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In 1942 Ljunggren gave a very complicated proof of the fact that the only 
positive integer solutions of the equation X2+l =2Y 4 are (X, Y)=(1, I) and 
(239,13). In the present paper we give a simpler solution of Ljunggren's problem. 
This is accomplished by reducing the problem to a Thue equation and then solving 
it by using a deep result of Mignotte and Waldschmidt on linear forms in 
logarithms and continued fractions. �9 1991 Academic Press, Inc. 

I. INTRODUCTION 

In 1942 Ljunggren  [ 4 ]  gave a very compl ica ted  p r o o f  of  the fol lowing 

THEOREM 1. The only positive integer solutions o f  the diophantine equation 

X 2 +  1 = 2 Y  4 (1.1) 

are (X, Y ) = ( 1 ,  1) and (239,13). 

Ljunggren 's  p r o o f  depends  upon  the s tudy of units of  relat ive no rm - 1 
in a quadra t i c  extension of  a quar t ic  field and  Skolem's  p -ad ic  me thod  and 
is very difficult to  follow. Indeed,  the late  Professor  L. J. Morde l l  used to 
say:  "One  canno t  imagine  a more  involved so lu t ion  (of Eq. (1)). One  could  
only  wish for a s impler  proof ."  

The purpose  of  this pape r  is to fulfill Morde l l ' s  desire by giving a s impler  
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solution of (1.1). This is accomplished by reducing it to a Thue equation 
and then solving the latter by using some elementary results of Tzanakis 
and de Weger [6],  a deep but easily applicable result of Mignotte and 
Waldschmidt [5]  on lower bounds for linear forms in logarithms of 
algebraic numbers and the theory of continued fractions. In fact, our solution 
is conceptually quite simple; anyway, far simpler than Ljunggren's solution. 
As in any case in which the theory of linear forms in logarithms of 
algebraic numbers is applied to the solution of a specific Diophantine 
equation, high precision calculations are required. A remarkable fact in our 
solution is that, thanks to Mignotte and Waldschmidt's theorem, the 
decimal digits required in our computations are "very few" compared to 
analogous situations: 30 decimal digits suffice! 

II. DERIVATION OF THE THUE EQUATION 

Factorization of Eq. (1.1) over the Gaussian field yields 

( X +  i ) ( X -  i) = 2Y 4, 

and we have 2 = - i (1  - i) 2. Clearly, both X +  i and X -  i must be divisible 
by 1 + i and none of them by ( 1 + i) 2. Therefore, we have the ideal equation 

( X + i ) ( X - i ] =  

l + i } \ l + i J  (y)4, 

in which the two ideals in the left-hand side are relatively prime. It follows 
then that 

( X + i ) = i S ( l + i ) ( a + b i )  4, s6{0 ,  1, 2, 3}, (2.1) 

where a, b E Z and Y= Norm(a  + bi) = a 2 + b 2. Consider now (2.1). If s = 0 
or 2 then I m { ( l + i ) ( a + b i ) 4 } = l  or - 1 ,  respectively. If s = l  then 
( X +  i ) =  - ( 1  - i ) ( a  + bi) 4. Replacing b by - b  (this does not affect Y) and 
taking conjugates gives Im{(1 + i)(a + bi) 4 } = 1. Finally, if s = 3 then in a 
completely analogous way we obtain a similar equation with - 1  in the 
right-hand side. We conclude therefore that, in any case, (2.1) implies 

___ 1 = Im{(1 + i)(a + bi) 4 } = a 4 + 4a3b - 6a2b 2 - 4ab 3 + b 4. 

To simplify the last equation a bit we make the substitution a = x - y, b = y 
and we obtain the Thue equation 

X 4 - -  12x2y 2 + 16xy 3 -- 4y 4 = +1. 
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Note that Y is related to x, y by 

Y= ( x - y ) 2  +y2. (2.2) 

III. SOLUTION OF THE THUE EQUATION 

X 4 - -  12x2y 2 + 16xy 3 - 4y 4 = _ 1. (3.1) 

In this section we will prove the following: 

THEOREM 2. The only solutions of  (3.1) are given by _+ (x, y) = (1, 3), 
(1, 0), (1, 1), (5, 2). 

In view of (2.2), Theorem 2 immediately implies Theorem 1. 

3.1. Preliminaries 

Let 0 be defined by 

0 4 -  1202+ 1 6 0 - 4 = 0 .  

It is easy to check that Q(0)= Q(p), where 

p = X/4 + 2 x/~, 

and this is a totally real normal (Galois) field, since the four conjugates of 

p are: + p  and + ( - 3 p + � 8 9  + , ~ / / 4 - 2  w/2. Put 

K = Q ( p )  and R=7/[1,  p, �89 �89 

The four conjugates of 0 are 

Otl~= 2 + p -  �89 2, 

0 ~3~= - 2  - 3p + �89 -I- �89 

Ot2) = 2 - -  p - -  �89 2 

014)= -2+3p+ �89189 

In view of (3.1), x - y O  is a unit of the order R. Applying Billevic's method 
[1 ] (see [6, Appendix I ] )  we computed the following triad of fundamental 
units of R: 

e l  : - - 1  _ _ p + p E + � 8 9  _ 6 + 2 1 0 _ ~ 0 2 _ 2 0 3  

e2 = - 5  - 2p + 4p 2 + 3 p3 = - -25  d- 790 -- 902 -- ~ 03 

e3 = - 7  - 2p + ~ p2 _]_ 2p3 : - 3 6  + 1110 - ~ 02 - ~ 03 
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( E l ,  e2, E3 > 0) .  Thus we obtain 

x - - ) , O =  "~ '~ ~3 -[-E l E2"E3" , 

and we put 

( a l ,  a2, a 3 )  E Z 3 (3.2) 

A = m a x { l a ,  I, la2[, [a3l}. 

3.2. Searching for  Solution with Small  lyl 
A direct search shows that the only solutions (x, y) of (3.1) with t Yl ~< 5 

are those listed in the following table, in which the corresponding values of 
the ai's in (3.2) are also shown. 

a I a 2 a 3 •  y )  

--1 2 1 (1,3) 
0 0 0 (1,0) 
1 0 --1 ( 1 , 1 )  

10 --2 -4  (5,2) 

Now let (x, y) be a solution of (3.1). In view of the above table we may 
assume that I Y l >/6. We put 

fl= x -  yO. 

According to a simple lemma (see [6, Chap. II, Lemma 1.1]), if l Y] > YI, 
then there exists an index ioe { l, 2, 3, 4 } such that 

Ifl"~ ~< C~ I yJ--3 ( 3 . 3 )  

The formulas of Yl and C1 give in our case 

Y1 = 3, C1 = 1.3604. 

Let do, all,d2,.. ,  be the partial quotients and P l / q l , P 2 / q 2  .... the 
convergents in the continued fraction expansion of 0 t~) (for the actual 
computation of the continued fraction of a real algebraic number see [3]  
or [7, Chap. 4]). Put in view of the above mentioned lemma, x / y = p , / q ,  
for some n = 1, 2 ..... By a well-known result on continued fractions, we 
have 

1 OtiO ) _ ion . 

(dn+l +2)q~ < q. 

Combine this with the first relation (3.3) and the fact that [q.[ = [y[ to 
obtain 

> l q ,  I 2 
d ,+ l  - - ~ - -  2 (3.4) 
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(note that [q,I = l Y[ >~6; on the other hand, since Iq, I grows very fast 
with n, we expect that (3.4) can be true for only a very few values of n). 

We now want to search for solutions of (3.1) in the range 6 ~<[y[ ~< 103~ 
For  every i0~ {1, 2, 3, 4} we check which convergents satisfy (3.4). If some 
p,/q,  is such a convergent, then we check whether (x, y ) =  (p , ,  q,) is a 
solution of (3.1). 

In this way we checked that no solution exists in the range 
6 ~< I Y[ ~< 103~ Therefore, from now on we suppose that 

l Yl > 103~ (3.5) 

and we will prove that (3.1) has no solutions in this range. This will imply 
that the only solutions of (3.1) are +(x ,  y ) =  (1, 3), (1, 0), (1, 1), (5, 2). 

We note now that from (3.6) we can easily find a useful lower bound for 
A as follows (this idea is due to A. Peth6): For every (i , j)~ {1, 2, 3} x 
{ 1 , , 3 , 4 } p u t  

{ 3 
1 if lelJ~l > 1 and E j =  1--I lelJ~l v~ 

v~ - 1  if I~lJ~l < 1 i=1 

Then, for e ve ry j~  {1, 2, 3, 4}, 

3 
I/~(J~l = l - I  I~lJ~l~ < E~ 

i=1 

and hence, from any pair Jl ,  J: (Jl :/:J2) we have 

I +ej  
l y l -  10~J,~ 0~J=~l ~ iO~J,~_O<m I. (3.6) 

Therefore, if we know a lower bound for I Yl (such as in (3.5), for example), 
then we can find a lower bound for A. Note that j~ and J2 can be chosen 
in such a way that the resulting lower bound for A can be the best possible. 
For example, in our case an easy computation shows that 

E 1 < 32476.1, E2 < 28.1422, E 3 < 33.9, E 4 < 34.1 

and if we choose j l  = 2,j2 = 4 (I 0~2~- 0(4) I > 2.16478) and take into account 
(3.5), then we easily see from (3.6) that 

A i> 20. (3.7) 

3.3. From (3.2) to an Inequality Involving a Linear Form in Logarithms 

Let io~ {1, 2, 3, 4} be as before (we have to check four possibilities). 
Take any pair (j, k) of indices from the set {1, 2, 3, 4} such that the three 
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indices io, J, and k be distinct. Consider the io, J, k-conjugates of the relation 
fl = x -  yO and eliminate x and y to obtain 

0(i0} __ 0(j) ]~(k) o(k)__ 0{Jl j~('0) 
O(go)__O(kl ~(~1 1 = --O(kl__O,o)" [~(j). (3.8) 

For  simplicity in our  nota t ion we put 

O(i~ 8 = ~ )  ( i =  1, 2, 3). 
8o 0(i01_0(kl, , ~ljl 

In view of (3.2), (3.8) becomes 

a2 a3 _ _  . 8o8~62 63 - -1= O(k) O~iO) [](j). (3.9) 

Y ~ =  3 and C3 = 6.02734 

0 <  IAt < 13.146 I yl--4 (3.1o) 

We would like now, to replace the right-hand side of (3.10) by an expression 
containing A but not  I Y l. We first need some notations. Consider  the 4 x 3 
matrix 

8 = (log le(hi~l)l ~<h~3,~ ~<i~<4. 

For  every j e { 1, 2, 3, 4 } let ~ be the matrix which results from o ~ if we 
omit t h e j t h  row. Then Idet(~)l is equal to the regulator  of the order  R (in 
our  case this is equal to 4.8835898...). Let 

N o = m i n { 3  �9 min N[e~j 1], max N[oafl]}, 
1 ~<j~< 4 1 ~ < j ~ < 4  

where, in general, for an m • n matrix (aij), N[(agj)] is the row-norm of the 
matrix defined by 

N[(ao. )]  = max la o . 
l<~i<~m j 1 

and therefore 

If we put  
a l  a2  e/3 A = l o g  18061 82 83 I 

and estimate the right-hand side of (3.9) with the aid of (3.3) we can prove 
easily (see [6, Chap. II, Lemma 1.2]) that, if l Yl > Y* then 0 <  IAI < 
1.39C1C3/C2 l Yl 4. The formulas of Y* and C3 in our  case give 
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Define also 

101 = m a x  10")1. 
1~<i~<4 

129 

( '  ) A<~CsloglYl, Cs=No l + ~ l o g ~ o l 0 1  . (3.11) 

Also, if i o = 3 then 

0 (3 )_0  (2) 

Combine  now (3.10) and (3.11) to obta in  

0 <  [AI < 13.146 .e  4m,.5. (3.12) 

In our  case S =  30 and we computed  that  No < 5.475513, so that  

C5 < 5.58594. 

Then, in view also of (3.7), (3.12) implies 

0 <  IAI < e  0.5872777A (3.13) 

and this is the required inequality. Note  that  (3.13) combined  with (3.7) 
implies, in part icular  

LAI < 7 .93.10 -6. (3.14) 

3.4. Explicit Computation of A 
As already noted, once i o is chosen we can choose j and k arbitrari ly 

(io :~j 4: k :/: i0). So, we make  the following choices: 
If  io = 3 or  4 we take k = 1 and j = 2. In both  cases it is a routine mat te r  

to compute  that  

= =/~1 eZE3' 133[=~1 /~3" 

--4-- 2p + p2 + �89 3 

6~ _4_4p+p2+�89 --1 + P +  �89 

and, analogously,  if i o = 4 then 30 = - e  ~ 153 . Thus,  if io = 3 or 4 then 

A = l o g ( ~  ~ e3) + a~ log(e~-2 e 2) + a2 log(~18e~e 4) + a3 log(~-ae  4) 

= (1 + 2al + 4a3) log(e(~e3)  + 2a2 log(~-4e2e~) 

--- (1 + 2al + 2a 2 + 4a3) l o g ( e l l e 3 )  - 2a2 l o g ( e ~ z l e 3 1 ) .  

Then, for a solution satisfying l Y[ > 10s we can easily show (see I-2, 
relation (3)]  that  
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In an analogous way we find that if i0 = 1 or 2 then 

A = (1 + 2a I +4a3) log(e~e 2~e3 ~)+ 2a2 log(e~e21) 

= 2a 2 log(el  ~ e3) + (1 + 2al + 2a~ + 4a3) log(e~e 2 l e 3 ~ ). 

Thus 

where 

1 
7 1 = / 3 1  

and 

A = b l  lOgTl +b21og ?2, 

~3= - 1  + p + ~ p  , 72= = 3 - 3 p -  �89 

( b l , b 2 ) = ( l + 2 a ~ + 2 a 2 + 4 a 3 , - 2 a 2 ) o r  (2az, l + 2 a ~ + 2 a 2 + 4 a 3 ) .  (3.15) 

We now put 
B = m a x {  Ibl l, [b21 }, 

so that B~8.05A and then, by (3.13), 

0 <  )AI <e -c~ C6 = 0.072954. (3.16) 

3.5. An Upper Bound for B 

Up to now, the results and arguments were elementary. At this point we 
use a really deep theorem of Mignotte and Waldschmidt. 

THEOREM [5, Corollary 1.1]. Let ~ , c~ 2 be two multiplicatively indepen- 
dent algebraic numbers and b l ,  b2 two positive rational integers such that 
bl log ~l #b2  log ~2 (where log ~i ( i :  1, 2) is an arbitrary but f ixed deter- 
mination of the logarithm). Define D = D[Q(~I ,  a2): Q] ,  B =  max{bl,  b2} 
and choose two positive real numbers al, a2 satisfying 

{ 2e ]log ~y,} 
ay = max 1, h(~j) + log 2, D (j  = 1, 2) 

(where, as usual, h(. ) denotes the absolute logarithmic height). Then, 

Ibl log c~1 -- b2 log a21 ~> exp{ -500D4ala2(7.5 + log B)2}. 

It is easy to check that in our case the above theorem implies 

[A[ > exp{ - 5 0 0 . 4 4 .  2.63- (7.5 + log B) 2 } 

and this inequality combined with (3.16) gives 

B <  4.05 �9 10  9. 
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3.6. Reducing the Upper Bound of B 

Equation (3.16) is equivalent to 

6 _ b ~  1 1 
< [b21 "t log ~1 e-C6S' (3.17) 

where 6 = - l o g  72/1og 71 and B <  C =  4.05.109. We have 

1 1 1 
Ib2l IlOgyl[ e-C6s< 1.61489 [b2l 1"075681-s<2.1 [b212' 

provided that B t> 60. Now let 6 be a rational approximation of 6 such that 

1 (3.18) 
1~-61 < 1000C2. 

Then, 

~ _ b l  6 b~ 1 1 
b E ~< [ ~ - 6 1  + - < 1000C -- - - - - -~-~ 2.1 [bz[ 2 

< 
1 1 1 

1000 tb~12+ 2.1 Ibzl-~2<2 lb212' 

which implies that bl/b2 is a convergent of the continued fraction expansion 
of 6. Denote by do, dl, d2 .... the partial quotients and by Pl/q~, P2/q2 .... 
the convergents in the continued fraction expansion of ~. Suppose that 
bl/b2 = P,,/q,. Then, 

1 2 <~ 1 ~ p .  ~ b~2 2 
(dn+lWZ) lb2] (d .+lWZ) lqn[ 2< = qn 

~< 13-- dJ[ --1-- b2 

1 1 
< - -  t- 1.075681 s 

IO00C 1.61489 [b2l 

from which 

( )-' B - 1.076581 B >29  d ,+l  + 2 >  10-3-1- 1.6148------~ 

provided that B ~> 104. We computed a rational approximation ~" of & up 
to 30 decimal digits (so that (3.18) is satisfied) and we looked for all 
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convergents p,,/q,, of 6 with max{ p, ,  qn}/> 104 and such that d,,+ 1 >~28. It 
turned out that no such convergent exists and consequently there are no 
solutions of (3.17) with B~>I04. If 60~<B< 104 then, by our previous 
arguments, bl/b2 is a convergent in the continued fraction expansion of 3, 
but it is straightforward to check that no convergent Pi/q, satisfies 
60~<max{Ipi[, Iqg[} < 104. 

Therefore we are left with the case B~<59. From (3.17) we see that 
b2/bl > 1; i.e., B =  Ibzl, and by (3.15) bl, b2 have opposite parities. Since 
they must satisfy (3.17), we have B/> 4 and then (3.17) implies in particular 
that 

0.140343 [b21 < Ib l l<  0.359009 [b21. (3.19) 

We have determined all pairs ([b~l, [b21), satisfying 4~1b21~59 and 
(3.19), and for each such pair we calculated the corresponding value of A. 
In all cases it turned out that IA[ >0.00209, which contradicts (3.14). This 
contradiction completes the proof of Theorem 2. 
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