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Abstract. Games are considered important benchmark tasks of artifi-
cial intelligence research. Modern strategic board games can typically be
played by three or more people, which makes them suitable test beds
for investigating multi-player strategic decision making. Monte-Carlo
Tree Search (MCTS) is a recently published family of algorithms that
achieved successful results with classical, two-player, perfect-information
games such as Go. In this paper we apply MCTS to the multi-player,
non-deterministic board game Settlers of Catan. We implemented
an agent that is able to play against computer-controlled and human
players. We show that MCTS can be adapted successfully to multi-agent
environments, and present two approaches of providing the agent with a
limited amount of domain knowledge. Our results show that the agent
has considerable playing strength when compared to existing heuristics
for the game. We conclude that MCTS is suitable for implementing a
strong Settlers of Catan player.

1 Motivation

General consensus states that a learning agent must be situated in an experience-
rich, complex environment for the emergence of intelligence [1, 2]. In this respect,
games (including the diverse set of board games, card games and modern com-
puter games) are considered to be ideal test environments for AI research [3–6].
This is especially true when we take into account the role of games in human so-
cieties: it is generally believed that games are tools both for children and adults
for understanding the world and for developing their intelligence [7, 8].

Most games are abstract environments, intended to be interesting and chal-
lenging for human intelligence. Abstraction makes games easier to analyze than
real-life environments, and usually provides a well-defined measure of perfor-
mance. Nevertheless, the complexity is high enough to make them appealing to
human intelligence. Games are good indicators and often-used benchmarks of
AI performance: Chess, Checkers, Backgammon, Poker and Go all define
important cornerstones of the development of artificial intelligence [9, 10].

Modern strategic board games (sometimes called “eurogames”) are increasing
in popularity since their (re)birth in the 1990’s. The game Settlers of Catan
can be considered an archetypical member of the genre. Strategic board games
are of particular interest to AI researchers because they provide a direct link
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Fig. 1. A game state of Settlers of Catan, represented in our program SmartSettlers

between classic (two-player, perfect information) board games and video games.
On the one hand, state variables of most modern board games are discrete,
and decision making is turn-based. On the other hand, the gameplay in modern
board games often incorporates elements of randomness, hidden information,
multiple players, and a variable initial setup, which make it hard to use classical
techniques such as alpha-beta pruning [11], opening books or Maxn [12].

Several computer implementations of Settlers of Catan exist, which typ-
ically feature a hand-designed, rule-based AI. The strength of these AIs varies,
but an experienced player can defeat them easily. Few research papers are avail-
able on autonomous learning in Settlers of Catan [13], and according to the
results reported therein, they are far from reaching human-level play yet. In this
paper, we investigate whether it is possible to use one of the AI tools of classi-
cal board games, namely Monte-Carlo Tree Search, effectively for implementing
game-playing agents for games like Settlers of Catan.

2 The game: Settlers of Catan

Settlers of Catan, designed by Klaus Teuber, was first published in 1995.
The game achieved a huge success: it received the “Game of the Year” award
of the German game critics, and it was the first “eurogame” to become widely
popular outside Germany, selling more than 11 million copies, inspiring numerous
extensions, successors, and computer game versions.

2.1 Game rules

In Settlers of Catan, the players take the role of settlers inhabiting an island.
They collect resources by suitable positioning of their settlements. They use these
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resources to build new settlements, cities, roads, and developments. The goal of
the game is to be the first player who gains at least 10 victory points. The game
can have 3 or 4 players, but our investigations concentrate on the 4-player game.
Detailed descriptions of the rules can be easily found on the internet. Below, we
summarize the rules (omitting many details).

Game board and resources: The game board representing the island is
randomly assembled from 19 hexagonal tiles forming a large hexagon (Figure 1
displays an example game board in our SmartSettlers program). Each tile rep-
resents a field that provides one of the five types of resources: wood, clay, sheep,
wheat or ore. There is also one desert which does not produce anything. Each
non-desert tile has a production number. Several of the sea tiles surrounding the
island contain a port. There is a robber on the island, initially residing in the
desert. During the game, the players can build settlements and cities on the
vertices of the hexagons, and roads on the edges. Settlements can be placed on
any free vertex that respects the distance rule: no settlement may be located
on a vertex that is connected to another settlement or city by exactly one edge.
Players start the game with two settlements and two roads already built.

Production: Each player’s turn starts by the rolling of two dice, which
determines production. Any field that bears a production number equal to the
sum of the dice, produces resources in that turn. Any player (i.e., not only the
player whose turn it is) who has a settlement adjacent to a producing field, gets
one of the corresponding resources. For any adjacent city, he gets two. On a dice
roll of 7, nothing is produced but the robber is activated. Any player who has
more than seven resource cards must discard half of them. After that, the current
player moves the robber to a new field. The field with the robber is blocked, i.e., it
does not produce anything, even if its number is rolled. Furthermore, the current
player can draw a random resource from one of his opponents who has a field
adjacent to the robber’s field.

Buildings, roads, and developments: After the production phase, a
player can take zero or more actions. He can use these actions to construct
new buildings and roads. A new road costs 1 wood and 1 clay, and must be
connected to the player’s existing road network. A new settlement costs 1 wood,
1 clay, 1 sheep and 1 wheat, and it must be placed in a way that it is connected
to the player’s road network, respecting the distance rule. Players may upgrade
their settlements to cities for 3 ore and 2 wheat. Players can also purchase a
random development card for 1 sheep, 1 wheat and 1 ore. Cards can give three
kinds of bonuses: (1) Some cards give 1 victory point. (2) Some cards are Knight
cards, which can be used to immediately activate the robber. (3) The third group
of cards gives miscellaneous rewards such as free resources or free roads. In his
turn, a player may use at most one development card.

Trading: The current player is allowed trade resources with his opponents,
as long as all involved in the trade agree. Players may also “trade with the bank”:
which means that they exchange four resources of one kind for one of a different
kind. If they have built a settlement or city connecting to a port, they can trade
with the bank at a better ratio, depending on the kind of port.
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Victory points and trophies: Next to the development cards that provide
1 victory point, a player gains victory points for settlements, cities, and trophies.
Each settlement is worth 1 victory point, and each city 2 victory points. The first
player to use three Knight cards gets the trophy “Largest army”. Subsequently, if
another player uses more Knight cards, he becomes the trophy holder. Similarly,
the player who is first to build a chain of five or more connected roads, gets the
trophy “Longest road”, and owns it until someone builds a longer chain. Both
trophies are worth 2 victory points. The game ends as soon as a player reaches
at least 10 victory points. That player wins the game.

2.2 Rule changes

From the rules it follows that Settlers of Catan has a variable initial setup,
non-deterministic elements (the dice rolls), elements of imperfect information
(buying of development cards, and a lack of knowledge of cards stolen), and
more than two players. For an easier implementation of the game, we changed
the rules to remove the elements of imperfect information. In our opinion, this
change does not alter gameplay in a significant way: knowing the opponents’
development cards does not significantly alter the strategy to be followed, and
information on the few cards stolen is usually quickly revealed anyway. We also
chose to not let our game-playing agent initiate trades with or accept trades from
other players (although it may trade with the bank). Note that the other players
may trade between themselves, which handicaps our agent slightly. While we
think that these changes do not alter the game significantly (at least in games
against JSettlers, which does not use trading very effectively), it is our intention
to upgrade our implementation to fully conform to the rules of Settlers of
Catan in future work.

2.3 Previous computer implementations

There are about ten computer implementations of Settlers of Catan avail-
able. We mention two of the strongest ones. The first is Castle Hill Studios’
version of the game, currently part of Microsoft’s MSN Games. The game fea-
tures strong AI players who use trading extensively. The second is Robert S.
Thomas’ JSettlers, which is an open-source Java version of the game, also hav-
ing AI players. The latter is the basis of many Settlers of Catan game servers
on the internet. The JSettlers architecture is described in detail by Thomas [14].
Pfeiffer [13] also used the JSettlers environment to implement a learning agent.
His agent uses hand-coded high-level heuristics with low-level model trees con-
structed by reinforcement learning.

3 Implementation

We implemented the Settlers of Catan game in a Java software module
named SmartSettlers. JSettlers was used for providing a graphical user interface
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(GUI) and the baseline AI. Because of the Internet-based architecture of JSet-
tlers, gameplay is fairly slow: a single four-player game takes about 10 minutes
on an average PC. The learning algorithm that is investigated in our project re-
quires thousands of simulated games before making a single step, so the JSettlers
environment in itself is clearly inadequate for that purpose. Therefore, we im-
plemented SmartSettlers as a standalone Java software module. It was designed
for fast gameplay, move generation, and evaluation. For optimum speed, game
data was divided into two parts: information that is constant throughout a game
was stored in a static object, while game-state dependent information was stored
in unstructured arrays of integers. The latter structure enabled quick accessing
and copying of information. On an average PC, SmartSettlers is able to play
around 300 games per second with randomly generated moves. JSettlers handles
the SmartSettlers AI as a separate thread, querying it for decisions through a
translation interface. A In addition, SmartSettlers is able to run as a stand-alone
program for investigating the self-play of the SmartSettlers AI.

4 Monte-Carlo Tree Search

In recent years, several Monte-Carlo based techniques emerged in the field of
computer games. They have already been applied successfully to many games,
including Poker [15] and Scrabble [16]. Monte-Carlo Tree Search (MCTS)
[17], a Monte-Carlo simulation based technique that was first established in 2006,
is implemented in top-rated Go programs [18–20]. The algorithm is a best-first
search technique which uses stochastic simulations. MCTS can be applied to
any two-player, deterministic, perfect information game of finite length (but its
extension to multiple players and non-deterministic games is straightforward).
Its basis is the simulation of games where both the AI-controlled player and its
opponents play random moves. From a single random game (where every player
selects his actions randomly), very little can be learned. But from simulating a
multitude of random games, a good strategy can be inferred. Studies of MCTS
in Go have shown that inclusion of domain knowledge can improve performance
significantly [18, 21]. There are at least two possible ways to include domain
knowledge: using non-uniform sampling in the Monte-Carlo simulation phase and
modifying the statistics stored in the game tree. Both approaches are discussed
below, in Subsections 5.2 and 5.3. For a detailed description of MCTS we refer
the reader to one of the previously mentioned sources.

5 Preliminary Investigations

The goal of the current research is to create a strong AI agent for Settlers of
Catan. In order to accomplish that goal, we investigated the starting position
(5.1), and domain knowledge for Monte-Carlo simulations (5.2) and Monte-Carlo
Tree Search (5.3).
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Fig. 2. The effect of seating order on the score distribution of random agents. Agents
select a random legal move each turn.

5.1 Effect of starting position

Reviews of Settlers of Catan suggest that the seating order of players has a
significant effect on their final rankings (although opinions differ which seat gives
the best strategic position). We conducted preliminary experiments to confirm
this effect. We recorded the games of four identical agents playing random moves.
In our first set of experiments, all agents made random (but legal) moves, while
for the second set, the agents used MCTS with 1000 simulated games per move.
The score distributions for different seating orders are shown in Figures 2 and
3. In both cases, 400 games were played.

The results show that the effect of the seating order is present and is statis-
tically significant. It is worth noting, however, that the actual effect can differ
for different strategies, despite the fact that both tested strategies are rather
weak. For random agents, the starting player has a distinct advantage, while for
MCTS agents player 1 is the worst off, and players 2 and 3 have an advantage.
A possible explanation is that, for purely random players, the first player has an
advantage because in general he can play one extra move in comparison to the
other players. Conversely, when players follow some kind of strategy, it seems
that being second or third in the seating order gives a strategic advantage. This
effect is probably related to the placement of initial settlements, and it would
be interesting to study the seating order effect for stronger MCTS players that
play 10000 or more simulated games per move.

These preliminary experiments confirmed that the seating order effect can
introduce an unknown bias to the performances of agents. In order to eliminate
this bias, the seating order was randomized for all subsequent experiments where
different agents were compared.
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Fig. 3. The effect of seating order on the score distribution of SmartSettlers agents.
Agents play 1000 simulated games per each real move.

5.2 Domain knowledge in Monte-Carlo simulations

If all legal actions are selected with equal probability, then the strategy played is
often weak, and the quality of a Monte-Carlo simulation suffers as a result. We
can use heuristic knowledge to give larger weights to actions that look promising.
We must be careful, however: if the selection strategy is too deterministic, then
the exploration of the search space becomes too selective, and the quality of
the Monte-Carlo simulation suffers. Hence, a balance between exploration and
exploitation must be found in the simulation strategy.

We set the following weights for actions:

– the basic weight of each action is +1.
– building a city or a settlement: +10000. Building a city or a settlement is

always a good move: it gives +1 point, and also increases the resource income.
All possible city/settlement-building possibilities are given the same weight;
it is left to the MC simulation to differentiate between them.

– building a road: define the road-to-settlement ratio as

R := No. of player’s roads
No. of player’s settlements + cities

and the weight of a road-building move as 10/10R. If there are relatively few
roads, then road building should have a high weight. Conversely, if there are
many roads, then road building is less favorable than ending the turn.

– playing a knight card: +100 if the robber is blocking one of the player’s own
fields, +1 otherwise.

– playing a development card: +10.
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Probabilities of choosing each action in the Monte-Carlo simulation were pro-
portional to their weights. These settings seem reasonable according to our ex-
perience with the game and expert advice on Monte-Carlo simulations. However,
actual performance of our agent dropped significantly when using the modified
probabilities instead of uniform sampling. A possible explanation is that with
the given weights, the agents are too eager to build settlements and cities, while
there may be a strategic advantage in giving preference to extending the roads
network to reach a better strategic position. Identifying the precise reasons for
the observed performance drop and working out a better set of weights (possibly
in an automated process) is part of our future work.

5.3 Domain knowledge in MCTS

Recent work [22] showed that domain knowledge can be easily injected into
the tree search aspects of MCTS, too. We can give “virtual wins” to preferred
actions (and we could also give “virtual losses” to non-preferred ones). We added
a quite limited amount of domain knowledge: when initializing a new tree node,
all settlement-building actions get 20 virtual wins, and all city-building actions
get 10. Other actions do not get any virtual wins. This means that for each time
a settlement-building action is added to the search tree, its counters for number
of visits and number of wins are both initialized to 20.

Note that virtual wins are not propagated back to parent nodes, as that would
seriously distort selection. For example, consider a situation where the player has
two options: it can either build a settlement in one of 5 possible places (giving
+20 virtual wins) or buy a development card first (giving no virtual wins), and
build a settlement afterwards (giving +20 virtual wins for any of the 5 possible
placements). If virtual wins are backpropagated, then the card-buying action
gets a huge +100 bonus. As an effect, The potential to build a settlement will be
rated higher than the actual building of that settlement. This is an effect that
should be avoided.

The small addition of virtual wins increased the playing strength of our
agent considerably, so subsequent tests were run with this modification. Further
optimization of distributing virtual wins should be possible, and is part of our
plans for future work.

6 Playing strength

We tested the playing strength of SmartSettlers against the JSettlers AIs (6.1)
and against humans (6.2).

6.1 Testing MCTS against JSettlers

Against the baseline heuristics of JSettlers we tested three different AIs: the
random player, MCTS with N = 1000 simulated games per move, and MCTS
with N = 10000. In all experiments, three JSettlers agents were playing against
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one other AI. For each experiment, 100 games were played. Following our pre-
liminary investigations (Section 5), we assume that no biasing terms are present,
so results for the three JSettlers agents are interchangeable. Therefore we get
three times as many data points for the JSettlers agents than for the other AIs.
The winning percentages presented below correspond to a single JSettlers agent.
This means that a player that is equal in strength to JSettlers wins 25% of the
time. The results are shown in Figure 4.

From Figure 4, (a) and (b), we may conclude that, as expected, the random
player is very weak: it does not win a single game, and in fact, in most games
it does not even score a point (besides the points it receives for its initial set-
tlements). From Figure 4, (c) and (d), we may conclude that MCTS with 1000
simulated games is roughly as strong as JSettlers: it wins 27% of the games, and
the score distribution is also similar. Finally, from Figure 4, (e) and (f), we may
conclude that MCTS with 10000 simulated games is convincingly better than
JSettlers: it wins 49% of all games, and reaches good scores even when it does
not win.

6.2 Testing MCTS against humans

To test how SmartSettlers performs against humans, the first author, who is
an accomplished Settlers of Catan player (with approx. 100 games played),
played a few dozen games against a combination of two JSettlers’ agents and
one SmartSettlers agent. While the number of games played is not sufficient for
drawing statistically relevant conclusions, these games do provide some informa-
tion about the playing strength and style of our agent. Qualitatively speaking,
we assess that the SmartSettlers agent makes justifiable moves that often coin-
cide with moves that a human would take. Furthermore, it seems to be definitely
more challenging for a human player than JSettlers. Still, we found that an ex-
pert human player can confidently beat the SmartSettlers agent.

For an analysis of the possible reasons for the human supremacy over Smart-
Settlers, we examined different strategies for Settlers of Catan. There are
two major “pure” winning strategies (in practice, human players often follow a
combination of these two): the “ore-and-wheat” strategy and the “wood-and-
clay” strategy. The former focuses on building cities and buying development
cards, Knight cards (receiving +2 points for the largest army), and 1-point cards.
The latter strategy focuses on building settlements and an extensive road net-
work (which may lead to getting +2 points for the longest road). Our SmartSet-
tlers agent seems to prefer the “ore-and-wheat” strategy, together with building
as many roads as possible, but not building as many settlements as an expert
human player would.

The source of this behavior is probably that MCTS does not look forward in
the game tree to sufficient depth. Building a settlement requires four different
resources. Collecting these often requires 3-4 rounds of waiting, trading and luck.
In the meantime, the agent can spend some of the resources to buy a road to get
a marginal advantage. While this may be much less preferable in the long run
(for example, getting 2 victory points for the longest road is a huge advantage
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(a) Random player (b) JSettlers player

(c) MCTS-1000 player (d) JSettlers player

(e) MCTS-10000 player (f) JSettlers player

Fig. 4. Three sets of score distributions. Top: (a) Random player vs. (b) JSettlers.
The random player won 0% of the time. Middle: (c) MCTS player (N = 1000) vs.
(d) JSettlers. The MCTS-1000 player won 27% of the time. Bottom: (e) MCTS player
(N = 10000) vs. (f) JSettlers. The MCTS-10000 player won 49% of the time.
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in the short run, but it does not help increasing the production rates), the agent
may not see this, as it does not analyze properly the game tree at that depth.
Increasing the number of simulated games per turn would probably alleviate
this weakness, but at the cost of a significant speed decrease. An alternative
approach we wish to pursue is to improve the move selection heuristics for the
Monte-Carlo simulations.

7 Future work

Our plans for future work can be grouped into two categories. Firstly, we plan
to update our software so that it complies fully with the original rules of Set-
tlers of Catan. To this end, we need to implement trading (which should be
straightforward) and the handling of hidden information. The latter requires the
implementation of an inference routine (keeping track of the possible values of
the unknown cards) and an extension of MCTS to the case where the current
state has uncertainty.

Secondly, we believe that the playing strength of our agent can be improved
considerably by injecting domain knowledge in a proper way. There are at least
two opportunities to place domain knowledge: by modifying the heuristic action
selection procedure inside the MCTS tree (by adding virtual wins to encourage
favorable actions), and by modifying the move selection probabilities in Monte-
Carlo move selection. In both cases, it is possible to extract the necessary domain
knowledge from a large database of played games.

8 Conclusions

In this paper we described an agent that learns to play Settlers of Catan.
For move selection, the agent applies Monte-Carlo Tree Search, augmented with
a limited amount of domain knowledge. The playing strength of our agent is no-
table: it convincingly defeats the hand-coded AI of JSettlers, and is a reasonably
strong opponent for humans.

Applications of MCTS have been mainly constrained to Go. The success of
our Settlers of Catan agent indicates that MCTS may be a viable approach
for other multi-player games with complex rules.
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