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In 1942 Ljunggren gave a very complicated proof of the fact that the only
positive integer solutions of the equation X2+1=2Y* are (X, ¥)=(1, 1) and
(239,13). In the present paper we give a simpler solution of Ljunggren’s problem.
This is accomplished by reducing the problem to a Thue equation and then solving
it by using a deep result of Mignotte and Waldschmidt on linear forms in
logarithms and continued fractions. © 1991 Academic Press, Inc.

I. INTRODUCTION
In 1942 Ljunggren [4] gave a very complicated proof of the following

THEOREM 1. The only positive integer solutions of the diophantine equation
X*+1=2v" (1.1)
are (X, Y)=(1,1) and (239,13).

Ljunggren’s proof depends upon the study of units of relative norm —1
in a quadratic extension of a quartic field and Skolem’s p-adic method and
is very difficult to follow. Indeed, the late Professor L. J. Mordell used to
say: “One cannot imagine a more involved solution (of Eq. (1)). One could
only wish for a simpler proof.”

The purpose of this paper is to fulfill Mordell’s desire by giving a simpler
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solution of (1.1). This is accomplished by reducing it to a Thue equation
and then solving the latter by using some elementary results of Tzanakis
and de Weger [6], a deep but easily applicable result of Mignotte and
Waldschmidt [5] on lower bounds for linear forms in logarithms of
algebraic numbers and the theory of continued fractions. In fact, our solution
is conceptually quite simple; anyway, far simpler than Ljunggren’s solution.
As in any case in which the theory of linear forms in logarithms of
algebraic numbers is applied to the solution of a specific Diophantine
equation, high precision calculations are required. A remarkable fact in our
solution is that, thanks to Mignotte and Waldschmidt’s theorem, the
decimal digits required in our computations are “very few” compared to
analogous situations: 30 decimal digits suffice!

II. DERIVATION OF THE THUE EQUATION
Factorization of Eq. (1.1) over the Gaussian field yields
(X+i)(X—i)=2Y",

and we have 2 = —i(1 —i)> Clearly, both X +i and X — i must be divisible
by 1+ i and none of them by (1 + /). Therefore, we have the ideal equation

X+i\/X—i
=(Y)*
(1+i)<1+i> ¥y,
in which the two ideals in the left-hand side are relatively prime. It follows
then that

(X +i)=i*(1 +i)a+bi),, se€{0,1,2 3}, (2.1)

where a, be Z and Y = Norm(a + bi) = a*> + b>. Consider now (2.1). If s=0
or 2 then Im{(1+i)(a+bi)*}=1 or —1, respectively. If s=1 then
(X +i)= —(1—1i)(a+ bi)*. Replacing b by —b (this does not affect Y) and
taking conjugates gives Im{(1 +i)(a+ bi)*} = 1. Finally, if s=3 then in a
completely analogous way we obtain a similar equation with —1 in the
right-hand side. We conclude therefore that, in any case, (2.1) implies

+1=TIm{(1 +i)(a+bi)*} =a*+4a’h— 6a’b’ — 4ab’ + b*.

To simplify the last equation a bit we make the substitution a=x—y, b=y
and we obtain the Thue equation

x*—12x%7 4 16xy° —4y* = +1.
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Note that Y is related to x, y by

Y=(x—y)?+ % (2:2)

II1. SoLuTiON OF THE THUE EQUATION

x*—12x%? + 16xy° —dy* = +1. (3.1)

In this section we will prove the following:

THEOREM 2. The only solutions of (3.1) are given by +(x, y)=(1,3),
(1,0), (1, 1), (5, 2).

In view of (2.2), Theorem 2 immediately implies Theorem 1.
3.1. Preliminaries

Let 0 be defined by
64 —120%+ 160 —4=0.

It is easy to check that Q(0)=Q(p), where
p=1/4+22,

and this is a totally real normal (Galois) field, since the four conjugates of
pare: +pand +(-3p+3ip*)=+./4-2. /2 Put

K=Q(p) and R=Z[1,p, 1p% 50’1

The four conjugates of 8§ are
00 =2+p—3p%  0F=2—p—1ip’
0% = -2-3p+3p>+1p°,  0W=-2+3p+3p°—1p.
In view of (3.1), x — y8 is a unit of the order R. Applying Billevic’s method

[1] (see [6, Appendix I]) we computed the following triad of fundamental
units of R:

ey=—1—p+p>+ip’=—6+210—36>—26°
ey=—5—2p+4p*+3p>=-25+790—90>— S 6’
gy=—T—-2p+4p?+2p*= 36 +1116-%6>-26°
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(¢, &, €3> 0). Thus we obtain
X—pO0= +eiesed, (a,,a,,a,)e?? (3.2)
and we put
A=max{la|, |a,|, |as|}.

3.2. Searching for Solution with Small | y|

A direct search shows that the only solutions (x, y) of (3.1) with | y| <5
are those listed in the following table, in which the corresponding values of
the a,’s in (3.2) are also shown.

a; a, a; t(x, y)
—1 2 L3
0 0 0 (1L,0)
1 0 1 (L
10 -2 —4  (5.2)

Now let (x, y) be a solution of (3.1). In view of the above table we may
assume that | y| > 6. We put

f=x—y0.

According to a simple lemma (see [6, Chap. II, Lemma 1.1]), if | y| > Y,,
then there exists an index iye {1, 2, 3, 4} such that

IBOI<Cy Iyl (3.3)
The formulas of Y, and C, give in our case
Y] = 3, Cl = 1.3604.

Let d,,d,,d,,.. be the partial quotients and p,/q,, p,/q2, . the
convergents in the continued fraction expansion of 0@ (for the actual
computation of the continued fraction of a real algebraic number see [3]
or [7, Chap.4]). Put in view of the above mentioned lemma, x/y=p,/q,
for some n=1,2,... By a well-known result on continued fractions, we
have :

= |0 _Pn|
(d,,+1+2)q5<‘

n

Combine this with the first relation (3.3) and the fact that |g,| =] y| to
obtain

19,
C,

l 2

d,, > 2 (3.4)
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(note that |g,|=]|y|=6; on the other hand, since |q,| grows very fast
with n, we expect that (3.4) can be true for only a very few values of n).

We now want to search for solutions of (3.1) in the range 6 <| y| < 10%,
For every iye {1, 2, 3, 4} we check which convergents satisfy (3.4). If some
P./q, 1s such a convergent, then we check whether (x, y)=(p,,q,) is a
solution of (3.1).

In this way we checked that no solution exists in the range
6 < | y| < 10%. Therefore, from now on we suppose that

| y| > 10% (3.5)

and we will prove that (3.1) has no solutions in this range. This will imply
that the only solutions of (3.1) are +(x, y)=(1, 3), (1,0), (1, 1), (5, 2).

We note now that from (3.6) we can easily find a useful lower bound for
A as follows (this idea is due to A. Pethd): For every (4, j)e {1,2,3} x
{1,,3,4} put

1 if je¥>1 3 _

— i — ()| vy
b= {-1 if [e¥ <1 and Ej_iljl eI
Then, for every je {1, 2, 3, 4},

1B91=T1 lef“< E]
i=1
and hence, from any pair j,, j, (j, #/,) we have
_1po—pn) _ Ei+E;
|yl= 19U —guay| 1900 g

(3.6)

Therefore, if we know a lower bound for | y| (such as in (3.5), for example),
then we can find a lower bound for 4. Note that j, and j, can be chosen
in such a way that the resulting lower bound for A can be the best possible.
For example, in our case an easy computation shows that

E, <32476.1, E, <28.1422, E; <3309, E, <341

and if we choose j; =2, j,=4 (|0¥ — 0| > 2.16478) and take into account
(3.5), then we easily see from (3.6) that

A=20. 3.7)

3.3. From (3.2) to an Inequality Involving a Linear Form in Logarithms

Let ige {1, 2, 3, 4} be as before (we have to check four possibilities).
Take any pair (j, k) of indices from the set {1, 2, 3, 4} such that the three
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indices i,, j, and k be distinct. Consider the i,, j, k-conjugates of the relation
f=x— 0 and eliminate x and y to obtain

0(1'0) _ 0(,/’) ﬂ(k) 0(/() _ 8(./) ﬁ(lo)
g(io),g(k)'ﬁ‘(ﬁ_ = 'O(k)_gum'ﬁu_')' (3.8)
For simplicity in our notation we put
gl _ gii» ef."’ .
0=9(,-0)_0(]()5 1:F ([:1’ 2, 3)
In view of (3.2), (3.8) becomes
e gt gu) gl
0p0105109 — 1 = —mw (3.9)

If we put
A =log 85551625

and estimate the right-hand side of (3.9) with the aid of (3.3) we can prove
easily (see [6, Chap.Il, Lemma 1.2]) that, if | y| > Y* then 0<|A4| <
1.39C,C5/C, | y| ~* The formulas of Y* and C, in our case give

Yx=3 and C,=6.02734

and therefore
0<|A| <13.146 | | ~*. (3.10)

We would like now, to replace the right-hand side of (3.10) by an expression
containing 4 but not | y|. We first need some notations. Consider the 4 x 3
matrix

&= (IOg |£;1”|)1<h<3,1sis4-

For every je {1, 2, 3, 4} let & be the matrix which results from & if we
omit the jth row. Then |det(&;)| is equal to the regulator of the order R (in
our case this is equal to 4.8835898...). Let
No=min{3- min N[&, '], max N[&; ']},
1<j<4 1<j<4

where, in general, for an m x n matrix (a;), N[(a;)] is the row-norm of the
matrix defined by

N[(a,-j)]=1t<nax (é:l |a,-j|).

<i<m
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Define also
|§| = max |0].
1<i<4

Then, for a solution satisfying | y| > 10° we can easily show (see [2,
relation (3)] that

1
A< Cslog | yl, C5=N0<1+§log10|9|). (3.11)
Combine now (3.10) and (3.11) to obtain
0< |4} <13.146 . ¢4, (3.12)

In our case S=30 and we computed that N, < 5.475513, so that
C5 < 5.58594.
Then, in view also of (3.7), (3.12) implies
0<|A| < e 8727774, (3.13)

and this is the required inequality. Note that (3.13) combined with (3.7)
implies, in particular

|A] <7.93-1078. (3.14)

3.4. Explicit Computation of A

As already noted, once i, is chosen we can choose j and k arbitrarily
(io #£J # k # iy). So, we make the following choices:

If iy=3 or 4 we take k=1 and j=2. In both cases it is a routine matter
to compute that

16, =¢; %3, |6,] =&, ®eled, 165 =e; %ed.

Also, if iy =3 then

90— —4-2p+p’+3p’
T _pn

8o = —l+ptip’=se7'es

—4—d4p+p*+1p°
and, analogously, if iy=4 then §,= —¢, '¢;. Thus, if iy =3 or 4 then

A=log(e, 'e3) +a, log(e; %e3) + a, log(e; *ele3) + as log(e; *e

= (14 2a, +4a,) log(e; 'e5) + 2a, log(e; *&,62)
= (14 2a, + 2a, +4a;) log(e; 'e;) —2a, log(eles 'e; ')
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In an analogous way we find that if i{; =1 or 2 then
A=(1+424a,+4a;)log(eie; 'e; ')+ 2a, log(eles t)
=2a’log(e, '&3) + (1 + 2a, + 2a, + 4a,) log(eie; 'e; ')

Thus
A=b,logy, +b,logy,,

where

yi=¢ lea=—l+p+3p  pr=ceie; ey =3-3p—3p+3p’
and
(b, by)=(1+2a,+2a,+4a,, —2a,) or (2a,, 1 +2a, +2a,+4a,). (3.15)

We now put
B=max{|bl Ia |b2| }7

so that B<8.054 and then, by (3.13),
0<|A] <e 5, Ce =0.072554. (3.16)
3.5. An Upper Bound for B

Up to now, the results and arguments were elementary. At this point we
use a really deep theorem of Mignotte and Waldschmidt.

THEOREM [5, Corollary 1.1].  Ler a,, a, be two multiplicatively indepen-
dent algebraic numbers and b, b, two positive rational integers such that
byloga, #b,loga, (where loga, (i=1,2) is an arbitrary but fixed deter-
mination of the logarithm). Define D= D[Q(a,,a,): Q], B=max{b,, b,}
and choose two positive real numbers a,, a, satisfying

2e]log<x]-|}
D

ajzmax{l,h(aj)+log 2, (j=1,2)

(where, as usual, h(-) denotes the absolute logarithmic height). Then,
|6, log ay — b, log a,| = exp{ —500D%a, a,(7.5 + log B)*}.
It is easy to check that in our case the above theorem implies
|4} >exp{—500-4%-2.63-(7.5 +log B)*}
and this inequality combined with (3.16) gives

B<4.05-10°.
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3.6. Reducing the Upper Bound of B
Equation (3.16) is equivalent to

b,
“3'172

PRI
1621 [logy,]

e~ CeB, (3.17)

where 6 = —log y,/log 7, and B< C=4.05-10°. We have

1 1 1
— e e ——— 1075681 P < —,
|b,] |log v,| ¢ < 1.61489 |b, | 2.1 |b,|?

provided that B> 60. Now let § be a rational approximation of 8 such that

< 1
Then,
~ bl 4 bl 1 1
——S(S—— Y
}5 5| <! 5”‘5 b,| “1000C? * 2.1 15,7
i 1 i

<0016, 215,22 15,1>

which implies that b,/b, is a convergent of the continued fraction expansion
of 4. Denote by d,, d,, d,, ... the partial quotients and by p,/q,, p./q2, -
the convergents in the continued fraction expansion of §. Suppose that
by/b=p,/q,- Then,

T P e S L B
(dyy 1 +2) 152> (dyr1+2) g4l qn 2

b

<|8-0|+[6—-

| |+l b,
< L + 1.075681 &
1000C? " 1.61489 |b,| ’

from which
~1
-3 X —B

d,,+1+2><10 +1.61489 1.076581 ) >29

provided that B> 104. We computed a rational approximation 5of s up
to 30 decimal digits (so that (3.18) is satisfied) and we looked for all
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convergents p,/q, of 5 with max{ p,, ¢,} = 104 and such that d,, ;= 28. It
turned out that no such convergent exists and consequently there are no
solutions of (3.17) with B> 104. If 60 < B< 104 then, by our previous
arguments, b, /b, is a convergent in the continued fraction expansion of 4.
but it is straightforward to check that no convergent p,/g, satisfies
60 <max{|p;|, l¢;|} < 104.

Therefore we are left with the case B<59. From (3.17) we see that
by/b,>1; ie., B=|b,|, and by (3.15) b,, b, have opposite parities. Since
they must satisfy (3.17), we have B >4 and then (3.17) implies in particular
that

0.140343 |b,| < |b,] <0.359009 |b,]. (3.19)

We have determined all pairs (|b,|, |b,|), satisfying 4<1|b,| <59 and
(3.19), and for each such pair we calculated the corresponding value of A.
In all cases it turned out that | 4| > 0.00209, which contradicts (3.14). This
contradiction completes the proof of Theorem 2.
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