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AN APPROXIMATION FORMULA

FOR THE KATUGAMPOLA INTEGRAL

RICARDO ALMEIDA, NUNO R. O. BASTOS

Abstract. The objective of this paper is to present an approximation for-
mula for the Katugampola fractional integral, that allows us to solve fractional

problems with dependence on this type of fractional operator. The formula

only depends on first-order derivatives, and thus converts the fractional prob-
lem into a standard one. With some examples, we show the accuracy of the

method, and then we present the utility of the method by solving a fractional
integral equation.

1. Introduction

Many real-world phenomena are described by non-integer order systems. In fact,
they model several problems since they take into consideration e.g. the memory of
the process, friction, flow in heterogenous porous media, viscoelasticity, etc [4,5,7,
12,19]. Fractional derivative and fractional integral are generalizations of ordinary
calculus, by considering derivatives of arbitrary real or complex order, and a general
form for multiple integrals. Although mathematicians have wondered since the very
beginning of calculus about these questions, only recently they have proven their
usefulness and since then important results have appeared not only in mathematics,
but also in physics, applied engineering, biology, etc. One question that is important
is what type of fractional operator should be considered, since we have in hand
several distinct definitions and the choice dependes on the considered problem.
Because of this, we find in the literature several papers dealing with similar subjects,
but for different type of fractional operators. So, to overcome this, one solution is
to consider general definitions of fractional derivatives and integrals, for which the
known ones are simply particular cases. We mention for example the approach
using kernels (see [6, 13–15,21]).

The paper is organized in the following way. In Section 2 we present the def-
initions of left and right Katugampola fractional integrals of order α > 0. Next,
in Section 3, we prove the two new results of the paper, Theorems 3.1 and 3.2.
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The formula is simple to use, and uses only the function itself and an auxiliary
family of functions, where each of them is given by a solution of a Cauchy prob-
lem. Finally, in Section 4, we present some examples where we compare the exact
fractional integral of a test function with some numerical approximations as given
in the previous section. To end, we exemplify how we can apply the approximation
to solve a fractional integral equation with an initial condition.

2. Caputo–Katugampola fractional integral

To start, we review the main concept as presented in [8]. It generalizes the
Riemann–Liouville and Hadamard fractional integrals by introducing in the defi-
nition a new parameter ρ > 0, that allows us to obtain them for special values of
ρ.

Definition 2.1. Let a, b be two nonnegative real numbers with a < b, α, ρ two posi-
tive real numbers, and x : [a, b]→ R be an integrable function. The left Katugampola
fractional integral is defined as

Iα,ρa+ x(t) =
ρ1−α

Γ(α)

∫ t

a

τρ−1(tρ − τρ)α−1x(τ)dτ, (2.1)

and the right Katugampola fractional integral is defined as

Iα,ρb− x(t) =
ρ1−α

Γ(α)

∫ b

t

τρ−1(τρ − tρ)α−1x(τ)dτ.

These notions were motivated from the following relation. When α = n is an
integer, the left Katugampola fractional integral is a generalization of the n-fold
integrals ∫ t

a

τρ−1
1 dτ1

∫ τ1

a

τρ−1
2 dτ2 . . .

∫ τn−1

a

τρ−1
n x(τn) dτn

=
ρ1−n

(n− 1)!

∫ t

a

τρ−1(tρ − τρ)n−1x(τ)dτ.

We also notice that, taking ρ = 1, we obtain the left and right Riemann–Liouville
fractional integrals, and as ρ→ 0+, we get the left and right Hadamard fractional
integrals (cf. [11,16,20]). We refer to [9], where a notion of Katugampola fractional
derivative is presented, generalizing the Riemann–Liouville and Hadamard frac-
tional derivatives of order α ∈ (0, 1), and to [10] where an existence and uniqueness
result is proven for a fractional differential equation involving this new operator.

For example, consider the function

x(t) = (tρ − aρ)v, v > −1.

Then,

Iα,ρa+ x(t) =
ρ1−α

Γ(α)

∫ t

a

τρ−1(tρ − τρ)α−1(τρ − aρ)vdτ

=
ρ1−α

Γ(α)

∫ t

a

τρ−1(tρ − aρ)α−1

[
1− τρ − aρ

tρ − aρ

]α−1

(τρ − aρ)vdτ.

With the change of variables

u =
τρ − aρ

tρ − aρ
,
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we arrive to

Iα,ρa+ x(t) =
ρ−α

Γ(α)
(tρ − aρ)α+v

∫ 1

0

(1− u)α−1uvdu

=
ρ−α

Γ(α)
(tρ − aρ)α+vB(α, v + 1),

where B(·, ·) is the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y > 0.

Using the useful property

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

we get the formula

Iα,ρa+ x(t) =
ρ−αΓ(v + 1)

Γ(α+ v + 1)
(tρ − aρ)α+v.

In a similar way, if we consider

y(t) = (bρ − tρ)v, v > −1,

we have the following

Iα,ρb− y(t) =
ρ−αΓ(v + 1)

Γ(α+ v + 1)
(bρ − tρ)α+v.

3. Caputo–Katugampola fractional integral

In this section, we present the main results of the paper. We prove an approxi-
mation formula for the Katugampola fractional integrals, which will allow us later
to solve a fractional integral equation, by approximating it by an ordinary differ-
ential equation. This idea was motivated by the recent works in [2, 3, 17, 18], and
has been developed in the recent book [1], where similar formula are proven for the
Riemann–Liouville and Hadamard fractional operators.

Theorem 3.1. Let N ∈ N and x : [a, b] → R be a function of class C1. For
k ∈ {1, . . . , N}, define the quantities

A =
ρ−α

Γ(α+ 1)

[
1 +

N∑
k=1

Γ(k − α)

Γ(−α)k!

]
, Bk =

ρ1−αΓ(k − α)

Γ(α+ 1)Γ(−α)(k − 1)!
,

and the function Vk : [a, b]→ R by

Vk(t) =

∫ t

a

τρ−1(τρ − aρ)k−1x(τ)dτ.

Then,

Iα,ρa+ x(t) = A(tρ − aρ)αx(t)−
N∑
k=1

Bk(tρ − aρ)α−kVk(t) + EN (t),

with

lim
N→∞

EN (t) = 0.
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Proof. Starting with formula (2.1), and integrating by parts choosing

u̇(τ) = τρ−1(tρ − τρ)α−1 and v(τ) = x(τ),

we obtain

Iα,ρa+ x(t) =
ρ−α

Γ(α+ 1)
(tρ − aρ)αx(a) +

ρ−α

Γ(α+ 1)

∫ t

a

(tρ − τρ)αẋ(τ)dτ. (3.1)

By the binomial theorem, we have

(tρ − τρ)α = ((tρ − aρ)− (τρ − aρ))α

= (tρ − aρ)α
(

1− τρ − aρ

tρ − aρ

)α
= (tρ − aρ)α

∞∑
k=0

Γ(k − α)

Γ(−α)k!

(
τρ − aρ

tρ − aρ

)k
.

(3.2)

Replacing formula (3.2) into (3.1), and if we truncate the sum, we get

Iα,ρa+ x(t) =
ρ−α

Γ(α+ 1)
(tρ − aρ)αx(a)

+
ρ−α

Γ(α+ 1)
(tρ − aρ)α

N∑
k=0

Γ(k − α)

Γ(−α)k!(tρ − aρ)k

∫ t

a

(τρ − aρ)kẋ(τ)dτ + EN (t),

with

EN (t) =
ρ−α

Γ(α+ 1)
(tρ − aρ)α

∞∑
k=N+1

Γ(k − α)

Γ(−α)k!

∫ t

a

(
τρ − aρ

tρ − aρ

)k
ẋ(τ)dτ.

If we split the sum into k = 0 and the remaining terms k = 1, . . . , N , we deduce
the following

Iα,ρa+ x(t) =
ρ−α

Γ(α+ 1)
(tρ − aρ)αx(t)

+
ρ−α

Γ(α+ 1)
(tρ − aρ)α

N∑
k=1

Γ(k − α)

Γ(−α)k!(tρ − aρ)k

∫ t

a

(τρ − aρ)kẋ(τ)dτ + EN (t).

If we proceed with another integration by parts, choosing this time

u(τ) = (τρ − aρ)k and v̇(τ) = ẋ(τ),

we obtain

Iα,ρa+ x(t) =
ρ−α

Γ(α+ 1)

[
1 +

N∑
k=1

Γ(k − α)

Γ(−α)k!

]
(tρ − aρ)αx(t)

− ρ1−α

Γ(α+ 1)

N∑
k=1

Γ(k − α)

Γ(−α)(k − 1)!
(tρ − aρ)α−k

∫ t

a

τρ−1(τρ − aρ)k−1x(τ)dτ + EN (t),

proving the desired formula. It remains to prove that

lim
n→∞

EN (t) = 0.

Let

M = max
τ∈[a,b]

|ẋ(τ)|.
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Since (
τρ − aρ

tρ − aρ

)k
≤ 1, ∀τ ∈ [a, t],

and
∞∑

k=N+1

∣∣∣∣Γ(k − α)

Γ(−α)k!

∣∣∣∣ ≤ ∞∑
k=N+1

exp(α2 + α)

kα+1
≤
∫ ∞
N

exp(α2 + α)

kα+1
dk =

exp(α2 + α)

αNα
,

we get

|EN (t)| ≤ Mρ−α

Γ(α+ 1)
(tρ − aρ)α(t− a)

exp(α2 + α)

αNα
,

which converges to zero as N →∞, ending the proof. �

For the right Katugampola fractional integral, the formula is the following. We
omit the proof since it is similar to the proof of Theorem 3.1.

Theorem 3.2. Let N ∈ N and x : [a, b] → R be a function of class C1. For
k ∈ {1, . . . , N}, define the quantities

A =
ρ−α

Γ(α+ 1)

[
1 +

N∑
k=1

Γ(k − α)

Γ(−α)k!

]
, Bk =

ρ1−αΓ(k − α)

Γ(α+ 1)Γ(−α)(k − 1)!
,

and the function Wk : [a, b]→ R by

Wk(t) =

∫ b

t

τρ−1(bρ − τρ)k−1x(τ)dτ.

Then,

Iα,ρb− x(t) = A(bρ − tρ)αx(t)−
N∑
k=1

Bk(bρ − tρ)α−kWk(t) + EN (t),

with

lim
N→∞

EN (t) = 0.

4. Examples and applications

To test the efficiency of the purposed method, consider the test function

x(t) = t2ρ, t ∈ [0, 0.5].

The expression of the fractional integral of x is

Iα,ρ0+ x(t) =
2ρ−α

Γ(α+ 3)
tρ(α+2), t ∈ [0, 0.5].

Below, in Figure 1, we present the graphs of the exact expression of the fractional
integral of x, and some numerical approximations as given by Theorem 3.1 for
different values of α and ρ.

Now we show how the purposed approximation can be useful to solve fractional
integral equations with dependence on the Katugampola fractional integral. Con-
sider the system {

Iα,ρ0+ x(t) + x(t) = t2ρ + 2ρ−α

Γ(α+3) t
ρ(α+2)

x(0) = 0
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Figure 1. Analytic vs. numerical approximations.

The solution for this problem is the function x(t) = t2ρ. The numerical procedure
to solve the problem is the following. Using Theorem 3.1, we approximate Iα,ρ0+ x(t)
by the sum

Iα,ρ0+ x(t) ≈ Atραx(t)−
N∑
k=1

Bkt
ρ(α−k)Vk(t),

with

A =
ρ−α

Γ(α+ 1)

[
1 +

N∑
k=1

Γ(k − α)

Γ(−α)k!

]
, Bk =

ρ1−αΓ(k − α)

Γ(α+ 1)Γ(−α)(k − 1)!
,

and Vk solution of the system{
V̇k(t) = tρ−1tρ(k−1)x(t)
Vk(0) = 0

So, the initial fractional problem is replaced by the Cauchy problem
(Atρα + 1)x(t)−

∑N
k=1Bkt

ρ(α−k)Vk(t) = t2ρ + 2ρ−α

Γ(α+3) t
ρ(α+2)

V̇k(t) = tρ−1tρ(k−1)x(t), k = 1, . . . , N
x(0) = 0
Vk(0) = 0, k = 1, . . . , N
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For different values of N , we obtain different accuracies of the method. Some results
are exemplified next, in Figure 2, for different values of α and ρ.
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Figure 2. Analytic vs. numerical approximations.

5. Conclusion

Dealing with fractional operators is in most cases extremely difficult, and so sev-
eral numerical methods are purposed to overcome these problems. In our work, we
suggest a decomposition formula that depends only on the first-order derivative,
and with this tool in hand we can transform the fractional problem into an integer-
order one. In Figure 1 we considered different values of α and ρ, and observe that
as N increases, the error of the approximation decreases and the numerical approx-
imations approaches the exact expression of the Caputo–Katugampola fractional
integral, converging to it. Next, in Figure 2, we exemplify how it can be useful,
by solving a fractional integral equation. For all numerical experiments presented
above, we used MatLab to obtain the results.
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