
Master Thesis

eMule Attacks and Measurements

David Mysicka
dmysicka@ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Thomas Locher and Stefan Schmid

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Fall 2007



Abstract

Since the demise of the Overnet network, the Kad network has become not
only the most popular but also the only widely used peer-to-peer system
based on a distributed hash table. It is likely that its user base will continue
to grow in numbers over the next few years as, unlike the eDonkey network,
it does not rely on central servers, which tremendously increases scalability,
and it is more efficient than unstructured systems such as Gnutella. How-
ever, despite its vast popularity, this thesis shows that today’s Kad network
can be attacked in several ways. The presented attacks could be used either
to hamper the correct functioning of the network itself, to censor contents, or
to harm other entities in the Internet not participating in the Kad network
such as ordinary web servers. While there are simple heuristics to reduce the
impact of some of the attacks, we believe that the presented attacks cannot
be thwarted easily in any fully decentralized peer-to-peer system without
some kind of a centralized certification and verification authority.
Although there are many advantages of decentralized peer-to-peer systems
compared to server based networks, most existing file sharing systems still
employ a centralized architecture. In order to compare these two paradigms,
as a case study, we conduct measurements in the eDonkey and the Kad
network—two of the most popular peer-to-peer systems in use today. We
re-engineered the eDonkey protocol and integrated two modified servers into
the eDonkey network in order to monitor traffic. Additionally, we imple-
mented a Kad client exploiting a design weakness to spy on the traffic at
arbitrary locations in the ID space. We study the spacial and temporal dis-
tributions of the peers’ activities and also examine the searched contents.
Finally, we discuss problems related to the collection of such data sets and
investigate techniques to verify the representativeness of the measured data.

1



Contents

1 Introduction 3

2 Attacks on the Kad Network 5
2.1 Node Insertion Attack . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Publish Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Eclipse Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Measurements 14
3.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 eDonkey Server . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Measurement Framework . . . . . . . . . . . . . . . . 18
3.1.3 LogAnalyzer . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Request Distributions . . . . . . . . . . . . . . . . . . 28
3.2.2 Search Contents . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Kad Comments . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Representativeness . . . . . . . . . . . . . . . . . . . . 35

4 Related Work 37
4.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Outlook 40

6 Conclusion 40

A Reverse-Engineered Message Formats 42
A.1 The Kademlia 1.0 Protocol . . . . . . . . . . . . . . . . . . . 42
A.2 The Kademlia 2.0 Protocol . . . . . . . . . . . . . . . . . . . 48
A.3 The eDonkey Server Protocol . . . . . . . . . . . . . . . . . . 50

B User Guides 54
B.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2 eMule Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.3 Kad Measurements . . . . . . . . . . . . . . . . . . . . . . . . 58

2



1 Introduction

Peer-to-peer (p2p) computing is one of the most intriguing new networking
paradigms of the last decade. Not only do structured p2p systems, which
typically implement a distributed hash table (DHT) [1, 2], possess crucial
advantages over centralized systems for applications such as reliable data
dissemination, structured p2p systems may also play a pivotal role in the
challenging endeavor to redesign the Internet due to their valued properties
such as small routing tables, fault tolerance, and scalability. Today’s peer-
to-peer file sharing applications come in different flavors. On the one hand,
there are completely decentralized systems such as the Kad network which
is based on a distributed hash table where both the task of indexing the
content and the content itself is distributed among the peers.1 Other systems
still rely on centralized entities, e.g., a cluster of servers takes care of the
data indexing in the eDonkey network and so-called trackers handle the
peers in BitTorrent swarms. A server-based solution has the advantage
that it is easier to realize and that it works reliably as long as the servers
function correctly. Clearly, the downside of this approach is that the servers
can only sustain a certain number of peers, implying that the scalability is
limited and that an overload of concurrent requests can easily cause a system
failure. Purely decentralized systems do not depend on the availability of any
particular entity; however, such systems often demand larger contributions
from all participants.
This thesis examines popular representatives of the two network types: the
server-based eDonkey and the decentralized Kad network. eDonkey is one
of the largest p2p networks in use today; millions of users around the planet
use it to share various types of multimedia contents. While there are other
clients to gain access to the eDonkey network (like MLDonkey2 or the orig-
inal but deprecated eDonkey2000 client), by far the most popular client is
eMule3. It is an open source project written in C++, that was founded by
some anonymous developers due to missing features in the original client,
like a credit system for fair downloading or the use of compression to speed
up data transfer. But the most important feature by far is the integra-
tion of the Kad network, as an additional system for exchanging files and
information between participating peers. This network, which is based on
Kademlia [3], is currently the most popular distributed hash table. Each
peer in the Kad network has a 128-bit identifier (ID) which is normally cre-
ated by a random number generator. This ID is stored at the peer even after
it has left the network and is re-used once the peer returns. Routing in the
network is performed using these identifiers and the XOR metric, which de-
fines the distance between two identifiers as the bitwise exclusive or (XOR)

1Unstructured decentralized systems such as Gnutella are not considered in this study.
2See http://mldonkey.sourceforge.net/.
3See http://www.emule-project.net/.

3



of these identifiers interpreted as an integer. For all i ∈ [0, 127], every peer
stores the addresses of a few other peers whose distance to its own ID is
between 2i and 2i+1, resulting in a connected network whose diameter is
logarithmically bounded in the number of peers. For each of these contacts
in the routing table, a Kad ID, an IP address, and a port is stored. The
publish and retrieval mechanisms work roughly as follows. Each keyword,
i.e., a word in a file name, and the file itself, are hashed, and information
about the keywords, its associated file, and the address of the owner is pub-
lished in the network, i.e., this information is stored at the peers in the DHT
whose identifers are closest to the respective hash values. If a peer wants
to download a file with a certain name (a particular sequence of keywords),
it first queries the peer whose identifier is closest to the hash of the first
of the specified keywords, and this peer returns the information of all files
whose file names contain all the given keywords, and also the corresponding
file hashes. The requesting peer p1 can then download the desired file by
querying the peer p2 whose identifier is closest to the file hash, as p2 keeps
track of all the peers in the network that actually own a copy of the file. For
detailed information about the implementation of the Kad network refer to
[4], where we have analyzed the source code of eMule and reverse-engineered
all message types.
In the first part of this thesis we question whether the p2p approach is
mature enough to step outside of its “comfort zone” of file sharing and
related applications. In particular, not much is known about the ability of
DHTs to meet critical security requirements (as those required nowadays,
e.g., for domain name servers) and its ability to withstand attacks. To
this end, as a case study, we evaluate the feasibility of various attacks in
the Kad network, as it is currently the most widely deployed p2p system
based on a DHT with more than a million simultaneous users [5]. Our
study reveals that while the Kad network functions reliably under normal
operation, today’s Kad network has several critical vulnerabilities, despite
ongoing efforts on the developers’ part to prevent fraudulent and destructive
use. This thesis describes several protocol exploits which prevent peers
from accessing particular files in the system. In order to obstruct access
to specific files, file requests can be hijacked, and subsequently, arbitrary
information can be returned instead of the actual data. Alternatively, we
show that publishing peers can be overwhelmed with bogus information such
that pointers to the original files can no longer be accessed. Moreover, it
is even possible to eclipse certain peers, i.e., to fill up their routing tables
with information about malicious peers, which can subsequently intercept
all messages. Additionally, we briefly discuss how our network poisoning
attacks can also be used to harm machines outside the Kad network, e.g.
web servers, by tricking the peers into performing a Kad-steered distributed
denial of service (DDoS) attack. It is virtually impossible to determine the
true culprit in this scenario, as the peer initiating the attack does not take

4



part in the attack, which makes this kind of attack appealing to malicious
peers. All our attacks have been tested on the real Kad network using
the eMule client, which we modified for this purpose. Already with three
attackers, virtually no peer in the system was able to find content associated
with any given keyword for several hours, which demonstrates that with
moderate computational resources, access to any targeted content can be
undermined easily.
In the second part of this thesis wich is located in Section 3, we investi-
gate various properties of eDonkey and Kad. Therefore, we have collected
large amounts of data from both networks. For this purpose, we reverse-
engineered the eDonkey server software and published two own servers which
successfully attracted a considerable amount of traffic despite the fact that
we never returned any real content. For our Kad tests, we implemented a
versatile Measurement Framework that is capable of spying on the traffic
at any desired position in the ID space. It also permits running periodical
searches to be able to analyze changes of published content in the network.
Furthermore, the framework can be extended to run arbitrary measurements
in the Kad network.
In Section 4, we review related work. After that, ideas for future work and
extensions are presented in Section 5. This thesis then concludes in Section
6. During our research, we reverse-engineered many message types. They
are all listed in Appendix A. To reproduce our measurements and attacks,
Appendix B contains detailed instructions on how to set up and run them.

2 Attacks on the Kad Network

This section presents three different attacks on the Kad network which limit
the access to a given file f . In a node insertion attack, an attacking peer seeks
to attract search requests for f , which are answered with bogus information.
Alternatively, access to f can be denied by filling up the index tables of other
peers publishing information about f (publish attack). Finally, we describe
how an attacker can eclipse an arbitrary peer: By controlling all the peer’s
incoming and outgoing traffic, the attacker can prevent a peer from either
publishing information about f or from accessing it. A guide on how to run
each of the three attacks is available in Appendix B. The success rate of the
attacks was computed with the LogAnalyzer, a tool specially developed for
the analysis of the log files of the attacks and measurements implemented
in this thesis. It will be presented in Section 3.1.3.

2.1 Node Insertion Attack

By performing a node insertion attack, it is possible to corrupt the network
by spreading polluted information, e.g., about the list of sources, keywords,
or comments. We have implemented the attacks for keywords, that is, a

5



search for the attacked keyword will not give the correct results, but instead
arbitrary data chosen by the attacker is returned. For this attack to work,
we have to ensure that the search requests for the specific keyword are
routed to the attacking peer rather than to the peers storing the original
information. This can be achieved as follows. In the Kad network, a peer
normally creates its ID using a random number generator; however, any
alternative mechanism will work as well, as there is no verification of a
peer’s ID. In our modified eMule client, it is possible to select the peer’s
Kad ID manually. Thus, an attacker can choose its ID such that it matches
the hash value of the targeted keyword. Consequently, the peer will become
the node closest to this ID and will receive all the corresponding search
requests. The nodes storing the correct files typically have a larger distance
to the keyword’s ID than the attacker, as the probability for a peer to have
a random ID that perfectly matches the 128-bit keyword ID is negligible.
In order to guarantee that peers looking for a certain keyword only receive
faked results, the attacker must provide enough result tuples, as the eMule
client terminates the search after having gathered 300 tuples. The attacker
further has to include the keywords received from a peer in the filenames,
otherwise the replies are not accepted. In our attacks, we use filenames that
contain a unique number, the message “File removed from Kad!”, and the
keywords. Unique file hashes are needed such that the 300 tuples are not
displayed as one tuple in eMule’s search window.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Attack Duration (Days)

Su
cc

es
s 

R
at

e 
(%

) 3 Clients
1 Client

Figure 1: Percentage of successfully hijacked keyword requests in a node
insertion attack for 1 and 3 attackers during a time period of one week.

We frequently observed that eMule sends search requests not only to the

6



closest peer, even though this peer provided enough answers. This can be
explained by the delay caused when transmitting the 300 search results from
the closest peer. eMule will send another request to the second closest peer
before all of the results are received from the closest one. This of course
may harm the effectiveness of the attack, and hence it is beneficial to gain
control over the second, third, etc. closest IDs as well by means of additional
attackers. These attackers behave exactly the same way: All requests are
answered by supplying 300 faked tuples. Figure 1 depicts the traces obtained
during one week-long node insertion attacks performed using our modified
eMule client on the keyword “Simpsons.” Note that this attack influences all
queries in the entire Kad network not only for the search term “Simpsons”,
but also all other queries starting with the term “Simpsons” such as “Simp-
sons Movie” or “Simpsons Soundtrack” etc. are affected automatically. In
the first trace, only one attacker whose ID exactly matches the hash of the
keyword infiltrated the network. To measure the success of the attack, we
used another client, that we again modified to be able to periodically search
for an arbitrary keyword and log the results. With this client, we searched
for the term “Simpsons” once a minute and counted the number of returned
faked results. Since a single attacker is not sufficient, as mentioned before,
the attack is moderately successful in that only approximately 40% of the
returned results originated from the attacker. What is more, every single
query returned at least some results that are not faked. Further experiments
showed that using two attackers instead of one does not increase the success
rate substantially, but three attackers is already enough to hijack virtually
all requests. The second trace shows the success rate of the node insertion
attack using three attackers. On average, more than 95% of all returned
tuples were faked, and every batch of tuples contained at least some bogus
data created by the attackers. The plot shows that there are sudden drops
of the success rate once in a while. An explanation for this behavior is that
peers join and leave the network at a high rate, resulting in inaccurate rout-
ing tables. Consequently, a lookup request can be routed to a peer that still
stores results for this request and does not know about our attacking peers
yet.
The attack was repeated at other times using different keywords. All our
other experiment resulted in a similar picture and confirmed our findings
made with the “Simpsons” keyword. Our attacking peers received roughly 8
requests per minute from other peers in the network during the experiments.
As expected, the peer having the closest ID received the most requests at a
rate of roughly 4 requests per minute.

2.2 Publish Attack

In contrast to the node insertion attack, which forces the search requests
to be routed to the attacker, the publish attack directly attacks the peers

7



closest to the ID of the attacked keyword, comment, or source entry. The
index tables stored by the peers in the Kad network have a limited length;
for instance, the keyword table can store up to 50,000 entries for a specific
ID. Moreover, a peer will never return more than 300 result tuples per
request, giving priority to the latest additions to the index table. This
makes it possible to replace the original information by filling up the tables
of the corresponding peers with poisoned entries. Thus, an attacker seeks to
publish a large amount of information on these peers. Once the index tables
of the attacked peers are full, they will not accept any other publish requests
by other peers anymore. Therefore, the attacked peers will only return our
poisoned entries instead of the original information. Since every entry has
an expiration time (24 hours for keyword and comment entries, and 5 hours
for source entries), the clients have to be re-attacked periodically in order
to achieve a constant fraction of poisoned entries. In addition, an attacker
has to take into consideration the newly joining peers in the network; if they
have an ID close to the one attacked, their tables also have to be filled.
We have implemented the publish attack for keyword entries as well, yet
again by modifying the original eMule application. An existing timer method
is used to run the attack every 10 minutes. It consists of two phases. In the
first phase the 12 peers closest to the targeted ID are located, using eMule’s
search mechanism. In each run, only peers are selected that have not been
attacked before or that need to be re-attacked due to the expiration of the
poisoned entries. In the second phase, all the peers found in the first phase
are attacked, beginning with the closest peer found. To guarantee a full
cache list, 50,000 poisoned entries are sent divided into 250 packets contain-
ing 200 entries each. In order to prevent overloading the attacked client, the
sending rate was limited to 5 packets per second. Every entry consists of a
unique hash value and filename as in the node insertion attack. Since these
entries should match all search requests containing the attacked keyword, it
is necessary to include all additional relevant keywords (e.g. song titles for
an interpreter, year and language for a film title) in the filename; otherwise,
all the lookups with additional keywords would not receive the poisoned
entries, because not all the keywords are included. In the node insertion
attack, this problem does not occur as the additional keywords are obtained
from every search request and can directly be appended to the filename to
match the request. The success of each run is indicated by the load value
sent in every response to a publish packet. This value should increase with
every poisoned packet sent, from a starting level of about 10 - 20% to 100%
when the attack is finished. To measure the success more precisely, we again
use another client to periodically search for the keyword being attacked.
In comparison to the node insertion attack, it is clearly harder to maintain
a high success rate using the publish attack, due to the permanent arrivals
of new peers and the need to re-attack several peers periodically. While the
node insertion attack yields constantly high rates, this is not true for the

8



0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

Attack Duration (Hours)

Su
cc

es
s 

R
at

e 
(%

)

Figure 2: Percentage of faked replies received in a publish attack for the
keyword “Simpsons” during a time period of 5 days. Sometimes, the success
rate drops but then recovers again quickly.

publish attack. Figure 2 plots the success rate of an attack on the keyword
“Simpsons” over a period of 5 days. The success rate was measured with an-
other client periodically searching for the attacked keyword, as described in
the node insertion attack. While the attack works fairly well on average, at a
success rate of roughly 80%, the success rate periodically drops and remains
low for a certain time period before it recovers again. Overall, the success
rate is much lower than in the case of a node insertion attack, although
performing a publish attack is much more expensive. Again, repeating the
attack at other times using different keywords results in a similar pattern.
The reason for this peculiar behavior is that the peers responsible for the
targeted IDs that are online during the phase where the success rate is low
refuse to accept our publish messages. In fact, these peers do not even reply
to publish messages, even though they can be contacted, otherwise we could
not receive any lookup results from them. This behavior is unusual, because
a peer always has to respond to a publish message, even if its index table
is full. The only exception where a peer does not have to send a reply, is if
it is behind a firewall and therefore cannot be reached by other peers. To
eliminate this case, we send special firewall messages to all peers that do
not reply during our attack. These messages are normally used to deter-
mine whether a joining peer is directly connected or behind a firewall. This
improvement increases the number of attackable peers by a fifth, reaching

9



a level 85%. The remaining part of peers that do not accept our publish
messages explain the lower success rate of this attack. As the behavior of
this peers is not in accord with the protocol implemented in the real eMule
client, we suspect that modified versions of the original clients cause this
effect. They seem to be constructed for free riding purposes, without any
contribution to this file sharing network. What clients are used is hard to
determine as they do not directly provide this information. Thus, the use of
modified clients appears to be another reason why the node insertion attack
is superior to the publish attack.
In order to improve the success rate a more sophisticated implementation
could be used where the attack is split up into two concurrent processes.
The first one would permanently search for new peers with an ID close to
the one attacked and pass them to the second process which then would
attack these peers simultaneously. This would minimize the time during
which peers can respond with original data. As this improvement would not
solve the situation mentioned before, it was not implemented.

2.3 Eclipse Attack

Instead of poisoning the network to keep peers from obtaining certain infor-
mation, we can also attack the requesting peers directly and keep them from
sending requests into the Kad network. In the eclipse attack, the attacker
takes over the targeted peer’s routing table such that it is unable to commu-
nicate with any other peer in the Kad network except the attacker. As the
attacker simulates the whole Kad network for that peer, it can manipulate
the attacked peer in arbitrary ways, e.g., it can specify what results are re-
turned for any lookup, or modify comments for any file. The peer’s requests
can also be directed back into the Kad network, but modified arbitrarily.
Typically, the contacts in the Kad routing table are not uniformly dis-
tributed over the whole ID space. Rather, most of the contacts are located
around the peer’s ID to maintain short lookup paths when searching for
other peers in the Kad network (cf. [3]). The attacker takes advantage of
the fact that there are relatively few contacts in most parts of the ID space.
Concretely, we inject faked peer entries into these parts of the routing table
to achieve a dominating position. Subsequently, the faked peers are selected
for almost all requests. Figure 3 sketches this process. If we set the IP
address of all those faked entries to the address of our attacking peer, we
receive most requests of the attacked peer and can process them as desired.
We make use of the fact that the standard eMule client accepts multiple
neighbors of the same IP address.
Our measurements showed that a peer running eMule for an extended time
period has about 900 contacts in its routing table. As the maximum number
of contacts is 6,310, there is plenty of space in the routing table for the faked

10



 
 

 

Node N
Contacts of N

(a) Before Attack

 
 

 

Node N

Fake Contacts of N

Contacts of N

(b) After Attack

Figure 3: Changes to the routing table of the attacked peer during an eclipse
attack. The circle represents the ID space.

entries. To inject these faked entries the Hello Request4 message is used,
which is normally utilized during connection set up to check whether known
peers are still alive. As a side effect of this message, the sender of the
message is added to the receiver’s routing table. After enough entries are
injected, the attacking peer has to process the requests from all those entries
in order to keep them in the routing table of the attacked node.
To implement the eclipse attack by modifying the original client would be
very complicated, because the requirements for this attack are more complex
than for the other ones, as we will see in the following. It is necessary to
maintain a list holding all faked entries sent to the attacked peer, because
every new entry in the routing table is validated by sending a hello request.
As a consequence, we will receive such a request for every entry we have
injected. This request has to be answered with the same ID as we have
chosen when injecting the entry. In order to differentiate between these
requests, we assign a new port to every faked entry and maintain a data
structure to store this information. But this implies that we have to listen
on all those UDP Ports, to be able to process the requests. Since opening
such a large number of sockets is very CPU and memory intensive, we use
WinPcap5, a packet capture library for Windows, to bypass the protocol
stack and get direct access to all packets received. This, of course, requires a
filtering mechanism to pick out only the hello requests from the whole traffic.
After that, we generate a response for the requests using the corresponding
ID, which we look up in our data structure mentioned before, using the
incoming port of the request. To eclipse the attacked peer in the best way,
we answer all types of requests, we receive from that peer. If it asks for new
peers close to a specific ID, we reply with new faked peers that match this
ID, or are very close to it, to guarantee the success of the attack. If the peer

4A list of all message types and their format can be found in Appendix A
5See http://www.winpcap.org/.

11



asks for stored information we deliver poisoned results, as in the two attacks
discussed before.
As mentioned before, the eclipse attack cannot easily be realized by mod-
ifying the eMule client. We therefore implemented it as part of our Mea-
surement Framework, which basically offers the core functionality to access
the Kad network, as it contains all necessary parts from the source code of
eMule. The Measurement Framework will be discussed in Section 3.1.2.
Our experiments have revealed that the eclipse attack is effective, in partic-
ular if only certain keywords are targeted. In that case, the attacker only
has to partially fill the routing table of the attacked peer, which renders the
attack more efficient. We observed that in this case the success rate vir-
tually always reaches 100% within seconds. In the general case, where the
attack strives to eclipse a peer totally and not only for a specific keyword,
the success rate would be lower, depending on the distribution and the num-
ber of contacts in that peer’s routing table. But eventually, the success rate
would also reach the 100% mark, at the latest at the point of time when the
majority of the contacts has left the network. Naturally, the eclipse attack
is limited to merely a single attacked peer. The other two attacks are clearly
preferable if an attacker aims at hiding content from all peers.

2.4 Discussion

The preceding sections have presented three different attacks that can be
used to keep peers from acquiring the requested information. Naturally,
these attacks can also be combined in order to increase the chances of a
successful attack. However, these poisoning attacks cannot only be used for
this purpose. Rather, they can serve an attacker as basic building blocks to
pursue completely different aims.
We will now briefly illustrate how they can be used for another attack.
The resources of the Kad network’s peers and our attacks can be used to
drive a distributed denial of service attack (DDoS) against any machine
internal or external to the Kad network as follows: A node insertion attack
is performed in order to occupy some popular keywords. Let µ be the
machine (e.g., a server) to be attacked. We inform all requesters that µ
contains the desired files. Consequently, all requests are directed to the
attacked machine. Of course, the resulting load on µ is not larger than
on the machine performing the node insertion. However, the advantage of
this attack is that the attacking machine remains hidden; moreover, it is
generally harder to counter a distributed DoS attack than a normal DoS
attack as the request originate from different (and valid) IP addresses. Also
the Publish Attack can be used for the DDoS attack if we advertise wrong
IP-bindings of keywords. This has the additional advantage that the attack
induces more load on the attacked machine than on the attacker, as the
different Kad peers are directed to the attacked machine directly. Note that

12



DDoS attacks using a p2p system such as Kad are particularly nasty as the
peers store information about sources for a long period of time, implying
that such an attack could last several days with steadily changing peers
involuntarily performing the attack.
As all the described attacks can be performed easily and have a large impact,
it is mandatory to derive and implement counteractive measures. In order
to overcome the node insertion attack it must be guaranteed that choosing
specific IDs is infeasible. A straightforward approach, which is often de-
scribed in literature, is to bind the ID directly to the peers’ IP addresses,
e.g., by hashing the IP address. However, there are several reasons why
real-world p2p systems do not adhere to this simple rule. First, multiple
peers may share the same IP address, for example, peers in a local area
network behind a NAT router are typically addressed using the same public
IP address. These peers would all have the same peer identifier. Second, IP
addresses are often given out dynamically and the assignment of addresses
may change. In case of an ID-IP binding, this implies that peers have to
rebuild their routing tables when reconnecting to the network with a new
IP. Additionally, all the credits gathered by uploading data would be lost
irretrievably because the peer ID changed and hence the peer cannot be
recognized by other peers anymore. It seems that some of these problems
can be solved easily and the IP address can still be incorporated into the ID,
e.g., by hashing the IP address and a randomly chosen bit string to solve
the NAT problem, or by using a different, randomly chosen ID for the credit
system, together with a public and private key pair to protect it against
misuse.6 Hashing the IP address and a user-generated bit string is prefer-
able to including the port as this would require a static assignment of ports,
and switching ports would also lead to a new ID. However, the crucial ob-
servation is that creating such a binding is not sufficient to avert the attack
in general, as long as the ID includes a user-generated part. Assuming that
a hash function such as SHA-1 is used, an attacker can try out millions of
bit string in a short period of time in order to generate an ID that is closest
to the targeted keyword even in a network containing more than a million
peers. Thus, another form of peer authentication would be required which
is hard to achieve without the use of a centralized verification service. As
part of the strength of the network is its completely decentralized structure,
relying on servers does not seem to be an acceptable solution.
A simple heuristic to render the Kad network more resilient to publish and
eclipse attacks is to limit the amount of information a peer accepts from the
same IP address, i.e., a peer does not allow that its entire contact list is filled
by peers using the same IP address. This is also a critical solution as several
peers behind a NAT may indeed have the same public IP address. What is

6In fact, Kad already uses public and private keys to authenticate peers whenever a
new session starts.

13



more, an attacker with several IP addresses at its disposal can circumvent
this security measure. We conclude that straightforward modifications may
lead to an increased robustness, but a powerful attacker can nevertheless
launch various effective attacks, and deriving strong disincentives is chal-
lenging. Furthermore, a crucial observation is that many of the discussed
vulnerabilities do not only pertain to the Kad network, such attacks can be
launched against any fully decentralized system that does not incorporate
strong verification mechanisms.

3 Measurements

In the second part of this thesis, several measurement results from the eDon-
key and the Kad network are presented. We were particularly interested in
the user base of both networks. In this thesis, in contrast to other literature,
we monitor the actual user requests, namely the keyword search requests and
ignore automated requests which can also occur without any user interven-
tion (source requests). Keyword search requests are sent by eMule whenever
the user types in words to search for, whereas source requests are automat-
ically sent by eMule, to periodically retrieve new peers that share the same
file, the user is currently downloading. Peers that share a specific file are
called sources of that file.
Our measurements show that the temporal request distributions of the two
networks are very similar, exhibiting a high activity in the early evening with
high loads at the eDonkey servers or at the peers hosting popular files in
Kad. We also found that both networks are predominantly used in European
countries, but there are also many active users from Israel, China, Brazil,
and the U.S. This section also investigates the content shared in the two
systems. For example, we find that popular content in the eDonkey world
is often also popular in Kad and that eDonkey follows the popularity trends
of the real world. In general, our results indicate that peer activity results
in eDonkey directly carry over to the Kad network and vice versa.7 Finally,
we raise the question of the representativeness of the collected data. In the
Kad network, accurate data on the activity of a specific file can be obtained,
but due to the distributed nature of the DHT, it is inherently difficult to
compute global aggregates such as the most active file in the network. On the
other hand, in the eDonkey network, a server receives queries for virtually
all keywords, but it has to compete against other servers for the requests. If
only a minor fraction of the traffic arrived at our servers or if the servers to
be queried were selected with respect to specific properties such as latency,
the data could become biased. We will provide evidence that there is no
critical bias in our measurements.
This Section is divided into two parts. First, we present the setup of our

7This observation is not self-evident, given that we analyze only user-generated events.

14



measurements for both networks. In the second part, we discuss the results
from each measurement.

3.1 Measurement Setup

The eMule client enables access to the classic, server-based eDonkey net-
work and the decentralized Kad network, which is, as mentioned before, an
implementation of the distributed hash table Kademlia [3]. The different na-
ture of the two networks requires different measurement techniques. In the
following, we will first present our approach to collect data in the eDonkey
network. Subsequently, we will report on the functionality of our Measure-
ment Framework which allows us to monitor traffic at arbitrary spots in
the ID space of the Kad network. After that, we will provide details on
the LogAnalyzer, a analysis tool which we implemented specifically for this
thesis.

3.1.1 eDonkey Server

eMule offers 3 different types of lookups, whereof two types search in the
eDonkey network. Either only the server which eMule is currently connected
to is asked (local search), or in the case of a global search, all known servers
are queried. When a user issues a query using the global search, the keywords
of the query are sent to a subset of servers, which subsequently respond to
the client with information about where to obtain the requested file. We
found that the peers iterate over the list of servers contained in their server
file, querying one server after the other as long as less than 300 results have
been returned. The order of servers in this list reflects the history of when
peers learned about these servers, i.e., old servers are at the top of the list
while new servers are appended at the end of the list.
Today, there is a large number of eDonkey servers all over the world, most
of which are based on the lugdunum8 software. This software is not open-
source as the developers try to prevent the creation of fake servers or any
other undesirable modification that could endanger the correct functioning
of the lugdunum servers. In order to collect data in the eDonkey network,
we reverse-engineered the server software (version 17.13) and implemented
our own server application, which we call the eMule Tracker. It is written in
C#, using Microsoft’s Visual Studio 2005. Figure 4 provides a picture of the
graphical user interface. A detailed description of all the components of the
interface and a guide on setting up the server can be found in Appendix B.
In the following we will describe in detail how our tracker operates.
Initially, our tracker imports all known eDonkey servers from a file. We
use the same file format as eMule to be able to load prepared server lists,
also known as server.met files, which are obtainable from various websites.

8http://lugdunum2k.free.fr/kiten.html

15



Figure 4: The graphical user interface of the eMule Tracker.

The tracker announces itself to every server on that list, one after the other.
By analyzing the communication between two servers, we found that the
following messages are sent from a joining server: First, a server list request
is sent, followed by a server status request and a server description request
(the format of these messages can be found in Appendix A). In return, our
tracker receives from each contacted server a list of servers that are alive,
and the current status and description of the corresponding server. If there
are any new servers, they are added to the server list and also contacted.
As a side effect of these queries, our tracker is added to the other server’s
list. This is vital as peers keep their server lists up to date by periodically
asking the servers they are connected to for their lists of currently known
servers; i.e., once our tracker appears in these server lists, all peers will
quickly learn about the existence of it. In order to remain a member of
these lists, our tracker correctly answers the status requests of other servers.
In addition, the tracker re-announces itself every hour to all servers on the
list. However, due to legal concerns, we neither store nor return any real
data. Moreover, we pretend having a high number of users and shared files,
but we deny any login requests and reply with a message indicating that
our server is full. Since the number of users and shared files is sent in the
server status response, any values can be chosen and spread to the other
serves and clients. We have set these numbers for our tracker in accord with
the largest servers currently present in the eDonkey network. This gives
our tracker good chances to become as popular as other servers. To give the

16



impression that our tracker is fully occupied and cannot serve any additional
peers, we set the actual number of users very close to the maximum number
of users allowed (another value which is sent in the server status response).
As the load on a server usually varies over time, we simulate this behavior
through randomly changing our number of users and files every once in a
while.
We found that there are several possibilities how to implement a fake server
with the purpose of logging search requests. The one that we presented
before is simple and yet effective, as we will see when we present our mea-
surement results later on. Another more complex variant would be to allow
peers to log on the server and send information about their shared files.
The problem which then arises is that the peers logged on the server can
now locally search on this server. If we did not respond with real data in
this case, the peers would soon discover the fake server. In contrast, this
is no problem in our implementation because peers cannot log on to the
server and therefore the server is only used for global searches, where many
servers are asked and not responding does not stand out, because the search
results of all servers are combined. A possible solution for this problem
would be to send real results (i.e., matching filenames received from joining
peers before) but change the IDs of the files to a random value, so that
the peers see real results and can select them for downloading. But these
files will never download, because of the random file hash ID for which no
other peers sharing a file with exactly this ID will be found. Hence, the
peer will believe that there are no other peers sharing this file and will not
blame the (faked) server in the first instance. It is difficult to say whether
this second variant would lead to more search requests and therefore more
data to collect. But it is clear that it has several disadvantages. The biggest
disadvantage concerns the resources, as responding with real data would not
only drastically increase the bandwidth used by the server but also require
far more processing power and memory. Besides, the chances to spot the
fake server would be greater, if malicious data is returned than if no data is
sent.
Due to the iterative lookup procedure of the global search, which is by far
the most popular search, our tracker is contacted continually, regardless of
which servers the peers are connected to. As a result, we can collect a large
amount of data about many different kinds of requests. To measure the tem-
poral distribution, we count the number of source and keyword requests and
the login trials every minute. Additionally, we store all keyword searches
including their IP address and time of request as they are the most interest-
ing type of requests. Due to the enormous amount of source requests which
we receive, they must be filtered and only requests matching specified IDs
are logged. Storing the mentioned requests makes it possible to compute
global aggregates such as the most popular keyword in the network, or the
most active peer’s IP address. Naturally, this data is only representative if

17



we receive a substantial fraction of all requests in the network. This issue is
discussed in more detail in Section 3.2.4.

3.1.2 Measurement Framework for the Kad network

In the Kad network, information about the location of specific files is stored
at the participating peers themselves, which all have so-called overlay IDs.
In order to find a file for a given keyword k, a peer computes a hash function
h(k) of k and routes, in a multi-hop manner, the request to the peer P
having the overlay ID closest to h(k). This peer P stores the hash codes of
all the files associated with this keyword. The matching filenames and the
corresponding hash codes of these files are then returned. Given a hash code
h(f) of a file f , it is then possible to get a list of all the peers possessing
a copy of f by again routing to the peer whose ID is closest to h(f) as
this peer is responsible for the sources of f . The hash function used in
the Kad network is a modified version of the common but deprecated MD4
algorithm. It was intentionally chosen by the developers to be compatible
with the eDonkey network, which also uses this hash function.
We created a Measurement Framework based on the eMule client’s algo-
rithms for the Kad network, in order to collect data on the peer activity in
the Kad network. Our framework exploits the fact that Kad uses randomly
chosen overlay IDs, which enables us to place our peers at any desired place
in the ID space. On the one hand, performing measurements in the Kad
network is simpler than in the eDonkey network. This is due to the fact
that the peer closest to the hash of a file f will be contacted by all peers
interested in obtaining this file f . Thus, as there is a unique location where
peers obtain information about f , data of good quality can be collected by
occupying the corresponding ID and spying on the traffic. On the other
hand, the distributed nature of the Kad network renders it more difficult
to measure global quantities such as the most popular file in the network.
Answering such a query would require to occupy a large portion of the entire
ID space. Hence, we confine ourself to acquiring small samples of the en-
tire traffic and try to juxtapose these samples and the data acquired in the
eDonkey network in a reasonable manner. In the following we will describe
the design of the Measurement Framework with its different components.
Moreover, we will report on all measurements that are realizable with this
framework and how it can be extended to implement new measurements.
We implemented the Measurement Framework in C# like the other applica-
tions in this thesis. Basically, it consists of 5 components: the Kad core, a
set of tasks, a task scheduler, a logging component and the graphical user
interface. Figure 5 shows the relations between these components. The Kad
core component implements all functions needed to communicate with the
Kad network, i.e. searching for nearest nodes to a given ID, searching for
files matching a specific keyword (keyword search), searching for peers that

18



share a specific file (search for sources) and searching for comments on a
given file. It maintains a routing table, containing other peers of the net-
work, called its contacts. The content of the routing table is stored on disk
when the framework is closed, so that the contacts are available on the next
start. This is crucial as in every peer-to-peer system, because a peer cannot
connect to the network without knowing at least one other peer. We have
chosen to use the same file format for storing contacts on disk as in eMule9,
to be able to exchange contacts between our framework and eMule. Since
the Kad core component is also contained in eMule, we ported the source
code to our framework where possible. The only difference to the original
code concerns the routing table. While eMule uses a highly unbalanced bi-
nary tree that stores far more contacts near the ID of the user (see [4] for
an analysis of eMule’s routing tree), we did not incorporate any limitations
to the binary tree. Consequently we can store more contacts, which can be
useful for various measurements.

 

Tasks 

GUI 

KAD 
Core 

Task 
Scheduler

Logging 
 

Figure 5: Components of the Measurement Framework.

When measuring temporal changes of the network, a periodically repeat-
ing process is needed, that performs a specific measurement. This might
be a search operation for a certain keyword or file, or the accumulation of
all peers currently present in the network. We have therefore developed the
tasks component, which consists of freely definable tasks. Each task contains
a method Run() whose content is repeatedly executed. From this method it
is possible to access all needed functions from the Kad core component to
implement the desired measurement. Three special tasks are used to main-
tain the routing tree. This is necessary, as peers join and leave the network
at a high rate. To distinguish these tasks from others, they are marked as
internal tasks in the graphical user interface, whereas the others are called
user tasks. One of them removes dead peers from the routing tree through
periodically asking all peers if they are still alive. The second task searches
for new peers to populate the routing tree and to compensate for leaving

9Contacts are stored in the file nodes.dat.

19



peers. The third internal task stores all peers currently contained in the
routing tree to disk in arbitrary definable intervals. For our measurements
we have implemented two user tasks. To be able to monitor peers over time,
the Scan IDs task creates a snapshot of all peers that can be reached in the
network at a specific point of time. For this purpose, it asks the peers for
their neighbors, beginning with the smallest ID going up to the largest. The
resulting peers of each snapshot are then stored to disk, so that they can
be analyzed later. The second user task which we implemented, is used to
periodically run keyword searches for a defined keyword. It uses the search
function from the Kad core and stores the results into a file. The Measure-
ment Framework can also be extended with new tasks. For this purpose, we
used a task interface, which is implemented by all tasks. To create a new
task a new class has to be created that implements the task interface. Then,
the method that is periodically executed has to be written. Finally, the new
task has to be added to the list of tasks (refer to Appendix B for detailed
instructions).
To manage the tasks explained before, we have designed a task scheduler.
Every task defines an interval, stating how often it should be executed.
The task scheduler computes the next execution time for every task using
its interval. As soon as this point of time is reached, the corresponding
task is executed. For this purpose, the task scheduler invokes the task’s
Run() method. After this method has finished, the new execution time is
computed. To prevent all tasks from being started at the same time when
the framework is launched, the first execution time includes a random time
shift of at most one minute. All tasks are run in separate threads so that
they can be executed in parallel. Shared resources, like the routing table,
use locking mechanisms to protect themselves from being accessed by more
than one task at the time.
To store measurement results a logging component was developed. It offers
the possibility to show the results in a log window of the graphical user
interface. To be able to analyze these results at a later time, they are also
written to a log file. If a measurement produces plenty of data that cannot
be shown in the user interface, it can also be written directly to a file. For
such occasions, the task can use an own instance of the file logger enabling
it to store its data to a separate file. This also simplifies the analysis of that
task’s data, because it is separated from other measurements. To write a
new information to the log, the file logger and the user interface logger offer
a method to append a new line to the log. Additionally, the latter also has
a method to add debug text to the log, which is not written to disk and not
even shown in the user interface if the corresponding option is chosen. It
can be used for debugging purposes of newly developed tasks.
The Measurement Framework uses its graphical user interface component to
inform the user about the state of all the other components. Furthermore,
the user can interact with the framework via this user interface. In the upper

20



Figure 6: The graphical user interface of the Measurement Framework, in-
cluding all its tabs.

21



half, the interface is divided into several tabs, whereof only one tab is visible
at the same time. The log window is placed underneath these tabs, so that it
is always visible. See Figure 6 for a screenshot of the user interface including
all tabs. The first tab shows the Kad core component. It includes several
buttons for operations on the contacts in the routing table. They are mainly
used for debugging purposes, e.g., for printing out all contacts or writing
them to disk. A list is placed beneath these buttons, showing all currently
running searches in the Kad network. It displays various information about
each search, such as the type and status, the target and the number of
requests and responses. The next tab visualizes the tasks. It contains a list
that shows properties for each task. This includes the name and type of the
task, the interval and the next execution time, as well the current state of
the task. A context menu is available upon right click on an arbitrary task.
It allows to enable this task, set a new interval and also to immediately
start or abort that task. The tasks tab is followed by two tabs that belong
to extensions of the Measurement Framework (which will be discussed later
on). The first tab controls the eclipse attack. It includes several fields
that are needed to configure the attack and buttons to control it. There
are also counters, which visualize the state of the attack. The next tab
controls the ID listening extension, with several counters to see the state
of this extension. The last tab is the options tab. It shows configuration
settings of the framework, such as the ID used in the network and the
ports to communicate with other peers. Additionally, the user can choose
whether to show debug information in the log window or not, by checking
the appropriate checkbox.
As already mentioned, the Measurement Framework contains two exten-
sions, which will be explained now. One extension is the eclipse attack,
whose implementation was already discussed in Section 2.3. Since the Mea-
surement Framework contains all functionality to communicate with the
Kad network, it has everything needed for this attack. It was therefore inte-
grated into the framework, instead of creating a new application. Detailed
instructions on how to configure and run the eclipse attack can be found in
Appendix B. The second extension is the ID listening functionality, which
allows us to position the framework on an arbitrary ID in the network and to
listen to the requests sent to that ID. After the desired ID has been entered
into the appropriate field and the listening was activated, the framework will
change its ID from the one displayed in the options tab to the entered lis-
ten ID. Through periodically checking on the contacts in the routing table,
these will spread the new ID into the network and soon all requests con-
cerning this ID or an ID close to it will be routed to the framework. The ID
listening extension logs these requests to a file. In particular, the keyword
requests, source requests, and comment requests are logged including the IP
address of the sender and the timestamp. Several fields visualize the request
counts and the request rates (requests per minute). Furthermore, poisoned

22



comments can be sent to requesting peers. If this option is activated, every
comment request is answered with six comment entries, stating that the file
is a fake or that the filename does not describe the content of that file. This
is done in several languages, to give the impression that different peers have
written these comments.

3.1.3 LogAnalyzer

Every attack or measurement in this thesis uses a log file to continuously
store the progress or the results. These log files have to be further processed
to measure the success of an attack or to extract the data from a measure-
ment that we are interested in. In the majority of cases, a sequence of data
is needed which can then be visualized in a chart. For this purpose, we have
developed the LogAnalyzer, an analysis application that is able to process
all the different log files we have generated. In fact, all our measurement
results in Section 3.2 and all the success measurements of our attacks were
obtained using the LogAnalyzer.

Figure 7: The graphical user interface of the LogAnalyzer.

For every analysis we have implemented, the graphical user interface of the
LogAnalyzer provides a button to start it. These had to be organized into
several tabs to fit on the screen, as can be seen in Figure 7. Thus, there
is a tab for analyses concerning the attacks, the Measurement Framework,
and there are two tabs for the eMule Tracker. Finally, there is also a tab
for other tools. An output window is placed on the right hand side of the
interface. It displays the output after an analysis has finished. Above this
window, a progress bar shows the progress of a running analysis and the

23



elapsed time. This is useful as some analyses need up to several minutes to
finish, especially when log files of hundreds of megabytes are processed. For
further processing, the output can be copied to clipboard with the appro-
priate button. It is also possible to copy the series of the output only. This
is useful when creating charts of the series. A button to clear the output
window is also provided.
Some of the analyses identify the peer’s origin from its IP address. To realize
this, we integrated MaxMind’s GeoIp Country Database10 into our analyzer.
We have also extended it, to be able to categorize not only by country but
also by continent. After pressing the button of a specific analysis, first the
log file which will be analyzed has to be specified. Some analyses also require
additional options which can be chosen in a pop up window shown after the
open log file dialog. In the following we will describe each analysis of the
LogAnalyzer by giving information on what it needs as input data, how it
processes the data, and what the output is.

Attacks - Node Insertion (Request Series): This method analyzes the
log of the node insertion attack, which contains an entry for every request
received, including its timestamp, the IP address and ID of the requesting
peer. It counts the requests per minute or day and outputs a sequence of
it. In addition, the origins of the requests are evaluated. Only requests that
match the specified ID are considered.

Attacks - Node Insertion (Day Average): This function also analyzes
the log of the node insertion attack. It computes the course of the requests
on an average day, by creating the average over all measured days. The
output is a sequence of 1440 requests, one for every minute of the day. To
produce this sequence, the file first has to be pre-scanned to determine the
measurement period. This period has to be trimmed to a multiple of 24
hours to prevent distortions. Then, the file is scanned again to count the
requests. For each request, the minute number of the day is determined and
the number of requests of that minute is increased. At the end, every entry
in the array holding these 1440 minute requests is divided by the number
of days of the measurement period. In addition to the day average of all
requests, also separate day averages are calculated for every country.

Attacks - Publish Attack: With this method the log file of the publish
attack is analyzed, which contains the IP address, ID, type (Kad1 or Kad2)
and version of every attacked peer. For every round of the attack (which is
periodically repeated and new peers are attacked) the number of attacked
peers is computed and also how many thereof could be attacked successfully.
After outputting this sequence, a summery of all rounds is printed, including
the percentage of successfully attacked peers and the increase of the success

10See http://www.maxmind.com/app/geolitecountry/.

24



originating through the usage of firewall packets, as described in Section 2.2.
Additionally, a list of countries of all attacked peers is generated and another
list of countries for those peers that could not be attacked.

Attacks - Success Measurement: The modified eMule client for the pub-
lish attack also has the feature of periodically running searches for a specified
keyword. It is used to measure the success of all the attacks presented in
this thesis. The log of these periodic searches contains entries of all peers
that returned results to the search for every search round. An entry consists
of the IP address and ID of the peer, the number of returned results, and
how many thereof are faked. The analysis creates a sequence containing the
current search round number and the percentage of faked results obtained
in this round.

Measurement Framework - Keyword Search (Top 100): This method
reads the log of the keyword search task containing all results received in
each search round and computes the 100 most popular keywords found in
all filenames. Of course, the first place will always contain the keyword that
we searched for as this occurs in every filename. The ranking obtained can
be used to pick out interesting keywords whose frequency is then observed,
using the following analysis.

Measurement Framework - Keyword Search (Observation): In this
analysis the same log is used as in the one before. Now, interesting keywords
can be entered and their frequency will be computed for every search round,
creating a sequence of them. As the number of search results varies over
time, the keyword frequencies can also be computed relative to the first
keyword entered (which is in most cases the keyword that was searched for).
Plotting these frequencies indicates the changes of the observed keywords
over time.

Measurement Framework - Keyword Listen (Day Average): The
format of the keyword listening log (from the ID Listening extension of
the Measurement Framework) has the same format as the log of the node
insertion attack. This way we are able to use the same analysis for the attack
and the measurement. This analysis is very similar to the node insertion
day average analysis, except that the day average sequences are created for
continents and not for countries.

Measurement Framework - Source Listen (Statistics): This analysis
reads the general log of the Measurement Framework (mflog.txt) and filters
out the statistics of the source listening feature. They include the number of
source requests, matching11 source requests, matching11 comment requests,

11The requests that match the ID that we are listening to.

25



and kademlia requests12 received per minute and are logged every minute.
This analysis prints the sequence of these requests.

Measurement Framework - Scan IDs Search: This method runs through
the log generated during an ID scan using the scan IDs task of the Measure-
ment Framework. First, a sequences of distances between neighboring peers
is printed (going linearly through the ID space). In addition, a sequence of
1000 items is printed showing the distribution of these distances. If plotted,
this sequence corresponds to a histogram with 1000 buckets.

Tracker - Top 500 Keywords: In this analysis a list of the 500 most
searched words in the eDonkey network is created. Furthermore, a ranking
is generated showing the countries with the most requests.

Tracker - Keyword Requests Day Average (Overall): This method
produces an overall distribution of the keyword search requests on an average
day. The procedure is similar to the other day average analyses discussed
before. Also it produces day averages for the 20 most active countries.

Tracker - Keyword Requests Day Average (Continents): Similar to
the previous analysis. The difference is that the day averages are created
for continents and not for countries.

Tracker - Keyword Requests (Country Activity): This analysis cal-
culates the activity of countries by cumulating keyword requests per IP
address. The more requests per IP address there are on average in a coun-
try, the more active it is. First, the ranking of the countries’ activities are
printed. Furthermore, all IP addresses and their request numbers for the 10
most active countries are written to separate files.

Tracker - Keyword Observation: This analysis computes the frequencies
of specified keywords from the keyword search requests. These are printed as
sequences either in hour or day intervals. It is possible to define that several
keywords have to appear together in a request in order to have a match.
This is necessary if one of the keywords alone could be used to search for
other objects (e.g., if observing a specific song, the title and the interpreter
have to be present in its filename).

Tracker - First Keyword Counting: This analysis counts occurrences of
a specified keyword, only if it appears as the first word in the request. This
is needed to compare with keyword listening requests in the Kad network,
because the Kad keyword searches are hashed using the first word only. If
we place our framework to a specific ID, then we will receive all keyword

12Such requests are used to find peers close to a specified ID.

26



requests whose first word’s hash matches the specified ID. The occurrences
are returned as sequences in hour or day intervals.

Tracker - Statistics: This method filters the debug log of the eMule tracker
for entries stating the number of keyword requests, source requests and login
trials received per minute. It generates sequences of these three measured
values (in minute intervals).

Tracker - Source Listen: The tracker filters the source requests received
for three specified IDs and logs the number of requests of these three IDs
every minute. This analysis collects these log entries and generates sequences
of the request frequencies for the three IDs. This is useful when comparing
the eDonkey network with the Kad network regarding the request numbers.

Tracker - Representativeness: This analysis computes the representa-
tiveness of the tracker by showing differences between Kad and eDonkey
regarding the origins of the requests. For this purpose, a log file of the
Measurement Framework and one of the eMule Tracker is compared. IP ad-
dresses that occur in both logs are placed into a joint list. If an address only
occurs in one of the logs it is placed into a separate list of the corresponding
network. After the logs are scanned, the origins of the IP addresses are
retrieved, so that we can find out if there are differences between the two
networks.

Tracker - Filter for IP: Filters the log of the Tracker for a specified IP
address and prints only requests that match this address. This is useful when
analyzing whether a specific client has sent some requests to the tracker or
not.

Tools - File Merge: This utility merges several files into a single one. For
this purpose, all files to merge have to be selected in the file open dialog.
The merging order is determined by the alphabetical order of the filenames.
This utility comes in very handy, as large log files often have to be split for
better handling. Furthermore eMule splits its log files automatically. In our
implementations we split them by stopping the application and moving the
file into another directory. Then, we restart the application which creates a
new file.

3.2 Measurement Results

This section summarizes our measurement results. We investigated the dis-
tribution of the user base across countries of both eDonkey and Kad and
also the temporal and spacial distribution of the users’ requests. In addition,
the concrete content that users search in the system is examined.

27



3.2.1 Request Distributions

Using our eMule Tracker, we set up two fake servers, each running on a
dedicated machine. Within a few days after announcing our servers, they
attracted much traffic. Figure 8 shows the activity of our servers during 4
days. We see that the request pattern remains fairly stable across all days.
On average, during a measurement period of 4 weeks, our servers received
roughly 1,550 login requests, 448 keyword requests and 150,228 source re-
quests per minute. The average bandwidth required to run each server is
approximately 300 KB/s. Note that a correct server requires substantially
more bandwidth as it has to reply to all keyword and source requests. Due
to the additional traffic caused by re-announcing our servers at other servers
once per hour, our servers are overloaded for a short time resulting in reg-
ular drops of handled requests, which is most apparent in the curve of the
recorded source requests.

0

500

1000

1500

2000

2500

3000

3500

4000

24
.1

0.
  1

8h
 

25
.1

0.
  0

0h
 

25
.1

0.
  0

6h
 

25
.1

0.
  1

2h
 

25
.1

0.
  1

8h
 

26
.1

0.
  0

0h
 

26
.1

0.
  0

6h
 

26
.1

0.
  1

2h
 

26
.1

0.
  1

8h
 

27
.1

0.
  0

0h
 

27
.1

0.
  0

6h
 

27
.1

0.
  1

2h
 

27
.1

0.
  1

8h
 

28
.1

0.
  0

0h
 

28
.1

0.
  0

6h
 

28
.1

0.
  1

2h
 

28
.1

0.
  1

8h
 

K
ey

w
or

d 
R

eq
ue

st
s 

an
d 

Lo
gi

n 
Tr

ia
ls

 p
er

 M
in

ut
e

0

50000

100000

150000

200000

So
ur

ce
 R

eq
ue

st
s 

pe
r M

in
ut

e

Source Requests
Login Trials
Keyword Requests

Figure 8: Different server requests over time. The y-axis for the source
requests is shown on the right, for the login trials and the keyword requests
it is shown on the left.

The keyword searches are particularly interesting to study, as they are en-
tered by users directly and are hardly automated. Consequently, the amount
of search requests varies over the day. Figure 9 shows this distribution for
different continents. The figure reveals that in Europe and America the
minimum number of requests is reached in the early morning and this num-
ber continuously increases until midday, where it stays on a more or less
constant level during the whole afternoon. Then it increases again after the
working hours until the maximum is reached at around midnight. The curve
for Asia looks slightly different; the maximum is also reached at midnight,
but there is not such a sharp decline during the night, and the number of

28



requests even increases again reaching a second local maximum in the early
morning. Note that the maximum number of requests is set to 100% for
each continent in order to show this diurnal pattern. The total number of
requests per day in Europe, America, Asia, and Africa plus Middle East are
397,060, 156,322, 42,287, and 48,850, respectively, which necessitates this
normalization and also demonstrates the predominance of Europe in the
eDonkey network.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day (GMT)

R
ea

lti
ve

 R
eq

ue
st

 R
at

e

Europe
America
Asia

Figure 9: Temporal distribution of keyword search requests on an average
day on eDonkey, grouped by continents. The time on the x-axis is based on
the Greenwich Mean Time.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day (GMT)

R
ea

lti
ve

 R
eq

ue
st

 R
at

e

Europe
America
Asia

Figure 10: Temporal distribution of keyword search requests on an average
day on Kad, grouped by continents. 14 monitoring peers in Kad are used
to compute these numbers. The time on the x-axis is again based on the
Greenwich Mean Time.

As one might expect, the distribution of the search requests in the Kad
network is similar. Figure 10 depicts the temporal distribution of requests

29



again for the three continents in the Kad network. Again, the curve for Asia
is quite different from the others. As opposed to the other continents, the
maximum number of requests in Asia is reached in the morning and not late
in the evening. We obtained these measurements with the Measurement
Framework’s ID Listening extension. We occupied 14 randomly chosen IDs
and logged all requests on these peers and used the average number of re-
quests in this figure.
We can look at the origins of the requests in more detail and observe that
European countries play an important role in eDonkey, the only country
among the five most active countries outside of Europe is Brazil. Figure 11
depicts the percentage of all requests originating from each of the 20 most
active countries per month, both for the eDonkey and the Kad network in
descending order of activity in the eDonkey network. A first observation
which can be made is that the spacial distribution is more concentrated in
Kad than in eDonkey. Moreover, it can be seen that the same countries are
the most active ones in both networks. Note that, although eMule grants
access to both networks, users have to enter manually where they want to
search and thus this result is not self-evident. Furthermore, the Kad network
seems to be significantly more used in Europe, especially in Italy and France,
than elsewhere. The question whether this is due to a more strict legislation
remains open.
It is difficult to assess the popularity of these networks by comparing the
absolute number of requests, as there are countries with a much larger pop-
ulation or a higher Internet penetration rate. For this reason, we have
normalized the request rates received from each country by the number of
Internet users in that country.13 As can be seen in Figure 12, the picture
looks different in the normalized case. There are three quite active countries,
Morocco, Algeria, and Israel, while all other countries have a comparably
small number of requests per Internet user per month. The reason for this
exceedingly high number of request originating from Morocco and Algeria
might be simply due to the small number of Internet users in these coun-
tries. Another possible reason is that relay servers are positioned in these
countries in order to obfuscate network traffic. The observation that a large
number of requests originate from a small number of IP addresses supports
this claim. As there are many different IP addresses active in Israel and
given that it is generally one of the most active countries, it seems that
these networks are simply highly popular, even more so than in Europe.
As far as the other countries are concerned, the graph shows that there
is not a significant difference between the popularity of eDonkey and Kad
among them. What is more, the distribution for both networks has a long
tail; as many as 21 countries exhibit a normalized search activity of at least
20% of the search activity of Spain, implying that both networks are pop-

13Data obtained from http://www.internetworldstats.com.

30



0

5

10

15

20

25

30

Ita
ly

Fr
an

ce

B
ra

zi
l

S
pa

in

G
er

m
an

y

Is
ra

el

U
ni

te
d 

S
ta

te
s

P
ol

an
d

C
hi

na

A
rg

en
tin

a

P
or

tu
ga

l

C
an

ad
a

U
ni

te
d 

K
in

gd
om

B
el

gi
um

R
us

si
an

 F
ed

.

M
ex

ic
o

Ta
iw

an

N
et

he
rla

nd
s

S
w

itz
er

la
nd

M
or

oc
co

Pe
rc

en
ta

ge
 o

f a
ll 

R
eq

ue
st

s

Server
Kad

Figure 11: Origins of keyword search requests on our servers and in the Kad
network.

0

5

10

15

20

25

M
or

oc
co

A
lg

er
ia

Is
ra

el

Tu
ni

si
a

S
pa

in

Ira
n

Ita
ly

S
au

di
 A

ra
bi

a

Fr
an

ce

S
lo

ve
ni

a

P
ol

an
d

B
ra

zi
l

E
gy

pt

A
rg

en
tin

a

P
or

tu
ga

l

Li
th

ua
ni

a

B
el

gi
um

E
st

on
ia

U
ru

gu
ay

C
hi

na

Pe
rc

en
ta

ge
 o

f a
ll 

R
eq

ue
st

s

Server
Kad

Figure 12: Keyword search requests normalized by the number of Internet
users of the 20 most active countries on our servers and in the Kad network.

31



ular in many countries. We further found that both networks are indeed
much more popular in Europe than in the United States, the activity of the
United States normalized by the number of Internet users is about 30 times
smaller than the activity of Spain, making it the country with almost the
smallest activity overall. Clearly, this is partly due to the large number of
Internet users in the United States. Overall, only six countries contribute
more keyword searches than the United States, which indicates that also in
the United States both networks have a large user base. Finally, however,
note that the data in Figure 12 could also be slightly biased, as the Internet
penetration data might not be perfectly accurate.

3.2.2 Search Contents

The main objective of both the eDonkey and the Kad system is to provide
users with a mechanism to find and download files. Information about the
searched content can be an interesting source for research, for example, such
data might give insights into the potentially different preferences of users in
different countries.
For this purpose, a record indicating the popularity of each data item in
each country would be required. Unfortunately, the compilation of such
a record is quite difficult—not only in Kad, but also in the eDonkey net-
work. One reason is that there is no automatic one-to-one correspondence
between keywords and files. There might be different spellings of the same
keywords, files containing the same content are typically available in differ-
ent languages, and the corresponding filenames often contain typing errors.
Moreover, the popularity of the files we monitor in Kad can change quickly,
particularly when versions of the same content of increased quality appear.
Figure 13 plots different versions found when querying for a specific exem-
plary keyword during a period of 70 days. We used the keyword search
task of the Measurement Framework to perform a search every two minutes.
During this measurement period we collected over 5 GB of data. Version
v1 is the worst quality, v2 is the same content in better quality, and v3 has
the best quality. As expected, the number of occurrences of v1 decreases
over time, first at the expense of v2, and after v3 becomes more and more
popular, the number of occurrences of v2 start decreasing as well.
Despite the difficulties mentioned before to generate a ranking of the popular
data items, we can at least produce a ranking of the most popular keywords
searched on our servers. Table 1(a) shows this ranking for the 30 most
searched keywords, including the occurrences of a particular keyword per
day. Due to the fact that there are many short keywords among the most
searched, we present in Table 1(b) only keywords that are longer than three
characters.
In another experiment, we tried to evaluate to what extent the popularity
of certain content in eDonkey and Kad corresponds to the popularity of the

32



(a) Unfiltered

Rank f Keyword
1. 21037 the
2. 15022 de
3. 12975 la
4. 8849 a
5. 7573 of
6. 6079 i
7. 5562 ita
8. 5508 el
9. 5346 2007
10. 5331 2
11. 5167 fr
12. 5050 in
13. 5021 e
14. 4989 le
15. 4431 you
16. 4303 me
17. 3881 les
18. 3709 3
19. 3512 love
20. 3471 to
21. 3430 and
22. 3108 my
23. 2958 il
24. 2946 dj
25. 2943 los
26. 2901 o
27. 2875 di
28. 2684 del
29. 2601 do
30. 2581 no

(b) Keywords > 3 Characters

Rank f Keyword
1. 5346 2007
2. 3512 love
3. 2155 spanish
4. 1934 prison
5. 1927 remix
6. 1880 live
7. 1874 dvdrip
8. 1779 heroes
9. 1699 break
10. 1530 xvid
11. 1488 black
12. 1472 house
13. 1378 album
14. 1371 film
15. 1347 your
16. 1332 amor
17. 1330 french
18. 1319 feat
19. 1284 girl
20. 1219 david
21. 1197 high
22. 1112 karaoke
23. 1104 naruto
24. 1058 dance
25. 1041 star
26. 1016 night
27. 1013 world
28. 1003 girls
29. 1000 life
30. 1000 music

Table 1: Ranking of the most popular keywords searched on our servers.
Frequency f in requests per day.

33



0

10

20

30

40

50

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Days

R
el

at
iv

e 
O

cc
ur

re
nc

e 
in

 F
ile

na
m

e
v1
v2
v3

Figure 13: Different quality versions, distinguished by specific keywords in
the filename, in percentages of all files.

same content in the real world. To this end, we observed the popularity of
newly released movies in eDonkey and Kad. We find that there is indeed a
strong correlation, i.e., movies that are currently playing in movie theaters
are popular both in eDonkey and Kad. Figure 14 shows this correlation for
a specific movie. In this figure, the total gross14 in the U.S. is depicted for
each day and also the number of requests for this movie on our servers. The
movie opened on October 5, but it did not attract many movie-goers until
the next weekend. Since then, the daily gross is declining again with smaller
peaks at the weekends as usual. In this graph, we see that the popularity in
eDonkey roughly follows these trends. Observe that the request pattern in
the network is delayed for about a week, reaching its maximum about a week
after the movie reached its peak. Experiments using other content yielded
more or less the same graph, also with a certain delay. In order to take
the Kad network into account, we further compared how often keywords
are looked up in eDonkey and in Kad and found that basically the same
keywords are looked up more often than others in both networks.Our findings
all indicate that there is not only a strong correlation between eDonkey and
Kad, but also between the two networks and the popularity of content in
the real world.

3.2.3 Kad Comments

The idea of realizing a system as it is in the Kad network, that allows peers
to rate their shared files and write comments on them seems to be very
useful, in particular when there are many faked and corrupted files shared
(which is the case at the moment, according to our observations). We were

14Data obtained from www.boxofficemojo.com.

34



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2.
10

.

3.
10

.

4.
10

.

5.
10

.

6.
10

.

7.
10

.

8.
10

.

9.
10

.

10
.1

0.

11
.1

0.

12
.1

0.

13
.1

0.

14
.1

0.

15
.1

0.

16
.1

0.

17
.1

0.

18
.1

0.

19
.1

0.

20
.1

0.

21
.1

0.

22
.1

0.

23
.1

0.

24
.1

0.

25
.1

0.

26
.1

0.

27
.1

0.

28
.1

0.

29
.1

0.

30
.1

0.

B
ox

 O
ffi

ce
 N

um
be

rs
 (M

$)

0

20

40

60

80

100

120

140

160

180

200

R
eq

ue
st

s 
pe

r D
ay

Box Office Numbers

Server Requests

Figure 14: Comparison of the box office gross and the requests on our servers
for a specific movie.

therefore interested in finding out by how many peers the comments system
is used and what impact it would have, if we spread bad comments on certain
files. Hence, we extended the Measurement Framework to listen to specified
file IDs and also to listen to comment requests on these IDs. Furthermore
we are able to reply with faked comments, stating that the file is corrupt
or a fake. Again, as we set the ID of the framework to the file’s ID, almost
all comment requests are routed the framework and therefore almost all the
requesting peers will see only our faked comments. To measure the impact
of poisoned comments, we placed instances of our framework onto several
popular files and logged the source request amounts. Since these are sent
automatically by eMule and not by the user, we can deduce from these
requests how many peers currently download the observed files. Figure 15
shows these source request for one of the files. After observing the file for
about 9 days, we started to reply with faked comments. This point of time is
marked with a vertical red line in the figure. We can see that the request rate
drops minimally after faked comments spreading has started, but it is not
significant, as the average request rate only drops by 10%. We conclude from
these values that the comments system is hardly used. When comparing the
source request rate with the comment request rate, our conclusion seems to
be confirmed, because for an average of 86 source requests per hour, we only
received 3 comment requests.

3.2.4 Representativeness

Conducting measurement studies of distributed systems is a difficult en-
deavor. Even if large amounts of data is collected, the statistical significance
of the empirical results might be limited if the data is biased. In order to
obtain solid claims, it is important that the underlying data be either com-

35



0

1

2

3

4

5

6

14
.1
0.

15
.1
0.

16
.1
0.

17
.1
0.

18
.1
0.

19
.1
0.

20
.1
0.

21
.1
0.

22
.1
0.

23
.1
0.

24
.1
0.

25
.1
0.

26
.1
0.

27
.1
0.

28
.1
0.

29
.1
0.

30
.1
0.

Date

R
eq

ue
st

s 
pe

r M
in

ut
e

Figure 15: Source Requests for a popular file, before and after faking its
comments.

plete, or a uniform and random subset thereof. In this section, we provide
evidence that our data can be considered representative.
We consider the data collected by the servers first. As mentioned before,
the servers receive requests for all possible keywords. However, since a peer
does not send requests to all the servers in its server list, i.e., some servers
might receive completely different requests, which could potentially bias
the collected data. As the eMule clients typically send source requests to
both networks, in order to estimate what fraction of all keyword requests
we receive, we compared the number of source requests at our eDonkey
servers with the number of source requests obtained in Kad. Our experi-
ments showed that for a given file, we receive roughly 10 times more request
in Kad than at the servers. Since virtually all requests for a given file are
received in Kad, this indicates that our servers roughly receive 10% of all
keyword requests in the network—a surprisingly large number. At the same
time, the distribution of the origins of the requests does not differ between
the two networks. Furthermore, when comparing the requests of arbitrary
keywords in both networks, we can observe that they are very similar. As
an example, Figure 16 shows three different keyword request rates for both
networks. Note that the server request rates were multiplied by 10, because
of the observations mentioned before. This all suggests that our servers are
already contacted with a reasonably large probability, although they are
relatively new, and also that they get a more or less random subset of the
entire traffic.
In the Kad network, it is easy to obtain unbiased request data for a given file,
since all requests for a particular file are routed to the same ID. However,
making statements about the global distributions of the requests requires
to collect data at all locations in the ID space, which is impossible. In

36



0

20000

40000

60000

80000

100000

120000

140000

4.
10

. 

6.
10

. 

8.
10

. 

10
.1

0.
 

12
.1

0.
 

14
.1

0.
 

16
.1

0.
 

18
.1

0.
 

20
.1

0.
 

22
.1

0.
 

24
.1

0.
 

26
.1

0.
 

28
.1

0.
 

30
.1

0.
 

1.
11

. 

3.
11

. 

5.
11

. 

7.
11

. 

9.
11

. 

11
.1

1.
 

13
.1

1.
 

15
.1

1.
 

Date

K
ey

w
or

d 
R

eq
ue

st
s 

pe
r D

ay
k1 Server k1 Kad
k2 Server k2 Kad
k3 Server k3 Kad

Figure 16: Comparison of the request rates of three different keywords in
the eDonkey network and the Kad network (dotted lines).

this thesis, we have taken a best-effort approach and aimed at getting data
from a moderately large set of peers whose IDs are distributed uniformly at
random. By averaging these measurements, we get similar distributions as
those measured in eDonkey, which indicates that the obtained data is fairly
representative. Although we believe that the quality of our results is quite
good, it has to be taken into account that, similarly to our client, other peers
can also choose their overlay IDs at will, which could bias such a random
sampling approach. It is known that there are communities that select their
Kad IDs from a small subset of the entire ID space [6].

4 Related Work

In the following two sections, we will describe related work for the attacks
on the Kad network and for the measurements in eDonkey and the Kad
network, respectively.

4.1 Attacks

Peer-to-peer networks have become the most popular medium for bulk data
dissemination, and a large fraction of today’s Internet traffic is due to p2p
file sharing.15 The immense computational resources of p2p networks are
also attractive to attackers, and there is already a large body of literature
on the subject [7, 8].16 Reasons to attack a p2p system can be manifold:

15See http://www.cachelogic.com/research/.
16See also http://www.prolexic.com/news/20070514-alert.php/.

37



For example, a peer may seek to perform a more or less passive “rational
attack” [9] to be able to benefit from the system without contributing any
resources itself [10, 11].
While such selfishness can threaten a peer-to-peer system, which essentially
relies on the participant’s contributions, there are more malicious attacks
seeking to harm the system directly. An attacker may, for example, strive
to partition the system or to eclipse individual nodes. The eclipse attack
[12], as also described in this work, can be used by a set of malicious peers to
position themselves around a given peer in the network such that the peer’s
contact list consists only of the colluding peers.
In a Sybil attack [13], a single entity creates multiple entities of itself in order
to gain control over a certain fraction of the system. Such an attack can
undermine redundancy mechanisms and is hard to counter in a completely
decentralized environment.
Attackers may also exploit a peer-to-peer system to efficiently spread a worm
[14]. Furthermore, the resources of a p2p system may also be used to attack
any machine connected to the Internet regardless of whether it is part of the
peer-to-peer network or not. A denial of service attack can be launched in
various p2p systems, e.g., Gnutella [15], Overnet [16], and BitTorrent [17].
During this attack, information about the victim, i.e., the targeted machine
in the attack, is spread in the system. The victim is falsely declared as
an owner of popular content, causing other peers searching for this content
to contact the victim repeatedly. In BitTorrent, tracker information can
be faked which leads peers to believe that the victim is a tracker for the
desired content [17]. In the Kad network, DoS attacks can be launched by
means of a redirection attack where a queried peer, the attacker, will return
a response containing the address of the victim [18]. As mentioned before,
the attacks presented in this work can also be used to launch a DoS attack.
The work closest in spirit to ours is the study of index poisoning attacks
in FastTrack and Overnet [19]. Their index poisoning attack is akin to our
publish attack where bogus information is pushed aggressively to the nodes
responsible for the desired keywords. However, while this attack is also quite
successful, it is not as effective in the Kad network as it is in FastTrack
and Overnet. We showed that a different, even simpler poisoning attack is
feasible and even more effective. Moreover, our study of attacks in the Kad
network is not limited to content poisoning and index poisoning, but also
considers the eclipse attack to prevent peers from accessing a specific file. It
is also worth pointing out that, in comparison to Kad, it is generally easier
to perform attacks on Overnet, as it, e.g., does not check whether the sender
of a publish message provided its own IP address as the owner of the file,
and no cryptography is used for authentication.
While we believe that there are methods to contain the potential damage
caused by such attacks to a certain extent, it is known that certain attacks
require some sort of logically centralized entity [13]. There is also some inter-

38



esting theoretical work on identifying and excluding large sets of colluding
peers [20]. However, these results cannot be used to counter our attacks as
we require only a very small number of attackers close to a given ID, which is
not sufficient to raise suspicion. For a more thorough discussion of possible
countermeasures against attacks in p2p networks, the reader is referred to
the corresponding literature (e.g., [7]).

4.2 Measurements

Measurement studies are an important means to gain deeper insights into
the working of distributed systems. While theoretic models allow researchers
to reason formally about a system’s behavior and to prove its properties,
such models are often simplifications and may not reflect reality well. For
more complex systems, in silico experiments are conducted, desirably for as
many points in the parameter space as possible. However, although such
simulations—and also experiments on PlanetLab [21]—can provide addi-
tional confidence in a system’s performance, it is not until the real deploy-
ment when the system properties become clear.
There exist many measurement results for various systems today. Saroiu et
al. [22] have analyzed several characteristics such as the bottleneck band-
widths of the peers participating in Gnutella and Napster. Adar et al. [23]
has investigated the contributions of the Gnutella users. An important al-
gorithmic challenge in p2p computing is understanding churn, and hence
traces of membership changes in the systems deployed today [5] have been
collected. There is also a community aiming at reverse-enineering closed-
source projects such as Skype by studying the traffic patterns [24].
We have decided to study the eDonkey and the Kad networks as they are
two of the largest distributed systems in use today, and as there does not
exist much literature on these networks. The Kad network itself has been
the subject of various studies. Stutzbach et al. [25] describe implementation
details of Kad in eMule, and [26] presents crawling results on the behavior of
Kad peers. The work closest to ours is by Steiner et al. [5]. The authors have
crawled the Kad network during several weeks and found e.g. that different
classes of participating peers exist inside the network. In contrast to their
work which has studied the churn induced by the peers’ joins and leaves, our
focus is on the peer activity while the peers are online, which we measure
by monitoring the lookups. As stated in [5], peer IDs can change frequently,
even as often as once per download session while other IDs remain in the
network for several weeks. Due to these conditions and the fact that several
peers might share the same IP address, it is hard to draw any conclusions
about peer behavior when monitoring the peer IDs and the IP addresses
in the network. Since keyword lookups are hardly automated, observing
lookups is the best and presumably the only way to get insights into the
activities of users in such networks. To the best of our knowledge, this

39



is the first peer activity study by means of monitoring lookup requests in
distributed networks. It is also the first study to take both server-based and
decentralized systems into account.

5 Outlook

During our measurements, we have collected an immense amount of data.
We have analyzed this data in many ways and gained a lot of interesting
results. Still, there are many analyses that could be done with this data. For
example, more research could be invested in the source requests. It would
be interesting to solve the problem with the missing one-to-one correspon-
dence between keywords and files. Also, the most searched file IDs could
be computed and compared with our keyword rankings. A lot of research
should also focus on the question if there are closed sub networks in the
Kad network, which disconnect it. We mention this topic, because we be-
lieve that we observed this phenomenon during our tests with the attacks.
In some cases we never received faked results throughout the entire attack.
This only changed if we used the same contacts for both the attacker and
the measuring peer.
The three applications we have developed in this thesis are all in a stable
release version. Nevertheless, all of them can be extended with new func-
tionality. This applies in particular to the Measurement Framework, which
offers the possibility to implement new tasks. Nevertheless, there are some
open problems remaining. The two most important concern the Measure-
ment Framework. We did not manage to implement the MD4 algorithm
used in eMule, as it is not directly portable. Therefore, the user has to enter
the ID of the keyword manually. Another unsolved problem is the scanning
of all IDs in the Kad network to gain a snapshot of all peers currently active.
Our experimental scan algorithm collects only a small fraction of all peers
compared to the results of [5].

6 Conclusion

Structured peer-to-peer systems are likely to gain importance in the near fu-
ture. This is mainly due to the fact that structured p2p networks have many
desirable properties whose usefulness goes far beyond efficient file sharing.
Driven by these properties, the use of DHTs or similar structured networks
has been proposed as the foundation of the “future Internet” in order to
overcome the deficiencies of today’s Internet. This thesis has provided ev-
idence that the Kad network, which is currently the only widely deployed
p2p network based on a DHT, can be attacked with a small amount of com-
puting resources such that access to popular files is denied. It is clear that
such attacks could significantly lower the throughput of the entire system

40



as the sought-after files are no longer found, and that this imposed censor-
ship would frustrate the users. Moreover, the possibility of leveraging the
immense computational resources of the entire system to attack arbitrary
machines constitutes a serious threat. We argue that the presented attacks
can basically be launched in any peer-to-peer system that does not incor-
porate sound peer authentication mechanisms. While certain vulnerabilities
can be mitigated to a certain extent, more research is needed on how to
avert attacks on p2p networks, such as those presented in this work, before
its importance can reach the level of the Internet itself.
Understanding the behavior of peers in such large networks might enable the
development of new and more efficient distributed algorithms or even pave
the way for novel applications in distributed systems. In this thesis, we have
compared the peer activity in the server-based eDonkey network with the
distributed hash table Kad, two of the largest peer-to-peer networks in use
today. We have found that not only do most requests arrive roughly during
the same time interval every day in both networks, the searched content is
also quite similar. Moreover, by counting the number of source requests we
found that our server receives roughly 10% of all eDonkey requests. Using
this estimate, and given that we receive virtually all requests for certain
keywords in Kad, we conclude that the eDonkey network is still more pop-
ular. In total, we estimate the total number of requests in eDonkey to be
somewhere between 1.3 and 2 times larger than in Kad. It will be interest-
ing to see how the situation develops in the near future. Furthermore, we
conclude that data on the peer activity collected in either eDonkey or Kad
can be used as a rough estimate of the behavior in the other network. For
the future, we plan to keep collecting data for further experiments.

41



A Reverse-Engineered Message Formats

This section serves as a reference for the message types used in eMule to
communicate in the Kad network and the eDonkey network. Unless noted
otherwise, the messages are sent via UDP. A message is either a request
or a response. This can be seen from the message name’s suffix (the name
ends with either _REQ or _RES). The format of every message that we reverse-
engineered is presented in the following subsections. We first list all message
types used in the Kademlia 1.0 protocol. This is followed by the message
types of the Kademlia 2.0 protocol, which is now being used by eMule since
several versions and which should replace the old protocol in the future. The
third section presents some of the server message types, used in the eDonkey
network to communicate between the eMule client and a server or between
two servers. Not all message types were analyzed, because they were not
needed to implement the eMule Tacker.
Figures are used to illustrate the content of the messages. They show
all the fields that are enclosed in a specific message, starting at the left
side. For each field, its name and size (in Bytes) is shown. The lat-
ter is written in squared brackets. Kad messages all start with the same
header of 1 Byte length. It contains the value 0xE417, which is referred as
OP_KADEMLIAHEADER in the source code. Longer messages can also be sent
compressed using the zlib compression format. The header’s value is than
changed to 0xE5. eDonkey messages use the header 0xE3. For reasons of
space, the header is not shown in the following figures. The header is fol-
lowed by the message type field. To distinguish it from the other fields, its
text is colored green. Some message types contain a list of contacts, results,
files etc. Such a list consists of several fields that are repeated for a specific
number of times. These fields are highlighted blue in the figures.

A.1 The Kademlia 1.0 Protocol

Hello
Used to test whether a contact is alive and responding, similar to a “ping”.
The format of the HELLO_REQ message is:

0x10 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

The fields contain information about the sender. The last field is not used
at the moment.
To answer, a HELLO_RES message is sent:

0x18 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

17Hexadecimal representation

42



It contains exactly the same fields as the first message.

Bootstrap

A BOOTSTRAP_REQ message requests the recipient to reply with 20 contacts
from its routing tree, to speed up the connection process. The message has
the same format as the hello messages:

0x00 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

The reply is a BOOTSTRAP_RES message that contains several contacts. The
format is:

0x08 NumOfContacts Kad ID IP Address UDP Port TCP Port 0x00
[1] [2] [16] [4] [2] [2] [1]

A contact consists of the five fields that are marked blue. These fields are
repeated as many times as specified in the second field. The last field of the
contact data has no function.

Search

The KADEMLIA_REQ message is used to obtain closer peers to a specified ID.
It has the following format:

0x20 NumOfPeersRequested Target ID Receivers ID
[1] [1] [16] [16]

Either 2, 4 or 11 peers can be requested. They should be as close as possible
to the target ID. The receiver only answers if his ID is written in the last
field.
The reply is a KADEMLIA_RES message with following format:

0x28 Target ID NumOfPeers Kad ID IP UDP TCP Type
[1] [16] [1] [16] [4] [2] [2] [1]

The target ID is the same as in the request. The second field describes how
many peers are sent. A peer consists of the blue fields (the peers Kad ID,
its IP address, UDP and TCP ports and its type). They are repeated for
every peer, if more than one is sent.

43



The actual search request for sources or keywords is done by sending a
SEARCH_REQ message, having this format:

0x30 Target ID Sources Flag Search Tree {optional}
[1] [16] [1] [arbitrary]

A sources search has the sources flag set to true and has no search tree. The
target ID is the file hash ID of the file, for which sources have to be found.
A keyword search has the sources flag set to false and the target ID is the
hash ID of the first keyword. Additional keywords, if present, are contained
in the last field as an expression in the manner of a tree. Complicated search
expressions with boolean operators are supported (See the explanations for
the KAD2_SEARCH_KEY_REQ message in the Kademlia 2.0 protocol). The first
keyword is never sent in text format.
If a peer finds a match in its maps, it will reply with a SEARCH_RES message:

0x38 Target ID NumOfResults Result ID Tag List
[1] [16] [2] [16] [arbitrary]

The target ID is the same as in the request. The results are sent as tuples of
a result ID and a tag list, repeated as many times as specified in the third
field. In case of a sources search, every tuple represents a peer that is a
possible source for the requested file. The result ID corresponds to a peer’s
ID and the tag list contains the IP address, the TCP and UDP port of that
peer. In case of a keyword search, every tuple represents a file that contains
the keywords in its filename. The result ID then corresponds to the file hash
ID and the tag list contains the filename, file type, file size and additional
file specific tags. The message can be split into several packets, if they are
to big.

If the search is looking for comments, the actual search request is a
SEARCH_NOTES_REQ message, with this format:

0x32 Target ID Senders ID
[1] [16] [16]

The target ID corresponds to the file hash ID for which the comments are
being searched.
The response is a SEARCH_NOTES_RES message, having the following format:

0x3A Target ID NumOfResults Kad ID Tag List
[1] [16] [2] [16] [arbitrary]

The target ID is the same, as in the request. The result is a set of tuples
which consist of the Kademlia ID of the peer that created the comment and

44



a list that contains the peer’s name, the file name, rating and comment. The
number of tuples that are sent in the response is defined in the third field.

Publish
If a peer wants to publish a keyword, it uses the PUBLISH_REQ message, with
this format:

0x40 Keyword Hash ID NumOfTuples File Hash ID Tag List
[1] [16] [2] [16] [arbitrary]

It publishes a set of tuples, where every tuple represents a different file that
contains the keyword in its filename. It contains the file hash ID and a list
with the filename and the file size.
If the peer wants to publish itself as a source for a file it is sharing, it also
uses the PUBLISH_REQ message, but with this format:

0x40 File Hash ID 0x01 Senders Kad ID Tag List
[1] [16] [2] [16] [arbitrary]

It is only possible to publish one source at the time (which is always the
sender itself). Therefore, the third field contains a 1. The tag list contains
the filename, the file size, the TCP Port of the sender and a tag which
indicates that this publish request contains a source and not a keyword.
The response is a PUBLISH_RES message with the following format:

0x48 Item Hash ID Load {optional}
[1] [16] [1]

The item hash ID is the file hash ID in source publishes or the keyword hash
ID in keyword publishes. If it is a response to a keyword publish, the load
of the keyword map is also sent (indicating how full this map is).

A comment is published using the PUBLISH_NOTES_REQ message:

0x42 File Hash ID Source ID Tag List
[1] [16] [16] [arbitrary]

The file hash ID belongs to the file that is being commented. The source ID
is the Kademlia ID of the peer that is publishing the comment. The tag list
contains the peer’s name, the filename, the file rating and the comment.
If a peer could successfully store the comment, it will reply with a
PUBLISH_NOTES_RES message, having this format:

0x4A File Hash ID Load
[1] [16] [1]

45



The file hash ID is the one from the request. The load value indicates how
full the map containing the comments is (from 1 to 100, in percent). In
contrast to the keyword publish, the load value is not processed.

NAT and Firewall
If a peer needs to obtain its public IP Address, it sends a FIREWALLED_REQ
message, having the following format:

0x50 TCP Port
[1] [2]

It contains only the TCP Port of the sender.
The response is a FIREWALLED_RES message:

0x58 IP Address
[1] [4]

It contains the public IP Address of the peer that sent the appropriate
request message.

To check whether a peer is behind a firewall or not, a FIREWALLED_ACK_RES
message is sent to every new peer it receives. It does not contain any infor-
mation (apart from the message type):

0x59
[1]

If a peer is behind a firewall it cannot be contacted directly. Therefore,
this peer needs the help of another peer in the system which is directly
reachable. Such a helping peer is called the buddy of a firewalled peer. To
find a buddy, a FINDBUDDY_REQ message is sent in the second phase of the
search procedure (instead of sending a SEARCH_REQ). The format is:

0x51 Buddy ID Peer Hash TCP Port
[1] [16] [16] [2]

The buddy ID is the target of this search. It is the inverted ID of the sender.
The third field contains the senders hash, which is not equal to its Kad ID.
The forth field holds the senders TCP port.
If a peer receives such a buddy request and accepts to be the buddy of the
sender, it replies with a FINDBUDDY_RES message:

0x5A Buddy ID Peer Hash TCP Port
[1] [16] [16] [2]

46



It has the same format as the request. The buddy ID is identical, but the
peer hash and the TCP port are the ones from the buddy. The buddy’s peer
hash is then stored by mistake as the Kad ID. But this is not a problem, as
it is not used to contact the buddy.

To contact a peer that is firewalled, a CALLBACK_REQ message is sent to its
buddy, having the following format:

0x52 Buddy ID File Hash ID TCP Port
[1] [16] [16] [2]

The buddy ID has to match the Kad ID of the receiver, so that the request
is forwarded to the firewalled peer. The third field holds the file hash ID
of the requested file (either a download request from the firewalled peer or
a notification that the firewalled peer can start downloading a file from the
sender). The senders TCP port in the forth field is necessary, because a
TCP connection has to be established between the firewalled peer and the
sender to bypass the firewall.

To check whether the buddy is still alive a BuddyPing message is sent:

0x9F
[1]

It is transmitted via TCP. Therefore, the header (which is not shown in the
message figures) is different from the UDP messages. It is called OP_EMULEPROT
and has the code 0xC5.
The buddy answers with a BuddyPong message:

0xA0
[1]

It is also empty (apart from the message type field) and sent through TCP.

47



A.2 The Kademlia 2.0 Protocol

This section lists the most important message types used in the Kademlia
2.0 protocol. There are additional message types (in fact, the concept is
very similar to the Kademlia 1.0 protocol), but as they were not needed in
our implementations, we did not analyze them.

Hello

To test if a contact is alive, the KAD2_HELLO_REQ is used:

0x11 Kad ID TCP Port Version 0x00
[1] [16] [2] [1] [1]

The fields contain information about the sender. The version field provides
the version number of the eMule client a peer is running. The following
table lists possible entries for this field:

Number Version
0 unknown
1 0.46c
2 0.47a
3 0.47b
4 0.47c
5 0.48a

The response to a hello request is the KAD2_HELLO_RES message. It has the
same fields as the request:

0x19 Kad ID TCP Port Version 0x00
[1] [16] [2] [1] [1]

Search

The KAD2_KADEMLIA_REQ message is used instead of the KADEMLIA_REQ mes-
sage, to obtain closer peers. The format remains the same.
The reply is a KAD2_KADEMLIA_RES message with following format:

0x29 Target ID NumOfPeers Kad ID IP UDP TCP Version
[1] [16] [1] [16] [4] [2] [2] [1]

The only difference to the old format is the version field in the peer list. It
replaces the type field and provides eMule’s version number.

48



In the Kademlia 2.0 protocol the keyword request was split from the source
request. These two requests now have their own message type. To search
for sources, a KAD2_SEARCH_SOURCE_REQ is sent, having this format:

0x34 File Hash ID Start Position File Size
[1] [16] [2] [8]

The hash ID and the files size allow to uniquely map to a specific file.
The start position allows a peer to request for more than 300 entries (by
default only the first 300 are returned). It holds the position from which
the responding peer should start listing the results.
To search for keywords, the KAD2_SEARCH_KEY_REQ is used:

0x33 Keyword Hash ID ST Flag Search Tree
[1] [16] [2] [arbitrary]

If only one keyword was entered in the search dialog, it is hashed and written
to the keyword hash ID field. In this case, there is no search tree and the
search tree flag is set to 0x0000. If there are more than one keywords, the
first one is hashed and written to the keyword hash ID field. The remaining
keywords are then stored in the search tree. The latter can also be used to
express boolean search expressions, including restrictions using meta tags
like file type, availability etc. Note that the first keyword is never sent in
text format and therefore not included in the search tree. The search tree
flag is set to 0x8000 if a tree is sent in the message. The search tree uses
the following format:

<search tree> := <operation> | <string> | <metatag> |
<numeric relation>

<operation> := <and> | <or> | <not>
<and> := <search tree> | <search tree>
<or> := <search tree> | <search tree>
<not> := <search tree> | <search tree>
<string> := strSize[2] strData[strSize]

The <metatag> and <numeric relation> expressions were not analyzed.
All expressions are encoded using a one byte code which can be obtained
from the following table:

Expression Value
<operation> 0x00
<string> 0x01
<metatag> 0x02
<numeric relation> 0x03 or 0x08
<and> 0x00
<or> 0x01
<not> 0x02

49



When searching for comments on a file, a KAD2_SEARCH_NOTES_REQ is used:

0x35 File Hash ID File Size
[1] [16] [8]

It contains the hash ID and size of the file for which comments are being
searched.

The response to a source, keyword or comment request is a KAD2_SEARCH_RES
message, with the following format:

0x3B Sender’s ID Item Hash ID NumOfResults Result ID Tag List
[1] [16] [16] [2] [16] [arbitrary]

The sender’s Kad Id is contained in the field after the message type field.
The item hash ID is either a file hash ID (for source and comment responses)
or a keyword hash ID. The results are sent as tuples of a result ID and a
tag list, repeated as many times as specified in the forth field. In case of
a sources search, the tuples are peers that share a specific file. The result
ID corresponds to a peers ID and the tag list contains the IP address, the
TCP and UDP port of that peer. In case of a keyword search, every tuple
represents a file that contains the keywords in its filename. The result ID
then corresponds to the file hash ID and the tag list contains the filename,
file type, file size and additional file specific tags. In case of a comment
search, the tuples are comments. The result ID is the Kad ID of the peer
that created the comment and the tag list contains the file name, a rating
and the comment. The message can be split into several packets, if they are
to big.

A.3 The eDonkey Server Protocol

This protocol is used by eDonkey servers to exchange information among
themselves and by eMule to send search requests to servers. As there is no
source code of the server application, we had to guess the meaning of the
message contents. In some cases, we could not decode parts of a message.
Nevertheless, it is necessary to send such messages when faking a server.
Therefore we filled undecodable fields with the same data that we received
while reverse-engineering these messages (through capturing packets from
the real lugdunum server application).

50



Server Announcement

Servers announce themselves to other servers when they join the network.
They also periodically check whether each one of their known servers are still
running. This announce procedure consists of three request messages, fol-
lowed by corresponding responses. The first message sent in this procedure
is the SERVER_LIST_REQ with the following format:

0xA0 Sender’s IP Sender’s TCP Port Unknown
[1] [4] [2] [4]

This message requests the receiver to send a list back with all the server it
knows. The fields contain information about the announcing server. The
last field was not decodable. It has the value 0x479DD533.
The answer is a SERVER_LIST_RES message containing a list of servers:

0xA1 NumOfServers IP Address TCP Port
[1] [1] [4] [2]

The second field defines how many servers are contained in the message. A
server consists of its IP address and TCP port.
The second message sent in the announce procedure is a GLOBSERVSTATREQ
message with the following fields:

0x96 Challenge 1
[1] [4]

It requests the receiver to send information about its status. A challenge
is used to confirm the identity of the reply message. As its value is always
0x55AA0001, this challenge does not contribute to increase the security.
The response is a GLOBSERVSTATRES message having this format:

0x97 Challenge 1 NumOfUsers NumOfFiles MaxUsers
[1] [4] [4] [4] [4]

It contains the challenge from the request and 3 additional fields with capac-
ity information about the server (Number of users currently on this server,
sum of files shared by all these users and the maximum number of users
allowed on the server).
The third announce message is the SERVER_DESC_REQ message, having this
format:

0xA2 Challenge 2A Challenge 2B
[1] [4] [4]

With this message the receiver is asked to supply its description. There are
two challenges included in the message.

51



The answer is a SERVER_DESC_RES message with this fields:

0xA3 Challenge 2A Unk. Server Name Unk. Server Desc. Unk. Challenge 2B
[1] [4] [8] [arbitrary] [4] [arbitrary] [8] [4]

The description message contains the server name and description. Note
that strings always have a preceding two bytes long field indicating the
length of the string (not shown in the figures). There are several parts that
we could not decode. These should contain, among other things, the server
version and its features like the support of large files etc. Also, the two
challenges from the request can be found in the message.

Search

If eMule searches on servers with the global method, it uses GLOBSEARCHREQ
messages with the following format:

0x98 Search Tree
[1] [arbitrary]

All keywords are contained in the search tree. It has exactly the same format
as in the Kademlia 2.0 protocol (See the explanations for the
KAD2_SEARCH_KEY_REQ message on page 49). There also exist two other
message types for global keyword searches (the GLOBSEARCHREQ2 type with
the same format as the first type and the GLOBSEARCHREQ3 type with another
format), but they were hardly received by our tracker.

For the global search of sources for a specific file the GLOBGETSOURCES mes-
sage is used:

0x9A File Hash ID
[1] [16]

It just contains the hash ID of the searched file. In addition, the
GLOBGETSOURCES2 type can be used for the same purpose. It contains an
additional field with the file size. We measured that it is used 20,000 times
less than the first type.

52



server.met

The list of servers is stored by eMule in the server.met file. The format of
this file is compatible with the lugdunum server application and it is also
used by our eMule Tracker. It has the following structure:

0xE0 NumOfServers IP Address TCP Port Tag List
[1] [4] [4] [2] [arbitrary]

After a header and the field holding the number of servers contained in this
file, the servers are listed with tuples of their IP address, TCP port and a
list of tags. The latter contains, among other things, the server name and
its description.

53



B User Guides

We have presented several attacks and many measurements in this thesis.
This section gives detailed instructions on how to set up and run each of
them. First, guides for the attacks are provided, followed by instructions
for running a fake server with the eMule Tracker. After that, setting up the
measurements is explained. All applications used in this thesis were running
on Microsoft’s Windows XP operating system. The attacking or measuring
computers should not be located behind a firewall or NAT (network address
translation) system. Furthermore, the eMule Tracker, the Measurement
Framework, and the LogAnalyzer need Microsoft’s .NET Framework Ver-
sion 2.0 18

B.1 Attacks

This section describes the steps for setting up the three attacks. In the first
two attacks, we use modified versions of the eMule clients. To be able to
process their log files later, verbose logging has to be activated and set to
save the log to disk (this can be done in the options dialog).

Node Insertion Attack

To run the node insertion attack a special version of eMule is needed, that
we have modified for this purpose. It is based on the original eMule client in
version 0.47a. Like mentioned in the Section 2.1, several clients are needed
to successfully run this attack. The best way is to set up each client on
a different machine, but it is also possible to run more then one client per
machine. In the latter case the instances must use different ports (can be
changed in the options dialog) and must be started from different directo-
ries. Furthermore, to allow more than one instance to be run at the same
time, eMule has to be executed with the ignoreinstances argument (e.g.
“C:\emule\emule.exe ignoreinstances”). Then, one instance can be set
to the hash ID of the attack keyword and the others around it. To achieve
this, a search for the attack keyword is started in every instance and the
ID is set as own Kad ID respectively using the appropriate button (see Fig-
ure 17). Then, the + and - buttons are used to increase or decrease the ID
where needed. After a restart of the Kademlia networks in all instances, the
attack is active.
The success of the attack is measured with another modified eMule client,
which is also used for the publish attack. This client has to be started and
connected to the Kad network. Then, periodic searches can be activated in
the servers tab of the graphical user interface. Which keyword is searched

18See http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=0856eacb-
4362-4b0d-8edd-aab15c5e04f5.

54



Figure 17: The graphical user interface of the modified eMule client, used
to run the node insertion attack. Only the modified part is shown.

and what interval is used, has to be manually defined in the file called
dave.dat. It is located in the config subdirectory of eMule. It contains
settings for all the additional features we implemented. If opened with a
hex editor the search keyword can be found at the end of the file. It is
terminated with 0x0D0A like every other string in this file. The keyword
can be replaced with any other keyword. The interval is specified directly
before the search keyword, using an unsigned one byte integer. The number
represents the interval in seconds. We recommend to use an interval of 60
seconds.
The results of the periodic search measuring the attack is logged in the
verbose log called eMule Verbose.log. This file is split every time it reaches
a size of one MB. Therefore it has to be merged before it can be analyzed.
This is done with the LogAnalyzer, which offers a function for merging
files (See Section 3.1.3). Then, the merged file is analyzed with the success
measurement method found in the attacks tab of the LogAnalyzer.

Publish Attack

As mentioned in the instructions of the previous attack, the publish attack
also uses a modified version of the eMule client. Unlike the previous modifi-
cation, this version is based on the original version 0.48a. After it is started
and connected to the Kad network, the attack can be set up. For this
purpose, the servers tab of the graphical user interface was extended with
several controls (see Figure 18). To run the publish attack on a keyword,
the appropriate radio button is selected. Then, the main keyword which
should be attacked can be entered in the first field. In some cases additional
keywords have to be specified (see Section 2.2 for more details). This can
be done in the field beneath. To save the changes the set button has to
be pressed. This automatically hashes the attacked keyword and shows its
ID in the corresponding field. The values of this fields are stored in the
file called dave.dat so that the user does not have to retype them after a
restart. The user interface also contains a debug box, where the user can
specify whether to send attacking packets or to just simulate the attack.
Additionally, a fast mode can be activated which speeds up the steps of

55



the attack (this mode is mainly for demonstration purposes). To start the
publish attack, the start button has to pressed.

Figure 18: The graphical user interface of the modified eMule client, used
to run the publish attack. Only the modified part is shown.

It is also possible to attack the comment entries instead of keyword entries.
But this mode is not fully developed, as there were problems injecting more
than one comment from the same IP address. In this mode, the hash ID
of the file whose comments will be poisoned is needed. It is imported via
the corresponding button which parses an eDonkey link from the clipboard.
Such a link can be obtained in the search tab through right clicking on a
search result.
The success of the attack is again measured using another running instance
of this modified version of eMule. Refer to the instructions of the previous
attack on how to set up the measuring client.

Eclipse Attack

The eclipse attack is performed using the Measurement Framework (as de-
scribed in Section 2.3). Before using this framework to run the attack the
Windows Packet Capture Library (WinPCAP) has to be installed19. We
used version 4.0.1 for our tests. After starting the application, the eclipse
attack extension first has to be activated using the corresponding check box
in the eclipse attack tab of the user interface (see Figure 19). Then, all
fields have to be filled out with the necessary information. This information
is stored when the application is closed, so that it has not to be retyped on
the next start.
When pushing the start button, the framework begins to listen to requests
from the specified attack IP address and answers them with faked peers. To

19See http://www.winpcap.org/.

56



Figure 19: The graphical user interface of the Measurement Framework,
showing the eclipse attack tab.

inject faked peer entries into the routing table of the peer being attacked,
the appropriate button has to be pressed. The attack is stopped with the
stop button. On the right side of the user interface there is a box with the
instructions on how to run the attack. Beneath this box the counters box
shows the actual state of the attack.

B.2 eMule Tracker

This section describes how to set up a faked server using the eMule Tracker
that will spread itself in the eDonkey network and listen to various requests
(see Section 3.1.1 for detailed information on the implementation of the
eMule Tracker and for a screenshot of the graphical user interface). Before
the tracker can be started, a few preparations are necessary. We experi-
enced problems with personal firewalls installed on the system the tracker
was intended to run on. If such a firewall is installed it should not only be
deactivated but also uninstalled. Then, the configuration file of the tracker
has to be adapted to the actual setting. Therefore the file called
EmuleTracker.exe.config can be opened with a text editor. It contains set-
tings such as the IP address and TCP port of the server, its name and
description, and the faked entries for the actual number of users and shared
files. Additionally, there is the possibility of filtering the source requests for
three defined IDs which are then logged in a file. These IDs can also be
specified in the configuration file. This has to be done before starting the
tracker.
As soon as the eMule Tracker is started, it will log all received requests. To

57



announce it on other servers a list of all currently active servers has to be
imported. This can be done with the corresponding button, which parses a
server.met file that can be obtained from various web sites or from the eMule
directory. Another possibility is to add the servers manually by typing in
their IP address and TCP port into the corresponding fields and pressing the
button to add a server. To activate the automatic announcement procedure,
the corresponding check box (Auto Notify) has to be active. Then, this
procedure is repeated every hour. It can also be started directly with the
Notify Now button. If the tracker should also log source requests for the
three specified IDs, the appropriate check box has to be activated. The
tracker uses three different log files to separate the information being logged.
The tracker.log is the main log file. All error messages that occur are written
to it. The content of this log is also printed into the log window of the
user interface. In addition, every minute an entry is written containing the
number of search requests, unknown search requests (not parsable requests),
source requests, and login trials that were received that minute. These
values can be extracted from this log using the appropriate function of the
LogAnalyzer. The keyword search requests are logged in the file called
searchResults.log. This file grows very fast und reaches several hundred of
megabytes after only few days. There are many analyses contained in the
LogAnalyzer that process this log file. Source requests of the three specified
IDs are written to the file named sourceRequests.log. The LogAnalyzer can
also analyze this log file.

B.3 Kad Measurements

All our measurements of the Kad network can be obtained using the Mea-
surement Framework (see Section 3.1.2 for more details). It can also be
used to run the eclipse attack, as mentioned earlier. Before a measurement
can be started the framework has to be set up. This includes adjusting its
configuration file MeasurementFramework.exe.config, which can be opened
with a text editor. It is not necessary to change the fields in the userSettings
part, as these can be changed in the framework itself. Important settings are
the ports (UDP and TCP), which should not be occupied by other applica-
tions including other instances of the framework. Other important settings
concern the keyword search task and the ID listening extension and will
be discussed later. The framework needs other peers to be able to connect
to the the Kad network. It uses the same format to store its known peers
to disk as eMule. They are stored in the file named nodes.dat and can be
obtained from eMule’s directory. After starting the framework its settings
can be validated in the options tab. It also allows to turn of displaying
debug messages in the log window of the user interface. The main log file

58



of the framework is called mflog.txt. Like in the eMule Tracker it logs error
messages and its contents is also displayed in the log window of the user
interface. The measurement data is stored in different log files.

Keyword Search Task

To periodically search for a specific keyword the keyword search task can be
used. Before it can be started the hash ID of the keyword and the keyword
itself have to be set in the configuration file. If the ID is not known for a
keyword, it can be obtained using the modified version of eMule for the node
insertion attack, through searching for that keyword. After the framework
has been started, the interval of the keyword search task should be checked
in the tasks tab. Then, the task can be enabled. From now on it will
automatically start a keyword search in the specified intervals. The results
are written to the file named keywSearchTask.log. They can be analyzed
later with the LogAnalyzer.

Scan IDs Task

To periodically create a snapshot of all peers in the network, the scan IDs
task can be used. It stores its results to the main log file. As already
mentioned earlier, this task is premature and should be used for testing
purposes only.

Implementing a new Task

The Measurement Framework can be extended with new tasks as follows.
As all the task classes are located in the TaskScheduler folder in the source
code, new task classes should be created there. Every task must implement
the interface class ITask. As a consequence several methods have to be
created in every task. The Run() method contains the code that should be
executed periodically in the specified intervals. As soon as this method has
finished executing, the task will get a new execution time. If this time is
reached, the Run() method is executed again. To add a new task to the
framework, it also has to be registered in the constructor of the Scheduler
class.

ID Listening

To position the Measurement Framework on an arbitrary ID in the Kad
network and listen to the requests, the ID listening extension can be used.
After starting the framework, the specified ID has to be entered into the
corresponding field in the ID listening tab (see Figure 20). Note that the
keyword field is just used to remind the user to which keyword (or file) the

59



Figure 20: The graphical user interface of the Measurement Framework,
showing the ID listen tab.

entered ID belongs to. Both values are stored to disk when the framework
is closed.
After activating the checkbox the framework changes its ID to the listen ID
and starts logging the requests to the file idListener.log. It logs all keyword,
source, and comment requests received into this file. Therefore it does not
matter whether a keyword hash ID or a file hash ID is used to listen to. To
analyze the keyword requests with the LogAnalyzer it is also possible to use
the analyses of the node insertion attack, as the format of the log file is the
same. If the frequencies of the requests should be analyzed, the main log
file has to be used, as an entry with these values is written every minute
to it. To attack comment requests with faked comments, the appropriate
check box has to be enabled. But before starting the comment poisoning, it
should be checked that the name and size of the file whose comments will
be attacked is properly set in the configuration file of the framework.

60



References

[1] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc.
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, 2001.

[2] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for In-
ternet Applications. In Proc. ACM Special Interest Group on Data
Communication (SIGCOMM), 2001.

[3] P. Maymounkov and D. Mazières. A Peer-to-Peer Information System
Based on the XOR Metric. In Proc. 1st International Workshop on
Peer-To-Peer Systems (IPTPS), 2002.

[4] David Mysicka. Reverse Engineering of eMule. Semester Thesis, Swiss
Federal Institute of Technology (ETH) Zurich, 2006.

[5] Moritz Steiner, Ernst W. Biersack, and Taoufik Ennajjary. Actively
Monitoring Peers in the KAD. In Proc. 6th International Workshop on
Peer-To-Peer Systems (IPTPS), 2007.

[6] Moritz Steiner. Private Communication. In Proc. 6th International
Workshop on Peer-To-Peer Systems (IPTPS), 2007.

[7] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,
and Dan S. Wallach. Secure Routing for Structured Peer-to-Peer Over-
lay Networks. In Proc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), pages 299–314, 2002.

[8] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In Interna-
tional Symposium on Software Security, 2002.

[9] Seth James Nielson, Scott A. Crosby, and Dan S. Wallach. A Taxonomy
of Rational Attacks. In Proc. 4th International Workshop on Peer-To-
Peer Systems (IPTPS), 2005.

[10] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella.
First Monday, 5(10), 2000.

[11] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer.
Free Riding in BitTorrent is Cheap. In Proc. 5th Workshop on Hot
Topics in Networks (HotNets), 2006.

[12] Atul Singh, Tsuen-Wan “Johnny” Ngan, Peter Druschel, and Dan S.
Wallach. Eclipse Attacks on Overlay Networks: Threats and Defenses.
In Proc. 25th Annual IEEE Conference on Computer Communications
(INFOCOM), 2006.

61



[13] John R. Douceur. The Sybil Attack. In Proc. 1st International Work-
shop on Peer-To-Peer Systems (IPTPS), 2002.

[14] Lidong Zhou, Lintao Zhang, Frank McSherry, Nicole Immorlica, Manuel
Costa, and Steve Chien. A First Look at Peer-to-Peer Worms: Threats
and Defenses. In Proc. 4th International Workshop on Peer-To-Peer
Systems (IPTPS), 2005.

[15] Elias Athanasopoulos, Kostas G. Anagnostakis, and Evangelos P.
Markatos. Misusing Unstructured P2P Systems to Perform DoS At-
tacks: The Network That Never Forgets. In Proc. 4th International
Conference on Applied Cryptography and Network Security (ACNS),
2006.

[16] Naoum Naoumov and Keith Ross. Exploiting P2P systems for DDoS
attacks. In Proc. 1st International Conference on Scalable Information
Systems (INFOSCALE), 2006.

[17] Karim El Defrawy, Minas Gjoka, and Athina Markopoulou. BotTorrent:
Misusing BitTorrent to Launch DDoS Attacks. In Proc. 3rd Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

[18] Xin Sun, Ruben Torres, and Sanjay Rao. Preventing DDoS Attacks
with P2P Systems through Robust Membership Management. Techni-
cal Report TR-ECE-07-13, Purdue University, 2007.

[19] Jian Liang, Naoum Naoumov, and Keith W. Ross. The Index Poison-
ing Attack in P2P File Sharing Systems. In Proc. 25th Annual IEEE
Conference on Computer Communications (INFOCOM), 2006.

[20] Baruch Awerbuch and Christian Scheideler. Towards Scalable and Ro-
bust Overlay Networks. In Proc. 6th International Workshop on Peer-
To-Peer Systems (IPTPS), 2007.

[21] Andreas Haeberlen, Alan Mislove, Ansley Post, and Peter Druschel.
Fallacies in Evaluating Decentralized Systems. In Proc. 5th Interna-
tional Workshop on Peer-to-Peer Systems, 2006.

[22] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems. In Proc. of Mul-
timedia Computing and Networking (MMCN), 2002.

[23] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella.
First Monday, 5(10), 2000.

[24] Saikat Guha, Neil Daswani, and Ravi Jain. An Experimental Study
of the Skype Peer-to-Peer VoIP System. In Proc. 5th International
Workshop on Peer-to-Peer Systems, 2006.

62



[25] Daniel Stutzbach and Reza Rejaie. Improving Lookup Performance
over a Widely-Deployed DHT. In Proc. 25th Annual IEEE Conference
on Computer Communications (INFOCOM), 2006.

[26] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer
Networks. In Proc. 6th Internet Measurement Conference (IMC), 2006.

63



Acknowledgements

This report and the implementation of the three attacks for the Kad net-
work, the Measurement Framework, and the eMule Tracker are the results
of my master thesis in the Distributed Computing Group of Prof. Dr. Roger
Wattenhofer at the Swiss Federal Institute of Technology in Zurich.

During my work I gained great experience in peer-to-peer systems and net-
work programming, especially because this thesis was a continuation of my
semester thesis which also covered this field. The implementation of several
applications helped me to improve my programming skills in C# and also
in C++. Furthermore, the reverse-engineering of eMule messages which was
necessary in order to understand its communication, brought me deep in-
sights into the layers of network protocols.

First of all, I would like to thank my supervisors Thomas Locher and Ste-
fan Schmid for their help in many ways and their valuable feedback which
always inspired me with new ideas. I would also like to thank Professor
Dr. Roger Wattenhofer for his productive and interesting discussions and
for giving me the opportunity to accomplish my master thesis in his group.

My appreciation also goes to the system administrators of the Distributed
Computing Group and to the Swiss Federal Institute of Technology which
provided me with many computing and network resources to perform my
measurements and attacks.

64


	1 Introduction
	2 Attacks on the Kad Network
	2.1 Node Insertion Attack
	2.2 Publish Attack
	2.3 Eclipse Attack
	2.4 Discussion

	3 Measurements
	3.1 Measurement Setup
	3.1.1 eDonkey Server
	3.1.2 Measurement Framework
	3.1.3 LogAnalyzer

	3.2 Measurement Results
	3.2.1 Request Distributions
	3.2.2 Search Contents
	3.2.3 Kad Comments
	3.2.4 Representativeness


	4 Related Work
	4.1 Attacks
	4.2 Measurements

	5 Outlook
	6 Conclusion
	A Reverse-Engineered Message Formats
	A.1 The Kademlia 1.0 Protocol
	A.2 The Kademlia 2.0 Protocol
	A.3 The eDonkey Server Protocol

	B User Guides
	B.1 Attacks
	B.2 eMule Tracker
	B.3 Kad Measurements


