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The Koch Monopole: A Small Fractal Antenna
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Abstract—Fractal objects have some unique geometrical prop-
erties. One of them is the possibility to enclose in a finite area an
infinitely long curve. The resulting curve is highly convoluted being
nowhere differentiable. One such curve is the Koch curve. In this
paper, the behavior the Koch monopole is numerically and exper-
imentally analyzed. The results show that as the number of itera-
tions on the small fractal Koch monopole are increased, the of
the antenna approaches the fundamental limit for small antennas.

Index Terms—Fractals, small antennas.

I. INTRODUCTION

FRACTAL-SHAPED antennas have already been proved to
have some unique characteristics that are linked to the geo-

metrical properties of fractals. As it was thoroughly discussed in
[1]–[4], the self-similarity property of fractals makes them spe-
cially suitable to design multifrequency antennas. In this paper,
we present and discuss another interesting property of fractal
shapes that has a large potential to increase the performance of
antennas. Some fractal shapes have complex, convoluted shapes
that can enhance radiation when used as antennas. For instance,
some fractal loops can be designed to enclose a finite surface
with an arbitrarily large perimeter. Certain monopoles can be
designed to have an arbitrarily large length, although they can
be constrained to fit a given volume. Therefore, it is possible to
design small antennas that occupy the same volume than their
Euclidean counterparts, but much longer. This interesting prop-
erty has been used in the design of Frequency Selective Surfaces
(FSS) [5]. In this case, resonant elements that occupy a small
volume were built after a fractal shape. The underlying poten-
tiality is to design small and efficient antennas that have a fractal
shape. The implications of such designs, as well as how they re-
late to some well-known antenna restrictions, is discussed in the
following sections.

When the size of an antenna is made much smaller than the
operating wavelength, it becomes highly inefficient. Its radi-
ation resistance decreases, while, proportionally, the reactive
energy stored in the antenna neighborhood rapidly increases.
Both phenomena make small antennas difficult to match to the
feeding circuit, and when matched, they display a high, i.e.,
a very narrow bandwidth. The potentiality of fractal shapes for
improving the efficiency of common small antennas has been
suggested by Cohen in [6]–[8]. Based on a numerical method
of moments analysis, he observed that fractal Minkowski loops
presented a low resonant frequency, relative to their electric size.
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In this paper, the behavior of the Koch monopole is presented.
While some preliminary results were discussed by the authors in
[9], this paper provides an indepth insight to the behavior of the
antenna and its relation to the fundamental limits of antennas.
In Section II, the fundamental limitations of small antennas are
reviewed. In Section III, the fractal monopole Koch antenna is
described and its input parameters are shown. Both numerical
and experimental results show that as the number of iterations
in the monopole increase, theof the antenna approaches the
fundamental limit for small antennas. The current distribution
along the antenna and the possible existence of a limit in its
performance is discussed in Section IV. Section V shows the
radiation pattern of the antenna. It is shown that as the frequency
increases, the asymmetry in the antenna geometry manifests in
the radiation pattern. Finally, in Section VI, the possible use of
the Koch monopole as a multiband antenna is discussed.

II. FUNDAMENTAL LIMITATIONS ON SMALL ANTENNAS

This section is devoted to review some aspects regarding
small antennas. Several authors have extensively worked upon
the fundamental limits of small antennas [10]–[17], Chu’s
and Wheeler’s work being among the ones that have most
influenced further investigations on such a topic. An antenna is
said to be small when it can be enclosed into a radiansphere,
i.e., a sphere with radius . For such antennas, Chu
established a fundamental limitation on theirgiven by [17]:

(1)

which establishes the lower, fundamental limit of thefactor
that can be achieved by a linearly polarized antenna. Several
authors have reported similar results, some of them leading to
a slightly different expression for (1) [11]. Recently, McLean
[14] has reviewed some of these concepts and has shown that
the fundamental limit upon circularly polarized antennas is of
the order of one half of that of the linearly polarized ones.

It is important to state that this limit is established regardless
of the antenna current distribution inside the sphere. Actually,
the current distribution inside the sphere is not uniquely deter-
mined by the field distribution outside the sphere [17], so several
current distributions can lead to the samefactor. In practice,
such a fundamental limit has not ever been reached, being the
Goubau antenna [12] with one of the lowest

reported antennas. Achieving a lowantenna basically de-
pends on how efficiently it uses the available volume inside the
radiansphere.

It must be stressed that Chu’s definition of thefactor is a
general concept that applies even when the antenna is not reso-
nant. Since the definition is valid for a resonant system, it is
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implicitly assumed that the extra amount of unbalanced reactive
energy of a nonresonant antenna is externally compensated by
a proper inductor or capacitor at the input terminals. Therefore,
depending on the nature of the predominating energy, the out of
resonance factor has to be defined as [18]

(2)

(3)

where and are the stored and magnetic energies and
is the average radiated power. Of course, both definitions

are equivalent if the antenna is self-resonant, which is not usual
for small antennas. Prior to Chu’s work, Wheeler introduced
the Power Factor (PF) concept to characterize small antennas
[10], [13]. He assumed that any small reactive antenna could be
reduced to an equivalent first-order network when operating at
low frequencies. Such a network would be either a serial RC
network or a parallel RL one depending on whether electric or
magnetic stored reactive energy predominates at low frequen-
cies. He defined the PF for such networks as

PF (4)

PF (5)

with and being the radiation susceptance and reactance,
and and the radiation conductance and resistance, respec-
tively. Actually, such definition can be reinterpreted as

, provided that only the radiation resistance or conductance
is taken into account, and that the contribution of only one of the
reactive components of the antenna input impedance is signifi-
cant to the overall antenna performance. Also, he stated that the
lowest achievable PF is that of a spherical coil filling the volume
inside the radiansphere, that is

PF (6)

which is in agreement with the limit established in (1), pro-
vided that the radius of the sphere enclosing the antenna is much
smaller than the operating wavelength.

III. T HE SMALL KOCH MONOPOLE

First thought of as a candidate to become a simple multiband
antenna, the Koch monopole is an effective example to illus-
trate that fractals can improve some features of common Eu-
clidean shapes. Being ideally a nonrectifiable curve, its length
grows as at each iteration, the Koch curve has neither a
piecewise continuous derivative. Actually, it is nowhere differ-
entiable, which means that its shape is highly rough and uneven.
Thus, it appears as a good candidate for becoming an efficient
radiator.

A. Antenna Description

The classical Koch curve construction algorithm is very well
known. An Iterative Function System (IFS) algorithm can be
applied to generate the succession of curves that converge to

Fig. 1. Different iteration stages of the Koch curve. One stage is obtained by
applying the affine transformation of (9) to the previous one.

Fig. 2. Five-iteration Koch monopole over the ground plane used in
the gathering of experimental data. The whole length of the element is
l = h � (4=3) = 25:3 cm.

the ideal fractal shape. These IFSs are used to construct certain
fractals. Rather than a rigorous mathematical description that
can be found elsewhere [19], only the relevant points will be
outlined. An IFS is defined by a set of affine transformations. An
affine transformation in the plane can be written as

(7)

where and are the coordinates of point. For short, and
through this paper, the affine transformations will be written as

. The matrix can always be written as

(8)

In the special case where , , and
, the transformation is a contractive similarity where
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Fig. 3. Input impedance of the different fractal Koch monopoles. Numerically simulated data are in good agreement with measurements. As the number of
iterations in the structure increases the resonant frequency diminishes.

is the scale factor and is the rotation angle. Note that a sim-
ilarity is an affine transformation where shear transformations
are not allowed, therefore in similarity, transformation angles
are preserved [20]. The column matrixis just a translation on
the plane. Following the IFS scheme, the Koch curve can be de-
fined from the following set of affine transformation:

(9)

These transformations are scalings by a factor of one-third
and rotations by 0, 60, 60, 0 , respectively. Fig. 1 shows the
construction process of the Koch curve. The first element of the
series is a straight segment and is called K0. It can be proved that

the starting element is irrelevant to converge to the fractal shape
[19]; however, when analyzing the fractal antenna behavior, it
looks especially interesting to compare it with that of the closest
Euclidean version, i.e., a straight monopole. We will name such
a straight monopole as K0 (the zeroth iteration of the fractal
construction), while the remaining objects of the iterations will
be referred to as K1, K2, , K . The next iteration K1, is
obtained by applying the four similarity transformations of (9)
to K0. The next elements are obtained iteratively. The fractal
shape is obtained as the limit element after infinite iterations. Al-
though the fractal shape might look too convoluted to be of prac-
tical application, the first iterations can be easily printed over
a dielectric substrate using standard printed circuit techniques.
The fabrication complexity in this case is exactly the same for
the Euclidean antennas and for almost all fractal ones. Since
one is interested in examining the low-frequency behavior, a
high-performance (low-loss) microwave dielectric substrate is
no longer required. Up to five iterations of the fractal succes-
sion were constructed, all of them of the same overall height and
using the same substrate. The six antennas (K0K5) where
mounted over an 80 80-cm ground plane and measured over
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a 0.1–2 GHz frequency range. The antennas were also numeri-
cally analyzed using the frequency-domain method of moments
technique. Fig. 2 shows the five-iteration version of the Koch
monopole (i.e., K5), which has an overall height cm, but
a whole length of cm.

B. Input Parameters

The input resistance and reactance of the five measured
Koch monopoles, together with the same parameters for a
linear monopole (K0) are shown in Fig. 3. All antennas have
the same height cm, but of course a different length.
The method of moments data corresponding to the Euclidean
antenna (K0) and the first three iterations of the fractal one (K1,
K2, K3) are also shown for comparison. The copper-etched
wire had approximately a rectangular cross section of width

m and thickness m, except for the K5
model where the wire width was reduced to m. To
get the best match between experimental and numerical data,
an equivalent radius of m was considered following
the equivalent radius approach outlined in [21]. It is apparent
that a good match between numerical and experimental data is
obtained.

Some interesting conclusions can be derived from the input
parameters plot. First of all, in the low-frequency region, the
input resistance increases with the number of iterations when
comparing the six characteristics at a given frequency. While
the linear monopole input resistance becomes very small below
the first resonance (0.9 GHz), the K5 model is about its input
resistance maximum value. Fig. 4 shows the drive resistance in-
crease with growing fractal iterations for a fixed frequency (the
first monopole resonant frequency has been chosen in this case).
Analogously, the input-reactance plot evinces that resonant fre-
quencies are consistently shifted toward the lower frequency re-
gion at each fractal iteration. In particular, even though all the
Koch models can be considered small antennas ( ) for

GHz, they are self-resonant, i.e., they have a vanishing
input reactance without the need of an external compensating
reactive element. The longest antenna (K5) reaches its second
resonance at about the same frequency where the linear dipole
has its first resonance.

Also, an equivalent input resistance due to ohmic losses was
computed at each frequency by integrating the square of the
current distribution over the whole antenna length. The skin ef-
fect was also taken into account thereby assuming an equivalent
cylindrical wire cross section as described in [21]. Fig. 5 shows
the evolution of the drive-resistance radiation and the ohmic
losses considering an antenna made of copper. As expected, the
results show an increment in the antenna ohmic resistance when
the number of iterations is increased. Fig. 6 shows that the ohmic
efficiency of the antenna is slightly reduced at each iteration;
however, the ohmic efficiency is above 0.9 even in the small an-
tenna region.

C. The Quality Factor

It has been shown that the fractal Koch antenna improves
some features of a classical linear monopole when operating as a
small antenna. Namely, resonant frequencies are shifted toward
the longer wavelengths at each fractal growth iteration, making

Fig. 4. Input resistance (lossless) for the different fractal Koch monopoles.
The frequency is the resonant frequency of the K0 monopole.

Fig. 5. Computed radiation and ohmic resistance. As the number of iterations
increases, so does the antenna length and its ohmic resistance.

the antenna to be resonant even below the small antenna limit.
Such a frequency shift makes the input resistance appear consis-
tently larger in the fractal case than in the linear monopole one.
However, one must take into account that not only the input re-
sistance is raised, but also that the input reactance is increased.
Actually, a figure of merit of the small antenna is itsfactor,
which can be loosely estimated as the input reactance () to
radiation resistance ( ) ratio.
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Fig. 6. Efficiency of the Koch monopoles. At each new iteration there is a
small reduction on the efficiency due to ohmic losses. The conductivity of
copper has been considered in the computations.

The factor of the Koch antennas has been computed from
both experimental and numerical data. Thefactor, rather than
the Wheeler’s PF [10], has been chosen to check the antenna
performance because the latter might lead to some wrong con-
clusions in this case. Both parameters are equivalent at the very
low-frequency range when the antenna is operated far from res-
onance. At such a low-frequency region, thecan be computed
from the input impedance data as

(10)

In such a very low-frequency range, the Wheeler cap method
[10], [15], can be used to estimate the antenna ohmic resistance
and subtract it from the input resistance to evaluate the true an-
tenna radiation resistance. However, even though the measured
Koch antennas can be considered small, neither the Wheeler cap
method can be applied, nor its PF computation is straightfor-
ward. Since the fractal monopoles are resonant, the contribution
of the inductive component to the input impedance extends well
beyond the small antenna limit. If one directly applied (10), one
would get the wrong conclusion that a zero(and an infinite
PF) were achieved at resonance. Also, the Wheeler cap method
might lead to a wrong radiation resistance measurement since
the metallic cap would slightly shift the antenna resonant fre-

quencies where fast variations on the input parameters are ob-
tained.

To properly evaluate the antenna, one must find a proper
way to estimate either the average stored electric or magnetic
energy and apply the definitions in (2) and (3). The average
stored electric and magnetic energies of a lossless one-terminal
microwave network can be related to the input reactance ()
and susceptance ( ) as

(11)

(12)

where and are the input terminals current and voltage, re-
spectively. Since the power dissipated by the antenna is

(13)

the factor, as defined in (2) and (3), can be computed as

(14)

(15)

or equivalently as

(16)

One must be reminded that (11) and (12) only strictly apply
to one-port lossless network, but they become a good approxi-
mation for low-loss high- networks, which is the case of small
antennas. Actually, the definition in (15) is the same Chu uses
in his paper [17] to derive the antenna fundamental limit.
Equation (16) has been applied to compute thefactor over
the low-frequency range for the Euclidean and Koch fractal an-
tennas (Fig. 7). Both experimental and numerical data have been
used. In the latter case, ideal lossless Koch antennas have been
considered to evaluate the antenna, that is, only considering
power dissipation due to radiation. This has been done because
the experimental data includes the ohmic resistance that lowers
the overall , which might lead us to the wrong conclusion that
the reduction was only due to an increase of the ohmic losses.
The plot in Fig. 7 clearly shows that the fractal antenna not only
presents a lower resonant frequency and a larger radiation resis-
tance, but it also improves the factor of the linear monopole.
In a loose sense, suchcan be interpreted as the inverse of the
fractional bandwidth, which means that the fractal antenna fea-
tures a broader bandwidth than the Euclidean one. Up to 1.6-
bandwidth improvement is obtained when comparing the ideal
lossless monopole and K3 antenna, while up to a 2.25-band-
width enhancement is obtained when comparing the monopole
with the K5 antenna, which, however, has the contribution of
larger ohmic losses. Anyway, it is clear that thefactor is re-
duced at each fractal growth iteration and that, the larger the
number of iterations, the closer theto the fundamental limit
(the fundamental limit expressed in (1) is also shown for com-
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Fig. 7. Q of the fractal Koch monopoles for different levels of iteration. As the
number of iterations increases theQ approaches the fundamental limit of (1).

parison). It is commonly understood that an antennafactor
depends on how efficiently it uses the available volume inside
the radiansphere. As stated by Hansen in [11], being the linear
dipole a one-dimensional (1-D) object ( ), it inefficiently
exploits such a radiansphere volume. Thus, it is not surprising
that a fractal curve, featuring a fractal dimension (

for the Koch monopole), can become a more efficient
small antenna. Actually, fractal dimension is commonly loosely
interpreted as a measure of the space-filling properties of the
fractal object. Therefore, one should conclude again that there
exists a relation between the fractal geometric properties and the
electromagnetic behavior of the antenna, and that such prop-
erties can be readily employed to design useful antennas that
might improve some features of common Euclidean ones.

IV. CURRENT DISTRIBUTION

The peculiar behavior of the Koch monopole must be linked
to its geometrical shape. It is apparent that even though all
models have the same height, they perform as longer antennas
than what would be predicted from their height alone. It seems
that the electrical current propagates along the whole wire
length despite its shape such that the longer the whole wire,
the lower the resonant frequencies, regardless of antenna size
(height).

Fig. 8. Current distribution on the K3 monopole.

Fig. 9. Performance of the fractal Koch monopole as the number of iterations
increase. The electrical length of the antenna increases at a smaller rate that the
physical length.

Fig. 8 shows the current distribution along the K3 monopole
obtained from the method of moments analysis. The length of the
K3monopolehasbeennormalized to the lengthof thestraightK0
monopole ( cm). Several frequencies of interest are shown
to better understand the behavior of the antenna. For comparison,
thecurrentdistributionfor theK0monopole isshownfor thesame
frequency. At the first resonance of the K3 monopole, its length is
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Fig. 10. Computed radiation pattern of the K3 antenna. The dashed line shows for comparison the pattern of the K0 antenna. For a reference of the coordinate
system, see Fig. 2.

, and the current distribution along the K3 monopole
is very similar to the one of a quarter-wave length monopole. At
the small antenna limit ( ) the current distribution on the
K0 monopole is, as expected, triangular. At the same frequency,
theK3monopolebeing2.37 times longer,hasasinusoidalcurrent
distribution. At the frequency of resonance of the K0 monopole,
theK3monopolehasalengthof ,anditscurrentdistribution
approaches the one of a half-wave length monopole. Finally, the
current distribution is shown for the case K3 monopole, which
has a length of . At that frequency, as will shown in the next
section, thepatternof themonopolebecomesasymmetrical.

The current distribution along the Koch antenna suggests that
an arbitrarily small resonant antenna could be obtained by in-
creasing the number of fractal iterations as much as desired, so
the length of the monopole approaches a quarter-wave length.
Nevertheless, a detailed observation of the results shows a dif-
ferent picture. To gain some insight on the behavior of the Koch
monopole, the following two parameters are defined. First, we
define the normalized physical antenna length () as the total
length of the antenna normalized to its height, that is

(17)

where is the order of the iteration. Second, we define the nor-
malized electrical length as the normalized physical length
that a monopole should have to have the first resonance at the
same frequency of a given Koch monopole, that is

(18)

where and are the resonant frequencies of the K0 and K
antennas, respectively. Fig. 9 shows a plot of the evolution of
the electrical length as a function of the physical lengthfor
each new iteration of the Koch monopole.The current distribu-
tion shown for the K3 antenna might suggest that the evolution
would be close to , that is, the electrical length of the
antenna increases as the physical length. But, in fact, although
the electrical length of the antenna increases at each iteration, it
does not grow at the same pace of the physical length. It might
even be foreseen as a saturation point, where an increment on
the number of fractal iterations does not result in an increment
of the electrical size of the antenna. This is probably related to
the fact that small details in terms of the wavelength are not
relevant to the antenna behavior. Whether this limit value ex-
ists, and if it exists, what its value is, does not have a formal
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proof. Even the numerical or empirical determination is diffi-
cult. The exponential growth of the number of segments as the
fractal iteration increases leads to a huge numerical problem for
a relatively small number of iterations. On the other hand, due
to a resolution limitation in the manufacturing process there is
a technical problem in obtaining Koch antennas with a high
number of iterations.

V. RADIATION PATTERN

The radiation pattern for the K3 monopole at the same fre-
quencies of the current distributions of Fig. 8 is shown in Fig. 10.
The patterns have been computed as a dipole. The results show
that for an antenna length smaller than , the pattern cor-
responds to the one of a small antenna, and it is practically the
same of the K0 antenna. When the length of the antenna ap-
proaches , two interesting phenomena appear. First, the null
in the direction disappears. Probably due to the fact that the
radiation of the component of the current does not cancel out
anymore. It is also interesting to note that the pattern in the
plane is asymmetrical. It has to be noted that at this frequency,
the overall height of the antenna is , and thus larger
than the small antenna limit. Therefore, the phase contribution
due to different path-length propagation becomes noticeable in
the two abovementioned effects.

VI. THE LONG KOCH MONOPOLE

A final consideration on the possible multiband behavior of
the Koch monopole can be made. As shown in [4], the self-sim-
ilarity properties of certain fractal shapes results in a multiband
behavior of the antenna. That is the case of the Sierpinski gasket.
In plain words, self-similarity can be described as the replica-
tion of the geometry of the structure at a different scale within
the same structure. Any fractal defined with an IFS that contains
only similarities is self-similar [20]. This is the case of the trans-
formations of (9) that define the Koch curve. On the other hand,
an inspection of the geometry of Fig. 2 shows that the lower third
of the curve is a replica of the whole curve, but scaled down by
one-third. To check the possible multiband behavior of the an-
tenna, the input return loss of the K5 antenna was measured over
a wide frequency range. The results shown in Fig. 11 suggest a
harmonic behavior rather that a multiband behavior. For com-
parison, the input return loss of the K0 monopole is also shown.
A similar result was found for the Sierpinski gasket monopole
with low flare angles [22]. In the case of the Koch monopole,
as in the Sierpinski monopoles with low flare angles, the expla-
nation has to be found in the fact that the current distribution
is not confined to an active region, but it reaches the end of the
antenna, as it was shown in Fig. 8. The fractal structure can be
seen as a succession of embedded resonators, each one having
the fundamental resonant frequency scaled by a certain factor.
This factor is 3 for the Koch curve. The poor radiation resistance
of the individual clusters leads to a masking of the log-periodic
behavior by the existence of harmonic resonances in the larger
clusters of the structure.

Fig. 11. Measured input return loss of the K5 and K0 antennas. The behavior
of the input return loss of the K5 antenna suggests a harmonic, rather than a
multiband, behavior.

VII. CONCLUSION

It has been experimentally proven that certain fractal antennas
can be very efficient radiators despite their small size in terms
of the wavelength. It is well known that there are certain phys-
ical constrains to the performance of electrical small antennas.
It has been shown that Euclidean-shaped antennas are very far
from reaching their limit performance. It has been suggested that
this poor behavior is due to the inefficient way that these shapes
fill up the volume that encloses them. On the other hand, the
fractal counterparts of these antennas having a larger fractal di-
mension are more efficient in filling up the space. The result is
antennas that approach the theoretical limits for small antennas.
The practical applications can be readily seen. In a large number
of applications, and especially those involving mobile terminals,
the reduction of the antenna size is an ultimate goal. The pos-
sibility to employ antennas that fit in smaller volumes, but still
have an efficient behavior, is certainly appealing. The proof of
the existence of a limit in the performance of the antenna as the
number of fractal iterations increases is still a challenging re-
search topic.
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