
compensating between-year dynamics in our model
requires a continuous influx of the resource.
For different types of continuous resource dynamics,

we recover different standard discrete-time models
including the discrete logistic model, the Hassell (1975)
model, the Ricker (1954) model and the Beverton–Holt
(1957) model. While different continuous-time models
of single populations have qualitatively similar dy-
namics (i.e. convergence to a fixed point), our model
shows that the exact form of the continuous-time
dynamics for the resource can be important for the
qualitative behaviour of the discrete-time model for the
population on the next trophic level. For example, in the
discrete logistic model a population can go extinct in
finite time, whereas in the Hassell (1975) model and in
the Ricker (1954) model extinction in finite time is not
possible, even though the underlying continuous-time
resource dynamics are very similar (Fig. 1a–c).
Concerning the discrete logistic model, Jensen (1994)

offered a derivation where adults produce offspring
within a season at a rate linearly dependent on the
density of the adults, but they did not give an underlying
mechanism for the density dependence of the birth rate.
Gyllenberg et al. (1997) obtained the discrete logistic
equation as a limiting case in a structured population
model with competition for space. Note that the
dynamical properties of the discrete and the continuous
logistic models are entirely different, and hence the naive
discretization of the continuous logistic model is not
acceptable as the ‘‘derivation’’ of the discrete logistic
model; the discrete-time homologue of the continuous
logistic model is the Beverton–Holt model (see, e.g.
Yodzis, 1989, pp. 73–74; Thieme, 2003, pp. 83 and 100).
In this paper, we utilized a resource–consumer system

with time-scale separation to derive various one-dimen-
sional discrete-time models. An alternative way to give
mechanistic underpinnings to several discrete-time
models is to start with a site-based model with different
types of local interactions between individuals (Johans-
son and Sumpter, 2004). A site-based model was used
by Skellam (1951), and also the Ricker model can be
derived in the site-based framework (Sumpter and
Broomhead, 2001). Johansson and Sumpter (2004) also
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considered the inverse problem in the site-based frame-
work, and found that it cannot reproduce the discrete
logistic model in a biologically sensible way. In contrast,
the (truncated) discrete logistic and the Ricker models
can be obtained in our framework, but the resource
dynamics necessary for obtaining the Skellam model
could not be expressed with known functions. In a third
framework assuming severe cannibalism in a short
period after birth, Thieme (2003, Chapter 13.7) showed
that a number of standard models can be obtained
depending on the distribution of the (stochastic)
duration of the larval stage subject to cannibalism:
exponential distribution yields the Beverton-Holt mod-
el, Gamma distribution (i.e. many larval stages each
with exponentially distributed duration) yields the
Hassell model, whereas (as well known) a fixed duration
yields the Ricker model. Obviously, different frame-
works can provide underpinnings to different sets of
discrete-time models. Unfortunately the Maynard Smith
model, which has been advocated for its flexibility and
good fit to empirical data (Bellows, 1981), seems to
elude a mechanistic interpretation.
Our model generalizes to multiple resources and

consumer species (with different types of resource
dynamics leading to different terms in the between-year
growth rate of the consumers), and to more trophic
levels (with ‘‘echoing’’). The inclusion of nonlinear
functional responses unfortunately makes the equations
messy, with no apparent relations between simple
models. Overcompensation, however, is preserved also
with nonlinear functional responses, whenever the
quasi-equilibrium does not bifurcate during the season
for all initial consumer densities in some open interval
(see the appendix).
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Appendix

Here we show that if limR-0 Rf ðRÞ ¼ 0; then the
xnþ1ð0Þ in Eq. (4) as a function of xnð0Þ has a global
maximum, and xnþ1ð0Þ ¼ 0 or xnþ1ð0Þ is strictly decreas-
ing for sufficiently large values of xnð0Þ:
First, suppose that x� is finite. Then xnþ1ð0Þ ¼ 0 if

xnð0Þ ¼ 0 or xnð0ÞXx�em; while xnþ1ð0Þ > 0 if
0oxnð0Þox�em: Since the right-hand side of Eq. (4)
depends continuously on xnð0Þ; it follows that xnþ1ð0Þ
has a global maximum at some xnð0ÞAð0; x�emÞ: To see
why xnþ1ð0Þ ¼ 0 for xnð0ÞXx�em; note that if
xnð0ÞXx�em; then xnðtÞXx� for all t; so that from (3)
#RnðtÞ ¼ 0 for all t; and hence from Eq. (4) xnþ1ð0Þ ¼ 0:
Next, suppose that x� is infinite. We show that there

exists a number *x > 0 such that xnþ1ð0Þ as a function of
xnð0Þ is monotonically decreasing on ð *xem;NÞ: Since
xnþ1ð0Þ is increasing for xnð0Þ close to zero, it follows
that xnþ1ð0Þ has a global maximum at some
xnð0ÞAð0; *xemÞ: To show that such a number *x indeed
exists, note from the equation for RnðtÞ in Eq. (1) that at
the quasi-equilibrium a #RnðtÞf ð #RnðtÞÞ ¼ b #RnðtÞxnðtÞ; so
that Eq. (4) can also be written as

xnþ1ð0Þ ¼ sgae�d
Z 1

0

#RnðtÞf ð #RnðtÞÞedt dt: ðA:1Þ

If limR-0Rf ðRÞ ¼ 0; then Rf ðRÞ has at least one local
maximum on the open interval ð0;KÞ; because
limR-K Rf ðRÞ ¼ 0; while Rf ðRÞ > 0 for 0oRoK). Let
*R be the smallest value of R at which Rf ðRÞ has a local
maximum; then Rf ðRÞ is monotonically increasing on
ð0; *RÞ: Let now *x ¼ ða=bÞf ð *RÞ: If xnð0Þ > *xem; then
xnðtÞ > *x and hence #RnðtÞo *R for all tA½0; 1� (recall that
#RnðtÞ ¼ f �1ððb=aÞxnðtÞÞ and f is monotonically decreas-
ing). Thus, by construction, each step in the composite
map xnð0Þ/xnðtÞ/ #RnðtÞ/ #RnðtÞf ð #RnðtÞÞ is monoto-
nous in such a way that the total is a monotonically
decreasing function of xnð0Þ > *xem for all t: Hence, from
Eq. (A.1) it now follows that xnþ1ð0Þ as a function of
xnð0Þ is monotonically decreasing on ð *xem;NÞ; which
completes the proof.

Functional response: Consider the generalized model

’RnðtÞ ¼ aRnðtÞf ðRnðtÞÞ � bRnðtÞhðRnðtÞÞxnðtÞ;
’EnðtÞ ¼ gbRnðtÞhðRnðtÞÞxnðtÞ � dEnðtÞ;

’xnðtÞ ¼ �mxnðtÞ; ðA:2Þ

where h is a positive function on ð0;NÞ and
RnðtÞhðRnðtÞÞ is an arbitrary functional response (e.g.
hðRÞ ¼ 1=ðR þ HÞ corresponds to the well-known Hol-
ling Type II functional response). In quasi-equilibrium,
we have af ð #RnðtÞÞ ¼ bxnðtÞhð #RnðtÞÞ: Note that since both
f and h may be nonlinear functions, there may be
multiple quasi-equilibria. A quasi-equilibrium #RnðtÞ is
stable if d ’Rn=dRno0; i.e. if af 0ð #RnðtÞÞobxnðtÞh0ð #RnðtÞÞ:
Suppose that there exists an open interval ðx1; x2Þ such

that if xnð0ÞAðx1; x2Þ; then 0o #RnðtÞo *R and there is no
bifurcation of #RnðtÞ for tA½0; 1�: By implicit differentia-
tion of the quasi-equilibrium condition, we obtain

d #RnðtÞ
dxnðtÞ

¼
bhð #RnðtÞÞ

af 0ð #RnðtÞÞ � bxnðtÞh0ð #RnðtÞÞ
;

which is negative whenever the quasi-equilibrium is
stable. Thus, like in the model in Eq. (1), increasing
the number of consumers at the beginning of the
season (and hence throughout the season since
xnðtÞ ¼ xnð0Þe�mt) decreases the stable quasi-equilibrium
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resource abundance at all tA½0; 1�: Analogously to
Eq. (4), the between-year dynamics of the consumer is
given by

xnþ1ð0Þ ¼sgbe�d
Z 1

0

#RnðtÞhð #RnðtÞÞxnðtÞedt dt

¼sgae�d
Z 1

0

#RnðtÞf ð #RnðtÞÞedt dt; ðA:3Þ

which is the same as Eq. (A.1). Therefore, the proof
above also holds for the model with a functional
response, from which it follows that xnþ1ð0Þ is a
decreasing function of xnð0ÞAðx1; x2Þ: Note that bifurca-
tions of the resource quasi-equilibrium may lead to
discontinuous between-year maps of the consumer.
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