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CHAPTER 1

Simplicial Complexes
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Recess Week: September 20-28

1. Introduction

The notion of simplicial complex was introduced for making triangulations of
polyhedrons. In such a way, one can cut a polyhedron into many simpler pieces
called simplices. A simplex is given in usual sense that 0-simplex means a point,
1-simplex means a line segment, 2-simplex means a triangle, 3-simplex means a
tetrahedron and etc. By using these simpler objects, one can gluing them together
to make polyhedrons. On the other hand, by using these objects, one can obtain
algebraic objects such as the free abelian groups generated by these objects, namely
the direct sum of the copies of the integers Z labeled by these objects. The gluing
rule (for making a polyhedron) gives many group homomorphisms. From these
data, one then obtains so-called simplicial homology. It was then proved that the
simplicial homology of a polyhedron is invariant under any deformations of the
polyhedron. More precisely the simplicial homology only depends on the homotopy
type of the polyhedron. For instance, one can make a lot of different triangulations
on a sphere S2. But all simplicial homologies of S2 are the same. On the other
hand, one can find that the simplicial homology of S2 is different from the simplicial
homology of a torus. From this, we can conclude that there is no way to deform
a torus into a sphere. Simplicial complex then became one of powerful tools for
studying polyhedrons.

The ideas in mathematics are always shared among people. Nowadays the ideas
of simplicial objects have been applied to many areas in mathematics. One of the
steps is to make an abstract version of simplicial complex, called abstract simplicial
complex. For applications, one can set up a mathematical model as an abstract
simplicial complex. For instance, some mathematical models from the computer
science are given by abstract simplicial complexes. Whence we have an abstract
simplicial complex on hand, we can make a polyhedron by taking geometric realiza-
tion. Namely taking a collection of simplices and gluing them together according
to the rules in an abstract simplicial complex. From this, we obtain a space and
have many information such as homology, homotopy and Euler characteristic.

For understanding the deep structure in an abstract (or geometric) simplicial
complex, the notion of ∆-set came out naturally. Its geometric realization then
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6 1. SIMPLICIAL COMPLEXES

gives ∆-complexes. The notion of ∆-set can go even further for having ∆-objects
on any category. This allows to have simplicial homology theory for any working
category.

In this chapter, we introduce these notions step by step. So we first study
geometric simplicial complexes to have some geometric intuition on these objects,
and then we study abstract simplicial complexes. By ruling out the structure in
abstract simplicial complexes, we introduce the notion of ∆-sets. Finally we finish
this chapter by having the categorical view on ∆-objects.

2. Geometric Simplicial Complexes

2.1. Simplices. We start with the concept of (geometric) simplex. Consider
the Euclidean space Rm. Given (n + 1) points, we are going to make a subspace
linearly spanned by these points. For instance, given three points not in a line,
we can make a triangle spanned by these three points. Of course, we can also use
four or more points to spanned a polyhedron. But we are interested in having
minimal number of points to span a region. For instance, two points can make a
line segment. Three points can make a triangle. Four points in general positions
in R3 can make a tetrahedron.

Mathematically we need to first understand what it means in “general posi-
tions”. The definition is as follows.

Definition 2.1.1. A set {a0, . . . , an} of (n + 1) points in Rm is called ge-
ometrically independent if the vectors a1 − a0, a2 − a0, . . . , an − a0 are linearly
independent.

Observe that for (n+ 1) geometrically independent points we should have the
inequality m ≥ n. We may assume that m is sufficient large for having geometrically
independent points. In our setting, m is allowed to be infinite. Here the infinite
dimensional Euclidean space R∞ is the union of the sequence of finite dimensional
space

R1 ⊆ R2 ⊆ R3 ⊆ R4 ⊆ · · ·Rm ⊆ Rm+1 ⊆ · · · ,
where Rn is considered as the subspace of Rn+1 in the canonical way, that is,
Rn = {(x1, . . . , xn, 0) ∈ Rn+1} ⊆ Rn+1. In other words,

R∞ =
∞⋃
k=1

Rk.

By writing down the coordinates, each x ∈ R∞ has the coordinates x = (x1, x2, . . .)
with all xi = 0 except finitely many coordinates. Thus for x, y ∈ R∞ the
distance

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·
is well-defined and defines a metric on R∞. Note that for any finite points a0, a1, . . . , an,
there exists m such that all of ai lie in Rm.

Proposition 2.1.2. Let {a0, . . . , an} be a geometrically independent set in Rm
and let {ai0 , . . . , air} be a subset of {a0, . . . , an}. Then {ai0 , . . . , air} is also geo-
metrically independent.

Proof. From the definition, we need to show that the vector ai1 − ai0 , ai2 −
ai0 , . . . , air − ai0 are linearly independent. Observe that

(2.1.1) ais − ai0 = (ais − a0)− (ai0 − a0)
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for 1 ≤ s ≤ r. Since a1 − a0, a2 − a0, . . . , an − a0 are linearly independent, the
vectors ai1 − a0, ai2 − a0, . . . , air − a0 are linearly independent. By subtracting the
common vector ai0 −a0, the vectors in Equation 2.1.1 are linearly independent and
hence the result. �

Now given a geometrically independent set {a0, . . . , an} in Rm, we have an
n-dimensional subspace of Rm centered at a0 and spanned by the vectors

a1 − a0, a2 − a0, . . . , an − a0.

By cutting a region in this subspace, we obtain a simplex. The method is as follows.
Given two points a and b, the line segment between a and b is given by the points

{t0a+ t1b | 0 ≤ t0, t1 ≤ 1, t0 + t1 = 1}.

It is good to write the points in the line segment in this way as the vertices a and
b can be written as a = 1 · a + 0 · b and b = 0 · a + 1 · b. Similarly given three
geometrically independent points a, b and c, the triangle spanned by a, b and c are
given by the points

{t0a+ t1b+ t2b | 0 ≤ t0, t1, t2 ≤ 1, t0 + t1 + t2 = 1}.

In general, we have the following definition.

Definition 2.1.3. A geometric n-simplex

σn =

{
x =

n∑
i=0

tia
i | ti ≥ 0 and

n∑
i=0

ti = 1

}
⊆ Rm

with subspace topology, where {a0, . . . , an} linearly independent. Sometimes we
write σ = a0a1 · · · an for meaning that σ is spanned by the vertices a0, a1, . . . , an.
The numbers ti are uniquely determined by the point x, which are called barycentric
coordinates of x of σ with respect to a0, . . . , an. The points ai are called the vertices
of σn. If {ai0 , ai1 , . . . , air} is a subset of {a0, . . . , an} with 0 ≤ i0 < · · · < ir ≤ n,
then the subspace

τ r =


r∑
j=0

tja
ij | tj ≥ 0 and

n∑
i=0

tj = 1


is call a face of σn. The number n is called the dimension of σ. A face of σ different
from σ itself is called a proper face. The union of all proper faces of σ is called the
boundary of σ, denoted by ∂σ. The interior Int(σ) of σ is defined by

Int(σ) = σ r ∂σ,

sometimes called open simplex.

Proposition 2.1.4. The barycentric coordinates ti(x) of x with respect to
a0, . . . , an are continuous on x.

Proof. We may assume that a0, . . . , an lie in Rm with m a sufficiently large
finite number. By definition, the functions ti(x) are defined by the equation

x =
n∑
i=0

ti(x)ai.
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Since the vectors v1 = a1− a0, v2 = a2− a0, . . . , vn = an− a0 are linearly indepen-
dent, we can extend it to be a basis v1, v2, . . . , vn, vn+1, . . . , vm. Here vn+1, . . . , vm

only depends on v1, . . . , vn, which are independent on the points x. Consider

(2.1.2)

x− a0 = (t0a0 + t1a
1 + · · ·+ tna

n)− (t0a0 + t1a
0 + · · ·+ tna

n)
because

∑n
i=0 ti = 1

= t1(a1 − a0) + · · ·+ tn(an − a0)
= t1v

1 + t2v
2 + · · ·+ tnv

n

= t1v
1 + t2v

2 + · · ·+ tnv
n + 0vn+1 + · · ·+ 0vm.

Write down this vector equation in terms of coordinates in Rm. Let x = (x1, . . . , xm),
a0 = (a0

1, . . . , a
0
m) and vi = (vi1, . . . , v

i
m). Then we have the linear equation

(x1 − a0
1, . . . , xm − a0

m) = (t1, . . . , tn, 0, . . . , 0)(vij)m×m.

Since v1, . . . , vm form a basis for Rm, the matrix (vij) is invertible. Thus

(t1, . . . , tn, 0, . . . , 0) = (x1 − a0
1, . . . , xm − a0

m)(vij)
−1

and so each ti(x) is continuous on x for 1 ≤ i ≤ n. Since

t0(x) = 1− t1(x)− · · · − tn(x),

t0(x) is also continuous on x. This finishes the proof. �

The proof also explains why the barycentric coordinates are unique as one can
solve ti using linear equations. The general points x in the subspace spanned by
the points a0, . . . , an may have negative ti(x). But, from geometric observation (or
just from our definition of simplex), the points x in σ must have 0 ≤ ti(x) ≤ 1 with∑n
i=0 ti(x) = 1.

Proposition 2.1.5. Let σ be an n-simplex. Then x ∈ ∂σ ⇐⇒ ti(x) = 0 for
some 0 ≤ i ≤ n. Thus x ∈ Int(σ)⇐⇒ ti(x) > 0 for all 0 ≤ i ≤ n.

Proof. If x ∈ τ r a proper face of σn spanned by {ai0 , ai1 , . . . , air}. Then x
has unique barycentric coordinate expression

x =
r∑
j=0

sja
ij .

Since x =
∑n
i=0 ti(x)ai, we have tij = sj and ti = 0 for i 6∈ {i0, i1, . . . , ir}. Since

r < n, there exists ti = 0 for some 0 ≤ i ≤ n. It follows that x ∈ ∂σ =⇒ ti(x) = 0
for some 0 ≤ i ≤ n.

Conversely if ti(x) = 0 for some 0 ≤ i ≤ n, then x lies in the face of σ spanned
by {a0, . . . , ai−1, ai+1, . . . , an}. The proof is finished. �

Definition 2.1.6. Let σn = a0a1 · · · an and τm = b0b1 · · · bm be two simplices
in Rm. A function f : σ → τ is called a simplicial map if

(1). f sends each vertex of σ to a vertex of τ , that is f(ai) ∈ {b0, . . . , bm} for
0 ≤ i ≤ n.

(2). For x =
n∑
i=0

ti(x)ai ∈ σ, f(x) =
n∑
i=0

tif(ai).

In the first condition, we allow that f sends two or more vertices to one vertex
of τ . By the second condition, the simplicial map is determined by its values on
vertices because f(x) must be given in the form as in Condition 2. This condition
just states that f must be linear.
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Example 2.1.1. Let σ = a0a1a2 be a triangle and let τ = b0b1b2b3. Then we
have simplicial maps f like

(1). f(a0) = b0, f(a1) = b0, f(a2) = b1;
(2). f(a0) = b1, f(a1) = b0, f(a2) = b1;
(3). f(a0) = f(a1) = f(a2) = b3;
(4). f(a0) = b1, f(a1) = b3, f(a2) = b0.

Given two simplices σ and τ . Let Hom(σ, τ) denote the set of all simplicial
maps from σ to τ .

Proposition 2.1.7. The simplicial maps from σ = a0a1 · · · an to τ = b0b1 · · · bk
have the following properties:

(1). Any simplicial map f : σ → τ is continuous.
(2). Let S be the set of all functions from {a0, . . . , an} to {b0, . . . , bk}. Then

there is an isomorphism of sets: Hom(σ, τ) ∼= S.

Proof. The first assertion follows from the definition of simplicial map that
f(x) =

∑n
i=0 ti(x)f(ai) with ti(x) continuous on x by Proposition 2.1.5. The second

assertion also follows from the definition of simplicial map that the simplicial map
are uniquely determined by its values on vertices. �

The standard n-simplex is defined by

∆n = e0e1 · · · en = {(t0, t1, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1 and
n∑
i=0

ti = 1},

where the vertices e0 = (1, 0, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1).
Geometrically we can see that each n-simplex σn is just a copy of ∆n. More
precisely, let us define a linear embedding of ∆n into Rm as follows: A function
f : ∆n → Rm is called a linear embedding if

(1). {f(e0), f(e1), . . . , f(en)} is geometrically independent in Rm and

(2). f(x) =
n∑
i=0

ti(x)f(ei) for x =
n∑
i=0

ti(x)ei ∈ ∆n.

Let LEmb(∆n,Rm) be the set of all linear embeddings from ∆n into Rm. Given a
linear embedding f : ∆n → Rm. Then we have an n-simplex σn = f(e0)f(e1) · · · f(en)
given by the image of ∆n under f . Let g : ∆n → Rm be another linear embedding
determined by

g(ei) = f(eσ(i))

for σ ∈ Σn+1, the symmetric group, permuting the indices 0, 1, . . . , n. Then

g(x) =
n∑
i=0

ti(x)f(eσ(i))

for x =
n∑
i=0

ti(x)ei. The image g(∆n) = g(e0)g(e1) · · · g(en) = eσ(0)eσ(1) · · · eσ(n)

with the same n-simplex σ = f(∆n) with vertices relabeled. Let Simxn(Rm) denote
the set of all n-simplices in Rm, where two n-simplices are regarded as the same
if their underline spaces are the same. From this setting, we obtain the following
proposition:
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Proposition 2.1.8. Let the symmetric group Σn+1 act on LEmb(∆n,Rm) in-
duced by permuting the vertices of ∆n. Then for any n < m, there is an isomor-
phism

LEmb(∆n,Rm)/Σn+1
∼= Simxn(Rm)

given by f 7→ f(e0)f(e1) . . . f(en). �

This proposition gives a view for considering an n-simplex as a linear embedding
from ∆n into Rm. Intuitively this is more difficult to image what an n-simplex looks
like. However this new treatment will help us to construct simplicial complexes with
labels in a topological space which we will discuss in details later.

2.2. Geometric Simplicial Complex. Roughly speaking, a geometric sim-
plicial complex is a geometric object consisting of a collection of simplices. The
rule for being a simplicial complex requires (1) every face of a simplex in the com-
plex should still lie in the complex; and (2) the intersection of any two simplices
is either empty or a common face. For having (geometric) simplicial complexes
with arbitrary many simplices and arbitrary dimension of its simplices, we need to
extend our m-dimensional Euclidean space to an infinite dimensional vector space
as follows:

Let J be an arbitrary index set, and let Map(J,R) be the J-fold Cartesian
product of R with itself. An element in Map(J,R) is a function from J to R denoted
by x = (xα)α∈J . The set Map(J,R) is a vector space with addition given by the
usual component-wise addition and multiplication by scalars, that is, (x + y)α =
xα + yα and (cx)α = cxα for α ∈ J .

Let RJ be the subset of Map(J,R) consisting of all points (xα)α∈J such that
xα = 0 for all but finitely many values of α. Then RJ is a vector subspace of
Map(J,R) with a basis given by eα for α ∈ J , where eα is the map from J to R
with eα(α) = 1 and eα(β) = 0 for β 6= α. If J = N the set of natural numbers, then
RN = R∞ defined in the previous subsection.

Note. {eα}α∈J does NOT form a basis for Map(J,R) if J is an infinite set. Since
{eαα∈J} is a basis for RJ , we can also consider that RJ is the vector subspace of
RJ generated by eα for α ∈ J . In other words, RJ is the smallest vector subspace
of Map(J,R) containing eα for each α ∈ J . The space RJ has a metric defined by
setting

|x− y| =
√
|xα − yα|2α∈J .

Here the above formula is well-defined for vector x, y ∈ RJ because xα = yα = 0
except finitely many indices α.

Now we give a mathematical definition of geometric simplicial complex.

Definition 2.2.1. A geometric simplicial complex K is a collection of simplices,
all contained in some Euclidean space RJ for some index set J such that

(1). if σn is a simplex in K and τp is a face of σn, then τp is in K; and
(2). if σn and τp are simplices of K, then σn∩τp is either empty, or a common

face of σn and τp.

In the following pictures, the left hand-side one is a simplicial complex but the
right hand-side one is not a simplicial complex.
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Simplicial complex 

Not a simplicaial complex

Proposition 2.2.2. Let K be a simplicial complex and let x ∈
⋃
σ∈K σ. Then

there exists a unique simplex σ of K such that x ∈ Int(σ).

Proof. Let σ be a simplex such that

dimσ = min{dim τ | x ∈ τ and τ ∈ K}.
Namely σ is a minimal dimensional simplex of K that contains x. Then x does
not lie in any face of σ because otherwise there would a simplex (as a face of σ)
containing x with dimension strictly less than dimσ. It follows that x ∈ Int(σ).

For proving the uniqueness, let τ be any simplex of K such that x ∈ Int(τ).
Then σ ∩ τ 6= as both of them contains x and so σ ∩ τ is a common face µ of σ and
τ by definition. Since

x ∈ Int(σ) ∩ Int(τ) ⊆ σ ∩ τ = µ,

µ can not be a proper face of σ because any proper face of σ disjoins with the
interior of σ. Thus µ = σ. Similarly µ = τ and so τ = σ. The proof is finished. �

Definition 2.2.3. Let K be a simplicial complex.
(1). The dimension of a simplicial complex K is defined to be

dimK = sup{dimσ | σ is a simplex ofK}.
So an n-dimensional simplicial complex means a simplicial complex with-
out simplices of dimension higher than n. Note that it is possible to have
dimK = ∞. In such a case, for any given n, K has simplices which
dimensions greater than or equal to n. If dimK <∞, we call K a finite
dimensional simplicial complex.

(2). If L is a sub-collection of K that contains all faces of its elements, then
L is a simplicial complex in its own right, called a subcomplex of K.

(3). One special subcomplex of K is the collection of all simplices of K di-
mension at most n, called the n-skeleton of K denoted by sknK.

(4). The points of the collection sk0K are called vertices of K.

According to the definition, all simplices of K must be located in RJ . Let

|K| =
⋃

σn∈K
σn ⊆ RJ

be the union of all simplices of K. This gives a subset of RJ and so one has
the subspace topology on |K|. For our purpose for having continuity property of
simplicial maps which will be discussed later, we define a new topology on |K|:
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Definition 2.2.4. Let K be a simplicial complex and let |K| be the union of
its simplices. Each simplex σ has its natural subspace topology in RJ . (Note. If
J is an infinite set, for each simplex σ, there exists a large finite number m >> 0
such that σ ⊆ Rm ⊆ RJ . Clearly the subspace topology of σ in Rm is the same
as subspace topology in RJ as both topologies are induced by the standard metric
given by distance.) Then the weak topology on |K| is defined by requiring that

a subset A of K is closed if and only if A∩σ is closed in σ for each σ ∈ K.

Proposition 2.2.5. Let K be a simplicial complex and let |K| have the weak
topology. Then a subset U is open in |K| if and only if U ∩ σ is open in σ for each
σ ∈ K.

Proof. Suppose that U is open. Then A = |K| r U is closed. Let σ ∈ K.
Then

σ ∩ U = σ r σ ∩A
is open as σ ∩A is closed.

Conversely let U be a subset of |K| such that U ∩σ is open in σ for each σ ∈ K.
Let A = |K|r U . Then

σ ∩A = σ r σ ∩ U
is closed for each σ ∈ K. Thus A is closed and so U = |K|rA is open. �

The weak topology on |K| is different from the subspace topology on |K| in
general.

Example 2.2.1. Let K = {t | 0 ≤ t ≤ 1} be the simplicial complex with
0-simplices {t} ⊆ R labeled by 0 ≤ t ≤ 1. Then

|K| = [0, 1]

as the subsets of R. But the topology on |K| is different from the interval [0, 1].
We claim that the topology of |K| is actually discrete. Let A be any subset of
|K| = [0, 1]. For each simplex {t}, Then A ∩ {t} = {t} or ∅. In each case, A ∩ {t}
is closed. From the definition of the topology on |K|, A is closed. It follows that
|K| has discrete topology. �

Example 2.2.2. Let σ2
n be a 2-simplex spanned by the points

(0, 1), (1/(n+ 1), 0) and (1/n, 0)

in R2 and let τ be the 1-simplex spanned by the points (0, 0) and (0, 1). Let K be
the collection of τ and its faces, and σ2

n and its faces for n = 1, 2, 3, . . .. Then K is
a simplicial complex with |K| is the triangle spanned by (0, 0), (0, 1) and (1, 0).

Let A = {(1/n, 0) | n = 1, 2, 3, · · · }. Then A is closed in |K| under weak
topology because A intersects with each simplex is closed.

But, for subspace topology, A is not closed because the closure of A is given by
{(0, 0), (1/n, 0) | n = 1, 2, 3, . . .}. �

However under certain hypothesis, the weak topology on |K| coincides with the
subspace topology. A finite simplicial complex means a simplicial complex which
has only finitely many simplices.

Proposition 2.2.6. Let K be a finite simplicial complex. Then the weak topol-
ogy on |K| coincides with the subspace topology on |K|.
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Proof. Suppose that U is open under subspace topology. Then U ∩ σ is open
in σ for each simplex σ because σ ⊆ |K| is a subspace. Thus U is open under the
weak topology.

Conversely suppose that U is open under the weak topology. Let x ∈ U . Since
K has only finitely many simplices, we may assume that K = {σ1, . . . , σs, τ1, . . . , τt}
with x ∈ σi and x 6∈ τj for 1 ≤ i ≤ s and 1 ≤ j ≤ t. For each 1 ≤ i ≤ s, since
x ∈ U ∩σi with the property that U ∩σi is open in σi, there exists εi > 0 such that
the open ball

Int(Dεi(x)) ∩ σi ⊆ U ∩ σi,

where Int(Dε(x)) = {y ∈ RJ | d(x, y) < ε}. Since x 6∈
t⋃

j=1

τj with the property that⋃t
j=1 τj is closed, there exists ε0 > 0 such that

Int(Dε0(x)) ∩

 t⋃
j=1

τj

 = ∅.

Let ε = min{ε0, ε1, . . . , εs}. Then

Int(Dε(x)) ∩ |K| = Int(Dε(x)) ∩
(⋃s

i=1 σi ∪
⋃t
j=1 τj

)
= Int(Dε(x)) ∩ (

⋃s
i=1 σi)

because ε ≤ ε0
=

⋃s
i=1 Int(Dε(x)) ∩ σi

⊆
⋃s
i=1 U ∩ σi

⊆ U.

Thus U is open under subspace topology. The proof is finished. �

In the theory of simplicial complexes, we always assume that |K| is a topological
space with weak topology. As we have seen above, this topology coincides with
subspace topology when K is a finite simplicial complex. But the weak topology
is pretty different from the subspace topology in general. An advantage of weak
topology is as follows:

Proposition 2.2.7. Let K be a simplicial complex and let X be a topological
space. Then a function f : |K| → X is continuous (under the weak topology of |K|)
if and only if f restricted to each simplex of K is continuous.

Proof. If f : |K| → X, then clearly f |σ : σ → X is continuous for any simplex
σ of K.

Conversely, suppose that f |σ : σ → X is continuous for any simplex σ of K.
Let U be an open subset of X. Then, for any simplex σ of K,

f−1(U) ∩ σ = f |−1
σ (U)

is open in σ because f |σ is continuous. From the definition of weak topology,
f−1(U) is open. Thus f is continuous. �

Definition 2.2.8. A topological space X is called a polyhedron if there exists
a simplicial complex K such that X is homeomorphic to |K|. In this case, the
simplicial complex K is called a triangulation of X.
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Example 2.2.3. The unit sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is
homeomorphic to the boundary of ∆3. Let K be the simplicial complex consisting
of all proper faces of ∆3. Then S2 ∼= |K|. Thus S2 is a polyhedron.

2.3. Simplicial Maps. We have known simplicial maps between simplices.
This concept can be extended for simplicial complexes as follows:

Definition 2.3.1. Given simplicial complexes K and L, a function

f : |K| → |L|
is called a simplicial map if it satisfies the following conditions:

(1). If a is a vertex of K, then f(a) is a vertex of L.
(2). If a0a1 · · · an is a simplex of K, then f(a0), f(a1), . . . , f(an) span a sim-

plex of L (possibly with repeats).
(3). If x =

∑n
i=0 tia

i is a point in a simplex a0a1 · · · an of K, then

f(x) =
n∑
i=0

tif(ai).

That is f is linear on each simplex.

From the definition, for having a simplicial map, one needs:
(1). a function f which sends the vertices of K to vertices of L such that
(2). Whenever a0, a1, . . . , an span a simplex ofK, f(a0), f(a1), . . . , f(an) spans

a simplex of L.

Proposition 2.3.2. A simplicial map f : |K| → |L| is continuous.

Proof. The assertion follows from that f restricted to each simplex is contin-
uous. �

Example 2.3.1. Let K = {t | t ∈ [0, 1]} be the simplicial complex of vertices
labeled by 0 ≤ t ≤ 1 and let L = {0, 1} be the simplicial complex consisting of
two vertices. Let f : K → L be the function with f(t) = 0 for 0 ≤ t ≤ 1/2 and
f(t) = 1 for 1/2 < t ≤ 1. Then f is a simplicial map because f sends every simplex
(only vertex) of K to a simplex of L. By using the weak topology, f : |K| → |L|
is continuous. On the other hand, f : |K| → |L| is not continuous under subspace
topology.

Proposition 2.3.3. Suppose that f : sk0K → sk0 L is a bijective correspon-
dence such that the vertices a0, a1, . . . , an spanned a simplex in K if and only

f(a0), f(a1), . . . , f(an)

spanned a simplex in L. Then the induced simplicial map f : |K| → |L| is a home-
omorphism, called linear isomorphism or simplicial homeomorphism of K with L.

Proof. From the assumption, the inverse f−1 : L → K is also a simplicial
map and hence the result. �

Proposition 2.3.4. Let f : K → L be a simplicial map. Then
(1). The image f(K) is a simplicial subcomplex of L.
(2). The preimage f−1(L0) is a simplicial subcomplex of K for any simplicial

subcomplex L0 of L.

Proof. Because both f(K) and f−1(L0) are closed under face operations. �
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2.4. Stars and Links. An important concept is the star of a vertex in a
simplicial complex.

Definition 2.4.1. Let K be a simplicial complex and let v be a vertex of K.
The star of v in K, denoted by St(v) or St(v,K), is the union of the interior of
those simplices of K that have v as a vertex. Its closure, denoted by S̄t(v), is called
the closed star of v in K. The set S̄t(v)rSt(v) is called the link of v in K, denoted
by Lk(v).

A picture for the link of v is as follows:

v

Lk v

Proposition 2.4.2. Let v be a vertex of K. Then the closed star S̄t(v) is the
union of all simplices of K having v as a vertex.

Proof. Let A be the union of all simplices of K having v as a vertex. Write
A =

⋃
α
σα, where σα has v as a vertex. From the definition of star, we have

St(v) ⊆ A.
We first check that A is closed. Let τ be any simplex of K. Then

τ ∩A = τ ∩ (
⋃
α σα)

=
⋃
α τ ∩ σα.

From the definition of simplicial complex, τ ∩ σα is either empty or a common face
of τ and σα. Thus τ ∩A is a union of some faces of τ . Since τ only has finite faces,
τ ∩A is a finite union of closed subsets of τ . Hence τ ∩A is closed. By the definition
of weak topology, A is closed.

Now let B be any closed set of |K| such that St(v) ⊆ B. Let σ be a simplex of
K that has v as a vertex. Then from the definition of star

Int(σ) ⊆ St(v) ⊆ B.

It follows that the closure

σ = Int(σ) ⊆ B = B

and so A ⊆ B.
This proves that A is the closure of St(v) and so A = S̄t(v). �

The star can be measured by continuous functions defined as follows: Let v
be a vertex in K and let x be a point in |K|. Then x is interior to precisely one
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simplex of K, whose vertices are (say) a0, a1, . . . , an. Then

x =
n∑
i=0

tia
i

with ti > 0 and
n∑
i=0

ti = 1. We define the barycentric coordinate tv(x) of x with

respect to v by setting

tv(x) =
{
ti if v = ai for some 0 ≤ i ≤ n
0 otherwise.

Proposition 2.4.3. Let K be a simplicial complex and let v be a vertex. Then
tv : |K| → R is continuous.

Proof. Given any simplex σ ofK, tv(x)|σ is either identically 0 or the barycen-
tric coordinate of x with respect to the vertex v of σ. Thus tv(x)|σ is continuous.
By the definition of the (weak) topology on |K|, tv(x) is continuous on |K|. �

Proposition 2.4.4. Let K be a simplicial complex and let v be a vertex. Then

St(v) = {x ∈ |K| | tv(x) > 0}.
Thus St(v) is an open neighborhood of v in |K|.

Proof. If x ∈ St(v), then there exists a simplex σ with x ∈ Int(σ) and σ
having v as one of its vertices by definition. From the definition of tv, we have
tv(x) > 0.

Conversely let x ∈ |K| with tv(x) > 0. Let σ be the simplex such that x ∈
Int(σ). From the definition of tv, σ has v as one of its vertices. Thus x ∈ St(v). �

Proposition 2.4.5 (Star Covering). Let K be a simplicial complex. Then

|K| =
⋃

v∈sk0K

St(v).

Proof. For any x ∈ |K|, there exists a unique simplicial σ such that x ∈
Int(σ). Let v be a vertex of σ. Then x ∈ St(v) and hence the result. �

Proposition 2.4.6. Let x ∈ S̄t(v). Then the line segment xv lies in S̄t(v).
Moreover the line segment starting from v meets Lk(v) exactly one point.

Proof. Let x ∈ S̄t(v). By Proposition 2.4.2, there exists a simplex σ of K
such that x ∈ σ and σ has v as a vertex. Since both x and v lie in σ, the line
segment

xv ⊆ σ ⊆ S̄t(v)
and hence the result. �

2.5. Subdivisions.

Definition 2.5.1. Let K be a geometric simplicial complex in RJ . A complex
K ′ is called to be a subdivision of K if

(1). Each simplex of K ′ is contained in a simplex of K.
(2). Each simplex of K equals to the union of finitely many simplices of K ′.

These conditions imply that the union of the simplices of K ′ is equal to the
union of the simplices of K, that is, |K| = |K ′| as sets. The finiteness part of
condition (2) guarantee that |K ′| and |K| are equal as topological spaces.
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Definition 2.5.2. Suppose that K is a simplicial complex in RJ , and w is a
point in RJ such that each ray emanating from w intersects |K| in at most one
point. We define the cone on K with vertex w to be the collection of all simplices
of the form a0a1 · · · apw, where a0a1 · · · ap is a simplex in K, along all faces of such
simplices. Denote the cone by K ∗ w.

From the definition, the vertices of K ∗ w consist of w and the vertices of K.
The simplices of K ∗w consists of the simplices of K together with the simplices of
the form a0a1 · · · apw with a0a1 · · · ap a simplex of K. The cone K ∗ w is pictured
as follows:

w

K

Definition 2.5.3. Let K be a simplicial complex. Suppose that Lp is a sub-
division of skpK. Let σ be a (p+ 1)-simplex of K. Note that |∂σ| is a polyhedron
of a subcomplex of skpK and so it is a polyhedron of a subcomplex, denoted by
Lσ, of Lp. If wσ is an interior point of σ, then the cone Lσ ∗ wσ is a simplicial
complex whose underlying space is σ. We define Lp+1 to be the union of Lp and
the simplicial complexes Lσ ∗ wσ as σ runs over all (p + 1)-simplices of K. Then
Lp+1 is a simplicial complex, called subdivision of skp+1K obtained by starring Lp
from the points wσ.

Definition 2.5.4. Let σ = v0v1 · · · vn be an n-simplex. The barycenter of σ
is the point

σ̂ =
n∑
i=0

1
n+ 1

vi,

that is σ̂ is the point of Int(σ) all of those barycentric coordinates with respect to
the vertices are equal.

If σ is 1-simplex, then σ̂ is the midpoint. If σ is a 0-simplex, then σ̂ = σ. In
general, σ̂ is the centroid of σ.

Definition 2.5.5. Let K be a simplicial complex. We define a sequence of
subdivisions of the skeletons of K as follows: Let L0 = sk0K. Assume that Lp is
defined as a subdivision of skpK. Let Lp+1 be the subdivision of skp+1K obtained

by starring Lp from the barycenter of the (p+ 1)-simplices of K. The union
∞⋃
p=0

Lp

is a subdivision of K, called barycentric subdivision of K, denoted by sdK. Define
the iterated barycentric subdivision recursively by sdnK = sdn−1(sdK) for n > 1.

Let σ be a 2-simplex. Then sdσ is shown in the picture below:
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The simplices in sdK can be described as follows. Define a partial order on
the simplices of K by setting σ1 < σ2 if σ1 is a proper face of σ2.

Proposition 2.5.6. The simplicial complex sdK equals to the collection of all
simplices of the form

σ̂1σ̂2 · · · σ̂n,
where σ1 < σ2 < · · · < σn in K.

Proof. The proof is given by induction on p that the assertion holds for skpK
for each p ≥ 0. The assertion holds for sk0K as sd sk0K = sk0K. Suppose that
the assertion holds for skpK. By definition of barycentric subdivision, the assertion
holds for skp+1K. Since sdK =

⋃
p

sd skpK, the assertion follows. �

An important property of barycentric subdivision is as follows, which plays a
key role for proving the simplicial approximation theorem in the next section. The
diameter diam(σ) of a simplex σ means the length l = max{|x− y| | x, y ∈ σ}. For
any simplicial complex K, let

mesh(K) = sup{diam(σ) | σ is a simplex of K}.

If K is a finite complex, then mesh(K) < ∞ which is the maximum diameter of
the simplices of K. If K has infinite simplices, it is possible that mesh(K) =∞.

Theorem 2.5.7. Let K be a finite dimensional simplicial complex. Suppose
that mesh(K) < ∞. Then for any ε > 0, there is a positive integer N such that
mesh(sdN K) < ε.

Proof. 1. If σ = a0a1 · · · an is a simplex, then the diameter

diam(σ) = max{|ai − aj | | 0 ≤ i ≤ j ≤ n},

the maximum distance between vertices.
Let l = max{|ai − aj | | 0 ≤ i < j ≤ n}. For each vertex ai, let

D(ai, l) = {x | |x− ai| ≤ l}

be the ball of radius l centered at ai. Then D(ai, l) is convex. Since D(ai, l) contains
all vertices of σ, σ ⊆ D(ai, l). Thus

|x− ai| ≤ l

for any x ∈ σ and each 0 ≤ i ≤ n.
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Now given any x ∈ σ, consider the ball D(x, l) = {y | |y − x| ≤ l}. Then
σ ⊆ D(x, l) because each ai ∈ D(x, l) as |ai − x| ≤ l. Thus, for any z ∈ σ,
|x− z| ≤ l. Hence diamσ = l.
2. If σ = a0a1 · · · an is a simplex, then for any x ∈ σ

|σ̂ − x| ≤ n

n+ 1
diam(σ).

Note that for each at

|at − σ̂| =
∣∣∣∣at − n∑

i=0

1
n+1a

i

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
∑

0 ≤ i ≤ n
i 6= t

1
n+1 (at − ai)

∣∣∣∣∣∣∣∣∣∣
≤

∑
0 ≤ i ≤ n
i 6= t

1
n+1 |a

t − ai|

≤ n
n+1diam(σ).

Let l′ = max{|at − σ̂| | 0 ≤ t ≤ n}. Then l′ ≤ n
n+1diam(σ). The ball

D(σ̂, l′) = {x | |x− σ̂| ≤ l′}

contains all vertices of σ and so σ ⊆ D(σ̂, l′). It follows that

|x− σ̂| ≤ l′ ≤ n

n+ 1
diam(σ)

for any x ∈ σ.
3. Let K be an n-dimensional finite simplicial complex. Then

mesh(sdK) ≤ n

n+ 1
mesh(K).

The proof is given by induction on the skeleton skpK. For sk0K, we have
mesh(sd sk0K) = mesh(sk0K) = 0. Suppose that

mesh(sd skpK) ≤ p

p+ 1
mesh(skpK).

Consider skp+1K. By the definition, sd skp+1K is the union of sd skpK and the
simplices of the form τ ∗ σ̂ for (p + 1)-simplices σ of K, where τ is a simplex of
sd ∂σ. If σ′ is a simplex of sd skpK, then

diam(σ′) ≤ p

p+ 1
mesh(skpK) ≤ p

p+ 1
mesh(skp+1K) ≤ p+ 1

p+ 2
mesh(skp+1K).

If σ′ = τ ∗ σ̂ with τ a simplex of sd ∂σ, then, by Step 2,

|v − σ̂| ≤ p+ 1
p+ 2

diam(σ) ≤ p+ 1
p+ 2

mesh(skp+1K)



20 1. SIMPLICIAL COMPLEXES

for any vertex v of τ and, by induction,

|v − w| ≤ p

p+ 1
mesh(skp+1K) ≤ p+ 1

p+ 2
mesh(skp+1K)

for any vertices v and w of τ . Thus

diam(σ′) ≤ p+ 1
p+ 2

mesh(skp+1K)

by Step 1. The induction is finished and hence the statement.
4. Let dimK = n and let d = mesh(K). Then

mesh(sdN K) ≤
(

n

n+ 1

)N
d.

Thus mesh(sdN K)→ 0 as N →∞ and hence the result. �

Corollary 2.5.8. Let K be a finite simplicial complex. Then for any ε > 0,
there is a positive integer N such that the diameters of any simplices of sdN K are
less than ε. �

In practice it may be necessary to subdivide only part of a simplicial complex
K, so as to leave alone a given subcomplex A. For doing subdivision in this case,
we have the relative skeleton filtration defined as follows: Let skA−1K = A and let
skAn K be the union of A and the simplices σ of K with dim σ ≤ n.

Definition 2.5.9. Let K be a geometric simplicial complex in RJ and let A
be a subcomplex of K. A complex K ′ is called to be a subdivision of K relative A
if

(1). Each simplex of K ′ is contained in a simplex of K.
(2). Each simplex of K equals to the union of finitely many simplices of K ′.
(3). A is a subcomplex of K ′.

The last condition requires that the simplices of the subcomplex A do not get
subdivision.

Definition 2.5.10. Let K be a simplicial complex and let A be a subcomplex
of K. We define a sequence of subdivisions of the relative skeletons skAn K of
K as follows: Let L−1 = A and let L0 = skA0 K. Assume that Lp is defined
as a subdivision of skAp K. Let Lp+1 be the subdivision of skp+1K obtained by
starring Lp from the barycenter of the (p + 1)-simplices of K NOT in A. The

union
∞⋃
p=0

Lp is a subdivision of K, called barycentric subdivision of K relative

to A, denoted by sd(K,A). Define the iterated barycentric subdivision recursively
by sdn(K,A) = sdn−1(sd(K,A)) for n > 1.

The barycentric subdivision relative to a subcomplex is shown by the picture:
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A

A

Recall that τ < σ if and only if τ is a proper face of σ.

Proposition 2.5.11. Let K be a simplicial complex and let A be a subcomplex.
Then the vertices of sd(K,A) are the barycenters of the simplices of KrA, together
with the vertices of A. Distinct points

a1, a2, . . . , aq, σ̂1, σ̂2, . . . , σ̂m

(with dim σi ≤ dim σi+1 for each i) span a simplex of sd(K,A) if and only if
a1, a2, . . . , aq span a simplex σ of A, σj is a simplex of K r A for 1 ≤ j ≤ m with
σ < σ1 < σ2 < · · · < σm.

Note. If m = 0, then it just requires a1, . . . , aq that span a simplex of A. If
q = 0, it just requires σm > σm−1 > · · · > σ1 and in this case σ̂1, σ̂2, . . . , σ̂m forms
a simplex disjoint from A.

Proof. The proof follows by induction on the relative skeleton skAn K. �

2.6. Regular Neighborhoods. Let K be a simplicial complex. For any ver-
tex v of K, we have an open neighborhood St(v) of v. For any simplicial subcomplex
L of K, we have the following concept.

Definition 2.6.1. Let L be a simplicial subcomplex of K. The open set

N(L) =
⋃
{St(v) | v is a vertex of L}

is called the regular neighborhood of L in K.

Let L be a simplicial subcomplex of K. Define the function tL : |K| → [0,∞)
by

tL(x) =
∑

v∈sk0(L)

tv(x).

Given x ∈ |K|, there is a unique simplex σ = a0 · · · aq such that x ∈ Int(σ). From
the definition, tv(x) > 0 if and only if v = ai for some 0 ≤ i ≤ q. Thus the above
summation is a finite summation and so it is well-defined and tL is continuous.
Note that

q∑
i=0

tai(x) = 1.

The value tL is part of
q∑
i=0

tai(x), that is, the summation of tai(x) for ai ∈ L. Thus

0 ≤ tL(x) ≤ 1
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for any x ∈ |K|.

Proposition 2.6.2. Let L be a simplicial subcomplex of K. Then x ∈ N(L) if
and only if tL(x) > 0.

Proof. tL(x) > 0 if and only if tv(x) > 0 for some v ∈ sk0(L), if and only if
x ∈ St(v) for some v ∈ sk0(L). �

Let X be a space. A subspace A is called a strong deformation retract of X if
there is a homotopy F : X × I → X such that F (x, 0) = x, F (x, 1) ∈ A for x ∈ X
and F (a, t) = a for 0 ≤ t ≤ 1. Equivalently A is a strong deformation retract of X
if and only if the identity map idX is homotopic to a self map r : X → X relative
to A with r(X) ⊆ A.

We will discuss when |L| is a strong deformation retract of N(L).

Example 2.6.1. Let σ = a0a1a2 be a 2-simplex and let L = ∂σ be the boundary
of σ. Then N(L) = σ. In this case, |L| is not a strong deformation retract of N(L).

Let K = sd(σ, L) be the barycentric subdivision of σ. Then N(L) = |K|r{σ̂}.
In this case, |L| is a strong deformation retract of N(L). If we take the closure
N(L) of N(L) in |K|, then N(L) = |K| = σ and |L| is not a strong deformation
retract of N(L).

Let K = sd2(σ, L). Then |L| is a strong neighborhood retract of N(L) by the
following picture.

N(L)

�

Definition 2.6.3. A simplicial subcomplex L of K is called a full subcomplex
if L contains all simplices σ ∈ K whose vertices lie in L. Namely if all of the vertices
of σ lie in L, then σ is a simplex of L.

It is possible that a simplicial subcomplex is not a full subcomplex. For in-
stance, if K is an n-simplex σ with n > 0 and L = ∂σ, then L is not a full
subcomplex of K.

Proposition 2.6.4. Let L be a full subcomplex and let N(L) be the regular
neighborhood of L in K. Then |L| is a strong deformation retract of N(L).

Proof. Define a map rL : N(L)→ |L| by setting

(2.6.1) rL(x) =
∑

v∈sk0(L)

tv(x)
tL(x)

v.
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We check that rL is a well-defined map. Since x ∈ N(L), tL(x) > 0 and so coeffi-
cients tv(x)/tL(x) is well-defined. Given x ∈ N(L) ⊆ |K|, there is a unique simplex
σ = a0a1 · · · aq of K such that x ∈ Int(σ). We may assume that a0, a1, . . . , as ∈ L
with s ≥ 0 and as+1, . . . , aq 6∈ L. Then

rL(x) =
s∑
i=0

tai(x)
tL(x)

ai

is a point that lies the simplex spanned by a0, a1,. . . , as. By the definition of
full subcomplex, a0a1 · · · as is a simplex of L. Thus rL(x) ∈ |L|. Clearly rL is
continuous.

If x ∈ |L|, then tL(x) = 1 because x ∈ Int(σ) with σ ∈ L. In this case
rL(x) =

∑
v∈sk0(L)

tv(x)v = x by barycentric coordinates of σ. Thus rL||L| = id|L|.

Define the linear homotopy H : N(L)× I → N(L) by setting

(2.6.2) H(x, t) = (1− t)x+ trL(x)

for x ∈ N(L) and 0 ≤ t ≤ 1. We check thatH(x, t) ∈ N(L). Given x ∈ N(L) ⊆ |K|,
there is a unique simplex σ = a0a1 · · · aq of K such that x ∈ Int(σ). As in the
previous paragraph, we may assume that a0, . . . , as ∈ L with s ≥ 0. From the
definition, rL(x) is a point in the face a0a1 · · · as of the simplex a0a1 · · · aq. The
line segment joining x and rL(x) also lies in N(L). Thus H(x, t) ∈ N(L). Now
H(x, 0) = x for x ∈ N(L), H(x, 1) = rL(x) ∈ |L| for x ∈ N(L). If x ∈ |L|, then
rL(x) = x and so H(x, t) = (1−t)x+tx = x for 0 ≤ t ≤ 1. The proof is finished. �

Proposition 2.6.5. Let L be a simplicial subcomplex of K. Then L is a full
subcomplex of sd(K,L).

Proof. By Proposition 2.5.11, the simplices in sd(K,L) are given in the form

τ = a1a2 · · · aqσ̂1σ̂2 · · · σ̂m,

where a1, a2, . . . , aq span a simplex σ of L, σj is a simplex of K r L for 1 ≤ j ≤ m
with σ < σ1 < σ2 < · · · < σm. If all of the vertices of τ lie in L, then m = 0 and
so τ is a simplex of L. �

By the above two propositions, we obtain the following theorem.

Theorem 2.6.6. Let L be a simplicial subcomplex of K. Then |L| is a strong
deformation retract of its regular neighborhood in sd(K,L). �.

Now we consider the closure N(L) of the regular neighborhood N(L).

Proposition 2.6.7. Let L be a simplicial subcomplex of K. Then

N(L) =
⋃

v∈sk0(L)

St(v) =
⋃
{τ | τ has at least one vertex in L}.

Thus N(L) is the polyhedron of the simplicial subcomplex of K consisting of all of
those simplices of K that are faces of the simplices with at least one of its vertices
in L.

Proof. Let v be a vertex of L. From St(v) ⊆ N(L), we have

St(v) ⊆ N(L)
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and so
N(L) ⊆

⋃
v∈sk0(L)

St(v) ⊆ N(L).

We check that
⋃
v∈sk0(L) St(v) is closed. By Proposition [?], St(v) is the union of

the simplices τ with v as one of its vertices. Thus⋃
v∈sk0(L)

St(v) =
⋃
{τ | τ has at least one vertex in L}.

Let σ be any simplex of K. Recall from the definition of simplicial complex that
σ ∩ τ = ∅ or a common face of σ and τ for any simplex τ . Thus

σ ∩
⋃

v∈sk0(L)

St(v)

is a union of some faces of σ and so a closed subspace of σ. It follows that⋃
v∈sk0(L) St(v) is closed under the weak topology of |K| and hence the result. �

Proposition 2.6.8. Let L be a simplicial subcomplex of K. Let N(L) be the
regular neighborhood of L in K and let N ′(L) be the regular neighborhood of L in
sd(K,L). Then N ′(L) ⊆ N(L).

Proof. By Proposition 2.5.11, the simplices in sd(K,L) are given in the form

τ = a1a2 · · · aqσ̂1σ̂2 · · · σ̂m,

where a1, a2, . . . , aq span a simplex σ of L, σj is a simplex of K r L for 1 ≤ j ≤ m
with σ < σ1 < σ2 < · · · < σm. By Proposition 2.6.7, N ′(L) is the union of the
simplices

τ = a1a2 · · · aqσ̂1σ̂2 · · · σ̂m
with q ≥ 1. For x ∈ N ′(L), there exists τ given in the above form such that
x ∈ τ . Then x lies in the interior of a face of τ . We may assume that x ∈
Int(a1a2 · · · asσ̂1 · · · σ̂t) with s ≥ 0, where σ < σ1 < σ2 < · · · < σt. If t = 0, then
x ∈ |L| ⊆ N(L). If t > 0, then x ∈ Int(σt) because x has positive barycentric
coordinate on σ̂t which induces that x has positive coordinates on all vertices of σt.
Since σt has vertices a0, . . . , aq in L, x ∈ N(L) and hence the result. �

Proposition 2.6.9. Let L be a full subcomplex of K and let N ′(L) be the
regular neighborhood of L in sd(K,L). Then |L| is a strong deformation retract of
N ′(L).

Proof. Consider the maps rL : N(L)→ |L| and H : N(L)×I → N(L) defined
in Equations (2.6.1) and (2.6.2), respectively. Let x ∈ N ′(L) ⊆ N(L). There exists
a unique simplex τ of sd(K,L) such that x ∈ Int(τ), where τ is given in the form
τ = a1a2 · · · asσ̂1 · · · σ̂m with a1a2 · · · as a face of a simplex σ = a1a2 · · · aq of L and
σ < σ1 < · · · < σm. If m = 0, then x ∈ |L| and rL(x) = H(x, t) = x for 0 ≤ t ≤ 1.
If m > 0, then x ∈ Int(σm) as in the proof of the previous proposition. Since x has
positive barycentric coordinates on all vertices of σm, tai(x) > 0 for i = 1, 2, . . . , q.
It forces that s = q. Thus τ = a1a2 · · · aqσ̂1 · · · σ̂m and so σ = a1 · · · aq is a face of
τ . From the definition of rL, rL(x) is a point in the simplex a1a2 · · · aq. Note the
line segment joining x and rL(x) lies in τ . Thus

H(x, t) ∈ N ′(L)
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for x ∈ N ′(L) and 0 ≤ t ≤ 1.
Now the homotopy H|

N ′(L)×I : N ′(L)× I → N ′(L) gives a strong deformation

retraction of N ′(L) into |L|. �

Corollary 2.6.10. Let L be any simplicial subcomplex of K and let N ′′(L)
be the regular neighborhood of L in sd2(K,L). Then |L| is a strong deformation
retract of N ′′(L).

Proof. Since L is a full subcomplex of sd(K,L), the assertion follows from
Proposition 2.6.9. �

Exercises

Exercise 2.1. Prove the following statements:
(1). If L is a subcomplex of K, then |L| is a closed subspace of |K|. In

particular, if σ ∈ K, then σ is a closed subspace of |K|.
(2). |K| is Hausdorff.
(3). If K is finite, then |K| is compact. Conversely if a subset A of |K| is

compact, then A ⊆ |L| for some finite subcomplex L of K.

Exercise 2.2. Prove the following statements:
(1). If K is a simplicial complex, then the intersection of any collection of

subcomplex of K is a subcomplex of K.
(2). If {Kα} is a collection of simplicial complexes in EJ , and if the intersection

of every pair |Kα| ∩ |Kβ | is the polyhedron of a simplicial complex which
is a subcomplex of both Kα and Kβ , then the union

⋃
α
Kα is a simplicial

complex.

Project

The following topic may be used as research projects of undergraduate/master
students.

Topology on Polyhedrons. The beginners might be worried about the weak
topology on polyhedrons |K|. For having better understanding on the weak topol-
ogy, one may look at a general notion of compactly generated topology. A topolog-
ical space X is called compactly generated if it satisfies the following property:

A subset A of X is closed if and only if A ∩ C is closed in X for any
compact subspace C of X.

An advantage of compactly generated topology is that: Suppose that X has com-
pactly generated topology. Then a function f : X → Y is continuous if and only if
f restricted to every compact subspace is continuous.

Proposition 1. Let K be a simplicial complex. Then the weak topology on |K|
is compactly generated.

Proof. First |K| is Hausdorff because the identity map of |K| is continuous
from the weak topology to the subspace topology, and |K| is Hausdorff under the
subspace topology as it is a metric space. (Note. If f : X → Y is an injective
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continuous function and Y is Hausdorff, then X is Hausdorff.) It follows that every
compact subset of |K| is closed.

Let A be a closed subset of |K| and let C be any compact subset of |K|. Then
A ∩ C is closed. Thus A is a closed subset of |K| under compactly generated
topology.

Conversely let A be a subset of |K| such that A ∩ C is closed in |K| for every
compact subset C. Let σ be any simplex of |K|. Since σ is compact, A∩σ is closed
in |K| by the assumption and so A ∩ σ is closed in σ. It follows A is closed by the
definition of weak topology. �

Given a topological space X, one can have a new topology on X defined by:
A is closed if and only if A ∩ C is closed in X for every compact subset C of X.
This gives a new topology on X, called compactly generated topology induced by the
topology of X.

Suppose that X is Hausdorff. Then every compact subset of X is closed and
so every closed subset of X must be closed under the induced compactly generated
topology. In other words,

{closed subsets under the induced compactly generated topology }
⊇ { closed subsets under the topology of X}.

Now for a polyhedron |K| there are three canonical topologies now:

(2.6.3)
weak topology

⊇ compactly generated topology induced by subspace topology
⊇ subspace topology .

A proposed project could be given by exploring the relation between the
above three topologies such as giving examples for the inequalities in general; and
making the statements that the equalities hold under certain hypothesis. One of
the statements could be as follows:

proposition 2. Let K be a simplicial complex with |K| ⊆ RJ . Then the weak
topology of |K| coincides with the subspace topology if and only if for every simplex
σ there exists an open neighborhood V (σ) of σ in RJ such that V (σ) intersects with
finitely many simplices of K.

Proof. ⇐= Let U be an open subset of |K| under weak topology. It suffices
to show that U is open under subspace topology. Let x ∈ U . Then there exists a
unique simplex σ of K such that x ∈ Int(σ). From the assumption, there is an open
neighborhood V (σ) such that V (σ) only intersects with finitely many simplices of
K. Let σ1, . . . , σq be all of the simplices of K with σi ∩ V (σ) 6= ∅. Let K1 be the
simplicial subcomplex of K consisting of σi and their faces for 1 ≤ i ≤ q. Then K1

is a finite simplicial complex with

V (σ) ∩ |K| ⊆ |K1|.

Under the weak topology of |K1|,

U ∩ V (σ) ∩ |K1|

is open. Since K1 is a finite simplicial complex, U ∩ V (σ) ∩ |K1| is open in |K1|
under subspace topology with x ∈ U ∩ V (σ)∩ |K1|. Thus there exists a small open
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ball Int(Dε(x)) centered at x such that

Int(Dε(x)) ∩ |K1| ⊆ U ∩ V (σ) ∩ |K1| and Int(Dε(x)) ⊆ V (σ)

because V (σ) is open in RJ containing σ and x ∈ σ. Now

Int(Dε(x)) ∩ |K| ⊆ V (σ) ∩ |K| ⊆ |K1|

and so

Int(Dε(x)) ∩ |K| = Int(Dε(x)) ∩ |K1| ⊆ U ∩ V (σ) ∩ |K1| ⊆ U.

Thus U is open under the subspace topology.
=⇒ Let Or(σ) = {y ∈ RJ | d(y, σ) < r}. Here d(y, σ) = inf{d(x, y) | x ∈ σ}

is the distance between σ and y. Then Or(σ) is an open neighborhood of σ. We
prove the following statement first.

Let V (σ) be any open neighborhood of σ. Let τ be a simplex such that
τ ∩ V (σ) 6= ∅. Then Int(τ) ∩ V (σ) 6= ∅.

Since τ ∩ V (σ) is a non-empty open subset of τ , Int(τ) ∩ V (σ) 6= ∅ and hence
the statement.

Now suppose that the conclusion is not true. Then there exists a simplex σ
of K such that for every open neighborhood of σ intersects with infinitely many
distinct simplices of K. From the above statement, every open neighborhood of
σ intersects with the interior of infinitely many distinct simplices of K. Consider
special open neighborhoods O1/n(σ). Construct a sequence of τn of K recursively
as follows:

(1). τ1 is a simplex of K such that τ1 is not a face of σ with Int(τ1)∩O1(σ) 6= ∅.
(2). τn is a simplex of K such that τn is not a face of σ, τ1, . . . , τn−1 with

Int(τn) ∩O1/n(σ) 6= ∅.
Let yn ∈ Int(τn) ∩O1/n(σ) and let A = {yn | n = 1, 2, . . . , }. For each simplex

τ of K, consider A ∩ τ . If yj ∈ τ , since yj ∈ Int(τj), τ ∩ τj 6= ∅ and so τ ∩ τj is
a common faces of τj and τ . Since the face τ ∩ τj contains yj ∈ Int(τj), we have
τ ∩ τj = τj . It follows that τj is a face of τ . Since τ has only finitely many faces,
A∩ τ is a finite set and so A∩ τ is closed in τ for each simplex τ of K. Thus A is a
closed set under the weak topology. From the assumption that the weak topology
coincides with the subspace topology, A is closed under the subspace topology.

Now since d(yn, σ) < 1/n, there exists xn ∈ σ such that d(yn, xn) < 1/n. Since
σ is compact with σ ⊆ Rm for some m <∞, there is a convergent subsequence xnk
of xn. Let x0 = lim

k→∞
xnk ∈ σ. Then the subsequence ynk converges to x0 because

d(ynk , x0) ≤ d(ynk , xnk) + d(xnk , x0) ≤ 1
nk

+ d(xnk , x0)→ 0.

Since x0 6∈ A because each yj 6∈ σ and x0 ∈ σ, A is not closed under the subspace
topology which contradicts to that A is closed. The proof is finished now.

�

There are a lot of properties of compactly generated topology. The classical
reference on this topic is Steenrod’s paper [22].
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3. Homotopy Classes, Homotopy Groups and the Fundamental Groups

3.1. Homotopy. A pair of spaces (X,A) means a space X with a subspace
A of X. If A is empty, the pair (X, ∅) is simply denoted by X. The product
(X,A)× (Y,B) means the pair of spaces (X×Y, (A×Y )∪ (X×B)). In particular,
(X,A)×Y = (X ×Y,A×Y ). A map f : (X,A)→ (Y,B) means a continuous map
f : X → Y such that f(A) ⊆ B.

Let f, g : (X,A) → (Y,B) be maps. We call f homotopic g relative to A,
denoted by f ' grel A, if f |A = g|A and there exists a map

F : (X,A)× [0, 1]→ (Y,B)

such that
(1). F (x, 0) = f(x) for x ∈ X,
(2). F (x, 1) = g(x) for x ∈ X and
(3). F (a, t) = f(a) for a ∈ A and 0 ≤ t ≤ 1.

Proposition 3.1.1. The homotopy relation ∼ rel A is an equivalence relation
on the set of all maps from (X,A) to (Y,B).

Proof. For any map f : (X,A)→ (Y,B), then the constant homotopy F (x, t) =
f(x) is a homotopy from f to itself. Thus f ' f rel A.

Suppose that f ' g rel A under a homotopy F . Let F ′(x, t) = F (x, 1 − t) for
x ∈ X and 0 ≤ t ≤ 1. Then g ' f rel A under F ′.

Suppose that f ' g relA under F and g ' h rel A under G. Define the
homotopy F ′ : (X,A)× I → (Y,B) by

F ′(x, t) =
{
F (x, 2t) for x ∈ X and 0 ≤ t ≤ 1/2,
G(x, 2t− 1) for x ∈ X and 1/2 ≤ t ≤ 1.

Then f ' h rel A under F ′. �

Let [X,A;Y,B] denote the quotient of the set of all maps from (X,A) to (Y,B)
by the homotopy relation ∼ rel A, called the set of homotopy classes from (X,A)
to (Y,B). For a map f : (X,A) → (Y,B), the homotopy class represented by f is
denoted by [f ], that is [f ] = {g : (X,A)→ (Y,B) | g ' f rel A}.

In homotopy theory, the most interesting spaces are pointed spaces, where a
pointed space means a space with a choice of basepoint ∗. Let X and Y be pointed
space. The set of homotopy classes [(X, ∗X), (Y, ∗Y )] is simply denoted by [X,Y ].
From the definition, the set [X,Y ] is quotient of the set of all pointed maps from
X to Y (that is the maps f : X → Y such that f(∗X) = ∗Y ) by the pointed
homotopy relation, where a pointed homotopy means a map F : X × I → Y such
that F (∗X , t) = ∗Y for 0 ≤ t ≤ 1.

3.2. Path Homotopy Classes and the Fundamental Groups. Let X be
a space. A path means a continuous map λ : [0, 1] → X. Two paths λ, λ′ : [0, 1] →
X are called homotopic, denoted by λ ' λ′, if λ(0) = λ′(0), λ(1) = λ′(1) and
λ ' λ′ rel {0, 1}. The path homotopy class of λ is denoted by [λ], that is,

[λ] = {λ′ : [0, 1]→ X | λ′ ' λ}.
Let λ, µ : [0, 1] → X be two paths such that λ(1) = µ(0). The path product

λ ∗ µ : [0, 1]→ X is defined by

λ ∗ µ(t) =
{
λ(2t) for 0 ≤ t ≤ 1/2,
µ(2t− 1) for 1/2 ≤ t ≤ 1.
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Lemma 3.2.1. Let λ, µ : [0, 1]→ X be two paths such that λ(1) = µ(0). Suppose
that λ ' λ′ and µ ' µ′. Then

λ ∗ µ ' λ′ ∗ µ′.

Proof. Let F : λ ' λ′ and G : µ ' µ′ be the path homotopies with F (t, 0) =
λ(t), F (t, 1) = λ′(t), G(t, 0) = µ(t) and G(t, 1) = µ′(t). Define

F ′(t, s) =
{
F (2t, s) if 0 ≤ t ≤ 1/2,
G(2t− 1, s) if 1/2 ≤ t ≤ 1.

Then F ′ is a path homotopy between λ ∗ µ and λ′ ∗ µ′. �

For each point b ∈ X, let cb denote the constant path at b, that is cb(t) = b for
0 ≤ t ≤ 1. For any path λ, the inverse path λ−1 is defined by λ−1(t) = λ(1− t) for
0 ≤ t ≤ 1.

Proposition 3.2.2. The path product satisfies the following properties:

(1). The path product is associative up to path homotopy. More precisely, if
λ1(1) = λ2(0) and λ2(1) = λ3(0), then (λ1 ∗ λ2) ∗ λ3 ' λ1 ∗ (λ2 ∗ λ3).

(2). The constant paths play as the units for path product up to path homotopy.
More precisely cλ(0) ∗ λ ' λ ∗ cλ(1) ' λ.

(3). The inverse path is the inverse of path product up to path homotopy. More
precisely λ ∗ λ−1 ' cλ(0) and λ−1 ∗ λ ' cλ(1).

Proof. (1). A homotopy is given by

F (t, s) =


λ1

(
4
s+1 t

)
if 0 ≤ t ≤ s+1

4 ,

λ2(4t− s+ 1) if s+1
4 ≤ t ≤

s+2
4 ,

λ3

(
4

2−s
(
t− s+2

4

))
if s+2

4 ≤ t ≤ 1.

A picture of this homotopy is as follows:

λ
1 λ

3
λ
2

λ
3

λ
1

λ
2
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(2) The homotopies between cλ(0) ∗ λ ' λ and λ ∗ cλ(1) ' λ are given by

F (t, s) =

{
λ(0) if 0 ≤ t ≤ 1−s

2 ,

λ
(

2
1+s

(
t− 1−s

2

))
if 1−s

2 ≤ t ≤ 1,

and

G(t, s) =

{
λ
(

2
s+1 t

)
if 0 ≤ t ≤ s+1

2 ,

λ(1) if s+1
2 ≤ t ≤ 1,

respectively. A picture of the homotopy F is as follows:

λ

λ

(3) A homotopy between λ ∗ λ−1 ' cλ(0) is given by

F (t, s) =

{
λ
(

1− 2
√

(s− 1/2)2 + t2
)

if 0 ≤
√

(s− 1/2)2 + t2 ≤ 1/2,

λ(0) if
√

(s− 1/2)2 + t2 ≥ 1/2.

By replacing λ to be λ−1, one gets the homotopy between λ−1 ∗ λ and cλ(1). A
picture of the homotopy F is as follows:
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λ

�

A loop means a path λ with λ(0) = λ(1). Let ∗ be the basepoint of X. The
set of the path homotopy classes of all loops with λ(0) = λ(1) = ∗ is called the
fundamental group of X, denoted by π1(X). According to the above proposition,
π1(X) is a group with the multiplication induced by the path product.

An important tool for computing fundamental groups is the Seifert-Van Kam-
pen Theorem. A proof can be found in Hatcher’s book [7, page 43-46].

Theorem 3.2.3 (Seifert-van Kampen Theorem). Let X be a space and let U
and V be open subsets of X such that X = U ∪ V . Let j1 : U ∩ V → U and
j2 : U ∩ V → V be the inclusions. Suppose that U ∩ V is path-connected. Then

π1(X) = π1(U)
∐

π1(U∩V )

π1(V )

the free productπ1(U) and π1(V ) with amalgamation through group homomorphisms
j1∗ : π1(U ∩ V )→ π1(U) and j2∗ : π1(U ∩ V )→ π1(V ). �

3.3. Homotopy Groups. Let X be a pointed space and let Sn be the n-
sphere with the North pole (1, 0, . . . , 0) as the basepoint. The n-th homotopy group
πn(X) is defined by the set of pointed homotopy classes πn(X) = [Sn, X]. From
the definition, πn(X) is the quotient of all pointed continuous maps from Sn to X
by the pointed homotopy. If n = 0, then π0(X) is only a set with a bijection to
the set of path-connected components of X. π1(X) is the fundamental group. The
multiplication on πn(X), n ≥ 1, is defined as follows:

Let I = [0, 1] and let q : In → Sn be the map given by the composite

In
pinch- In/∂In ∼= Sn,

where ∂In is the boundary of the n-cube In. Then q induces a bijection of the sets
of homotopy classes

q∗ : [In, ∂In;X, ∗X ] ∼= [Sn, ∗Sn ;X, ∗X ].
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Now let f, g : In → X be maps such that f(∂In) = g(∂In) = {∗X}. Define the
product

f ∗ g(t1, t2, . . . , tn) =
{
f(2t1, t2, t3, . . . , tn) if 0 ≤ t1 ≤ 1/2,
g(2t1 − 1, t2, t3, . . . , tn) if 1/2 ≤ t1 ≤ 1.

Then f ∗ g(∂In) = {∗X}. By the proof of Proposition 3.2.2, the set

πn(X) ∼= [In, ∂In;X, ∗X ]

is a group with the multiplication induced by the above product.
If n ≥ 2, we can define another product by setting

f ? g(t1, t2, . . . , tn) =
{
f(t1, 2t2, t3, . . . , tn) if 0 ≤ t1 ≤ 1/2,
g(t1, 2t2 − 1, t3, . . . , tn) if 1/2 ≤ t1 ≤ 1.

In the set πn(X), let [f ] ∗ [g] = [f ∗ g] and [f ] ? [g] = [f ? g].

Proposition 3.3.1. Let n ≥ 2. Then πn(X) is an abelian group under the
multiplication ∗ or ?, and [f ] ∗ [g] = [f ] ? [g] for any [f ], [g] ∈ πn(X).

Proof. From the definition we have the equation

(f1 ∗ f2) ? (g1 ∗ g2) = (f1 ? g1) ∗ (f2 ? g2)

for any maps f1, f2, g1, g2 : In → X with fi(∂In) = gi(∂In) = {∗X} for i = 1, 2. It
follows that there is an equation

([f1] ∗ [f2]) ? ([g1] ∗ [g2]) = ([f1] ? [g1]) ∗ ([f2] ? [g2])

for any [f1], [f2], [g1], [g2] ∈ πn(X).
Note that both multiplications ∗ and ? have the identity 1 represented by the

constant map c(t1, . . . , tn) = ∗X .

[f ] ? [g] = ([f ] ∗ 1) ? (1 ∗ [g]) = ([f ] ? 1) ∗ (1 ? [g]) = [f ] ∗ [g]

for [f ], [g] ∈ πn(X). Thus the multiplication ∗ coincides with ?.
Now

[f ] ? [g] = (1 ∗ [f ]) ? ([g] ∗ [1]) = (1 ? [g]) ∗ ([f ] ? [1]) = [g] ∗ [f ] = [g] ? [f ]

and so πn(X) is abelian. �

Since πn(X) is abelian for n ≥ 2, we write [f ] + [g] for [f ] ∗ [g] = [f ] ? [g].

4. Simplicial Approximation Theorem

4.1. Simplicial Approximation.

Definition 4.1.1. Let K and L be simplicial complexes. Let f : |K| → |L| be
a continuous map. A simplicial map g : K → L is called a simplicial approximation
to f if, for each vertex v of K,

f(St(v,K)) ⊆ St(g(v), L).

If f is a simplicial map, then f is a simplicial approximation to itself because
f sends each simplex of K to a simplex of L and hence f(St(v,K)) ⊆ St(f(v), L).

Proposition 4.1.2. Let h : |K| → |L| and k : |L| → |M | have simplicial ap-
proximation f : K → L and g : L → M , respectively. Then g ◦ f is a simplicial
approximation to k ◦ h.
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Proof. We know that g ◦ f is a simplicial map. If v is a vertex of K, then

h(St(v,K)) ⊆ St(f(v), L)

because f is a simplicial approximation to h. Thus

k(h(St(v,K))) ⊆ k(St(f(v), L)) ⊆ St(g(f(v)),M)

because g is a simplicial approximation to k. �

Proposition 4.1.3. Let K and L be simplicial complexes, and let f : |K| → |L|
be a continuous map. Suppose that, for each vertex a of K, there exists a vertex b
of L such that f(St(a,K)) ⊆ St(b, L). Then there exists a simplicial approximation
g to f , such that g(a) = b for each vertex a of K.

Proof. It suffices to check that g(a0), . . . , g(an) span a simplex of L whenever
a0, a1, . . . , an span a simplex of K.

Let σ = a0a1 · · · an be the simplex of K spanned by a0, a1, . . . , an. Let x ∈
Int(σ) be a point in the interior. Then

x ∈
n⋂
i=0

St(ai)

It follows that

f(x) ∈
n⋂
i=0

f(St(ai)) ⊆
n⋂
i=0

St(g(ai)),

that is tg(ai)(f(x)) > 0 for each 0 ≤ i ≤ n. By the definition of the function tv, the
unique simplex that contains f(x) in its interior must have each g(ai) as a vertex,
and hence has a face spanned by g(a0), g(a1), . . . , g(an). �

Let A be a subspace of X and let f, g : X → Y be maps such that f(a) = g(a)
for a ∈ A. Recall that f is called homotopic to g relative to A if there is a homotopy
F : X × I → Y such that F (x, 0) = f(x), F (x, 1) = g(x) and F (a, t) = f(a) for
x ∈ X, a ∈ A and 0 ≤ t ≤ 1.

Theorem 4.1.4. Let K and L be simplicial complexes, and let f : |K| → |L|
be a continuous map. Then any simplicial approximation g to f is homotopic to f
relative to the subspace of K of those points x such that f(x) = g(x).

Proof. Let x be a point of K. Then there is a unique simplex σ = a0a1 · · · an
such that x ∈ Int(σ). From the proof of the above proposition, f(x) lies in the
interior of a simplex τ of L that contains a face spanned by g(a0), . . . , g(an). Thus
τ contains the point g(x), and so the line segment f(x)g(x) lies in τ . Since the
linear homotopy

F (x, s) = (1− s)f(x) + sg(x)

can be defined, the assertion follows. �

4.2. Simplicial Approximation Theorem in Absolute Case.

Theorem 4.2.1 (Finite Simplicial Approximation Theorem). Let K and L be
simplicial complexes. Suppose that K is finite. Let f : |K| → |L| be a continuous
map. Then there exists N such that the map f has a simplicial approximation
g : sdN K → L.
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Proof. Since {St(w) | w is a vertex of L} is an open cover of |L|, the space
|K| is covered by the open sets

A = {f−1(St(w)) | w is a vertex of L}.

Since |K| is a compact metric space, there exists a Lebesgue number λ such that
any subset of |K| with diameter less than λ lies in an element of A. (If there were
no such λ, there is a sequence Cn of subsets of |K| such that diamCn < 1/n but
Cn does not lie in any element of A. Choose xn ∈ Cn. By compactness, there
is a subsequence xni convergent to a point x ∈ |K|. Then x lies in an element
f−1(St(w)) of A, and so Cni ⊆ f−1(St(w)) when i is sufficiently large. This gives
a contradiction.)

Choose N such that each simplex of sdN K has diameter less than λ/2. Let
v be a vertex of sdN K. Then the diameter of St(v) is less than λ because, for
x, y ∈ St(v), there exist simplices σ and τ of sdN K such that both σ and τ have v
as a vertex with x ∈ σ and y ∈ τ and so

|x− y| ≤ |x− a|+ |y − a| < λ

2
+
λ

2
= λ.

Thus St(v) ⊆ f−1(St(w)) for some vertex w of L. The assertion follows from
Proposition 4.1.3 now. �

4.3. Simplicial Approximation to the Identity Map. Now we start to
consider relative case. We will use barycentric subdivisions relative to a simplicial
subcomplex. Observe that the identity map | sd(K,A)| → |K| is not a simplicial
map if K r A 6= because the vertices σ̂ of sd(K,A) are not the vertices of K.
The following proposition gives a simplicial approximation to the identity map
| sd(K,A)| → |K|.

Proposition 4.3.1 (Simplicial Approximation to the Identity Map). Let K
be a simplicial complex and let A be a simplicial subcomplex of K. Let f be any
function assigning simplices σ of K r A to one of its vertices. Then there exists
a simplicial approximation h to the identity map | sd(K,A)| → |K| such that the
restriction h|A = idA and h(σ̂) = f(σ) for each simplex σ of K rA.

Proof. First we need to check that h is a simplicial map. Let τ be a simplex
of sd(K,A). Then τ = a1a2 · · · apσ̂1σ̂2 · · · σ̂q, where a1, a2, . . . , aq span a simplex
σ0 of A, σj is a simplex of K rA and σ0 < σ1 < σ2 < · · · < σq. We check that the
vertices

(4.3.1) {a1, a2, . . . , ap, f(σ̂1), f(σ̂2), . . . , f(σ̂q)}

span a simplex in K. Since σ0 < σ1 < σ2 < · · · < σq, each σj is a face of σq and
so any vertex of σj is a vertex of σq. Thus the elements in Equation (4.3.1) are
vertices of σq and therefore they span a simplex in K.

Next we check that h is a simplicial approximation to id: | sd(K,A)) → |K|.
Let v be any vertex of sd(K,A). We need to show that

St(v, sd(K,A)) ⊆ St(h(v),K).

Let τ be a simplex of sd(K,A) having v as a vertex. We are going to show that:
There exists a simplex µ of K such that µ has h(v) as a vertex and the
interior Int(τ) ⊆ Int(µ).
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If so, then Int(τ) ⊆ St(h(v),K) for any simplex τ of sd(K,A) having v as a vertex.
From the definition of star, we then conclude that St(v, sd(K,A)) ⊆ St(h(v),K).

Now we prove the above statement. By Proposition 2.5.11,

τ = a1a2 · · · apσ̂1σ̂2 · · · σ̂q,

where a1, a2, . . . , ap span a simplex σ0 of A, σj is a simplex of K rA for 1 ≤ j ≤ q
and

σ0 < σ1 < σ2 < · · · < σq.

If q = 0, then v is a vertex of A and so h(v) = v. In this case, we choose µ = τ .
Suppose that q > 0. We choose µ = σq. From the previous paragraph, h(v) is

a vertex of µ and so we only need to check that Int(τ) ⊆ Int(µ). Let x ∈ Int(τ).
Then

x =
p∑
i=1

sia
i +

q∑
j=1

tj σ̂i

with si, tj > 0 and
∑p
i=1 si +

∑q
j=1 tj = 1. Let b0, b1, . . . , bm be the vertices of σq.

Let

ai =
m∑
k=0

si,kb
k

σ̂j =
m∑
k=0

ti,kb
k

with si,k, ti,k ≥ 0,
∑m
k=0 si,k = 1 and

∑m
k=0 tj,k = 1. Since σ̂q is the barycenter of

σq, tq,k = 1
m+1 for 0 ≤ k ≤ m. Now

x =
m∑
k=0

(
p∑
i=1

sisi,k +
q∑
j=1

tjtj,k)bk.

with
m∑
k=0

 p∑
i=1

sisi,k +
q∑
j=1

tjtj,k

 = 1.

For each k, we have
p∑
i=1

sisi,k +
q∑
j=1

tjtj,k ≥ tqtq,k =
tq

m+ 1
> 0.

Thus x ∈ Int(σq) and hence the result. �

Corollary 4.3.2. Let K be a simplicial complex and let A be a simplicial
subcomplex of K. Let a be any vertex of sd(K,A). Then there exists a vertex b of
K such that

St(a, sd(K,A)) ⊆ St(b,K)

such that if a ∈ A, then we can choose b = a. Moreover if B is a full subcomplex
of K such that B ∩ A = ∅, then for a vertex a of sd(K,A) not in |B|, there exists
a vertex b of K such that b 6∈ |B| and

St(a, sd(K,A)) ⊆ St(b,K).
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Proof. Let h be a simplicial approximation to the identity. Let a be any
vertex of sd(K,A). By the definition of simplicial approximation,

St(a, sd(K,A)) = id(st(a, sd(K,A))) ⊆ St(h(a),K).

Since h|A = idA, h(a) = a if a ∈ A.
Now let B be a full subcomplex of K such that B∩A = ∅ and let a be a vertex

of sd(K,A) not in |B|. If a ∈ A, then

St(a, sd(K,A)) ⊆ St(a,K)

by the previous step. If a 6∈ A, then a = σ̂ for a simplex σ of K r A. Since
a = σ̂ 6∈ |B|, the simplex σ has at least one vertex not in B because σ ∈ B by
the assumption that B is a full subcomplex. By Proposition 4.3.1, we can make
a choice of the simplicial approximation h to the identity by requiring that if a
is a vertex of sd(K,A) not in |B|, then h(a) is a vertex not in |B| by the above
proposition. The assertion follows. �

4.4. Simplicial Approximation Theorem in Relative Case.

Definition 4.4.1. Let K be a simplicial complex and let A be a subcomplex
of K. The supplement of A in K, denoted by Ā, is the set of simplices of sd(K,A)
that have NO vertices in A. Clearly Ā is a subcomplex of sd(K,A), which is the
same as the subcomplex of sdK of simplices having no vertices in sdA.

The next lemma states that the maximum diameter of the stars of sdN (K,A)
of vertices in the supplement |Ā| tends to 0.

Lemma 4.4.2. Let K be a simplicial complex with a subcomplex A. Suppose
that there are finitely many simplices of K r A. Given any ε > 0, there exists N
such that

sup{diam St(v, sdN (K,A)) | v ∈ |Ā|} < ε.

Before to give the proof, let’s make some observations. Let τ be a 1-simplex of
sd2(K,A). Suppose that τ has a vertex v in A. Then another vertex of τ is either
in A or the barycenter σ̂ for a simplex σ of sd(K,A) having v as a vertex. Thus
σ 6∈ Ā by the definition of Ā, and so σ̂ 6∈ |Ā|. In other words, NO 1-simplices of
sd2(K,A) that can have vertices in both A and |Ā|. It follows that NO n-simplices
of sd2(K,A) that can have vertices in both A and |Ā|. (If an n-simplex had vertices
v in A and w in |Ā|, then its face from v to w is a 1-simplex having its vertex v in
A and w in |Ā| which contradicts to that no 1-simplex can have vertices in both A
and |Ā|.)

Proof. Let Â denote the supplement of A in sd(K,A), that is, Â is the set
of simplices of sd2(K,A) that have no vertices in A. If τ is a simplex of sd2(K,A)
with a vertex in |Ā|, then τ has no vertices in A from the above observation. Thus
τ ∈ Â. Note that the subdivision sdN (K,A) includes the non-relative subdivision
sdN−2 Â of Â. Thus sdN−2 Â is a subcomplex of sdN (K,A).

Now we show by induction that:

For each N ≥ 2 if τ is a simplex of sdN (K,A) having a vertex in |Ā|,
then τ ∈ sdN−2 Â.
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This statement has been proved when N = 2. Suppose that it holds for N − 1 with
N ≥ 3. Let τ be a simplex of sdN (K,A) with a vertex in |Ā|. Then τ has the
expression a1a2 · · · apσ̂1 · · · σ̂q, where a1, . . . , ap span a simplex σ0 of A, each σj is
a simplex of sdN−1(K,A) r A for 1 ≤ j ≤ q with σ0 < σ1 < · · · < σq. Since each
ai is not in |Ā|, we may assume that σ̂j ∈ |Ā| for some 1 ≤ j ≤ q. It follows that
σj has a vertex in |Ā|. Since σj is a face of σq as σj < σq, σq has a vertex in |Ā|.
By induction, σq ∈ sdN−3 Â and σ0 must be empty as it is a face of the simplex σq
of sdN−3 Â. It follows that τ ∈ sdN−2 Â. The induction is finished and hence the
statement.

Thus for any vertex v of sdN (K,A) such that v ∈ |Ā|

St(v, sdN (K,A)) =
⋃
{Int(τ) | τ is a simplex of sdN (K,A) with v < τ}

⊆
⋃
{Int(τ) | τ is a simplex of sdN−2 Â with v < τ}

= St(v, sdN−2 Â).

By Theorem ??, the diameters of simplices in sdN−2 Â tends to 0 as N →∞. The
assertion follows. �

Now we construct a new simplicial complex K+ = sd(sd(K,A), A ∪ Ā). In
other words, K+ is obtained by doing barycentric subdivision on those simplices of
sd(K,A) that are not in A and Ā. Thus K+ is a subdivision between sd(K,A) and
sd2(K,A). A picture is as follows:

A

bar(A)

The vertices v of K+ are one of the following three cases:
Type I. v is a vertex of A;

Type II. v is a vertex of Ā;
Type III. v is the barycenter σ̂ for a simplex σ of sd(K,A) that has vertices in both

A and Ā.
By Proposition 4.3.1, there exists a simplicial approximation h to the identity of
|K+| = | sd(sd(K,A), A ∪ Ā)| → | sd(K,A)| such that h on the vertices of K+ is
given by the following rule:

(1). If v is a vertex of A, then h(v) = v;
(2). If v is a vertex of Ā, then h(v) = v;
(3). If v = σ̂ for a simplex σ of sd(K,A) that has vertices in both A and Ā,

then h(v) is a vertex of σ in A.
The first two rules requires that h|A∪Ā = idA∪Ā. The last rule forces h to push
down the vertices of the form σ̂ into A.
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Lemma 4.4.3. If v is a vertex of A, then h(St(v,K+)) ⊆ St(v,A).

Proof. Let τ be a simplex of K+ having v as a vertex. Since

K+ = sd(sd(K,A), A ∪ Ā),

τ has the expression
τ = a1a2 · · · apσ̂1 · · · σ̂q,

where a1, a2, · · · , ap span a simplex σ0 in A∪Ā, σ1, . . . , σq are simplices of sd(K,A)
that have vertices in both A and Ā, and σ0 < σ1 < · · · < σq. Since v ∈ A is a vertex
of τ , p ≥ 1 and v ∈ {a1, . . . , ap}. It follows that ai 6∈ Ā for each 1 ≤ i ≤ q because
if not, then σ0 is a simplex having vertices in both A and Ā which contradicts to
that σ ∈ A ∪ Ā. Thus τ only have Type I and Type III vertices, namely τ has NO
vertices in Ā. By the definition of the map h, we have

h(ai), h(σ̂j) ∈ A

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. Hence h(τ) is a simplex of A having v as vertex
because h|A = idA. The assertion follows by taking the union of the interior of τ
having v as a vertex. �

Proposition 4.4.4. Let K and L be a simplicial complexes and let A be a
subcomplex of K. Let

h : |K+| = | sd(sd(K,A), A ∪ Ā)| = |K| → | sd(K,A)| = |K|

be the simplicial map defined above. Let f : |K| → |L| be any continuous map
such that f ||A| is a simplicial map. Suppose that there are finitely many simplices
of K r A. Then there exists N such that the composite f ◦ h has a simplicial
approximation

g : sdN (K,A)→ L

with the property that g||A| = f ||A|.

Proof. Let

A = {(f ◦ h)−1(St(w,L)) | w is a vertex of L}

be an open covering of |K|. Let Â be the supplement of A in sd(K,A) as discussed
in the proof of Lemma 4.4.2. By the assumption, K r A has only finitely many
simplices. Thus Â is a finite complex and so |Â| is compact. Hence the covering
A∩ |Â| of |Â| has a Lebesgue number λ. By Lemma 4.4.2, there exists N ≥ 2 such
that

sup{diam St(v, sdN (K,A)) | v ∈ |Â|} < λ.

(Note. Here we replace Â as Ā in Lemma 4.4.2 by considering sd(K,A) as K.)
From Proposition 4.1.3, it suffices to show that, for every vertex v of sdN (K,A),

there exists a vertex w of L such that

St(v, sdN (K,A)) ⊆ (f ◦ h)−1(w).

Case I. v ∈ |Â|.
Then

diam St(v, sdN (K,A)) < λ

and so there exists a w such that St(v, sdN (K,A)) ⊆ (f ◦ h)−1(w).
Case II. v 6∈ |Â|.
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By Corollary 4.3.2,

St(v, sdN (K,A)) ⊆ St(b, sd2(K,A))

for some vertex b of sd2(K,A) NOT in |Â|. Then b ∈ A. (This is because, by
definition, Â is the subcomplex of sd2(K,A) of the simplices having no vertices in
A. In particular, Â contains all of vertices, as 0-simplices, that are not in A.) We
claim that

St(b, sd2(K,A)) ⊆ St(b,K+).

Let τ be a simplex of sd2(K,A) having a vertex b ∈ A. Then τ has the expression

τ = a1a2 · · · apσ̂1σ̂2 · · · σ̂2,

where a1, . . . , ap span a simplex σ0 ofA, σj is a simplex of sd(K,A)rA for 1 ≤ j ≤ q,
with σ0 < σ1 < · · · < σq. Since b is a vertex of τ , b ∈ {a1, . . . , ap} with p ≥ 1.
Since σ0 is a face of each σj for 1 ≤ j ≤ q, b is a vertex of σj for 1 ≤ j ≤ q. It
follows that τ ∈ K+ = sd(sd(K,A), A ∪ Ā). This proves that

St(b, sd2(K,A)) ⊆ St(b,K+).

Now by Lemma 4.4.3, we have

h(St(b,K+)) ⊆ St(b, A).

Since f ||A| is a simplicial map, we have

f(St(b, A)) ⊆ St(f(b), L).

By combining the previous equations, we have

St(v, sdN (K,A)) ⊆ St(b, sd2(K,A))
= St(b,K+)
⊆ h−1(St(b, A))
⊆ (f ◦ h)−1(St(f(b), L)).

Hence f ◦ h has a simplicial approximation g : sdN (K,A)→ L.
For checking that, we can make a choice of g such that g||A| = f ||A|. Let

v be a vertex of A. In the argument of Case II above, we can choose b = v by
Corollary 4.3.2. Thus we have

St(v,StN (K,A)) ⊆ (f ◦ h)−1(St(f(v), L)).

Thus the simplicial map g sends v to f(v) for each vertex v ∈ A. It follows that
g||A| = f ||A|. The proof is finished now. �

Theorem 4.4.5 (Relative Simplicial Approximation Theorem). Let K and L
be a simplicial complexes and let A be a subcomplex of K. Let f : |K| → |L|
be any continuous map such that f ||A| is a simplicial map. Suppose that there
are finitely many simplices of K r A. Then there exists N and a simplicial map
g : sdN (K,A)→ L such that g||A| = f ||A| and g is homotopic to f relative to |A|.

Proof. Let g be the simplicial map in Proposition 4.4.4. Then g||A| = f ||A|
and g is homotopic to f ◦ h relative to A by Theorem 4.1.4. Since h is a simplicial
approximation to the identity map with h|A = idA, h ' id|K| relative to A and so
f ◦ h ' f relative to A. It follows that g ' f relative to A. �
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4.5. Some Applications. Recall that the homotopy groups πn(X) is defined
by

πn(X) = [Sn, X]

the set of homotopy classes of the pointed continuous maps from Sn to X up to
pointed homotopy (namely homotopy relative to the basepoint). A direct conse-
quence of simplicial approximation theorem is as follows:

Theorem 4.5.1. πr(Sn) = 0 for r < n.

Proof. Let f : Sr → Sn be a pointed continuous map. Let K be the simplicial
complex such that |K| ∼= Sr and let L be the simplicial complex such that |L| = Sn.
(We can choose K and L as the boundary of an (r + 1)-simplex and an (n + 1)-
simplex, respectively.) Consider Sr and Sn as polyhedron of simplicial complexes.
By the simplicial approximation theorem, there exists a subdivision K ′ of K and
a simplicial map g : |K ′| = |K| ∼= Sr → |L| ∼= Sn such that g is homotopic to f
relative to the basepoint. Since g is a simplicial map, the map g must send K ′

into the skeleton skr(L) because K ′ is an r-dimensional simplicial complex. Since
r < n, skr(L) 6= L and so g is not onto. Thus there is a point x ∈ Sn such that
g(Sr) ⊆ Sn r {x} ∼= Rn. Hence g is homotopic to the constant map relative to
the basepoint by a linear homotopy. It follows that f is homotopic to the constant
map relative to the basepoint. �

Another direct consequence is to give a computation of the fundamental group.

Theorem 4.5.2. π1(S1) = Z.

Proof. By simplicial approximation theorem, we only need to consider the
simplicial maps from a subdivision K ′ of the circle K to the circle K, where K
is the boundary of a 2-simplex with vertices w0, w1, w2 in the order of counter-
clockwise along the circle, where w0 is regarded as the basepoint. Let K ′ has
vertices v0, v1, . . . , vn in the order of counter-clockwise along the circle, where v0 is
regarded as the basepoint. Let g : K ′ → K be a pointed simplicial map. See the
picture:

g

w
1

w
0

w
2

vn

v
0

v2

v1v3

Then g maps the circle (v0, v1, . . . , vn, v0) (in order) into the sequence

(g(v0), g(v1), . . . , g(vn), g(v0)),
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where g(vi) is one of wj with g(v0) = w0. If g(vi) = g(vi+1), then g is constant on
the 1-simplex [vi, vi+1] and so, up to homotopy, we can remove g(vi+1). For the sub-
sequence (g(vi), g(vi+1), g(vi+2)), if g(vi) = g(vi+2), then (g(vi), g(vi+1), g(vi+2)) is
a path from g(vi) to g(vi+1) and backwards to g(vi) and so we can collapse this
subsequence. Assume that v0, . . . , vn have minimal number of vertices in the ho-
motopy class of g. Then the only sequence of (g(v0), g(v1), . . . , g(vn), g(v0)) is given
by one of the following:

(1). constant map (w0),
(2). around the circle n-times positively:

(w0, w1, w2, w0, w1, w2, w0, . . . , w0, w1, w2, w0),

or
(3). around the circle m-times negatively:

(w0, w2, w1, w0, w2, w1, w0, . . . , w0, w2, w1, w0).

This shows that any pointed continuous map f : S1 → S1 is homotopic to one of
the maps

gn : S1 → S1 z 7→ zn

for n ∈ Z, relative to the basepoint. In particular, π1(S1) is generated by [g1].
On the other hand, one can show that gn is not homotopic to gm relative to the
basepoint if n 6= m, as gn is the continuous mapping that goes around S1 for n
times. This gives that π1(S1) = S1. �

Example 4.5.1 (Cohomotopy Sets). Let X be a pointed space. Then the n-th
cohomotopy set is defined to be

πn(X) = [X,Sn],

the set of homotopy classes of pointed continuous maps from X to the n-sphere up
to pointed homotopy. For instance, πr(Sn) = [Sr, Sn] = πn(Sr). The fundamental
problem in algebraic topology is to determine πr(Sn) for general r and n. When
n = 1, it was known that πr(S1) = 0 for r 6= 1 and π1(S1) = Z. When n > 1,
we know from the above theorem that πr(Sn) = 0 for r < n. When r = n,
πn(Sn) = Z. (This is a direct consequence of Hurewicz Theorem which gives that,
for simply connected spaces, the first non-trivial homotopy group is the same as the
corresponding homology group. Or one can try to directly compute πn(Sn) using
simplicial methods or other methods.) For r > n, πr(Sn) is known up to certain
range by very nontrivial works contributed by many topologists, but far unknown
for general r even if n = 2. By using simplicial methods, one might try a different
approach to study the higher homotopy groups of spheres.

Consider Sn as the boundary of an (n + 1)-simplex σn+1. So, as a simplicial
complex, Sn has (n+2) vertices labeled in order by {0, 1, 2, . . . , n+1}. Observe that,
in σn+1, any nonempty subset of the vertices {0, 1, 2, . . . , n+ 1} spans a simplex of
σn+1. Since Sn is the boundary of σn+1, any proper subset of {0, 1, 2, . . . , n + 1}
spans a simplex of Sn.

Let K be a simplicial complex and let sk0K be the set of vertices of K. Suppose
that f : K → Sn is a simplicial map. Then f sends vertices of K to the vertices of
Sn. Thus, for each vertex v of K, there is a color f(v) = i for some 0 ≤ i ≤ n+ 1.
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This colorizes the vertices of K by using (n + 2) different colors. Suppose that
v0, v1, . . . , vr span a simplex of K. Then

{f(v0), f(v1), . . . , f(vr)}
must span a simplex of Sn, equivalently, {f(v0), f(v1), . . . , f(vr)} is a proper subset
of {0, 1, . . . , n+1}. Namely at least at one color is missing in {f(v0), f(v1), . . . , f(vr)}.

Conversely suppose that there is a coloration on the vertices of K using (n+ 1)
different colors, that is there is a function from sk0K to {0, 1, . . . , n}, such that
if v0, v1, . . . , vr span a simplex of K, then at least one color is missing among the
colors of v0, v1, . . . , vr. Then the coloration induces a unique simplicial map from
K to Sn.

This establishes the one-to-one correspondence between the set of simplicial
maps from K to Sn and the set of colorations on vertices of K that satisfying the
above rule. Thus, for studying simplicial maps from K to Sn, one can study how to
make those colorations on the vertices of K satisfying the above rule. For studying
πr(Sn), one needs to understand:

(1). The colorations on the vertices of K satisfying the above rule, where
|K| ∼= Sr, namely K is a triangulation of Sr. This will give simplicial
maps K → Sn. In general, one may study the colorations on the vertices
of K, where K is a triangulation of a manifold.

(2). The colorations on the vertices of K satisfying the above rule, where
|K| ∼= Sr × [0, 1]. This will control the homotopy.

The above two problems are not well-understood so far. But it will be very interest-
ing if one could make progress on this as it attacks the fundamental open problem
in algebraic topology. �

4.6. Fundamental Groupoids and Fundamental Groups of Simplicial
Complexes. By using simplicial approximation theorem, we can compute the fun-
damental group of a simplicial complex K using the simplicial structure in K.

Definition 4.6.1. Let K be a simplicial complex. An edge path in K, from a
vertex v0 to a vertex vn, is a sequence of vertices α = (v0, v1, . . . , vn) such that for
each 0 ≤ i ≤ n − 1, vi, vi+1 spans a simplex of K (that is vi = vi+1 or vivi+1 is a
1-simplex). Let iα denote the initial vertex v0 of α and let eα denote the ending
vertex vn of α. An edge loop at v means an edge path α with iα = eα = v.

Let α = (v0, v1, . . . , vn) and β = (w0, w1, . . . , wm) be two edge paths in K with
vn = w0. Then the product α?β is the edge path given by (v0, v1, . . . , vn, w1, . . . , wm).
In this definition, the product α?β is well-defined if and only if eα = iβ . The inverse
path of α is defined by

α−1 = (vn, vn−1, . . . , v0).
Clearly the associativity of the product

(4.6.1) (α ? β) ? γ = α ? (β ? γ)

holds if eα = iβ and eβ = iγ . So we can write α ? β ? γ for (α ? β) ? γ or α ? (β ? γ)
whence it is well-defined. Moreover the product has the left and right identities:

(4.6.2) (iα) ? α = α and α ? (eα) = α.

From Equations (4.6.1) and (4.6.2), let v be a fixed vertex of K, the set

(4.6.3) Ωedge(K; v) = {α | α is an edge path in K with iα = eα = v}
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is a monoid under the product ?.

Definition 4.6.2. Let K be a simplicial complex. Two edge paths α and β
are called equivalent, denoted by α ∼ β, if one can be obtained from another by a
finite sequence of the following elementary equivalences or their inverses

(a) (. . . , vi, vi, . . .) ∼ (. . . , vi, . . .);
(b) (. . . , vi−1, vi, vi+1, . . .) ∼ (. . . , vi−1, vi+1, . . .) if vi−1, vi, vi+1 spans a sim-

plex of K (not necessarily 2-dimensional).
In other words, ∼ is the equivalence relation generated by the above two elementary
equivalences.

Proposition 4.6.3. Let α1, β1, α2, β2 be edge paths in K such that α1 ∼ β1

and α2 ∼ β2. Then
(1). If eα1 = iα2 , then α1 ? α2 ∼ β1 ? β2.
(2). α−1

1 ∼ β−1
1 .

(3). α1 ? α
−1
1 ∼ (iα1) and α−1

1 ? α1 ∼ (eα1).

Proof. The proof follows from the definition of the equivalence relation ∼. �

Definition 4.6.4. Let K be a simplicial complex. The simplicial fundamental
groupoid of K is the category Cπ(K) whose objects are the vertices of K and whose
morphisms from a vertex v to a vertex w are the equivalence classes of edge paths
from v to w. The composition operation in the category Cπ(K) is induced by the
? product. Fixing a vertex v of K, the simplicial fundamental group π(K, v) is
defined to the set of the equivalence classes of edge paths from v to v. Note that
π(K, v) is the set of the Cπ(K)-morphisms from v to v, which is a group with the
multiplication induced by the ? product.

Proposition 4.6.5. Let K and L be simplicial complexes and let f : K → L
be a simplicial map. Let α and β be two edge paths in K with α ∼ β. Then

f(α) ∼ f(β).

Thus f induces a functor f∗ : Cπ(K)→ Cπ(L) and a group homomorphism

f∗ : π(K, v)→ π(L, f(v)).

Proof. The proof follows immediately from the definition of the equivalence
relation. �

Let X be a space. Recall that the fundamental groupoid Cπ1(X) of X is the
category whose objects are the points in X and whose morphisms from a point a to
b are the path homotopy classes of paths from a to b. Intuitively the fundamental
groupoid is given by draw morphisms as path homotopy classes between any two
points in X. The fundamental group is then given by the path homotopy classes
of the loops in X.

Let C be category. A full subcategory of C means a category C0 whose objects
are contained in C and the morphisms between two objects in C0 are all of the C-
morphism between these two objects. For instance, let Set be the category of sets,
Group be the category of group and Ab be the category of abelian groups. Then
Group is not a full subcategory of Set because the morphisms between two groups
in Group are homomorphisms. But Ab is a full subcategory of Group. We are
going to show that Cπ(K) is a full subcategory of Cπ1(|K|). As a consequence, we
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obtain that π(K, v) = π1(|K|, v), namely the simplicial fundamental group coincides
with the fundamental group.

We can consider an edge path in K as a path in the polyhedron |K|. More
precisely, given an edge path α = (v0, v1, . . . , vn) in K, define a path

λα : [0, 1]→ |K|

such that λα
(
i
n

)
= vi and λα is linear between i/n and (i+ 1)/n for 0 ≤ i ≤ n− 1.

Lemma 4.6.6. Let K be a simplicial complex and let α and β be two edge paths.
Suppose that iα = iβ and eα = eβ. Then α ∼ β if and only if λα ' λβ.

Proof. =⇒ If α ∼ β is given by an elementary equivalence or its inverse, it is
directly to construct a path homotopy from λα to λβ . Since β is obtained from α
by a finite sequence of the elementary equivalences, we have λα ∼ λβ .
⇐= Let α = (v0, v1, . . . , vn) and β = (w0, w1, . . . , wm) with v0 = w0 and

vn = wm. Suppose that λα ' λβ . Then there is a homotopy

F : I × I → |K|

such that F (s, 0) = λα(s), F (s, 1) = λβ(s), F (0, t) = v0 and F (1, t) = vn for
0 ≤ s, t ≤ 1. Let I× I be triangulated by the simplicial complex T given by joining
the line segments from (1/2, 1/2) to the points given by (i/n, 0) and (j/m, 1) for
0 ≤ i ≤ n and 0 ≤ j ≤ m. Let A be the simplicial subcomplex of T with |A| given
by the boundary of I × I. The picture is as follows:

A
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Then F ||A| is a simplicial map. By the Relative Simplicial Approximation Theorem,
there exists N and a simplicial map

g : sdN (T,A)→ K

such that g||A| = F ||A| and g ' F rel |A|.
Let θ1 be the edge path in T given by

θ1 = ((0, 0), (0, 1), (1/m, 1), (2/m, 1), . . . , (1, 1), (1, 0)),

that is the edge path goes through the left edge, top edge and right edge of I × I.
Let θ2 be the edge path in T given by

θ2 = ((0, 0), (1/n, 0), (2/n, 0), . . . , (1, 0)),

that is θ2 is the bottom edge of I × I. Then, in the simplicial complex sdN (T,A),
we have

θ1 ∼ θ2

because θ2 can be obtained from θ1 by a finite sequence of elementary equivalences
or their inverses. (Note. The iterated relative barycentric subdivisions of (T,A) is
a triangulation of I × I without changing the simplicial structure on the boundary
of I × I. The equivalence between θ1 and θ2 can be obtained by moving down the
edge path θ1 to θ2 through 2-simplices in sdN (T,A).)

Now we have the following:

α = (v0, v1, . . . , vn)
= (g(0, 0), g(1/n, 0), g(2/n, 0), . . . , g(1, 0))

because g||A| = F ||A|
= g(θ2)
∼ g(θ1)

because g is simplicial
= (g(0, 0), g(0, 1), g(1/m, 1), g(2/m, 1), . . . , g(1, 1), g(1, 0)
= (w0, w0, w1, w2, . . . , wm, vn)
∼ (w0, w1, w2, . . . , wm)

because wm = vn

= β.

The proof is finished. �

Theorem 4.6.7. Let K be a simplicial complex. Then Cπ(K) is a full subcat-
egory of Cπ1(|K|).

Proof. The objects in Cπ(K) are the vertices of K and so we can identify the
objects of Cπ(K) as the objects of Cπ1(|K|). Consider the function α 7→ λα from
edge paths in K to paths in |K|. By the definition of path product, we have

λα?β ' λα ∗ λβ .
By Lemma 4.6.6, if α ∼ β, then λα ' λβ . Thus the function α 7→ λα from edge
paths in K to paths in |K| induces a functor

λ : Cπ(K)→ Cπ1(|K|).
We show that

λ : HomCπ(K)(v, w)→ HomCπ1 (|K|)(v, w)
is an isomorphism for any vertices v and w.



46 1. SIMPLICIAL COMPLEXES

By Lemma 4.6.6, α ∼ β if λα ' λβ . Thus λ : HomCπ(K)(v, w)→ HomCπ1 (|K|)(v, w)
is one-to-one.

Let µ be a path in |K| from v to w. By the Relative Simplicial Approximation
Theorem, there exists N and a simplicial map

g : sdN (I, {0, 1})→ K

such that g ' µ relative to {0, 1}, that is g is path homotopic to µ. The simplicial
map g : sdN (I, {0, 1})→ K defines an edge path α of K with

λα ' g

under path homotopy. It follows that λ : HomCπ(K)(v, w) → HomCπ1 (|K|)(v, w) is
onto and hence the result. �

Corollary 4.6.8. Let K be a simplicial complex and let v be a vertex of K.
Then π(K, v) ∼= π1(|K|, v).

Proof. By above theorem,

π(K, v) = HomCπ(K)(v, v)
λ

∼=
- π1(|K|, v) = HomCπ1 (|K|)(v, v).

�

Example 4.6.1. Let K be the boundary of a 2-simplex. The vertices of K
has v0, v1 and v2 with 1-simplices v0v1, v1v2 and v0v2. The edge loops at v0 are
given by (v0, v1, v2, v0), (v0, v2, v1, v0), (v0, v1, v2, v0, v1, v2, v0) and etc. From this
information, we can see that π(K, v0) = Z and so π1(S1) = Z. �

A simplicial complex K is called path-connected if the polyhedron |K| is path-
connected. A simplicial complex K is called simply connected if |K| is path-
connected and π1(|K|, x0) = {1} for some x0 ∈ |K|.

Corollary 4.6.9. Let K be a simply connected simplicial complex and let v
and w be two vertices of K. Let α and β be two edge paths from v to w. Then
α ∼ β.

Proof. Since |K| is path-connected and π1(|K|, x0) = {1} for some x0 ∈ |K|,
π1(|K|, x) = {1} for any point x ∈ |K|. Thus

π(K, v) ∼= π1(|K|, v) = {1}.

It follows that α ? β−1 ∼ (v) and so

α ∼ α ? β−1 ? β ∼ (v) ? β ∼ β

and hence the result. �

A 1-dimensional simplicial complex A of K is called a tree in K if |A| is simply
connected. A tree A of K is called maximal if, for any tree B of K with A ⊆ B,
we have A = B.

Lemma 4.6.10. Let K be a path-connected simplicial complex. Then
(1). There exists a maximal tree of K.
(2). Any path-connected simplicial subcomplex of a tree is also a tree.
(3). A tree A of K is maximal if and only if A contains all vertices of K.
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Proof. (1) We use Zorn Lemma to show the existence of maximal trees. The
trees in K are partially ordered by the inclusions. By applying Zorn Lemma, it
suffices to show that every chain of the trees has an upper bound of a tree. Let
{Aα | α ∈ J} be a chain of trees, that is the index set J is a well-ordered set and
Aα ⊆ Aβ for α < β. Let

A =
⋃
α∈J

Aα.

To see that A is path-connected, let v and w be two vertices in A. Then there exists
α such that v, w ∈ Aα. Since Aα is a tree, Aα is path-connected and so there is an
edge path in Aα (and so in A) joining v and w. Now let γ = (v0, v1, . . . , vn) be an
edge loop in A. Since γ is a finite union of 1-simplices and {Aα} is a chain, there
exists α such that γ ∈ Aα. Since Aα is simply connected, γ ∼ (v0) in Aα (and so
in A) by Corollary 4.6.9. Thus A is simply connected and so A is a tree.

(2) Let A be a tree and let A0 be a path-connected simplicial subcomplex of
A. Let v0 be a vertex of A0. It suffices to show that π(A0, v

0) = {1}.
Let α and β be two edge paths in A0. Denote α ∼A β if α ∼ β in A (that

is there is a finite sequence of elementary equivalences in the simplicial complex A
that moves α to β), and α ∼A0 β if α ∼ β in A0.

Let us make an observation on the equivalence relation in A. The first type
elementary relation is just given by repeating a vertex in an edge path. The second
type elementary relation is given as follows: Let v, v′, w be vertices of A such that
v, v′, w spans a simplex of A. Since A has no 2-simplices, at least two of v, v′, w are
the same. Thus the second type elementary equivalence becomes:

a) (· · · , vi−1, vi−1, vi−1, · · · ) ∼ (· · · , vi−1, vi−1, · · · ).
b) (· · · , vi−1, vi−1, vi+1, · · · ) ∼ (· · · , vi−1, vi+1, · · · ).
c) (· · · , vi−1, vi, vi, · · · ) ∼ (· · · , vi−1, vi, · · · ).
d) (· · · , vi−1, vi, vi−1, · · · ) ∼ (· · · , vi−1, vi−1, · · · ).

Together with the first type elementary relation, the equivalence relation in A is
given by finite sequences of the first type elementary relation and Relation (d)
above.

Given two edge paths α, β in A0 such that α ∼A β, we may assume that
β is obtained by a single elementary relation from α. Thus α and β are given
either in the form (· · · , vi, vi, · · · ) and (· · · , vi, · · · ) or (· · · , vi−1, vi, vi−1, · · · ) and
(· · · , vi−1, vi−1, · · · ). In both cases, α ∼A0 β. It follows that

α ∼A β =⇒ α ∼A0 β.

Now let α be an edge loop at v0 in A0. By considering α as an edge loop in
A, since A is simply connected, α ∼A (v0) in A. From the above, α ∼A0 (v0). It
follows that π(A0, v

0) = {1} and so A0 is a tree.
(3) Suppose that A is a tree in K such that A contains all vertices of K. Then

clearly A is a maximal tree in K. Now suppose that there exists a vertex w of
K such that w 6∈ A. Choose v to be a vertex in A. By the assumption, |K| is
path-connected and so there is a path from v to w. By Theorem 4.6.7, there is an
edge path α = (v0, v1, . . . , vn) with v0 = v and vn = w. Let

r = max{i | v0, v1, . . . , vi ∈ A}.

Then r < n, vr ∈ A, vr+1 6∈ A and vrvr+1 spans a 1-simplex of K because
vr 6= vr+1. Now let B be the simplicial subcomplex of K given by adding the
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1-simplex vrvr+1 and the vertex vr+1 to A. Then |B| ' |A| because |A| is obtained
from |B| by collapsing the 1-simplex vrvr+1. It follows that B is a tree in K with
A a proper simplicial subcomplex of B. Thus A is not maximal. �

For a path-connected simplicial complex K, there is a combinatorial methods
for computing the fundamental group described as follows. Let A be a fixed max-
imal tree in K and let the set of vertices of K be totally ordered. Define a group
Gp(K) combinatorially as follows: The generators of GpA(K) are given by the
letters

gvw,

where vw is a 1-simplex of K with v < w with defining relations given by
(1). gvw = 1 if the 1-simplex vw lies in A and
(2). gvw = gvv′gv′w if v < v′ < w and vv′w is a 2-simplex of K.

Equivalently GpA(K) is generated by gvw, where vw is a 1-simplex in K rA with
v < w, subject to the defining relation given in (2).

Theorem 4.6.11. Let K be a path-connected simplicial complex and let v0 be
a vertex of K. Then GpA(K) ∼= π(K, v0).

Proof. Let v be any vertex of K. By Lemma 4.6.10, v ∈ A. Since |A| is
contractible, |A| is path-connected and so there is an edge path αv0,v in A from v0

to v. Let α′v0,v be another edge path in A from v0 to v. Then

αv0,v ∼ α′v0,v
because |A| is contractible. Thus the edge path αv0,v is unique up to equivalence.

For any 1-simplex vw of K with v < w, let

θ(gvw) = [αv0,v ? (v, w) ? α−1
v0,w]

be the equivalence class of the edge path αv0,v ? (v, w) ? α−1
v0,w. If vv′w spans a

2-simplex of K with v < v′ < w, then

θ(gvv′)θ(gv′w) = [αv0,v ? (v, v′) ? α−1
v0,v′ ? αv0,v′ ? (v′, w) ? α−1

v0,w]
= [αv0,v ? (v, v′) ? (v′, w) ? α−1

v0,w]
= [αv0,v ? (v, w) ? α−1

v0,w]
= θ(gvw).

If vw is a 1-simplex of A, then θ(gvw) = [αv0,v ? (v, w) ?α−1
v0,w] is a loop in A. Since

|A| is contractible, θ(gvw) = 1. Thus the function gvw 7→ θ(gvw) defines a group
homomorphism

θ : GpA(K) - π(K, v0).
Now we construct a group homomorphism φ : π(K, v0) → GpA(K) as follows:

Let
α = (v0, v1, . . . , vn)

be an edge path in K with vn = v0. Write it as a product of edge paths

α = (v0, v1) ? (v1, v2) ? · · · ? (vn−2, vn−1) ? (vn−1, v0).

For each edge path (vi, vi+1), define φ(vi, vi+1) ∈ GpA(K) by setting

φ(vi, vi+1) =


1 if vi = vi+1

gvivi+1 if vi < vi+1

g−1
vivi+1 if vi > vi+1
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and define

φ(α) = φ(v0, v1)φ(v1, v2) · · ·φ(vn−2, vn−1)φ(vn−1, v0) ∈ Gp(K).

Observe that if vi−1, vi, vi+1 spans a simplex of K, then

φ(vi−1, vi)φ(vi, vi+1) = φ(vi−1, vi+1)

in GpA(K). Thus if α ∼ β, then φ(α) ∼ φ(β). Clearly φ(α ? β) = φ(α)φ(β). Thus
the function φ defines a group homomorphism

φ : π(K, v0) - GpA(K).

We check that φ is the inverse of θ. Let vw be a 1-simplex of K with v < w.
Then

φ ◦ θ(gvw) = φ[αv0,v ? (v, w) ? α−1
v0,w]

= φ(αv0,v)φ(v, w)φ(αv0,w)−1

= φ(αv0,v)gvwφ(αv0,w)−1

Since αv0,v is an edge path in A, φ(αv0,v) is a product of g±v′,w′ with the property
that v′w′ spans a 1-simplex of A with v′ < w′. Thus φ(αv0,v) = 1. Similarly
φ(αv0,w) = 1. Thus φ ◦ θ = id. Now let

α = (v0, v1, . . . , vn)

be an edge path of K with vn = v0. Then

θ ◦ φ(α) = θ(φ(v0, v1))θ(φ(v1, v2)) · · · θ(φ(vn−2, vn−1))θ(φ(vn−1, v0))
= [αv0,v0 ? (v0, v1) ? α−1

v0,v1 ][αv0,v1 ? (v1, v2) ? α−1
v0,v2 ]

· · · [αv0,vn−1 ? (vn−1, v0) ? α−1
v0,v0 ]

= [αv0,v0 ? (v0, v1) ? α−1
v0,v1 ? αv0,v1 ? (v1, v2) ? α−1

v0,v2?

· · · ? αv0,vn−1 ? (vn−1, v0) ? α−1
v0,v0 ]

= [α],

where we use the formula

θ(φ(vi, vi+1)) =


1 = [αv0,vi ? (vi, vi+1) ? α−1

v0,vi ] if vi = vi+1

[αv0,vi ? (vi, vi+1) ? α−1
v0,vi+1 ] if vi < vi+1

θ(g−1
vi+1vi) = θ(gvi+1vi)−1

= [αv0,vi ? (vi, vi+1) ? α−1
v0,vi+1 ] if vi > vi+1.

Thus θ ◦ φ = id and hence the result. �

Corollary 4.6.12. Let K be a 1-dimensional simplicial complex. Then
(1). π1(|K|, v) is a free group for any vertex v.
(2). Let L be a simplicial subcomplex of K and let v be a vertex of L. Then

π(L, v) is a subgroup of π(K, v) with rank(π(L, v)) ≤ rank(π(K, v)).

Proof. (1) Let A be a maximal tree of K. By Theorem 4.6.11, π(K, v) is
the group generated by gvw with v < w. Since K has no 2-simplices, the defining
relations are given by gvw = 1 for vw a 1-simplex in A. Thus π(K, v) is the free
group with a basis given by gvw with v < w and vw is not a 1-simplex in A.

(2) Let A0 = A ∩ L. Then, by (2) of Lemma 4.6.10, A0 is also a tree. By (3)
of Lemma 4.6.10, A contains all vertices of K and so A0 contains all vertices of L.
By applying (3) of Lemma 4.6.10 again, A0 is a maximal tree of L. From Part (1),
π(L, v) is the free group with a basis given by gvw with v < w, vw is a 1-simplex
in LrA0. The assertion follows.
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�

Example 4.6.2. Let K be a simplicial complex with twelve 2-simplices and
their faces as in the following picture, where the maximal tree A is given by the
red colored 1-simplices.

v1

v0

v2

v0v3 v4

v5 v6

v2 v1

1
2 3 4

5 6 7 8
9

10 11 12 RP2

We compute π(K, v0) using the above theorem. Write gij for gvivj . If vivj is a
1-simplex of A, then gij = 1. So π(K, v0) is generated by gij for those 1-simplices
vivj not in A. Thus there are 12 generators

{g01, g02, g04, g05, g06, g12, g15, g16, g24, g25, g46, g56}.
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Now the twelve 2-simplices give 12 relations:

g01 = 1
g12 = 1
g24 = 1
g04 = g02g24 = g02

g05 = 1
g56 = 1
g46 = 1
g06 = g04g46 = g04 = g02

g05 = g02g25

⇒ g25 = g−1
02

g15 = g12g25 = g25

g16 = g15g56 = g15 = g25

g06 = g01g16 = g16 = g25

⇒ g25 = g02

Thus π(K, v0) is generated by g02 with g02 = g−1
02 and so π(K, v0) = Z/2. �

As an application of Theorem 4.6.11, we have the Seifert-van Kampen Theorem
for simplicial complexes.

Theorem 4.6.13 (Seifert-van Kampen Theorem). Let K be a simplicial com-
plex and let K1 and K2 be simplicial subcomplexes of K such that K = K1 ∪ K2

and K1 ∩K2 6= ∅. Let v0 be a vertex of K1 ∩K2. Suppose that K1 ∩K2, K1 and
K2 are path-connected. Then

π(K, v0) ∼= π(K1, v
0)

∐
π(K1∩K2,v0)

π(K2, v
0)

the free product with amalgamation.

Proof. Since K1 and K2 are path-connected with K1∩K2 6= ∅, K = K1∪K2

is path-connected.
Let A0 be a maximal tree in K1∩K2. Let A1 be a maximal tree in K1 contains

A0 and let A2 be a maximal tree in K2 contains A0. Then A0 = A1 ∩ K1 ∩ K2

because A0 ⊆ A1 ∩ K1 ∩ K2 and A0 is a maximal tree in K1 ∩ K2. Similarly
A0 = A2 ∩K1 ∩K2. Thus A0 = A1 ∩ A2. Let A = A1 ∪ A2. We check that A is a
maximal tree in K. Since A1 and A2 are path-connected and A1 ∩ A2 = A0 6= ∅,
A = A1 ∪ A2 is path-connected. Note that A contains all vertices of K as A1

contains all vertices of K1 and A2 contains all vertices of K2. It suffices to show
that π(A, v0) = {1}. Let

α = (v0, v1, . . . , vn)
be an edge path in A with vn = v0. We show that α ∼ (v0) by induction on
the number k(α) of vertices vi in α with vi 6∈ A0. If all vi ∈ A0, then α ∼ (v0)
because π(A0, v

0) = {1}. Thus the statement holds for k(α) = 0. Suppose that
the statement holds for edge paths β with k(β) < k(α). Note that α ∼ (v0) if all
vi ∈ A1 and α ∼ (v0) if all vi ∈ A2. We may assume that there exist viA1 r A2

and vj ∈ A2 rA1 for some i, j. We may assume that i is the smallest integer with
vi ∈ A1 rA2 and j is the smallest integer with vj ∈ A2 rA1 with i < j. Then there
exists 1 ≤ r ≤ n−2 such that v1, . . . , vr ∈ A1 and vr+1 ∈ A2 rA1 and vt ∈ A1 rA2

for some 1 ≤ t ≤ r. Consider the 1-simplex vrvr+1 of A. Then vrvr+1 ∈ A1 if the
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barycenter v̂rvr+1 ∈ |A1| and vrvr+1 ∈ A2 if the barycenter v̂rvr+1 ∈ |A2|. Since
vr+1 6∈ A1, vrvr+1 is a 1-simplex of A2. Thus vr ∈ A2 and so vr ∈ A0 = A1 ∩ A2.
Since A0 is path-connected, there is an edge path α′ = (v0, w1, . . . , wq, vr) in A0.
Since A1 is simply connected,

(v0, v1, . . . , vr) ∼ (v0, w1, . . . , wq, vr)

by Corollary 4.6.9. If follows that

α = (v0, v1, . . . , vr, vr+1, . . . , . . . , vn) ∼ β = (v0, w1, . . . , wq, vr, vr+1, . . . , vn)
∼ (v0)

because k(β) < k(α).

The induction is finished and so A is a maximal tree in K.
The group GpA(K) is generated by

gvw

for 1-simplices vw of K with v < w, with the defining relations given by
(a) gvw = 1 for 1-simplices vw ∈ A with v < w and
(b) gvw = gvv′gv′w for 2-simplex vv′w of K with v < v′ < w.

Now the GpA1
(K1)

∐
GpA1∩A2

(K1∩K2) GpA2
(K2) is generated by gvw for 1-simplices

vw of K1 with v < w, and gv′,w′ for 1-simplices v′w′ with v′ < w′. Note that the
group GpA1∩A2

(K1 ∩K2) is generated by gvw = gv′w′ for 1-simplices vw = v′w′ of
K1 ∩K2. Thus the defining relations for the group

GpA1
(K1)

∐
GpA1∩A2

(K1∩K2)

GpA2
(K2)

can be given by
(1). gvw = gv′w′ for 1-simplices vw = v′w′ of K1 ∩K2;
(2). gvw = 1 for 1-simplices vw of A1;
(3). gv′w′ = 1 for 1-simplices v′w′ of A2;
(4). gv1v3 = gv1v2gv2v3 for 2-simplices (v1, v2, v3) of K1 with v1 < v2 < v3,

and
(5). gv′1v′3 = gv′1v′2gv′2v′3 for 2-simplices (v′1, v

′
2, v
′
3) of K1 with v′1 < v′2 < v′3.

By Relation (1), the group GpA1
(K1)

∐
GpA1∩A2

GpA2
(K2) is also generated by gvw

for 1-simplices vw of K with v < w.
Let σ = vw be a 1-simplex of A. Since |A| = |A1| ∪ |A2|, σ ∈ A1 if the

barycenter σ̂ ∈ |A1| and σ ∈ A2 if σ̂ ∈ |A2|. This σ is either in A1 or A2. It follows
that Relations (2) and (3) are the same as Relation (a). Similarly Relations (4) and
(5) are the same as Relation (b). The assertion follows by Theorem 4.6.11 now. �

Exercise 4.1. Determine all possible simplicial maps from K → S1, where K
is a simplicial complex such that |K| ∼= S2.

Projects

Triangulations of Surfaces. A Hausdorff space M is called an n-manifold
if each point of M has a neighborhood homeomorphic to an open set in Rn. In
this proposed project, one can work out a classification of triangulable 2-manifolds,
namely 2-manifolds given by the polyhedron of a finite simplicial complex.



CHAPTER 2

Abstract Simplicial Complexes, ∆-sets and
Simplicial Homology

Week 7 September 30 (T) October 3 (F): Sections 1.1, 1.2, 1.3
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Week 9 October 14 (T) October 17 (F): Sections 3.1, 3.2

1. Abstract Simplicial Complexes

1.1. Definition and Geometric Realizations of Abstract Simplicial
Complexes.

Definition 1.1.1. An abstract simplicial complex K is a collection of finite
nonempty sets, such that if A is an element in K, so is every nonempty subset of
A. The element A of K is called a simplex of K; its dimension is one less than
the number of its elements. Each nonempty subset of A is called a face of A. The
dimension of K is the supremum of the dimensions of its simplices. The vertex
set V (K) is the union of the one-point elements of K; we shall make no distinction
between the vertex v and the 0-simplex {v}. A sub collection of K that is itself a
complex is called a subcomplex of K. Two abstract simplicial complexes K and K′
are called to be isomorphic if there exists a bijective correspondence f mapping the
vertex set of K to the vertex set of K′ such that {a0, a1, . . . , an} ∈ K if and only if
{f(a0), f(a1), . . . , f(an)} ∈ K′.

Remark 1.1.2. In some references, the empty set may be allowed in the defi-
nition of abstract simplicial complex. For such a case, we call augmented abstract
simplicial complex. In other words, an augmented abstract simplicial complex K
means a collection of finite sets such that if A is an element in K, so is every
subset of A. �

Definition 1.1.3. Let K be a geometric simplicial complex. Let V be the
vertex set of K. Let K be the collection of all subsets {a0, a1, . . . , an} of V such
that a0, a1, . . . , an span a simplex of K. The collection K is called the vertex scheme
of K, or abstraction of K. The geometric simplicial complex K is called a geometric
realization of the abstract simplicial complex K.

Theorem 1.1.4. A relation between abstract simplicial complexes and geomet-
ric simplicial complexes is as follows:

(a) Every abstract simplicial complex K is isomorphic to the vertex scheme
of some geometric simplicial complex.

(b) Two geometric simplicial complexes are linearly isomorphic if and only if
their vertex schemes are isomorphic as abstract simplicial complexes.

53
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Proof. We leave (b) as an exercise. To prove (a), we proceed as follows:
Given an index set J , let ∆J be the collection of all simplices in EJ spanned by
finite subsets of the standard basis {eα}α∈J for EJ . It is easy to see that ∆J is
a simplicial complex. Moreover if σ and τ are two simplices of ∆J , then their
combined vertex set is geometrically independent and spans a simplex of ∆J .

Now let K be an abstract simplicial complex with vertex set V . Choose the in-
dex set J = V . We specify a subcomplex K of ∆J by the condition that for each ab-
stract simplex {a0, . . . , an} ∈ K, the geometric simplex spanned by ea0 , ea1 , . . . , ean
is to be in K. It is immediate that K is a geometric simplicial complex and K is
isomorphic to the vertex scheme of K. �

By the above theorem, up to isomorphisms, geometric simplicial complexes are
one-to-one correspondent to abstract simplicial complexes. As a tool, abstract sim-
plicial complexes help to give some canonical constructions on simplicial complexes
as well as to set up mathematical models in applications.

Example 1.1.1. Let V = {a0, a1, . . . , an} be a nonempty finite set. Let K
be the abstract simplicial complex given by all nonempty subsets of V . Then the
geometric realization of K is an n-simplex. �

Proposition 1.1.5. Any finite geometric simplicial complex is linearly isomor-
phic to a simplicial subcomplex of a simplex.

Proof. Let K be a finite geometric simplicial complex and let K be its abstrac-
tion. Let V = {a0, a1, . . . , an} be the vertex set. Let K′ be the abstract simplicial
complex given by all nonempty subsets of V . Let K ′ be a geometric realization of
K′. Then K ′ is an n-simplex. Note that K is a simplicial subcomplex of K′. By
taking geometric realization, K is linearly isomorphic to a simplicial subcomplex of
K ′. �

1.2. Face Posets and Subdivision of Abstract Simplicial Complexes.
Recall that a partially ordered set, or simply poset, V is a set together with a binary
relation ≤ such that

(1). idempotency : x ≤ x for any x ∈ V ;
(2). antisymmetry : for any x, y ∈ V , if x ≤ y and y ≤ x, then x = y;
(3). transitivity : for any x, y, z ∈ V , if x ≤ y and y ≤ z, then x ≤ z.

Given a poset V , let

S(V ) = {{a0, a1, . . . , an} | ai ∈ V a0 < a1 < · · · < an}.

Then S(V ) is an abstract simplicial complex with V as its vertex set because if
{a0, a1, . . . , an} is well-ordered, then any nonempty subset of {a0, a1, . . . , an} is
well-ordered. Roughly speaking S(V ) is the set of all finite well-ordered sequences.

Definition 1.2.1. Let K be an arbitrary abstract simplicial complex. A face
poset of K, denoted by FP(K), is the poset whose elements are given by all simplices
of K with partial order relation given by the inclusions. In other words, FP(K) is
the same set as K with partial order given by

A ≤ B

if A is a face of B.
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The subdivision of abstract simplicial complexes follows the ideas of barycentric
subdivision of geometric simplicial complexes. Let K be an abstract simplicial
complex. Then we have the face poset FP(K). Define

sd(K) = S(FP(K)),

which is called the subdivision of K. The simplices of sd(K) are given by the
sequences

{σ1, σ2, . . . , σq}
with σ1 < σ2 < · · · < σq. If K is the geometric realization of K, then, by definition,
the geometric realization of sd(K) is sd(K).

The subdivision of (abstract) simplicial complexes can be described by the
following commutative diagram

{(abstract) simplicial complexes}
FP- {posets}

{(abstract) simplicial complexes}

sd

? FP-
�

S

{posets},
?

where the right column is the functor that sends a poset to the poset of its finite
well-ordered sequences with new partial order given by the inclusions.

1.3. Simplicial Joins. The notion of the cone K ∗w of a simplicial complex
K and a point w can be generalized to have a notion of join. As we see from the
definition of cone, we need to have the point w in a good position that is each
ray from w intersecting with |K| at most one point. By using abstract simplicial
complexes, we do not have to be worried about the technical assumption on good
position of w. Namely, we can start with two abstract simplicial complexes and
then construct a new abstract simplicial complex. Its geometric realization gives a
construction in geometry. The precise definition of join is as follows.

Definition 1.3.1. Let K1 and K2 be abstract simplicial complexes. The join
K1 ∗ K2 of K1 and K2 is the abstract simplicial complex with the vertex set given
by the disjoint union of the vertices of K1 and that of K2, and its simplices given
by the disjoin unions of the simplices of K1 and that of K2 along all faces of such
simplices. More precisely,

V (K1 ∗ K2) = V (K1)
∐

V (K2)

and a nonempty subset A
∐
B of V (K1 ∗ K2) with A ⊆ V (K1) and B ⊆ V (K2) is

an simplex of K1 ∗ K2 if and only if A is an empty set or a simplex of K1 and B is
an empty set or a simplex of K2.

Example 1.3.1. Let K1 be an abstract simplicial complex and let K2 = {w} be
an (abstract) 0-simplex. Then, from the definition of cone, the geometric realization
of K1 ∗ K2 is a cone of the geometric realization of K1. �

Example 1.3.2. Let K1 = {a, b} and let K2 = {c, d}. Then K1 ∗ K2 has the
simplices:

{a, c}, {a, d}, {b, c}, {b, d}, {a}, {b}, {c}, {d}.
Its geometric realization is a circle S1 as one can see from the following picture:
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a b

c d

Definition 1.3.2. Let K1 be a geometric simplicial complex with its abstrac-
tion K1 and let K2 be a geometric simplicial complex with its abstraction K2. The
join K1 ∗K2 of K1 and K2 is defined to be the geometric realization of K1 and K2.

Proposition 1.3.3. Let K1 = σn be an n-simplex and let K2 = τm be an
m-simplex. Then K1 ∗K2 is an (m+ n+ 1)-simplex.

Proof. Let K1 = a0a1 · · · an and let K2 = b0b1 · · · bm. Then the abstraction
K1 of K1 is given by all nonempty subsets of {a0, a1, . . . , an}, and the abstraction
K2 of K2 is given by all nonempty subsets of {b0, b1, . . . , bm}. Thus K1 ∗K2 is given
by all nonempty subsets of {a0, a1, . . . , an, b0, b1, . . . , bm} and hence the result. �

Proposition 1.3.4. Let K1, K2 and K3 be geometric simplicial complexes.
Then

(1). K1 ∗K2 is linearly isomorphic to K2 ∗K1.
(2). (K1 ∗K2) ∗K3 is linearly isomorphic to K1 ∗ (K2 ∗K3).

Proof. Let Ki be the abstraction of Ki. The assertion follows from that
K1 ∗ K2

∼= K2 ∗ K1 and (K1 ∗ K2) ∗ K3
∼= K1 ∗ (K2 ∗ K3). �

Proposition 1.3.5. Let K and L be geometric simplicial complexes and let
{Kα | α ∈ J} be a collection of simplicial subcomplex of K such that K =

⋃
α∈J

Kα.

Then there is a linear isomorphism

K ∗ L ∼=
⋃
α∈J

(Kα ∗ L).

Proof. Let K and L be the abstraction of K and L, respectively. Let Kα be
the abstraction of Kα. Then

K =
⋃
α∈J
Kα.
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From the definition of the join of abstract simplicial complexes, we have

K ∗ L =
⋃
α∈J

(Kα ∗ L.

The assertion follows by taking geometric realization. �

Proposition 1.3.6. Let K be a geometric simplicial complex and let v be a
vertex of K. Then

St(v) = v ∗ Lk(v).

Proof. Recall St(v) =
⋃
v∈σ

σ. Given a simplex σ having vertices v, a0, a1, . . . , an.

Let τσ = a0a1 · · · an be the face of σ opposite to v. (If σ = v, we allow τ = ∅ in
this proof.) From the definition of the join,

σ = v ∗ τσ.

It follows
St(v) =

⋃
v∈σ

σ

=
⋃
v∈σ

v ∗ τσ
= v ∗

(⋃
v∈σ τσ

)
.

Thus it suffices to show that

Lk(v) =

(⋃
v∈σ

τσ

)
.

Let tv be the barycentric coordinate function with respect to v. Recall that
x ∈ St(v) if and only if tv(x) > 0. Thus

Lk(v) = St(v) ∩ t−1
v (0).

For any simplex σ = va0a1 · · · an of K having v as one of its vertices, observe
that a point x ∈ σ lies in its face τσ = a0a1 · · · an if and only if tv(x) = 0. It follows
that τσ ⊆ Lk(v) and so ⋃

v∈σ
τσ ⊆ Lk(v).

Now let x ∈ Lk(v) = St(v) r St(v). There exists a simplex σ of K having v as
one of its vertices such that x ∈ σ. Since tv(x) = 0 as x ∈ Lk(v), we have tv ∈ τσ.
Thus

Lk(v) ⊆
⋃
v∈σ

τσ

and hence the result. �

Let X and Y be topological spaces. The join of X and Y , denoted by X#Y , is
defined to be the quotient space of X×Y × I by the equivalence relation generated
by:

(1). (x, y1, 0) ∼ (x, y2, 0) for x ∈ X, y1, y2 ∈ Y and
(2). (x1, y, 1) ∼ (x2, y, 1) for x1, x2 ∈ X and y ∈ Y .

Lemma 1.3.7. Let σn be an n-simplex and let τm be an m-simplex. Then
σn#τm ∼= σn ∗ τm is an (n+m+ 1)-simplex .
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Proof. Let σ = a0a1 · · · an ⊆ RN1 and let τ = b0b1 · · · bm ⊆ RN2 . For hav-
ing the join σ ∗ τ as a geometric realization of an (n + m + 1)-simplex, we may
put the vertices a0, a1, . . . , an, b0, b1, . . . , bm in RN1+N2 such that a0, a1, . . . , an ∈
RN1 = RN1 × 0 ⊆ RN1+N2 and b0, b1, . . . , bm ∈ RN2 = 0 × RN2 ⊆ RN1+N2 . Then
a0, a1, . . . , an, b0, b1, . . . , bm are geometrically independent and the simplex σ ∗ τ is
given by

σ ∗ τ = a0a1 · · · anb0b1 · · · bm

as an (n+m+ 1)-simplex. Now define a map φ : σ × τ × I - σ ∗ τ by setting

φ(
n∑
i=0

tia
i,

m∑
j=0

sjb
j , t) =

n∑
i=0

(1− t)tiai +
m∑
j=0

tsjbj ,

where the right-hand side is also the barycentric coordinates because (1− t)ti ≥ 0,
tsj ≥ 0 and

n∑
i=0

tti +
m∑
j=0

(1− t)sj = t

n∑
i=0

ti + (1− t)
m∑
j=0

sj = t+ (1− t) = 1.

Note that

φ(
n∑
i=0

tia
i,

m∑
j=0

sjb
j , 0) =

n∑
i=0

tiai

and

φ(
n∑
i=0

tia
i,

m∑
j=0

sjb
j , 1) =

m∑
j=0

sjbj .

Thus the map φ factors through the quotient space σ#τ because

φ(
n∑
i=0

tia
i,

m∑
j=0

sjb
j , 0) = φ(

n∑
i=0

tia
i,

m∑
j=0

s′jb
j , 0)

for any
∑m
j=0 sjb

j ,
∑m
j=0 s

′
jb
j ∈ τ and

φ(
n∑
i=0

tia
i,

m∑
j=0

sjb
j , 1) = φ(

n∑
i=0

t′ia
i,

m∑
j=0

sjb
j , 1)

for any
∑n
i=0 tja

j ,
∑n
i=0 t

′
ia
i ∈ σ. Let

(1.3.1) φ̄ : σ#τ - σ ∗ τ

be the map induced by φ. Then φ̄ is one-to-one and onto. Since σ#τ has quotient
topology, φ̄ is continuous.

To see φ̄−1 is continuous, let q : σ × τ × I → σ#τ be the quotient map and
let A be closed subset of σ#τ . Then q−1(A) is a closed subset of σ × ×I. Since
σ × τ × I is compact, q−1(A) is compact. It follows that

φ̄(A) = φ(q−1(A))

is compact subset of σ ∗τ . Thus φ̄(A) is closed and so φ̄−1 is continuous. The proof
is finished. �
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Let K and L be geometric simplicial complexes. Then

|K|#|L| =
⋃

σ ∈ K
τ ∈ L

σ#τ.

The weak topology on |K|#|L| is defined by requiring that a subset A to be closed
if and only if A ∩ (σ#τ) is closed in σ#τ for any σ ∈ K and τ ∈ L.

Theorem 1.3.8. Let K and L be geometric simplicial complexes and let |K|#|L|
have weak topology. Then there is a homeomorphism

|K|#|L| ∼= |K ∗ L|.

Proof. Let |K| ⊆ RJ and let |L| ⊆ RJ′ . Consider J and J ′ as disjoint index
sets and regard |K| and |L| as subsets of RJtJ′ ⊆ RJ ×RJ′ . By the proof of above
lemma, for σ ∈ K and τ ∈ L, the join σ ∗ τ is the simplex spanned by the vertices
of σ and τ . Let

φ̄σ,τ : σ#τ - σ ∗ τ
be the homeomorphism defined in (1.3.1). Then we obtain the function

φ̄ =
⋃
σ,τ

φσ,τ : |K|#|L| =
⋃

σ ∈ K
τ ∈ L

σ#τ - |K ∗ L| =
⋃

σ ∈ K
τ ∈ L

σ ∗ τ

which is one-to-one and onto. The function φ̄ is continuous because the restriction

φ̄|σ#τ : σ#τ
φ̄σ,τ- σ ∗ τ ⊆ |K ∗ L|

is continuous for each σ ∈ K and τ ∈ L. Also the inverse φ̄−1 is continuous because
its restriction

φ̄−1|σ∗τ : σ ∗ τ
φ̄−1
σ,τ- σ#τ ⊆ |K|#|L|

is continuous for every σ ∈ K and τ ∈ L. (Note that all simplices in |K ∗ L| are
given in the form σ ∗ τ , σ, τ for σ ∈ K and τ ∈ L. The function φ̄−1 restricted to
the last two cases is also continuous because σ and τ are subspaces of σ#τ .) The
proof is finished. �

2. ∆-sets

2.1. Definition of ∆-sets. A generalization of abstract simplicial complex is
so-called ∆-set. The definition of ∆-set is as follows.

Definition 2.1.1. A ∆-set means a sequence of sets X = {Xn}n≥0 with faces
di : Xn → Xn−1, 0 ≤ i ≤ n, such that

(2.1.1) didj = djdi+1

for i ≥ j, which is called the ∆-identity.

In this definition, a ∆-set refers to a sequence of sets together with structured
functions called faces rather than a single set. For helping to remember the ∆-
identity, one can look at the coordinate projections

di : (x0, . . . , xn) −→ (x0, . . . , xi−1, xi+1, . . . , xn)

to catch the identities didj = djdi+1 for i ≥ j, where xi are letters.
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Example 2.1.1. Let K be an abstract simplicial complex. Let the vertices of
K be well-ordered. Let Kn be the set of n-simplices of K. Define the faces

di : Kn → Kn−1, 0 ≤ i ≤ n,
by

di{a0, a1, . . . , an} = {a0, a1, . . . , ai−1, ai+1, . . . , an}
for any n-simplex {a0, a1, . . . , an} with a0 < a1 < · · · < an. Then the sequence
K∆ = {Kn}n≥0 forms a ∆-set. Note that the faces depend on the choice of well-
order on vertices. �

There is a categorical way to describe ∆-set. Namely we can describe ∆-sets
as functors from a category O+ below to the category of sets.

Definition 2.1.2. Let O+ be the category whose objects are finite well-ordered
sets and whose morphisms are functions f : X → Y such that f(x) < f(y) if x < y.

Note that the objects in O+ are given by [n] = {0, 1, . . . , n} for n ≥ 0 and the
morphisms in O+ are generated by di : [n− 1] −→ [n] with

di(j) =
{

j if j < i
j + 1 if j ≥ i

for 0 ≤ i ≤ n, that is di is the ordered embedding missing i. We may write the
function di in matrix form:

di =
(

0 1 · · · i− 1 i i+ 1 · · · n− 1
0 1 · · · i− 1 i+ 1 i+ 2 · · · n.

)
.

The morphisms di satisfy the following identity:

djdi = di+1dj

for i ≥ j.

Remark 2.1.3. For seeing that morphisms in O+ are generated by di, observe
that any morphism in O+ means an ordered embedding, which can be written as
the compositions of di’s.

Let S denote the category of sets.

Proposition 2.1.4. ∆-sets are one-to-one correspondent to contravariant func-
tors from O+ to S.

Proof. Let F : O+ → S be a contravariant functor. Define Xn = F ([n]) and

di = F (di) : Xn = F ([n])→ Xn−1 = F ([n− 1]).

Then X is a ∆-set.
Conversely suppose that X is a ∆-set. Define the F : O+ → S by setting

F ([n]) = Xn and F (di) = di. Then F is a contravariant functor. �

Definition 2.1.5. A ∆-set G = {Gn}n≥0 is called a ∆-group if each Gn is
a group, and each face di is a group homomorphism. In other words, a ∆-group
means a contravariant functor from O+ to the category of groups. More abstractly,
for any category C, a ∆-object over C means a contravariant functor from O+ to C.
In other words, a ∆-object over C means a sequence of objects over C, X = {Xn}n≥0

with faces di : Xn → Xn−1 as morphisms in C.
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Example 2.1.2 (n-simplex). The n-simplex ∆+[n], as a ∆-set, is as follows:

∆+[n]k = {(i0, i1, . . . , ik) | 0 ≤ i0 < i1 < · · · < ik ≤ n}

for k ≤ n and ∆+[n]k = ∅ for k > n. Namely, ∆+[n]k is the collection of the subsets
of cardinal (k + 1) of the set (0, 1, 2, . . . , n).

The face dj : ∆+[n]k → ∆+[n]k−1 is given by

dj(i0, i1, . . . , ik) = (i0, i1, . . . , îj , . . . , ik),

that is deleting ij . Let σn = (0, 1, . . . , n). Then

(i0, i1, . . . , ik) = dj1dj2 · · · djn−kσn,

where j1 < j2 < · · · < jn−k with {j1, . . . , jk} = {0, 1, . . . , n} r {i0, i1, . . . , ik}. In
other words, any elements in ∆[n] can be written an iterated face of σn. Note
that ∆+[n] is the abstraction of an n-simplex by considering ∆+[n] as an abstract
simplicial complex. �

Definition 2.1.6. A ∆-map f : X → Y means a sequence of functions

f : Xn → Yn

for each n ≥ 0 such that f ◦ di = di ◦ f , that is the diagram

Xn
f - Yn

Xn−1

di

? f - Yn−1

di

?

commutes. A ∆-subset A of a ∆-set X means a sequence of subsets An ⊆ Xn such
that

di(An) ⊆ An−1

for all 0 ≤ i ≤ n <∞. A ∆-set X is called to be isomorphic to a ∆-set Y , denoted
by X ∼= Y , if there is a bijective ∆-map f : X → Y .

Let X be a ∆-set and let A be a ∆-subset. Clearly the inclusion A ⊆ X, that
is, An ⊆ Xn for each n ≥ 0, is a ∆-map.

Proposition 2.1.7. Let X be a ∆-set and let x ∈ Xn be an element. Then
there exists a unique ∆-map

fx : ∆+[n]→ X

such that fx(σn) = x.

Proof. Suppose that f : ∆+[n] → X is a ∆-map such that f(σn) = x. From
the assumption f(σn) = x, we have

f(i0, i1, . . . , ik) = f(dj1dj2 · · · djn−kσn)
= dj1dj2 · · · djn−kfx(σn)
= dj1dj2 · · · djn−kx.

This proves the uniqueness because the value f(i0, i1, . . . , ik+1) must be given by
dj1dj2 · · · djn−kx. Now define the functions

(fx)k : ∆+[n]k - Xk
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by setting (fx)k(i0, i1, . . . , ik+1) = dj1dj2 · · · djn−kx. Then

fx = {(fx)k} : ∆+[n] - X

is a ∆-map. The proof is finished. �

The simplicial map fx : ∆+[n]→ X is called representing map of x.

Definition 2.1.8. Let X be a ∆-set and let S ⊆
⋃∞
n=0Xn. The ∆-subset

generated by S is defined by

〈S〉∆ =
⋂
{A ⊆ X |S ⊆

∞⋃
n=0

An A = {An} is a ∆− subset of X}.

For x ∈ Xn, 〈{x}〉∆ is simply denoted by 〈x〉∆. A ∆-set X is called monogenic if
it is generated by a single element.

Proposition 2.1.9. Let X be a ∆-set and let S ⊆
⋃∞
n=0Xn. Then

〈S〉∆n = (S ∩Xn) ∪
⋃

0 ≤ j1 < j2 < · · · < jk ≤ n+ k
1 ≤ k <∞

dj1dj2 · · · djk(S ∩Xn+k)

for each n ≥ 0.

Proof. Let

Kn = (S ∩Xn) ∪
⋃

0 ≤ j1 < j2 < · · · < jk ≤ n+ k
1 ≤ k <∞

dj1dj2 · · · djk(S ∩Xn+k)

Then di(Kn) ⊆ Kn−1 by the ∆-identity (2.1.1) for 0 ≤ i ≤ n. Thus K = {Kn}n≥0

is a ∆-subset of X. If A is a ∆-subset of X with S ⊆
⋃∞
n=0An, then clearly

Kn ⊆ An for each n ≥ 0. Thus K = 〈S〉∆ and hence the assertion. �

2.2. Polyhedral ∆-sets. Given an abstract simplicial complex K (with a
well-order on the vertices), as in Example 2.1.1, we obtain a ∆-set K∆.

Definition 2.2.1. A ∆-set X is called polyhedral if there exists an abstract
simplicial complex K such that X ∼= K∆.

In general, a ∆-set may not be polyhedral.

Example 2.2.1. Let X = ∆+[1] ∪∆+[1]0 ∆+[1] be the union of two copies of
∆+[1] by identifying the vertices. We show that X is not polyhedral. Note that
X0 has two vertices 0 and 1 and X1 has two elements σ1 = (0, 1) and σ̄1 = (0, 1),
where (0, 1) is a copy of σ1. Assume that there is an abstract simplicial complex K
such that K∆ = X. Then K has only two vertices that is impossible to create two
1-simplices σ1 and σ̄1. �

Now let X be a ∆-set and let 2X0 be the set of all subsets of X0. Define

φ :
∐
n≥0

Xn −→ 2X0

by setting φ(x) = {fx(0), fx(1), . . . , fx(n)} for x ∈ Xn.

Theorem 2.2.2. Let X be a ∆-set. Then X is polyhedral if and only if the
following holds:
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(1). There exists an order of X0 such that, for each x ∈ Xn,

fx(0) ≤ fx(1) ≤ · · · ≤ fx(n).

(2). The function φ :
⋃
n≥0Xn −→ 2X0 is one-to-one.

Proof. If X ∼= K∆ for some abstract simplicial complex K, then each n-
simplex is uniquely determined by its vertices. Thus φ is one-to-one. From the
construction, we have fx(0) < fx(1) < · · · < fx(n).

Conversely suppose that X is a ∆ set satisfies the two conditions in the state-
ment. First we show that, for x ∈ Xn, the cardinal of {fx(0), fx(1), . . . , fx(n)}
is n+ 1. Otherwise there exists 0 ≤ i < j ≤ n such that fx(i) = fx(j). Then

di(x) = fxdi(0, 1, . . . , n) = fx(0, 1, . . . , i− 1, i+ 1, . . . , n)

and so

φ(di(x)) = {fx(0), fx(1), . . . , fx(i− 1), fx(i+ 1), . . . , fx(n)}
= {fx(0), fx(1), . . . , fx(i− 1), fx(i), fx(i+ 1), . . . , fx(n)}
= φ(x).

Thus di(x) = x, which contradicts to that Xn ∩Xn−1 = ∅.
Let the vertices of K be the elements of X0. Define a subset

{a0, a1, . . . , an} ⊆ X0

to be an n-simplex of K if and only if {a0, a1, . . . , an} ∈ Im(φ), where the elements
are given in the order that a0 < a1 < · · · < an.

For checking that K is an abstract simplicial complex, let {a0, a1, . . . , an} be
an n-simplex of K such that {a0, a1, . . . , an} = φ(x). From the above arguments,
x ∈ Xn and so we may assume that ai = fx(i) for 0 ≤ i ≤ n. Let {ai0 , ai1 , . . . , aip}
be a subset of {a0, a1, . . . , an} with 0 ≤ i0 < i1 < · · · < ip ≤ n. Let

{j0, j1, . . . , jn−p−1} = {0, 1, . . . , n}r {i0, i1, . . . , ip}

with 0 ≤ j0 < j1 < · · · < jn−p−1. Then

dj0dj1 · · · djn−p−1x = fxdj0dj1 · · · djn−p−1(0, 1, . . . , n)
= fx(i0, i1, . . . , ip).

Thus
φ(dj0dj1 · · · djn−p−1x) = {ai0 , ai1 , . . . , aip}

and so {ai0 , ai1 , . . . , aip} is a p-simplex of K.
Finally the function

g : X −→ K∆

with g(x) = {fx(0), . . . , fx(n)} for x ∈ Xn is a bijective ∆-map. This proves that
X ∼= K∆. �

2.3. ∆-complexes and the geometric realization of ∆-sets. Recall that
the standard geometric n-simplex ∆n is defined by

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | ti ≥ 0 and
n∑
i=0

ti = 1}.
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Let e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the vertices
of ∆n. For 0 ≤ i ≤ n, the i-th face of ∆n is given by the image of the map
di : ∆n−1 → ∆n defined by

di(t0, t1, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1).

Namely di : ∆n−1 → ∆n is a simplicial map with

di(ej) =
{

ej if j < i
ej+1 if j ≥ i.

It is straightforward to check that the maps di satisfy the identity:

(2.3.1) djdi = di+1dj

for i ≥ j. This identity is dual to the ∆-identity. In such a sense, the map
di : ∆n−1 → ∆n is called i-th coface map and its image di(∆n−1) ⊆ ∆n is called

i-th face of ∆n. Recall that the boundary ∂(∆n) =
n⋃
i=0

di(∆[n− 1]) is the union of

all faces of ∆n and the interior of ∆n is given by Int(∆n) = ∆n r ∂∆n.

Definition 2.3.1. A ∆-complex structure on a space X is a collection of maps

C(X) = {σα : ∆n → X | α ∈ Jn n ≥ 0}.

such that
(1). σα|Int(∆n) : Int(∆n)→ X is injective, and each point of X is in the image

of exactly one such restriction σα|Int(∆n).
(2). For each σα ∈ C(X), each face

σα ◦ di ∈ C(X).

(3). A set A ⊆ X is open if and only if σ−1
α (A) is open in ∆n for each

σα ∈ C(X).

The last condition says that the topology on X is given by the weak topology
with respect to the structure maps σα : ∆n → X. Define

C∆
n (X) = {σα : ∆n → X | α ∈ Jn} ⊆ C(X)

with di : C∆
n (X)→ C∆

n−1(X) given by

di(σα) = σα ◦ di : ∆n−1 - X

for 0 ≤ i ≤ n.

Proposition 2.3.2. C∆(X) = {C∆
n (X)}n≥0 is a ∆-set.

Proof. The assertion follows from Identity ( 2.3.1) for the cofaces maps di. �

Definition 2.3.3. Let K be a ∆-set. The geometric realization |K| of K is
defined to be

|K| =
∐

x ∈ Kn

n ≥ 0

(∆n, x)/ ∼=
∞∐
n=0

∆n ×Kn/ ∼,

where (∆n, x) is ∆n labeled by x ∈ Kn and ∼ is generated by

(2.3.2) (z, dix) ∼ (diz, x)
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for any x ∈ Kn and z ∈ ∆n−1 labeled by dix. For any x ∈ Kn, let σx : ∆n =
(∆n, x) → |K| be the canonical characteristic map. The topology on K is defined
by U ⊆ |K| is open if and only if the pre-image σ−1

x (U) is open in ∆n for any
x ∈ Kn and n ≥ 0. Equivalently the topology on |K| is given by the quotient
topology under the quotient map

q :
∐

x ∈ Kn

n ≥ 0

(∆n, x) - |K|.

The geometric realization of a ∆-set K can be intuitively described as follows:
Consider every element x ∈ Kn as a n-simplex. We assign a copy of ∆n to each
n-simplex x. Then we obtain a collection of geometric simplices and make them as
a disjoint union. The gluing procedure is then given in the way that the simplex
∆n−1 labeled by dix is identified with the i-th face of the simplex ∆n labeled by x
under the coface map di : ∆n−1 → ∆n. From this, we obtain the set |K| and then
put the weak topology on |K|.

Example 2.3.1. We show that the geometric realization |∆+[n]| ∼= ∆n. Note
that the elements in ∆+[n] are given by

(i0, i1, . . . , ik)

with 0 ≤ i0 < · · · < ik ≤ n. Let α = (0, 1, . . . , n). By definition, |∆+[n]| is the
quotient of the disjoint union of

|∆+[n]| =
∐

0≤i0<i1<...<ik≤n

(∆k, (i0, . . . , ik))/ ∼ .

Let φ = σα : ∆n = (∆n, α) → |∆+[n]| be the characteristic map. Then φ is
continuous because, for any open subset U of |∆+[n]|, φ−1(U) = σ−1

α (U) is open in
∆n.

Now we define a continuous map

ψ :
∐

0≤i0<i1<...<ik≤n

(∆k, (i0, . . . , ik)) - ∆n

as follows. Let

ψ|(∆n,α) : (∆n, α) - ∆n

be the identity map. For each (i0, i1, . . . , ik) with k < n, let

{0, 1, . . . , n}r {i0, i1, . . . , ik} = {j1, j2, . . . , jn−k}

with j1 < j2 < . . . < jn−k. Let

ψ|(∆k,(i0,i1,...,ik)) = djn−kdjn−k−1 · · · dj1 : (∆k, (i0, i1, . . . , ik)) - ∆n

be the iterated face. This defines a continuous map ψ.
Let

q :
∐

0≤i0<i1<...<ik≤n

(∆k, (i0, . . . , ik)) -- |∆+[n]|
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be the quotient map. Then the map ψ factors through the quotient map q because,
for any z ∈ ∆k,

(z, dj1dj2 · · · djn−kα) ∼ (dj1z, dj2 · · · djn−kα)
∼ (dj2dj1z, dj3 · · · djn−kα)
· · ·
∼ (djn−kdjn−k−1 · · · dj1z, α).

Let ψ̄ : |∆+[n]| → ∆n be the function with ψ = ψ̄◦q. Then ψ̄ is continuous because
|∆+[n]| has the quotient topology.

From the definition of φ and ψ, the composite ψ̄ ◦ φ : ∆n → ∆n is the identity
map. This forces that φ : ∆n → ∆+[n] is one-to-one. Since each simplex ∆k labeled
by (i0, i1, . . . , ik) is identified with a face of ∆n, the map φ : ∆n → |∆+[n]| is onto.
Thus φ is bijective and ψ̄ = φ−1. Hence |∆+[n]| ∼= ∆n. �

Similarly we have |∂∆+[n]| ∼= ∂∆n.

Proposition 2.3.4. Let K be a ∆-set. Then |K| is ∆-complex.

Proof. Let sknK = {Kj}0≤j≤n be the n-skeleton of K. Then sknK is a
∆-subset of K. Let ∂∆+[n] = skn−1 ∆+[n] be the boundary of ∆+[n]. Note that

|∆+[n]| ∼= ∆n and |∂∆+[n]| ∼= ∂∆n.

From the push-out diagram ⊔
x∈Kn

∂∆+[n] - skn−1K

push

⊔
x∈Kn

∆+[n]
?

∩

- sknK,
?

∩

there is a push-out diagram ⊔
x∈Kn

∂∆n - | skn−1K|

push

⊔
x∈Kn

∆n

?

∩

- | sknK|.
?

∩

Thus | sknK| is obtained from skn−1K| by attaching cells with labels in Kn. By
induction, it follows that |K| is a ∆-complex. �

Proposition 2.3.5. Let K be an abstract simplicial complex. Then |K∆| is a
geometric simplicial complex whose abstraction is K.

Proof. Let K be a geometric realization of K. We identify the vertices of K
with the vertices of K. For each copy of the simplex (∆n, x) with x ∈ Kn, the
element x is determined by its vertices {a0, a1, . . . , an} with a0 < a1 < · · · < an.
Since K is the abstraction of K, we have the simplex σx = a0a1 · · · an in K. Define
the linear map

φ : (∆n, x) - σx



3. HOMOLOGY 67

by

φ(t0, t1, . . . , tn, x) =
n∑
i=0

tia
i.

Note that dix = {a0, a1, . . . , ai−1, ai+1, . . . , an}. We have

φ(t0, t1, . . . , tn−1, dix) = t0a
0 + t1a

1 + · · ·+ ti−1a
i−1 + tia

i+1 + · · ·+ tn−1a
n

= φ(t0, t1, . . . , ti−1, 0, ti, . . . , tn−1, x)
= φ(di(t0, t1, . . . , tn−1), x)).

Namely φ(z, dix) = φ(diz, x) for (z, dix) ∈ (∆n−1, dix) with x ∈ Kn. Thus the map
φ induces a (continuous) map

φ̄ : |K∆| - |K|
that is one-to-one and onto. By the definition of the weak topology on |K|, φ̄ is a
homeomorphism and hence the result. �

3. Homology

3.1. Homology of ∆-sets. Recall that a chain complex of groups means a
sequence C = {Cn} of groups with differential ∂n : Cn → Cn−1 such that ∂n ◦ ∂n+1

is trivial, that is Im(∂n+1) ⊆ Ker(∂n) and so the homology is defined by

Hn(C) = Ker(∂n)/ Im(∂n+1),

which is a coset in general. A chain complex C is called normal if Im(∂n+1) is a
normal subgroup of Ker(∂n) for each n. In this case Hn(C) is a group for each n.

Proposition 3.1.1. Let G be a ∆-abelian group. Define

∂n =
n∑
i=0

(−1)idi : Gn → Gn−1.

Then ∂n−1 ◦ ∂n = 0, that is, G is a chain complex under ∂∗.

Proof.

∂n−1 ◦ ∂n =
n−1∑
i=0

(−1)idi
n∑
j=0

(−1)jdj

=
∑

0≤i<j≤n
(−1)i+jdidj +

∑
0≤j≤i≤n−1

(−1)i+jdidj

=
∑

0≤i<j≤n
(−1)i+jdidj +

∑
0≤j<i+1≤n

(−1)i+jdjdi+1

=
∑

0≤i<j≤n
(−1)i+jdidj +

∑
0≤j<i≤n

(−1)i+j−1djdi

= 0.

�

Let X be a ∆-set. The homology H∗(X;G) of X with coefficients in an abelian
group G is defined by

H∗(X;G) = H∗(Z(X)⊗G, ∂∗),
where Z(X) = {Z(Xn)}n≥0 and Z(Xn) is the free abelian group generated by Xn.
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Proposition 3.1.2. Let

1 - C ′
i- C

p- C ′′ - 1

be any short exact sequence of chain complexes of (possibly non-commutative) groups.
Then there is a long exact sequence

· · · - Hk+1(C ′′)
∂k+1- Hk(C ′)

i∗- Hk(C)
p∗- Hk(C ′′) - · · · .

Moreover if C ′ and C ′′ are normal chain complexes, then ∂k+1 is a group homo-
morphism for each k.

Proof. Consider the commutative diagram

C ′k+2
⊂

i - Ck+2
p-- C ′′k+2

C ′k+1

∂′

?
⊂

i - Ck+1

∂

? p-- C ′′k+1

∂′′

?

C ′k

∂′

?
⊂

i - Ck

∂

? p-- C ′′k

∂′′

?

C ′k−1

∂′

?
⊂

i- Ck−1

∂

? p-- C ′′k−1.

∂′′

?

Let x ∈ C ′′k+1 with ∂′′(x) = 1. There exists x̃ ∈ Ck+1 such that p(x̃) = x. Since

p(∂(x̃)) = ∂′′(p(x̃)) = ∂′′(x) = 1,

there exists x̄ ∈ C ′k such that i(x̄) = ∂(x̃). Now

i(∂′(x̄)) = ∂(i(x̄)) = ∂ ◦ ∂(x̃) = 1.

Thus x̄ is a circle in C ′ and so {x̄} defines an element in Hk(C ′).
Let x̂ be another element in Ck+1 such that p(x̂) = x. Then

p(x̃x̂−1) = 1

and so there exists an element z ∈ C ′k+1 such that i(z) = x̃−1x̂. Now

i(x̄∂′(z)) = ∂(x̃)(∂(x̃))−1∂(x̂) = ∂(x̂).

Thus {x̄} ∈ Hk(C ′) is independent on the choice of the pre-image of x in Ck+1.
Suppose that x′ = x∂′′(y) with ∂′′(x) = 1 for some y ∈ C ′′k+2. There exists

ỹ ∈ Ck+2 such that p(ỹ) = y. Then

x′ = p(x̃∂(ỹ))

with
x̄′ = ∂(x̃∂(ỹ)) = ∂(x̃) = x̄.

This shows that
∂k+1 : Hk+1(C ′′)→ Hk(C ′) {x} 7→ {x̄}
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is well-defined. Assume that C ′ and C ′′ are normal chain complexes. For x, x′ ∈
C ′′k+1 with ∂′′(x) = ∂′′(x′) = 1. Then p(x̃x̃′) = xx′ and so

∂k+1({x}{x′}) = ∂k+1({x})∂k+1({x′})

provided that C ′ and C ′′ are normal.
The composite i∗ ◦ ∂k+1 is trivial because i(x̄) = ∂(x̃). Let y ∈ C ′k with

∂′(y) = 1 and i∗(y) is trivial in Hk(C). Then there exists ỹ ∈ Ck+1 such that

i(y) = ∂(ỹ).

By the construction of ∂k+1, ∂k+1(p(ỹ)) = y. This shows that

Hk+1(C ′′)
∂k+1- Hk(C ′)

i∗- Hk(C)

is exact.
Now we show that

Hk+1(C)
p∗- Hk+1(C ′′)

∂k+1- Hk(C ′)

is exact. Let y ∈ Ck+1 such that ∂(y) = 1. Then by the construction of ∂k+1,
∂k+1(p(y)) = 1. Thus the composite ∂k+1 ◦ p∗ is trivial. Suppose that x ∈ C ′′k+1

with ∂′′(x) = 1 and x̄ = ∂k+1(x) is trivial in Hk(C ′). There exists an element
z ∈ C ′k+1 such that

∂′(z) = x̄.

Let x̂ = i(z)−1x̃. Then

p(x̂) = p(i(z)−1x̃) = p(x̃) = x

with
∂(x̂) = ∂(i(z)−1x̃) = i(∂′(z)−1x̄) = 1.

Thus x̂ defines an elements in Hk+1(C) with p∗({x̂}) = {x}.
Finally we show that

Hk(C ′)
i∗- Hk(C)

p∗- Hk(C ′′)

is exact. Since p ◦ i is trivial, so is p∗ ◦ i∗. Let y ∈ Ck with ∂(y) = 1 and p∗(y) is
trivial in Hk(C ′′). There exists an element z ∈ C ′′k+1 such that

p(y) = ∂′′(z).

Let z̃ ∈ Ck+1 such that p(z̃) = z. Then

p(y∂(z̃−1)) = ∂′′(z)p(∂(z̃−1))
= ∂′′(z)∂′′(p(z̃)−1)
= ∂′′(z)∂′′(z−1)
= 1.

Thus there exists w ∈ C ′k such that i(w) = y∂(z̃−1) with

i(∂′(w)) = ∂(i(w)) = ∂(y∂(z̃−1)) = 1.

and so ∂′(w) = 1. Hence i∗({w}) = {y}. The proof is finished now. �

Let X ′ be a ∆-subset of X. The relative homology H∗(X,X ′;G) is defined by

H∗(X,X ′;G) = H∗((Z(X)/Z(X ′)⊗G, ∂∗).
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Corollary 3.1.3. Let X ′ be a ∆-subset of X. Then there is a long exact
sequence

· · · - Hk+1(X,X ′;G)
∂k+1- Hk(X ′;G)

i∗- Hk(X;G)
p∗- Hk(X,X ′;G) - · · ·

for abelian group G. �

3.2. Simplicial and Singular Homology.

Definition 3.2.1. Let X be a ∆-complex. Then simplicial homology of X
with coefficients in an abelian group G is defined by

H∆
∗ (X;G) = H∗(C∆

∗ (X);G).

For any space X, define

Sn(X) = Map(∆n, X)

be the set of all continuous maps from ∆n to X with

di = di∗ : Sn(X) = Map(∆n, X) - Sn−1(X) = Map(∆n−1, X).

for 0 ≤ i ≤ n. Then S∗(X) = {Sn(X)}n≥0 is a ∆-set. This allows us to define
singular homology:

Definition 3.2.2. For a pair of spaces (X,A), the singular homology H∗(X,A;G)
with coefficients in an abelian group G is defined by

H∗(X,A;G) = H∗(S∗(X), S∗(A);G).

For any continuous map f : X → Y , there is an induced ∆-map If
Let (X,A) and (Y,B) be pairs of spaces and let f : X → Y be a continuous

map such that f(A) ⊆ B. Then the map f induces a ∆-map

f# : S∗(X) - S∗(Y )

given by f#(λ) = f ◦ λ for any λ : ∆n → X with

f#(S∗(A)) ⊆ S∗(B)

and so it induces a group homomorphism

f∗ : Hn(X,A;G) = H∗(S∗(X), S∗(A);G) - H∗(Y,B;G) = Hn(S∗(Y ), S∗(B);G)

for each n. Thus the homology is a functor from the category of (pairs) of spaces to
the category of graded abelian groups. See Hatcher’s book [7] for further properties.
We only list few properties without proofs here.

Proposition 3.2.3. If X ' Y , then H∗(X;G) ∼= H∗(Y ;G). Thus the homology
only depends on the homotopy type of spaces. �

Proposition 3.2.4. Let X be a ∆-complex and let G be an abelian group. Then
there is a natural isomorphism

H∆
∗ (X;G) ∼= H∗(X;G).

Thus the simplicial homology is the same as the singular homology.



3. HOMOLOGY 71

Example 3.2.1. If X = {x0} be the space of a single point, then H0(X;G) = G
and Hq(X;G) = 0 for q > 0. Let X = ∆n. Since X ' {x0} a single point,
H∗(∆n;G) ∼= H∗({x0};G).

Now we compute the homology of a sphere Sn. If n = 0, then H0(S0;G) =
G⊕G and Hq(S0;G) = 0 for q > 0. We assume that n > 0. Since Sn ∼= ∂(∆n+1),
we have

H∗(Sn;G) ∼= H∗(∂(∆n+1);G) ∼= H∆
∗ (∂(∆n+1);G).

Let
D = (Z(∆+[n+ 1])⊗G)/(Z(∂(∆+[n+ 1]))⊗G).

Since
∂(∆+[n+ 1])k = ∆+[n+ 1]k

for k ≤ n and ∂(∆+[n+ 1])n+1 = ∅, we have

Dk = 0

for k ≤ n and
Dn+1 = Z(∆+[n+ 1]n+1)⊗G = G

as ∆+[n+ 1] has only one element in dimension n+ 1. Thus

Hq(D) =
{
G for q = n+ 1
0 for q 6= n+ 1.

From the short exact sequence of chain complex

Z(∂(∆+[n]))⊗G ⊂ - Z(∆+[n])⊗G -- D,

there is a long exact sequence

· · · → Hq(∂(∆+[n+1]))→ Hq(∆+[n+1])→ Hq(D)→ H∆
q−1(∂(∆+[n+1]))→ · · · .

Since |∆+[n+ 1]| ∼= ∆n+1,

Hq(∆+[n+ 1];G) =
{
G for q = 0
0 for q 6= 0.

Thus

Hq(Sn;G) ∼= H∆
q (∂∆n;G) = Hq(∂(∆+[n+ 1]);G) =

{
G if q = 0, n
0 otherwise.

Theorem 3.2.5 (Brouwer Fixed-point Theorem). Any continuous map f : Dn →
Dn has a fixed point.

Proof. Suppose that f : Dn → Dn has no fixed point. For any x ∈ Dn, let
r(x) be the intersecting point of the line segment from φ(x) in the direction

−−−→
φ(x)x.

This defines a continuous map r : Dn → Sn−1 such that

r|Sn−1 = idSn−1 .

In other words, there is a commutative diagram

Dn r- Sn−1

Sn−1.

6

==
==

==
==

==
==

=
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By applying the functor Hn−1(−; Z) to this diagram, we have the commutative
diagram

Hn−1(Dn; Z)
r∗- Hn−1(Sn−1; Z)

Hn−1(Sn−1; Z).

6

===
===

===
===

===
=

If n = 1, this gives the commutative diagram
Z - Z⊕ Z

Z⊕ Z,

6

==
==

==
==

==
==

=

which is impossible. For n > 1, the above diagram gives a commutative diagram
0 - Z

Z,

6

==
==

==
==

==
==

==

which is impossible and hence the result. �

Note. A generalization of Brouwer Fixed-point Theorem is Lefschetz Fixed-point
Theorem [?, Section 22].



CHAPTER 3

Covering Spaces

Week 10 October 21 (T) October 24 (F): Sections 1.1, 1.2
Week 12 November 4 (T) November 7 (F): Sections: Section 1.3

1. Covering Spaces

1.1. Covering Spaces.

Definition 1.1.1. A map p : X̃ → X is a covering projection and X̃ (or (X̃, p)
is a covering space of X if

1) p is onto, and
2) for any x ∈ X there is an open neighborhood U (called an elementary

neighborhood) of x such that

p−1(U) =
∐
α∈J

Uα

is a topological disjoint union of open sets (called sheets), each Uα is
mapped homeomorphically onto U by p. So p−1(U) ∼= U×( discrete space.)

Roughly speaking covering space just means that ‘locally’ the pre-image p−1(U)
is disjoint union of copies of U .

Example 1.1.1. (1). Any homeomorphism p : X̃ → X is a one-sheeted
covering projection.

(2). Let F be a discrete space and X̃ = X×F . Then the coordinate projection
p : X̃ → X is a covering projection.

(3). The projection p : Sn → RPn is a two-sheeted covering projection.
(4). p : S1 → S1, z 7→ zn, is an n-sheeted covering.
(5). The exponential map e: R→ S1 is a covering with infinite sheets.

Exercise 1.1. Let p : X̃ → X and q : Ỹ → Y be covering projections. Show
that p× q : X̃ × Ỹ → X × Y is also a covering projection.

Let G be a group and let Y be a G-space. For g ∈ G and a subset S ⊆ Y , let
g · S denote the set {g · x|x ∈ S}.

Definition 1.1.2. Let G be a (discrete) group and let Y be a G-space. A
G-action on Y is called properly discontinuous if

for any y ∈ Y there exists a neighborhood Wy such that

g1 6= g2 ⇒ g1 ·Wy ∩ g2 ·Wy = ∅
(or, equivalently, g 6= 1 ⇒ g ·Wy ∩Wy = ∅).

Theorem 1.1.3. Let X be a G-space. If the G-action on X is properly discon-
tinuous, then X → X/G is a covering.

73
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Proof. Let p : X → X/G be the quotient map. By Theorem ??, p is an open
map. For any x ∈ X, let W be an open neighborhood satisfying the condition of
proper discontinuity. Then p(U) is an open neighborhood of p(x) and

p−1(W ) =
∐
g∈G

g ·W

is a disjoint union of open subsets of X. Furthermore p|g·W : g ·W → p(W ) is a
continuous open bijective map and hence a homeomorphism. �

Exercise 1.2. Let X be a G-space. Suppose that X → X/G is a covering.
Show that the G-action on X is properly discontinuous.

Now the next question is how can we know a group-action is properly discon-
tinuous. Recall that a group G acts freely on X if g ·x 6= x for all x ∈ X and g ∈ G
with g 6= 1.

Exercise 1.3. Let X be a G-space. Suppose that the G-action on X is properly
discontinuous. Then G acts freely on X.

Theorem 1.1.4. Let G be a finite group and let X be a Hausdorff G-space.
Then the G-action on X is properly discontinuous if and only if G acts freely on
X.

Proof. ⇒ is obvious (see Exercise 1.3).
⇐ Let G = {g0 = 1, g1, · · · , gn}. Since X is Hausdorff, there exist open

neighborhoods U0, · · ·Un of g0 · x, · · · , gn · x, respectively such that U0 ∩ Uj = ∅
for 1 ≤ j ≤ n. Let U = ∩nj=0g

−1
j · Uj . Then U is an open neighborhood of x with

gj · U ∩ U = ∅ for each 1 ≤ j ≤ n because

gj · U = gj ·
n⋂
i=0

g−1
i Ui =

n⋂
i=0

gj(g−1
i · Ui)

=
n⋂
i=0

(gjg−1
i ) · Ui ⊆ (gjg−1

j ) · Uj = Uj .

Thus the G-action on X is properly discontinuous. �

Note: If G has infinite elements, a free G-action may or may not be properly
discontinuous. In other words, the quotient X → X/G may or may not be a
covering even if G acts freely on X and X is Hausdorff.

Now we have more examples of covering spaces.

Example 1.1.2. 1) Let Z act on R by x 7→ x + n. Then this action is
discontinuous and so R→ R/Z ∼= S1 is a covering.

2) Let Zn = Z⊕n act on Rn by (x1, · · · , xn) 7→ (x1 + l1, · · · , xn + ln) for
xj ∈ R and lj ∈ Z. Then this action is discontinuous and so Rn →
Rn/Zn = S1 × · · · × S1 is a covering. In particular, when n = 2, we have
the covering projection : R2 → T = S1 × S1.

3) Let p be a prime integer and let q1, · · · qn be integers prime to p. We
define a Z/p-action on

S2n+1 = {(z0, · · · , zn) ∈ Cn||z0|2 + |z1|2 + · · ·+ |zn|2 = 1}
by

l · (z0, · · · , zn) = (e2πil/p z0, e2πilq1/p z1, · · · , e2πilqn/p zn).
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We show that this action is free. Suppose that

l · (z0, · · · , zn) = (z0, · · · , zn).

Then
e2πilqj/p zj = zj

for each 0 ≤ j ≤ n, where q0 = 1. Since (z0, · · · zn) ∈ S2n+1, there exists
zj0 6= 0 for some j0. It follows that

e2πilqj0/p = 1

and so lqj0 ≡ 0 mod p. Since qj0 6≡ 0 mod p and p is a prime, l ≡ 0 modp,
that is l is the identity in Z/p. Thus this action is free.

Since S2n+1 is Hausdorff, S2n+1 → S2n+1/(Z/p) is a covering. The
quotient S2n+1/(Z/p), denoted by Ln(p, q1, · · · , qn), is called a lens space.
Note that Ln(2) = RP 2n+1.

4) Let p be any non-zero integer. We define a Z/p-action on

S2n+1 = {(z0, · · · , zn) ∈ Cn||z0|2 + |z1|2 + · · ·+ |zn|2 = 1}

by

l · (z0, · · · , zn) = (e2πil/p z0, e2πil/p z1, · · · , e2πil/p zn).

The argument above show that this action is free. (Note: in this case, we
do not need to assume that p is a prime.) The quotient S2n+1/(Z/p) is
denoted by Ln(p). Again we have a covering projection S2n+1 → Ln(p).

5) Let M be a manifold and let

F (M,n) = {(x1, · · · , xn) ∈Mn|xi 6= xj for i 6= j}

be a ordered configuration space. Let the symmetric group Σn act on
F (M,n) by permuting positions. Then F (M,n) → F (M,n)/Σn is a
covering. The quotient F (M,n)/Σn, denoted by B(M,n), is called the
space of unordered configurations.

6) Let G be a (Hausdorff) topological group and let H be a finite subgroup
of G. Let G/H be the set of left cosets with quotient topology. Then
G→ G/H is a covering. (Note: One can directly show that G→ G/H
is a covering if H is a discrete subgroup of G (without assuming that H
is finite).

1.2. The Lifting Theorem For Covering Spaces. If p : X̃ → X is a cov-
ering and f : Y → X is a map, then a lifting of f is a continuous map f̃ : Y → X̃
such that f = p ◦ f̃ .

The lifting problem is: Given a map f : Y → X.

i) When does there exist a lifting of f?
ii) Must such a lifting be unique?

The ‘uniqueness’ can be answered as follows.

Lemma 1.2.1. Let p : X̃ → X be a covering and let f̃ , f̄ : Y → X̃ be two lifting
of f : Y → X. Suppose that Y is connected and f̃(y0) = f̄(y0) for some y0 ∈ Y .
Then f̃ = f̄ .
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Proof. Let Y ′ = {y ∈ Y |f̃(y) = f̄(y)}. Then y0 ∈ Z. It suffices to show that
Z is open and closed. (Note: A space Y is connected if and only if Y and ∅ are
only open and closed subsets of Y (or, equivalently, Y is not disjoint union of two
open subsets). A path-connected space is connected, but a connected space may
not be path connected in general.)

First we show that Y ′ is an open subset of Y . Let y ∈ Y ′ and let U be an
elementary neighborhood of f(y) in X. There is a (unique) sheet Uα of p−1(U)
such that f̃(y) = f̄(y) ∈ Uα. Then f̃−1(Uα) ∩ f̄−1(Uα) is an open neighborhood of
y. Since p|Uα : Uα → U is a homeomorphism,

f̃ |f̃−1(Uα)∩f̄−1(Uα) = f̄ |f̃−1(Uα)∩f̄−1(Uα).

Thus
f̃−1(Uα) ∩ f̄−1(Uα) ⊆ Y ′

and so Y ′ is open.
Now we show that Y \ Y ′ is open. Let y ∈ Y \ Y ′ and let U be an elementary

neighborhood of f(y) in X. Since f̃(y) 6= f̄(y), there are two different sheets Uα and
Uβ of p−1(U) such that f̃(y) ∈ Uα and f̄(y) ∈ Uβ . (α 6= β because p restricted to
each sheet is a homeomorphism.) Now f̃−1(Uα)∩ f̄−1(Uβ) is an open neighborhood
of y. Since Uα ∩ Uβ = ∅, f̃(z) 6= f̄(z) for any z ∈ f−1(Uα) ∩ f̄−1(Uβ) and so

f̃−1(Uα ∩ f̄−1(Uβ) ⊆ Y \ Y ′.

Thus Y \ Y ′ is open and hence the result. �

Corollary 1.2.2. Suppose that X̃ is connected and φ : X̃ → X̃ is a map such
that p ◦ φ = p. If φ(x1) = x1 for some xi ∈ X̃, then φ is the identity map.

Proof. Both φ and the identity map idX̃ are liftings of the map p : X̃ → X.
Since φ(x1) = idX̃(x1), the assertion follows from Lemma 1.2.1. �

Let X be a pointed space with a base-point x0 and x̃0 ∈ X̃ such that p(x̃0) = x0.

Theorem 1.2.3 (Path-lifting Theorem). Let p : (X̃, x̃0) → (X,x0) be a cover-
ing. Then

i) Every path λ : (I, 0)→ (X,x0) has a unique lifting λ̃ : (I, 0)→ (X̃, x̃0).
ii) Every map F : (I × I, (0, 0)) → (X,x0) has a unique lifting F̃ : (I ×

I, (0, 0))→ (X̃, x̃0).

Proof. We already prove the uniqueness of a lifting. So we only need to prove
the existence.

i) There exist 0 = t0 < t1 < · · · tm = 1 such that λ([ti, ti+1]) is contained in
some elementary neighborhood of each i. We show that there is a lifting λ̃i : [0, ti]→
X̃ of λ|[0,ti] by induction on i. When i = 0, λ̃0 : [0, 0] → X̃ is given by λ̃(0) = x̃0.
Suppose that there is a lifting λ̃i : [0, ti]→ X̃. Since λ([ti, ti+1]) lies in an elementary
neighborhood. There is a unique lifting µ : [ti, ti+1] → X̃ of λ|[ti,ti+1] such that
µ(ti) = λ̃i(ti) (The map µ is obtained by composing λ|[ti,ti+1] with the inverse
homeomorphism to p-restricted-to-the-sheet-containing-λ̃i(ti). Let

λ̃i+1 = λ̃i ∪ µ : [0, ti+1]→ X̃.

Then λ̃i+1 is a lifting of λ|[0,ti+1]. This gives a construction of λ̃ by induction.
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ii) The proof essentially follows from the same idea, that is there are sequence
0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that F maps
each small rectangle Ri,j = [si, si+1] × [tj , tj+1] into an elementary neighborhood
and then defined F̃ inductively over the rectangles

R0,0, R0,1, · · · , R0,n, R1,0, · · · .
�

Corollary 1.2.4 (Monodromy Lemma). Let λ̃0, λ̃1 : (I, 0)→ (X̃, x̃0) be paths
with p ◦ λ̃0 ' p ◦ λ̃1. Then λ̃0 ' λ̃1. In particular, λ̃0(1) = λ̃1(1).

Proof. Let λ0 = p ◦ λ̃0 and λ1 = p ◦ λ1. Let F : I × I → X be a homotopy
relative to {0, 1} from λ0 to λ1. Then there is a unique lifting F̃ : I × I → X̃ of F
with F̃ (0, 0) = λ̃0(0) = λ̃1(0). Then

1) F̃ (t, 0) = λ̃0(t) for any t because both of them are lifting of λ0 with
F̃ (0, 0) = λ̃0(0). And F̃ (1, 0) = λ̃0(1).

2) F̃ (0, s) = ελ̃0(0) because both of them are liftings of F (0, s) = ελ(0) with
F̃ (0, 0) = λ0(0). And F̃ (0, 1) = λ̃0(0) = λ̃1(0).

3) F̃ (t, 1) = λ̃1(t) because F̃ (0, 1) = λ̃1(0) and both of them are liftings of
λ1. In particular, F̃ (1, 1) = λ̃1(1).

4) F̃ (1, s) = ελ̃0(1) because F̃ (1, 0) = λ̃0(1) and both of them are liftings of
ελ0(1).

This show that F̃ is a path homotopy from λ̃0 to λ̃1. �

If in Corollary 1.2.4 we consider only loops, then we immediately have

Theorem 1.2.5. If p : (X̃, x̃0) → (X,x0) is a covering, then p∗ : π1(X̃, x̃0) →
π1(X,x0) is a monomorphism. �

Let p : (X̃, x̃0)→ (X,x0) be a covering projection. The function ψ : π1(X,x0)→
p−1(x0) is defined by [α] 7→ α̃(1), where α̃ : (I, 0, 1) → (X̃, x̃0, α̃(1)) is the unique
lifting of α as in Theorem 1.2.3. The function ψ is well-defined by the Monodromy
Lemma (Corollary 1.2.4).

Exercise 1.4. Suppose that X̃ is path-connected. Show that the function
ψ : π1(X,x0)→ p−1(x0) is onto.

Hint: Let y ∈ p−1(x0). There is a path β from x̃0 to y. Let α = p ◦ β. Then
β = α̃ by the uniqueness of the lifting and so ψ([α]) = α̃(1) = β(1) = y.

Theorem 1.2.6. If X̃ is simply connected, then ψ is a bijection.

Proof. By Exercise 1.4, it suffices to show that ψ is one-to-one.
Suppose that [α], [β] ∈ π1(X,x0) with ψ([α]) = ψ([β]) = y ∈ p−1(x0), that is

α̃(1) = β̃(1) = y, where α̃ and β̃ are the liftings of [α] and β, respectively. Since X̃
is simply connected, [α̃ ∗ β̃−1] = 1 ∈ π1(X̃, x̃0). Thus

[α][β]−1 = [(p ◦ α̃) ∗ (p ◦ β̃−1] = [p ◦ (α̃ ∗ β̃−1)] = p∗([α̃ ∗ β̃−1]) = p∗(1) = 1.

Hence [α] = [β] ∈ π1(X,x0). �

Now suppose that the quotient p : X̃ → X̃/G, x̃ 7→ [x̃], is a covering space
arising from a properly discontinuous group action. Here we can do much better.
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Since p−1([x̃0]) = G · x̃ = {g · x̃0|g ∈ G}, we can identify p−1([x̃0]) with G by
g · x̃0 ↔ g. (Recall: g · x̃0 = g′ · x̃0 ⇒ g = g′ by the properly discontinuous property.)

Theorem 1.2.7. If X̃ is path-connected, then ψ : π1(X̃/G, [x̃0])→ G is a group
epimorphism with kernel p∗π1(X̃, x̃0).

Proof. (i) By Exercise 1.4, the function ψ is onto.
(ii) To see that it’s a homomorphism, recall that the lifting α̃ : (I, 0, 1)→ (X̃, x̃0, α̃(1))
of a loop α representing [α] ∈ π1(X̃/G, [x̃0]) has α(1) = gα · x̃0 for some unique
gα ∈ G (independent of choice of α ∈ [α].)

Given [α], [β] ∈ π1(X̃/G, [x̃]), with α, β lifting to α̃ : (I, 0, 1) → (X̃, x̃0, gα ·
x̃0), β̃ : (I, 0, 1)→ (X̃, x̃0, gβ · x̃0), note that in general α̃ ∗ β̃ is not defined (since
gα · x̃0 6= x̃0). However the map gα· : X̃ → X̃ composes with β̃ to give

gα · β̃ : (I, 0, 1)→ (X̃, gα · x̃0, gα · (gβ · x̃0))

which lifts β (Note gα · β̃ is from gα · x̃0 to gα · (gβ · x̃0)). Thus

α̃ ∗ (gα · β̃) : (I, 0, 1)→ (X̃, x̃0, gαgβ · x̃0)

is well-defined and lifts α ∗ β. Since this lifting of α ∗ β has final point gαgβ · x̃0, we
have ψ([α ∗ β]) = gαgβ and hence

ψ([α][β]) = ψ([α ∗ β]) = gαgβ = ψ([α])ψ([β]).

(iii) If ψ([α]) = e ∈ G, then α̃(1) = e · x̃0 = x̃0, making α̃ a loop. Hence

[α] = [p ◦ α̃] = p∗([α̃]) ∈ p∗π1(X̃, x̃0).

Conversely, for any α̃ : (I, ∂I)→ (X̃, x̃0), p ◦ α̃ has lifting α̃ with α̃(1) = e · x̃0,
and so ψ(p∗([α̃])) = ψ([p ◦ α̃]) = e ∈ G. �

Corollary 1.2.8. Suppose that X̃ is path-connected space on which the group
G acts properly discontinuously. Then

ψ : π1(X̃/G, x̃0) - G

is an isomorphism if and only if X̃ is simply-connected.

Example 1.2.1. 1) Since Sn is simply connected for n ≥ 2, we have

π1(RPn) = π1(Sn/Z/2) = Z/2

for n ≥ 2.
2) π1(Ln(p)) = π1(S2n+1/Z/p) = Z/p (n ≥ 1).
3) π1(S1) = π1(R/Z) = Z.

A space X is called to be locally path-connected if for each point x ∈ X and any
neighborhood U of x there exists a path-connected open neighborhood V of x with
V ⊆ U . (Note. In Spanier’s book [21], the definition of locally path-connected
is as follows: A space X is said to be locally path-connected if, for each x ∈ X
and any neighborhood U of x, there is an open neighborhood V of x such that
x ∈ V ⊆ U and any two points in V can be connected by a path in U . Thus
our definition of locally path-connected is stronger than Spanier’s definition. Our
definition follows from Hatcher’s book [7, pp.62]. This more restrictive definition
simplifies the proofs. But keep in mind that the following statements hold for
locally path-connected in the sense of Spanier’s book.)
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Theorem 1.2.9 (Lifting Theorem). Let p : (X̃, x̃0) → (X,x0) is a covering
space. Let f : (Y, y0) → (X,x0) be a map. Suppose that Y is path-connected
and locally path-connected. Then f : (Y, y0) → (X,x0) admits a unique lifting
f̃ : (Y, y0)→ (X̃, x̃0) if and only if

f∗(π1(Y, y0)) ⊆ p∗π1(X̃, x̃0).

Proof. ⇒ is obvious.
⇐ By Lemma 1.2.1, if f admits a lifting, then the lifting is unique. Thus it

suffices to prove the existence of the lifting. The construction of f̃ is as follows:
For each y ∈ Y , since Y is path-connected, there is a path λ : (I, 0, 1)→
(Y, y0, y). So lift f ◦ λ : (I, 0) → (X,x0) uniquely (by Theorem 1.2.3) to
f̃ ◦ λ : (I, 0)→ (X̃, x̃0). Let

f̃(y) = f̃ ◦ λ(1).

Then p ◦ f̃ = f .
We must prove that

i) f̃(y) is independent of choice of λ : (I, 0, 1)→ (Y, y0, y), that is f̃ is well-
defined as a function, and

ii) f̃ is continuous.
To see (i), let λ and λ′ be two paths in Y from y0 to y. Then the path product

λ ∗ λ′−1 is a loop in Y from y0 to y0. By the assumption

[(f ◦ λ) ∗ f(λ′−1)] ∈ f∗(π1(Y, y0)) ⊆ p∗π1(X̃, x̃0).

Thus the loop (f ◦λ)∗f(λ′−1) admits a lifting in (X̃, x̃0) as a loop. By uniqueness
of lifting, the first half lifting of this loop is given by f̃ ◦ λ and second half lifting
is given f̃ ◦ λ′. In particular, f̃ ◦ λ(1) = f̃ ◦ λ′(1) because they form a loop.

For showing (ii), let W be an open neighborhood of f̃(y). Choose a small open
neighborhood U of f(y) such that p−1(U) is disjoint union of open sets in X̃ with
one piece f̃(y) ∈ Ũ ∼= U and Ũ ⊆W . By the assumption of locally path-connected,
there exists a path open neighborhood V of y with V ⊆ f−1(U). Fix a path λ from
y0 to y. For any y′ ∈ V , there is a path η from y to y′. Then the path product
λ ∗ η is a path from y0 to y′. Since

p : Ũ → U

is a homeomorphism, p|−1

Ũ
(f ◦ η) is a path in Ũ from f̃(y) from a point in Ũ . Now

the path product f̃ ◦ λ ∗ p|−1

Ũ
(f ◦ η) is a lifting of f(λ ∗ η). By the uniqueness of

lifting,
˜f(λ ∗ η) = f̃ ◦ λ ∗ p|−1

Ũ
(f ◦ η).

In particular
f̃(y′) = ˜f(λ ∗ η)(1) ∈ Ũ .

It follows that
V ⊆ f̃−1(Ũ) ⊆ f̃−1(W )

and so f is continuous. This finishes the proof.
�

Corollary 1.2.10. Any maps from a simply-connected locally path-connected
(Y, y0) lifts (uniquely).
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Corollary 1.2.11. Any map from (Sn, (1, 0, · · · , 0)) lifts uniquely (n ≥ 2).

Corollary 1.2.12. For n ≥ 2, p∗ : πn(X̃, x̃0)→ πn(X,x0) is an isomorphism.

Proof. By Corollary 1.2.11, p∗ is onto. By Corollary 1.2.10, p∗ is one-to-one
because Sn × I is simply connected for n ≥ 2. �

Theorem 1.2.13 (Borsuk-Ulam). There exists no map f : S2 → S1 such that
f(−x) = −f(x) for any x.

Proof. Let q : S2 → RP 2 be the covering projection, and suppose that for all
x ∈ S2

f(−x) = −f(x).
Then we can define g : RP 2 → S1 by g(±x) = (f(x))2, making g ◦ q = p ◦ f , where
p : S1 → S1 is defined by z 7→ z2.

S2 f - S1

RP 2

q

?
g - S1

p

?

Since π1(RP 2) = Z/2, g∗π1(RP 2) is a torsion subgroup of π1(S1) = Z and hence
g∗π1(RP 2) = 0. Thus, by Theorem 1.2.9, there is a lifting g̃ : RP 2 → S1 such that
g = p ◦ g̃. (Note the map p is a covering.) Since g̃ ◦ q and f are two liftings of g ◦ q,
we have

g̃ ◦ q = f.

It follows that

f(x) = g̃ ◦ q(x) = g̃ ◦ q(−x) = f(−x) = −f(x),

a contradiction. �

Corollary 1.2.14. If g : S2 → R2 is an antipode-preserving map, that is
g(−x) = −g(x), then some x ∈ S2 has g(x) = 0.

Proof. Otherwise f : S2 → S1 x→ g(x)
‖g(x‖ contradicts Theorem 1.2.13. �

Corollary 1.2.15. If h : S2 → R2, then some x ∈ S2 has h(x) = h(−x); so h
is not injective.

Proof. If this were not the case, then g : S2 → R2 x 7→ h(x)− h(−x) would
contradicts Corollary 1.2.14. �

Corollary 1.2.16. No subspace of R2 is homeomorphic to S2.

Example 1.2.2. Regard the Earth as S2 and the functions
P : S2 → R, x 7→ barometric pressure at x,
T : S2 → R, x 7→ temperature at x

as continuous. Then Corollary 1.2.15 says that

h : S2 → R2 h(x) = (P (x), T (x))

has h(−x) = h(x) for some x ∈ S2, in other words, there are always two antipodal
places on Earth with the same temperature and pressure.
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1.3. Universal Covering. Let X be a path-connected space. A covering
p : X̃ → X is called universal if X̃ is simply connected.

Proposition 1.3.1. Let X be path-connected and locally path-connected. Then
the universal covering over X is unique provided that it exists.

Proof. Suppose that p : X̃ → X and p′ : X̃ ′ → X be two universal coverings
over X. By the definition, both X̃ and X̃ ′ are simply connected. In particular, both
X̃ and X̃ ′ are path-connected. Since X is locally path-connected, so are X̃ and X̃ ′.
Let x0 be a basepoint of X. Choose basepoints x̃0 ∈ p−1(x0) and x̃′0 ∈ p′−1(x0).
By the lifting theorem, there exist liftings

X̃
f - X̃ ′

g - X̃

X

p

?
======== X

p′

?
======== X

p

?

with f(x̃0) = x̃′0 and g(x̃′0) = x̃0 because π1(X̃) and π1(X̃ ′) are trivial. By the
uniqueness of the lifting, g ◦ f = idX̃ and f ◦ g = idX̃′ and hence the result. �

1.3.1. Existence of Universal Covering Space. A space X is called semi-locally
simply-connected if for each point x ∈ X there exists a neighborhood U of x such
that π1(U, x)→ π1(X,x) is trivial.

Theorem 1.3.2. Let X be path-connected, locally path-connected, and semi-
locally simply connected. Then there exists the universal covering X̃ → X.

Proof. The proof is given by constructing a universal covering over X. Let
x0 be a basepoint of X.
Construction: Define

X̃ = {[λ] | λ(0) = x0},
where [λ] is the homotopy class relative to the ending points, that is, with respect
to the homotopies that fix the endpoints. Define p : X̃ → X by p([λ]) = λ(1).
Topology on X̃. Let

U = {U ⊆ X |U path-connected open π1(U)→ π1(X) is trivial }.

By the assumption of semi-locally simply connected, for any x ∈ X, there exists
a neighborhood U of x such that π1(U) → π1(X) is trivial. By the assumption of
locally path-connected, there exists a path-connected open neighborhood V of x
such that V ⊆ U with π1(V ) → π1(X) is trivial as it is the composite π1(V ) →
π1(U) → π1(X). Thus U is a basis for the topology on X. (Note. We use the
assumptions that X locally path-connected and semi-locally simply connected.)

For U ∈ U and a path λ from x0 to a point in U , define

U[λ] = {[λ ∗ η] | η path in U with η(0) = λ(1)}.

1) U[λ] depends only on the path homotopy class of λ, that is, if λ ' λ′rel0, 1,
then U[λ] = U[λ′].

2) p : U[λ] → U is onto because U is path-connected.
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3) p : U[λ] → U is one-to-one. Let η and η′ be two paths in U such that
η(0) = η′(0) = λ(1) and η(1) = η′(1). Then η ∗ η′−1 form a loop in U .
Since π1(U)→ π1(X) is trivial, [η] ∗ [η′−1] is trivial in X and so the loop

[(λ ∗ η) ∗ (λ ∗ η′)−1] = 1.

It follows that the path homotopy class [λ ∗ η] = [λ ∗ η′].
4) If [λ′] ∈ U[λ], then U[λ′] = U[λ]. For seeing this, let λ′ = λ ∗ η. For any

[λ ∗ η′] ∈ U[λ], let µ be a path in U from η(1) to η′(1). Then η ∗ µ ∗ η′−1

is a loop in U from λ(1) to λ(1). By using the assumption that π1(U)→
π1(X) is trivial, [η ∗ µ ∗ η′−1] is trivial in π1(X,λ(1)). Thus

[(λ ∗ η ∗ µ) ∗ (λ ∗ η′)−1] = 1

in π1(X,x0) and so

[λ ∗ η′] = [(λ ∗ η) ∗ µ],

that is [λ ∗ η′] ∈ U[λ′]. Or U[λ] ⊆ U[λ′]. Similarly, U[λ′] ⊆ U[λ]. Thus
U[λ′] = U[λ].

Now we show that

Ũ = {U[λ] | U ∈ U , λ path from x0 a point in U}

forms a basis for a topology on X̃. Let U[λ], V[λ′] ∈ Ũ with [λ′′] ∈ U[λ] ∩V[λ′]. Then

U[λ′′] = U[λ] V[λ′′] = V[λ′]

by assertion (4) above. Let W be in U with λ′′(1) ∈W ⊆ U ∩ V . Then

[λ′′] ∈W[λ′′] ⊆ U[λ′′] ∩ V[λ′′] = U[λ] ∩ V[λ′]

and so Ũ forms a basis for a topology on X̃.
p : U[λ] → U is a homeomorphism: Recall that the open subsets of U[λ] is given
by U[λ] ∩W for open sets W in X̃.

First we show that p is continuous. Let [λ ∗ η] be any element in U[λ] and let
V be an open subset of U with x = λ ∗ η(1) ∈ V . There exists V ′ ∈ U such that
x ∈ V ′ ⊆ V .

p−1(V ′) = {[λ ∗ η′] | η′(0) = λ(1) η′(1) ∈ V ′}.
Note that

[λ ∗ η] ∈ V ′[λ∗η] = {[λ ∗ η ∗ η′′] | η′′(0) = x, η′(1) ∈ V ′} ⊆ p−1(V ′) ⊆ p−1(V ).

Thus p is continuous.
Next we show that p|−1

U[λ]
is continuous. Let x be any point in U . Fix a path η in

U from λ(1) to x. For any open subset W in X̃ with p|−1
U[λ]

(x) = [λ ∗ η] ∈W ∩U[λ] 6,
since Ũ is basis, there is V[λ′] such that

[λ ∗ η] ∈ V[λ′] ⊆W ∩ U[λ].

Then
V = p(V[λ′]) = (p|−1

U[λ]
)−1(V[λ′])

is open. Thus p|−1
U[λ]

is continuous.

p : X̃ → X is a covering: For U ∈ U ,

p−1(U) =
⋃
{U[λ] | λ(1) ∈ U}.



1. COVERING SPACES 83

Assume that U[λ] ∩ U[λ′] 6= ∅. Let [λ′′] ∈ U[λ] ∩ U[λ′]. By assertion (4) above,
U[λ′′] = U[λ] = U[λ′]. Thus p−1(U) is a disjoint union of U[λ] and so p is a covering
map.
The space X̃ is simply connected. First we show that X̃ is path-connected.
Given two points [λ], [λ′] ∈ X̃. Since X is path connected, there is a path η in X
from λ(1) to λ′(1). Let ηt be part of the path η from η(0) to η(t). Then [λ ∗ ηt]
gives a path in X̃ from [λ] to [λ′]. Thus X̃ is path-connected.

Finally we show that π1(X̃, [x0]) is trivial. Since p is a covering map, p∗ : π1(X̃, [x0])→
π1(X,x0) is a monomorphism. Let ω be a loop in X̃, which means that ω(t) is the
path homotopy class of a from x0 to ω(t)(1) with ω(0) = ω(1) = [x0] the constant
path. Consider the homotopy Fs := ω(t)(s), namely the path ω(t) evaluating at
s. Then Fs(0) = ω(0)(s) = x0, Fs(1) = ω(1)(s) = x0, F0(t) = ω(t)(0) = x0 and
F1(t) = ω(t)(1) = (p ◦ ω)(t). Thus Fs defines a null homotopy for p ◦ ω. Thus
[p ◦ ω] = 1 and so π1(X̃) is trivial. �

Note. In Spanier’s book [21], the construction of the universal covering space
is given as the quotient space of the path space PX = {λ : I → X | λ(0)} with
compact-open topology. In his book, the arguments use the knowledge of compact-
open topology.

Corollary 1.3.3. Let X be path-connected, locally path-connected, and semi-
locally simply connected. Then for every subgroup H ⊆ π1(X,x0) there exists a
covering space p : X̃H → X such that p∗(π1(X̃H , x̃0)) = H for a suitably chosen
basepoint x̃0 ∈ X̃H .

Proof. In the universal covering space X̃, define the equivalence relation

[λ] ∼ [λ′]

if λ(1) = λ′(1) and [λ∗λ′−1] ∈ H. Define X̃H = X̃/ ∼. Then the resulting covering
X̃H → X is the desired coving. See Hatcher’s book [7] for details. �

An application to combinatorial group theory is to give a geometric proof of
the following theorem:

Theorem 1.3.4. Any subgroup of a free group is free.

Proof. Let F be a free group. Then we can chooseX a connected 1-dimensional
cell complex such that π1(X) = F . Let H be a subgroup of F . Then there is a
covering p : X̃H → X such that p∗(π1(X̃H)) = H. Since any covering over X is still
a 1-dimensional cell-complex, X̃H is homotopy to a wedge of circles. It follows that
H ∼= π1(X̃H) is a free group. �

Exercise 1.5. Let p : X̃ → X be a covering and let B be a subspace of X. Let
B̃ = p−1(B) with projection

p′ = p|B̃ : B̃ → B

be the induced covering. Suppose that

(1). X̃, X and B are path-connected;
(2). π1(B)→ π(X) is onto.
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Show that B̃ is path-connected.
[Hint: Try a proof by the following steps:
Step 1. By using the Changing-base theorem, show that π1(B, b) → π1(X, b) is
onto for any b ∈ B.
Step 2. Let x, y ∈ B̃. Show that there is a path λ in B̃ such that λ(0) = x and
p′(λ(1)) = p′(y). (Thus it suffices to show that there is a path in B̃ joint any two
points in the fibre.)
Step 3. Let x, y ∈ B̃ such that p′(x) = p′(y). Let b = p′(x). Since X̃ is path-
connected, there is a path λ in X̃ from x to y. Then p ◦ λ is a loop in X from b
to b. By using the statement in Step 1, there is a loop ω in B from b to b such
that ω ' p ◦ λ. Let λ′ be a path lifting of ω with λ′(0) = x. By using Monodromy
Theorem, λ′ ' λrel0, 1. In particular, λ′ is a path from x to y. Since λ′ is a lifting
of a loop ω in B, λ′ is a path in B̃ joint x and y.]

Proposition 1.3.5. Let X be path-connected and let Y be a simply connected.
Suppose that

(1). There exist small contractible open neighborhoods of x0 and y0, respec-
tively.

(2). p : X̃ → X is the universal covering over X.
Then

X̃ ∨ Y = {(x, y) ∈ X̃ × Y | (p(x), y) ∈ X ∨ Y }
with p′ = (p× idY )|

X̃∨Y : X̃ ∨ Y → X ∨ Y is the universal covering over X ∨ Y .

Proof. Since p : X̃ → X is a covering, so is p× idY : X̃ × Y → X × Y . Thus

p′ = (p× idY )|
X̃∨Y : X̃ ∨ Y → X ∨ Y

is a covering because it is induced from p × idY . By the above exercise, X̃ ∨ Y is
path-connected. From the commutative diagram

π1(X̃ ∨ Y ) - π1(X̃ × Y ) = π1(X̃)× π1(Y ) = {1}

π1(X ∨ Y ) = π1(X)
∐
{1} = π1(X)

?

∩

∼=- π1(X × Y ) = π1(X)× π1(Y ) = π1(X),
?

∩

π1(X̃ ∨ Y ) = {1} and hence the result. �
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