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Section 0.0

MOM AND THIS DOCUMENT

THae MobpuLarR OceaN MobeL (MOM) 1S A HYDROSTATIC GENERALIZED LEVEL COORDINATE NUMER-
ICAL OCEAN CODE WITH MASS CONSERVING NON-BOUSSINESQ OR VOLUME CONSERVING BOUSSINESQ
KINEMATICS. THE MODEL EQUATIONS ARE DISCRETIZED WITH GENERALIZED HORIZONTAL COORDINATES
ON THE SPHERE USING EITHER AN ARAKAWA B-GRID OrR C-GRID.! MOM HAS A BROAD SUITE OF PHYS-
ICAL PARAMETERIZATIONS, DIAGNOSTIC FEATURES, TEST CASES, AND DOCUMENTATION. IT HAS BEEN
UTILIZED FOR RESEARCH AND OPERATIONS FROM THE COASTS TO THE GLOBE. MOM IS INSTITUTION-
ALLY SANCTIONED BY NOAA’s GeopHysICAL FLuib Dynamics LaBoraTORY (GFDL), WHERE DEVEL-
OPMENT IS CENTERED. ADDITIONAL DEVELOPMENT AND USE OCCURS THROUGH HUNDREDS OF INTER-
NATIONAL SCIENTISTS AND ENGINEERS COMPRISING THE MOM comMuNITY. MOM 1S FREE SOFTWARE
DISTRIBUTED UNDER GPLV2 AND IT IS PART OF AN OPEN SOURCE COMMUNITY.

The 2012 release of MOM is the latest in a roughly 50 year history of numerical ocean and atmospheric
codes developed by scientists and engineers at GFDL. In addition to GFDL leadership, MOM code devel-
opment and use occurs through a broad network of scientists and engineers who contribute numerical al-
gorithms, physical parameterizations, diagnostics, bug fixes, test cases, documentation, and user feedback.
The development and use of MOM thus comprises a vital international open source community.

Ocean climate modeling has evolved tremendously over the years since Kirk Bryan first illustrated
the compelling nature of a nonlinear wind driven ocean circulation in Bryan (1963) using a numerical
model. We know far more about the ocean than in 1963, and we have far more realistic numerical tools
to investigate the ocean using some of the most powerful computers on the planet. Furthermore, the
problems associated with anthropogenic climate change prompt an increasing relevance and importance
to the results produced by ocean models. That is, climate science is not limited to the domain of curiousity
driven research. Instead, the science points to the nontrivial consequences of an ongoing uncontrolled
planetary-wide experiment. Hence, there has never been a more critical time for numerical models to be
fully detailed with rational and thorough descriptions, and supported by theory and observations.

Generations of ocean and climate scientists studied the ocean circulation by using the Cox code (Cox,
1984) in both idealized and realistic simulations. Cox’s code formed the basis for the first version of MOM
(Pacanowski et al., 1991) (see Section 1.1 for a brief history of MOM). Over the nearly three decades since
Cox (1984), the name “MOM” has become synonymous with ocean climate models. The MOM release
of 2012 is hence the result of decades of contributions by hundreds of scientists and engineers. Each
contribution, however large or small, adds valuable experience and features that allows MOM to be a
numerical tool worthy of the trust and utility required to make it suitable for both research and operations.
A trustworthy and useful numerical tool is the result of robust numerical methods, a wide range of state-of-
the-science physical parameterizations, and extensive diagnostics, combined with thorough and pedagogial
documentation, a huge suite of proven applications, and decades of experience by generations of scientists
and engineers. By this definition, MOM is among the world’s most useful and valuable ocean codes.

This document provides an account of the theory and methods forming the fundamentals of MOM.
Further documentation is available as part of the MOM distribution where details are given for how to
configure the code for a particular model experiment. All of this documentation aims to strengthen the
intellectual basis for MOM as well as its practical usability. It is with sincere humility and honor that I
remain part of the MOM community, both as one interested in the science resulting from its simulations,
and as one who nurtures and supports the science forming the foundations of the code itself. I hope that this
document enables yet another generation of scientists and engineers, young and old, new and experienced,
to wrap their heads around a truly significant piece of code, and in turn to offer feedback to support the
integrity, transparency, utility, and evolution of MOM.

Stephen.Griffies@noaa.gov NOAA/GFEDL, Princeton, USA

IThe C-grid version of MOM is new as of June 2012, and not yet available for general use. It is thus anticipated that the C-grid
option in MOM will mature rapidly over 2012 and beyond, and become the standard choice, particularly for coastal and mesoscale
eddying applications.
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The Modular Ocean Model (MOM) is a numerical representation of the ocean’s hydrostatic primitive
equations employing either Boussinesq (volume conserving) or non-Boussinesq (mass conserving) kinemat-
ics. It is formulated using a quasi-Eulerian algorithm employing generalized level coordinate technology
that facilitates the use of a suite of vertical coordinates. It is designed primarily as a tool for studying the
ocean climate as well as regional and coastal phenomena. There is a wide array of subgrid scale parameteri-
zations (SGS) available for use in a variety of global to coastal applications. An extensive suite of diagnostic
capabilities allows the researcher to probe into mechanisms underlying simulation features. MOM is devel-
oped by an international team of ocean scientists and engineers participating in the MOM project, with the
main algorithm development and software engineering provided by NOAA’s Geophysical Fluid Dynamics
Laboratory (GFDL) in Princeton, USA. The model is freely available under the GNU General Public License
(http://www.gnu.org/licenses/gpl.html)and can be downloaded after registration at

http://www.gfdl.noaa.gov/fms

The purpose of this document is to present a rationalized account of the theory and practice of MOM as
an ocean model tool for use in studying the ocean climate system. To achieve this purpose, this document
incorporates salient features of the following MOM related documents:

¢ The MOM3 Manual of Pacanowski and Griffies (1999)
¢ Fundamentals of Ocean Climate Models by Griffies (2004)
* A Technical Guide to MOM4.0 by Griffies et al. (2004)

There are additional elements in this document that are unique to more recent versions of MOM.

Note that MOM encompasses a relatively large body of code. Besides the code directly related to the
ocean model itself, there are allied codes required to support the use of MOM on various computational
platforms, including parallel machines; codes required to perform input/output operations; codes for cou-
pling to other component models, etc. The present document is concerned exclusively with that code
associated with the ocean equations.

1.1 A brief history of MOM

The Modular Ocean Model evolved from numerical ocean models developed in the 1960’s-1980’s by Kirk
Bryan and Mike Cox at GFDL. Most notably, the first internationally released and supported primitive
equation ocean model was developed by Mike Cox (Cox (1984)). Although somewhat common today, it
was actually quite revolutionary in 1984 to freely release, support, and document code for use in numerical
ocean modeling. The Cox-code provided scientists worldwide with a powerful tool to investigate basic
and applied questions about the ocean and its interactions with other components of the climate system.
Previously, rational investigations of such questions focused on idealized models and analytical methods.
Many researchers embraced the Cox-code, thus fostering a wide community of users and developers that
further enhanced the features and robustness of the code. This community approach has been fundamental
to all versions of the Cox-code and subequent releases of MOM, with the underlying assumption that the
scientific integrity of the code progresses more rapidly through input from a wide suite of researchers
employing the code for a variety of scientific and operational applications. Quite simply, the Cox-code
started what has today become a right-of-passage for every high-end numerical model of dynamical earth
systems.

Upon the untimely passing of Mike Cox in 1989 (Bryan, 1991), Ron Pacanowski, Keith Dixon, and Tony
Rosati at GFDL rewrote the Cox-code with an eye on new ideas of modular programming using Fortran
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77. The result was the first version of MOM (Pacanowski et al. (1991)). Version 2 of MOM (Pacanowski
(1995)) introduced the memory window idea, which was a generalization of the vertical-longitudinal slab
approach used in the Cox-code and MOM1. Both of these methods were driven by the desires of modelers
to run large experiments on machines with relatively small memories. The memory window provided
enhanced flexibility to incorporate higher order numerics, whereas slabs used in the Cox-code and MOM1
restricted the numerics to second order accuracy. MOM3 (Pacanowski and Griffies (1999)) even more fully
exploited the memory window with a substantial number of new physics and numerics options.

MOM4 has origins dating back to a transition from vector to parallel computers at GFDL, starting in
1999. Other related codes successfully made the transition some years earlier (e.g., The Los Alamos Par-
allel Ocean Program (POP) and the OCCAM model from Southampton, UK). New computer architectures
generally allow far more memory than previously available, thus removing many of the reasons for the
slabs and memory window approaches used in earlier versions of MOM. Additionally, the loop structure
can be quite opaque with the memory windows, making it relatively difficult to introduce new algorithms,
especially for the novice. Hence, for MOM4.0, the memory window was jettisoned in favor of a horizontal
2D domain decomposition. The project to convert MOM3 to MOM4.0 took roughly four years of coding
and testing.

After gaining some experience on parallel machines with MOM4.0, and after developing the IPCC AR4
coupled climate model CM2.1 at GFDL (Griffies et al., 2005; Delworth et al., 2006; Gnanadesikan et al.,
2006), development focused on a generalized level coordinate version of MOM, allowing the code to be
used with depth based Boussinesq vertical coordinates or pressure based non-Boussinesq vertical coordi-
nates. This effort led to the MOM4p1 project. During development and use of MOM4p1, a wide suite of
new diagnostics were developed in support of the evolving applications toward climate and biogeochem-
istry modeling. Additionally, MOM4p1 has incorporated tools required for use in regional and coastal
applications (Herzfeld et al., 2011).

MOM4p1 continued to evolve from its initial release in 2007 toward the end of 2011. The most recent
release took place in 2012, which represents the first release of MOMS5. For many applications, the 2012
release of MOM is quite similar to the December 2009 release of MOM4pl. However, the 2012 MOM
release has two notable enhancements to the underlying model framework.

* The 2012 MOM release has a C-grid layout for the horizontal gridding of the discrete model fields.
The C-grid has many advantages for fine resolution models and for representing land/sea boundaries
(see Section 9.1). Hence, there is much interest at GFDL and within the MOM community to allow
MOM to support both the B-grid and C-grid. It is anticipated that the bulk of the fine resolution
modeling with MOM at GFDL will transition from the B-grid to the C-grid during late 2012 and
beyond. Note that that the C-grid available in the initial release of MOMS5 is a proto-type, with
extensive testing remaining to be performed over the course of 2012 and beyond. Users intent on
applying the C-grid for their purposes should recognize the early stages of this code.

* The 2012 MOM release is coupled to a dynamically active Lagrangian submodel as documented by
Bates et al. (2012a,b). The interactive Lagrangian parcels provide a fundamentally new means to
represent/parameterize vertical convection and gravity driven downslope processes. It is anticipated
that much effort will be devoted over the next few years towards development and understanding of
the utility of solving a coupled set of Eulerian and Lagrangian equations that interact through the
exchange of mass, tracer, and momentum.

* Further work has continued to refine the many physical parameterizations in MOM.

* The 2012 MOM release has signficantly new diagnostic facilities allowing researchers to probe mech-
anisms for water mass transformation and steric changes to sea level, amongst the growing suite of
other diagnostic features.

The Cox-code and each version of MOM have an associated manual or user guide. Besides describing
elements of the code and its practical use, these manuals aim to rationalize model methods, algorithms, and
parameterizations. Absent such documentation, the code could present itself as a black box, thus greatly
hindering its utility to the curious and skeptical scientific researcher. As the code grows and evolves, it
is a nontrivial task to keep code and documentation consistent. Hence, visions for complete and updated
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documentation are unrealized, with elements of the documentation incomplete and/or not fully consistent
with the code. Nonetheless, the present document, as well as the earlier MOM documents, should provide
ample opportunity to understand many details of the code, thus facilitating its use for simulating the ocean.

1.2 Releases of MOM since 2003

There have been many releases of MOM since the original MOM1 code in 1991. We focus here on the
releases of MOM4.

1.2.1 First release of MOMA4.0: October 2003

When physical scientists aim to rewrite code based on software engineering motivations, more than soft-
ware issues are addressed. During the writing of MOM4, numerous algorithmic issues were also addressed,
which added to the development time. Hence, the task of rewriting MOM3 into MOM4.0 took roughly four
years to complete, taking place from 1999 to 2003. Such represents a very useful lesson. Namely, even
if one presumes from the start that the code will be rewritten only with an eye towards computational
architecture questions, such questions inevitably raise questions about fundamentals of algorithms and
parameterizations. When introducing such additional questions, the timeline for rewriting code grows ex-
tensively. There is a general rule in code/model development that must be honestly acknowledged when
scoping out the timelines for a project:

IT ALWAYS TAKES LONGER TO DEVELOP CODE AND MODEL CONFIGURATIONS THAN ORIGINALLY ANTICI-
PATED, EVEN WHEN UNDERSTANDING THAT IT TAKES LONGER THEN ANTICIPATED.

This rule has been proven valid multiple times with the development of MOM versions, and various model
configurations, over its multiple decades of history.

1.2.2 First release of MOM4p1: Early 2007

Griffies spent much of 2005 in Hobart, Australia as a NOAA representative at the CSIRO Marine and At-
mospheric Research Laboratory, as well as with researchers at the University of Tasmania. This period saw
focused work to upgrade MOM4.0 to include certain features of generalized level coordinates. By allowing
for the use of a suite of vertical coordinates, MOM4pl1 is algorithmically more flexible than any previous
version of MOM. This work, however, did not fundamentally alter the overall computational structure rel-
ative to the last release of MOM4.0 (the MOM4p0d release in May 2005). In particular, MOM4pl1 is closer
in “look and feel” to MOM4p0d than MOM4p0a is to MOM3.1. Given this similarity, it was decided to
retain the MOM4 name for the MOM4p1 release, rather switch to MOMS.

1.2.3 MOM4pl1 release December 2009

The MOM4p1 release of December 2009 represents a major upgrade to the code, especially those areas
related to open boundary conditions of use for regional applications (Chapter 16 and Herzfeld et al. (2011)),
various physical parameterizations, diagnostics, and computtional infrastructure. This public release also
provides the community with a test case consisting of the CM2.1 configuration used by GFDL for the IPCC
AR4 assessment, as documented by Griffies et al. (2005), Gnanadesikan et al. (2006), Delworth et al. (2006),
Wittenberg et al. (2006), and Stouffer et al. (2006a). Although CM2.1 for the AR4 assessement actually used
MOMA4.0, the setup in the CM2.1-MOM4p1 test case is backwards compatibile, meaning that the climate
state is the same.

1.2.4 MOMS5 release 2012

The most recent release of MOM occurred in 2012, and it is referred to as MOMS5. As noted earlier, this
code includes a C-grid option as well as a dynamically interacting Lagrangian submodel. It is notable that
both the C-grid and Lagrangian submodel are less mature than other portions of MOM. Hence, extensive
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further tests and development are required. Therefore, we offer the Lagrangian code with the following
caveat:

THE LAGRANGIAN BLOB SUBMODEL RELEASED WITH MOM REMAINS IN THE EARLY RESEARCH/DEVELOPMENT
STAGE. IT HAS NOT YET BEEN PORTED TO THE C-GRID. FURTHERMORE, IT IS NOT FULLY SUPPORTED FOR
PRODUCTION WORK.

THE C-GRID OPTION RELEASED WITH MOM IN 2012 REMAINS IN THE EARLY RESEARCH/DEVELOPMENT
STAGE. IT HAS NOT YET BEEN FULLY TESTED.

1.3 The MOMSG6 project

In addition to MOM, GFDL has supported the development of a generalized layer ocean model under
the leadership of Bob Hallberg and Alistair Adcroft. This project has been termed GOLD, for Generalized
Ocean Layer Dynamics. For certain applications, the choice for vertical coordinate needs to be more general
than that available with the generalized level capability of MOMS5 and earlier. In particular, the questions
of spurious diapycnal mixing, first identified by Griffies et al. (2000b) and more recently summarized by
Ilicak et al. (2012), motivated much of the GOLD effort, as did difficulties representing gravity driven
downslope flows (Winton et al., 1998). GOLD has matured recently through development of an IPCC
class earth system model using isopycnal vertical coordinates (the ESM2G model documented in Dunne
et al. (2012a,b)). Arguably GOLD represents the state-of-the-science in isopycnal layer models, and its
dynamical core provides the framework for doing any vertical coordinate or hybrid coordinate.

Starting June 2012, Adcroft, Griffies and Hallberg have embarked on a major effort to merge key phys-
ical parameterizations and the dynamical core from GOLD into MOM. This project, known as MOMS, is
timely for many reasons. The key motivator is that GFDL is initiating development of an new climate
model, CM4, that includes a mesoscale eddy permitting ocean configuration. To ensure success of CM4,
GFDL is focusing its presently diverse climate model development pathways. Thus, all the ocean model
developers at GFDL will focus on a single ocean code trunk for use in the new climate model, as well as for
other applications.

Progress towards MOM6 will occur in stages, involving intermediate versions of MOM5. Much of the
initial efforts involve an upgrade to the computational framework in MOM to facilitate merging in the
GOLD dynamical core. The associated code restructuring is relevant regardless of the merger with GOLD,
given the need for MOM to address elements of the changing paradigm in computational platforms appear-
ing on the near-term horizon. Throughout development towards MOMS6, we will continue to support key
capabilities of MOMS5 as well as GOLD. At strategic points in this development, we will solicit input from
the MOM community to examine the code and to provide assistance in upgrading selected portions where
non-GFDL expertise is required. There will be frequent updates to the MOM community as development
with MOMS5 progresses towards MOMS6.

1.4 Elements of MOMS5

In this section, we outline certain features of MOM as of 2012. Note that much of the following discussion
holds also for MOM4.0 and earlier releases of MOM4p1.

1.4.1 FMS and parallel programming

The tools required for parallel programming with MOM are provided by the GFDL Flexible Modeling
System (FMS). FMS provides the foundation upon which MOM is coded. That is, MOM is based on FMS.
There are dozens of scientists and engineers at GFDL focused on meeting the evolving needs of climate
scientists pushing the envelope of computational tools for studying climate. This situation is favorable to
the oceanographer who is less interested in the computer science required to run a high-end model, and
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more interested in coding his or her new idea into MOM in a manner that is clear, flexible, and robust
across various computational platforms.

One of the early decisions made towards porting MOM3 to MOM4.0 concerned the elimination of
the memory window in MOM3 and MOM2. Instead, MOM4.0 and later releases employ arrays ordered
(i,],k) for straightforward processor domain decomposition over the horizontal (i, j) directions. This
array layout provides the orientation of data structures used to parallelize MOM and other codes based on
GFDL FMS.

For those unfamiliar with parallel programming, yet wish to code something new in MOM, it is rec-
ommended that study be placed on certain of the existing MOM modules. By doing so, one can garner a
working understanding of the methods used to pass data across processor boundaries, thus ensuring that
simulation results are independent of the details of processor layout.

1.4.2 Features of the dynamical core

This section outlines certain features of the dynamical core in MOM.

1.4.2.1 Generalized orthogonal horizontal coordinates

MOM4.0 and later releases are written using generalized horizontal coordinates, with the coordinates as-
sumed to be locally orthogonal. The formulation in this document follows this approach as well. For global
ocean climate modeling, MOM comes with test cases using the tripolar grid of Murray (1996).

Code for reading in the grid and defining MOM specific grid factors is found in the module

ocean_core/ocean_grids.

MOM comes with preprocessing code suitable for generating grid specification files of various complexity,
including the Murray (1996) tripolar grid that has a bipolar Arctic region (see Figure 1.1). Note that the
horizontal grid in MOM is static (time independent), whereas the vertical grid is generally time dependent.
Hence, there is utility in separating the horizontal from the vertical grids.

1.4.2.2 Partial bottom steps

MOM4.0 and later releases employ the partial bottom step technology of Pacanowski and Gnanadesikan
(1998) to facilitate the representation of bottom topography. Each of the generalized level coordinates in
MOM make use of this technology. Code associated with partial bottom steps is located in the module

ocean_core/ocean_topog.

It is common in older (those dating from before 1997) z-models for model grid cells at a given discrete
level to have the same thickness. In these models, it is difficult to resolve weak topographic slopes without
including uncommonly fine vertical and horizontal resolution. This limitation can have important impacts
on the model’s ability to represent topographically influenced advective and wave processes. The partial
step methods of Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998) have greatly remedied this
problem via the implementation of more realistic representations of the solid earth lower boundary. Here,
the vertical thickness of a grid cell at a particular discrete level does not need to be the same. This added
freedom allows for a smoother, and more realistic, representation of topography by adjusting the bottom
grid cell thickness to more faithfully contour the topography. Figure 1.2 illustrates the bottom realized with
the ocean component of CM2.1, CM3, and ESM2M along the equator. Also shown is a representation using
an older full step method with the same horizontal and vertical resolution. The most visible differences
between full step and partial step topography are in regions where the topographic slope is not large,
whereas the differences are minor in steeply sloping regions.

1.4.2.3 Generalized level coordinates

Various vertical coordinates have been implemented in MOM. We have focused attention on vertical coor-
dinates based on functions of depth or pressure, which means in particualar that MOM does not support
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Figure 1.1: Illustration of the bipolar Arctic as prescribed by Murray (1996) (see his Figure 7) and realized
in the ocean component of CM2.1, CM3, and ESM2M. The transition from the bipolar Arctic to the spherical
grid occurs at 65°N. We denote horizontal grid cells by (i, j) indices. As in the spherical coordinate region
of the grid, lines of constant i—index move in a generalized eastward direction within the bipolar region.
They start from the bipolar south pole at i = 0, which is identified with i = ni, where ni is the number
of points along a latitude circle and ni = 360 for a one degree horizontal resolution. The bipolar north
pole is at i = ni/2, which necessitates that ni be an even number. Both poles are centered at a velocity
point when using the B-grid in MOM. Lines of constant j move in a generalized northward direction. The
bipolar prime-meridian is situated along the j-line with j = nj, where nj = 200 in OM3. This line defines
the bipolar fold that bisects the tracer grid. Care must be exercised when mapping fields across this fold.
As noted by Griffies et al. (2004), maintaining the exact identity of fields computed redundantly along the
fold is essential for model stability. Note that the cut across the bipolar fold is a limitation of the graphics
package, and does not represent a land-sea boundary in the model domain. This figure is taken after Figure
1 of Griffies et al. (2005).

thermodynamic or isopycnal based vertical coordinates.!

The following list summarizes vertical coordinates presently implemented in MOM. Extensions to other
vertical coordinates are straightforward, given the framework available for the coordinates already present.
Full details of the vertical coordinates are provided in Chapter 5.

* Geopotential coordinate as in MOM4.0, including the undulating free surface at z = 1 and bottom
partial cells approximating the bottom topography at z=-H

s=z. (1.1)

This is the vertical coordinate used in the GFDL IPCC AR4 coupled climate model CM2.1 docu-
mented by Griffies et al. (2005); Delworth et al. (2006); Gnanadesikan et al. (2006).

IThe Hallberg Isopycnal Model (HIM) is available from GFDL for those wishing to use layered models and it is available at
http://www.gfdl.noaa.gov/fms/.
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Figure 1.2: Bottom topography along the equator for the tracer cells. This figure illustrates the difference
between the older full step representation of the bottom topography (upper) and the partial step represen-
tation used in CM2.1, CM3, and ESM2M (lower). Note the large differences especially in regions where the
topographic slope is modest and small. This figure is taken after Figure 4 of Griffies et al. (2005).

* Quasi-horizontal rescaled height coordinate of Stacey et al. (1995) and Adcroft and Campin (2004)

s§=2z

B z—1 (1.2)
_H(Hw)'

This is the vertical coordinate used in the ocean component of the GFDL IPCC AR5 coupled climate
model CM3 documented by Griffies et al. (2011) and Donner et al. (2011). It is also the vertical
coordinate used in the earth system model ESM2M documented by Dunne et al. (2012a,b). Note that
tests at GFDL indicate that CM2.1 with the z* vertical coordinate exhibits the same climate as CM2.1
with geopotential vertical coordinate.

In equation (1.2), z = 7j(x, y,t) is the deviation of the ocean free surface from a state of rest at z =0,
and z = —H(x,p) is the ocean bottom. Whereas a geopotential ocean model places all free surface
undulations into the top model grid cell, a z* model distributes the undulations throughout the ocean
column. All grid cells thus have a time dependent thickness with z*. Surfaces of constant z* differ
from geopotential surfaces according to the ratio #7/H, which is generally quite small. Hence, surfaces
of constant z* are quasi-horizontal, thus minimizing difficulties of accurately computing the horizon-
tal pressure gradient (see Griffies et al., 2000a, for a review). The z* vertical coordinate is analogous
to the “eta” coordinate sometimes used for atmospheric models (Black, 1994).

We chose z* for CM3 and ESM2M because of the enhanced flexibility when considering two key ap-
plications of climate models. The first application concerns large surface height deviations associated
with tides and/or increased loading from sea ice (e.g., a global cooling simulation). The z* model
allows for the free surface to fluctuate to values as large as the local ocean depth, |1| < H, whereas
the geopotential model is subject to the more stringent constraint || < Az;, with Az; the thickness of
the top grid cell with a resting ocean. The ocean models in CM2.1 and CM3 set a minimum depth
to H > 40m, whereas Az; = 10m (note that there is no wetting and drying algorithm in MOM). This
flexibility with z* is further exploited if considering even finer vertical grid resolution. Figure 1.3
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illustrates this flexibility.

The second application where z* is useful concerns increased land ice melt that adds substantially
to the sea level, as in the idealized studies of Stouffer et al. (2006b), Kopp et al. (2010), and Yin
et al. (2010b). Placing all of the surface expansion into the top model grid cell, as with the free
surface geopotential model, greatly coarsens the vertical grid resolution in this important portion of
the ocean, whereas the z* model does not suffer from this problem since the expansion is distributed
throughout the column.

/"—\_//"—\_/
T

Figure 1.3: Illustrating the differences between geopotential vertical coordinate (left panel) and z* vertical
coordinate (right panel). In the upper ocean grid cell, the free surface with the geopotential vertical coor-
dinate can generally penetrate through the bottom of the top cell lower boundary, in which case there is a
problem with the simulation. In contrast, for the z* vertical coordinate, all vertical cells undulate in time,
with motion of the free surface spread throughout the ocean depth. Note that the undulations of the cell
interfaces with z* are scaled according to #/H, which is generally quite small. The undulations shown in
this schematic are thus highly exaggerated for visualization purposes.

* Depth based terrain following “sigma” coordinate, popular for coastal applications (e.g., Blumberg
and Mellor, 1987)

s=o®
_z—7 (1.3)
T H+y'

This coordinate has not been for research applications by GFDL researchers.

* The pressure coordinate
s=p (1.4)

was shown by Huang et al. (2001), DeSzoeke and Samelson (2002), Marshall et al. (2004), and Losch
et al. (2004) to be a useful way to transform Boussinesq z-coordinate models into non-Boussinesq
pressure coordinate models.

* Quasi-horizontal rescaled pressure coordinate

*

s=p
_po(p—pa) (1.5)
=p? ,
Po ~ Pa
where p, is the pressure applied at the ocean surface from the atmosphere and/or sea ice, py, is the
hydrostatic pressure at the ocean bottom, and py is a time independent reference bottom pressure.
This coordinate is the pressure coordinate analog to the z* coordinate.
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* Pressure based terrain following coordinate

s=cg'P)
_(P‘Pa ) (16)
Pb ~ Pa .

This coordinate is the pressure coordinate analog to the ¢(*) coordinate.
We now highlight the following points regarding these vertical coordinates.

* All depth based vertical coordinates implement the volume conserving, Boussinesq, ocean primitive
equations.

* All pressure based vertical coordinates implement the mass conserving, nonBoussinesq, ocean prim-
itive equations.

e There has little effort focused on reducing pressure gradient errors in the terrain following coordi-
nates (Section 3.2). Researchers intent on using terrain following coordinates may find it necessary
to implement one of the more sophisticated pressure gradient algorithms available in the literature,
such as that from Shchepetkin and McWilliams (2002).

* Use of neutral physics parameterizations (Section 4.2.3 and Chapter 23) with terrain following coor-
dinates is not recommended with the present implementation. There are formulation issues that have
not been addressed, since the main focus of neutral physics applications at GFDL centres on vertical
coordinates that are quasi-horizontal.

* Most of the vertical coordinate dependent code is in the module
ocean_core/ocean_thickness

where the thickness of a grid cell is updated according to the vertical coordinate choice. The developer
intent on introducing a new vertical coordinate may find it suitable to emulate the steps taken in this
module for other vertical coordinates. The remainder of the model code is generally transparent to
the specific choice of vertical coordinate, and such has facilitated a straightforward upgrade of the
code from MOM4.0 to later releases.

e The restart file for ocean_core/ocean_thickness is not compatible across vertical coordinates, given
particular distinctions between the various vertical coordinates. Hence, one should not modify the
vertical coordinate in the middle of a simulation without re-initializing the thickness module.

1.4.2.4 Explicit barotropic solver

MOMA4.0 and later releases employ a split-explicit time stepping scheme where fast two-dimensional dy-
namics is sub-cycled within the slower three dimensional dynamics. The method follows ideas detailed in
Chapter 12 of Griffies (2004), which are based on Killworth et al. (1991) and Griffies et al. (2001). Chapter
10 presents the details for MOM, and the code is on the module

ocean_core/ocean_barotropic.

1.4.2.5 Time stepping schemes
The time tendency for tracer and baroclinic velocity can be discretized two ways.

1. The first approach uses the traditional leap-frog method for the inviscid/dissipationless portion of
the dynamics, along with a Robert-Asselin time filter. This method is available in MOM4.0. However,
its use is strongly discouraged given that it is unstable when used without time filters, and since the
time filters preclude conservation of tracer.?

2The method from Leclair and Madec (2009) aims to overcome the limitations of tracer conservation with a time filtered leap frog
scheme. Their method has not been implemented in MOM.
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2. The preferred method discretizes the time tendency with a two-level forward step, which eliminates
the need to time filter. Tracer and velocity are staggered in time, thus providing second order accu-
racy in time. For certain model configurations, this scheme has been found to be twice as efficient
as the leap-frog based scheme since one can take twice the time step with the two-level approach.
Furthermore, without the time filtering needed with the leap-frog, the new scheme conserves total
tracer to within numerical roundoff. This scheme is discussed in Griffies et al. (2005) and Griffies
(2004) (see Chapter 12), as well as in Chapter 10 of this document.

The code implementing these ideas in MOM can be found in

ocean_core/ocean_velocity

ocean_tracers/ocean_tracer

As discussed in Chapter 12, there are various methods available for time stepping the Coriolis force in
MOM. The most commonly used method for global climate simulations with the B-grid version of MOM is
the semi-implicit approach in which half the force is evaluated at the present time and half at the future
time. An Adams-Bashforth scheme is used for the C-grid version of MOM.

1.4.2.6 Pressure gradient calculation

The pressure gradient calculation has been updated in MOM4p1 later releases to allow for the use of gen-
eralized vertical coordinates. A description of the formulation is given in Chapter 3, and the code is in the
module

ocean_core/ocean_pressure.
Notably, none of the sophisticated methods described by Shchepetkin and McWilliams (2002) are imple-
mented in MOM, and so terrain following vertical coordinates may suffer from unacceptably large pressure
gradients errors. Researchers are advised to perform careful tests prior to using these coordinates.

1.4.3 Dynamically interacting Lagrangian parcels

The one feature that most distinguishes the 2012 release of MOM relative to earlier releases is the abil-
ity to enable an interactive Lagrangian parcel scheme, whereby the parcels, or “blobs”, are dynamically
coupled to the traditional Eulerian grid cell properties. That is, the Lagrangian and Eulerian submodels
conservatively exchange seawater mass, tracer mass, and momentum. Figure 1.4 provides a schematic of
this coupled system.

There are two general physical applications that motivate considering the added degrees of freedom
afforded with a Lagrangian submodel, with both applications associated with vertically unstable water.

* Representation of convection in a hydrostatic model;
* Representation of gravitationally driven bottom downslope flows.

Bates et al. (2012a,b) presents the formulation of how the Lagrangian submodel is coupled to the traditional
Eulerian grid cells of MOM. The Lagrangian blobs comes with the following caveat:

THE LAGRANGIAN BLOB SUBMODEL RELEASED WITH MOM REMAINS IN THE EARLY RESEARCH/DEVELOPMENT
STAGE.

1.4.4 Tracer features

In this section we outline features available for tracers in MOM.

1.4.4.1 Equation of state

As discussed in Chapter 6, the equation of state in MOM has been updated to TEOS-10 as detailed in IOC
et al. (2010). The code for computing density and related fields is found in the module

ocean_core/ocean_density.
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Figure 1.4: A vertical-horizontal section near the ocean bottom to illustrate Lagrangian parcels or blobs
in MOM intereacting with Eulerian grid cell properties. The cross-hatched region denotes partial step
topography, and the entrainment and detrainment rates illustrate the decay and growth of a blob as it
moves downslope with an acceleration x.

1.4.4.2 Conservative temperature

MOM time steps the conservative temperature described by McDougall (2003) to provide a measure of
heat in the ocean (see Section 2.3.2). This variable is about 100 times more conservative than the tradi-
tional potential temperature variable. An option exists to set either conservative temperature or potential
temperature prognostic, with the alternative temperature variable carried as a diagnostic tracer. This code
for computing conservative temperature is within the module

ocean_tracers/ocean_tempsalt.

1.4.4.3 Freezing temperature for frazil

Accurate methods for computing the freezing temperature of seawater are provided by Jackett et al. (2006)
and IOC et al. (2010). These methods allow, in particular, for the computation of the freezing point at
arbitrary depth, which is important for ice shelf modelling. These methods have been incorporated into
the frazil module

ocean_tracers/ocean_frazil,

with heating due to frazil formation treated as a diagnostic tracer.

1.4.4.4 Tracer advection

MOM comes with the following array of tracer advection schemes. Note that centred schemes are stable only
for the leap-frog version of MOM. We thus partition the advection schemes according to the corresponding
time stepping schemes. The code for tracer advection schemes are in the module

ocean_tracers/ocean_tracer_advect.

Examples of the advection scheme simulation features are provided in the Torus test case that comes with
the MOM distribution.
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* Tracer advection schemes available for either time stepping method include the following.

1. First order upwind

2. Quicker scheme is third order upwind biased and based on the Leonard (1979). Holland et al.
(1998) and Pacanowski and Griffies (1999) discuss implementations in ocean climate models.
This scheme does not have flux limiters, so it is not monotonic.

3. Quicker-MOM3: The Quicker scheme in MOM4p1 differs slightly from that in MOM3, and so
the MOM3 algorithm has also been ported to MOM4p1 and later releases.

4. Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert (1994),
with Super-B flux limiters.> The scheme is available in MOM4p1 and later releases using either
time stepping scheme.

5. Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert (1994),
with flux limiters of Sweby (1984).* It is available in MOM4p1 and later releases with either time
stepping scheme. This scheme was used in the ocean component of the CM2.1 climate model
(Griffies et al., 2005; Delworth et al., 2006; Gnanadesikan et al., 2006).

6. The second moment scheme of Prather (1986) has been implemented in MOM . It is available
without limiters, or with the limiters of Prather (1986) and Merryfield and Holloway (2003).

7. The multi-dimensional piece-wise parabolic method (MDPPM) has been implemented in MOM.
> This is the scheme used for most of the newer (post 2010) climate models developed at GFDL
such as ESM2M (Dunne et al., 2012a,b).

Both the Super-B and Sweby schemes are non-dispersive, preserve shapes in three dimensions, and
preclude tracer concentrations from moving outside of their natural ranges in the case of a purely
advective process. They are modestly more expensive than the Quicker scheme, and it do not signif-
icantly alter the simulation relative to Quicker in those regions where the flow is well resolved. The
Sweby limiter code was used for the ocean climate model documented by Griffies et al. (2005). The
MDPPM scheme can likewise ensure montonicity with one of the three possible limiters.

* Tracer advection schemes available just for the leap-frog time stepping method include the following.

1. Second order centred differences

2. Fourth order centred differences: This scheme assumes the grid is uniformly spaced (in metres),
and so is less than fourth order accurate when the grid is stretched, in either the horizontal or
vertical.

3. Sixth order centred differences: This scheme assumes the grid is uniformly spaced (in metres),
and so is less than sixth order accurate when the grid is stretched, in either the horizontal or
vertical. This scheme is experimental, and so not supported for general use.

1.4.4.5 Tracer packages

MOM comes with an array of tracer packages of use for understanding water mass properties and for
building more sophisticated tracer capabilities, such as for ocean ecosystem models. Modules for these
tracers are in the directories

ocean_tracers

ocean_bgc

ocean_shared/generic_tracers.

Various of the tracer options include the following.

3This scheme was ported to MOM4.0 by Alistair Adcroft, based on his implementation in the MITgem. The online documentation
of the MITgecm at http://mitgem.org contains useful discussions and details about this advection scheme.

4This scheme was ported to MOM4.0 by Alistair Adcroft, based on his implementation in the MITgcm. The online documentation
of the MITgecm at http://mitgcm.org contains useful discussions and details about this advection scheme.

5This scheme was ported to MOM4p1 by Alistair Adcroft, based on his implementation in the MITgecm. The online documentation
of the MITgecm at http://mitgcm.org contains useful discussions and details about this advection scheme.
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* Idealized passive tracer module with internally generated initial conditions. These tracers are ideal
for testing various advection schemes, for example, as well as to diagnose pathways of transport.

* An ideal age tracer, with various options for specifying the initial and boundary conditions.

The OCMIP2 protocol tracers (CO,, CFC, biotic).

* iBGC: A simple ocean biogeochemistry model.

BLING: An intermediate complexity ocean biogeochemistry model. This model has been written
in a generic format to allow for its use with both MOM and GFDL’s model code GOLD. BLING is
documented in the paper by Galbraith et al. (2011).

TOPAZ: A comprehensive model of oceanic ecosystems and biogeochemical cycles is a state of the
art model that considers 22 tracers including three phytoplankton groups, two forms of dissolved or-
ganic matter, heterotrophic biomass, and dissolved inorganic species for C, N, P, Si, Fe, CaCO3 and
O, cycling. The model includes such processes as gas exchange, atmospheric deposition, scavenging,
N, fixation and water column and sediment denitrification, and runoff of C, N, Fe, O,, alkalinity
and lithogenic material. The phytoplankton functional groups undergo co-limitation by light, nitro-
gen, phosphorus and iron with flexible physiology. Loss of phytoplankton is parameterized through
the size-based relationship of Dunne et al. (2012b). Particle export is described through size and
temperature based detritus formation and mineral protection during sinking with a mechanistic,
solubility-based representation alkalinity addition from rivers, CaCOj3 sedimentation and sediment
preservation and dissolution. This model has been written in a generic format to allow for its use
with both MOM and GFDL’s isopycnal model GOLD. Further documentation of TOPAZ is provided
by Dunne et al. (2012b).

1.4.5 Subgrid scale parameterizations

Simulations in the ocean require the use of subgrid scale (SGS) parameterizations to allow the impacts
from unresolved scales to impact the resolved scales. The development of robust and scientifically based
SGS parameterizations is an active area of theoretical oceanography. Given the large uncertainty associated
with parameterizations, MOM has chosen to implement a wide suite of methods so that researchers can
have access to a variety of approaches that may best fit the particular application. The downside of such
variety is that it requires knowledge by the user to best make use of the huge number of options. Some
guidance for the use of SGS parameterizations is available from the test cases that come with MOM, and
some is provided by querying the online MOM user community. Nonetheless, the best approach is for
the MOM researcher to penetrate into the literature in order to make well educated decisions about SGS
parameterizations for a particular application.
In this section we outline some features of the subgrid scale parameterizations available in MOM.

1.4.5.1 Penetration of shortwave radiation

Chapter 17 describes the computational method used in MOM for implementing the penetration of short-
wave radiation into the ocean. The following modules are available for determining the details of how
shortwave radiation penetrates into the ocean.

ocean_param/sources/ocean_shortwave
ocean_param/sources/ocean_shortwave_csiro
ocean_param/sources/ocean_shortwave_gfdl

ocean_param/sources/ocean_shortwave_jerlov
Please refer to each module for full documentation. In brief, these modules provide the following options.

¢ ocean_shortwave: This module drives the other shortwave modules.
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* ocean_shortwave_csiro: This module implements an exponential decay for the penetrative short-
wave radiation. This module was prepared at CSIRO Marine and Atmospheric Research in Australia.

* ocean_shortwave_jerlov: This module implements yet another exponential decay formulation (ac-
tually, a double exponential) for the penetrative shortwave radiation.

e ocean_shortwave_gfdl: This module implements the optical model of Morel and Antoine (1994) as
well as that of Manizza et al. (2005).

— Sweeney et al. (2005) compile a seasonal climatology of chlorophyll based on measurements
from the NASA SeaWIFS satellite, and this climatology is available with the distribution of
MOM. They used this data to develop two parameterizations of visible light absorption based
on the optical models of Morel and Antoine (1994) and Ohlmann (2003). The two models yield
quite similar results when used in global ocean-only simulations, with very small differences in
heat transport and overturning.

— The Morel and Antoine (1994) method for attenuating shortwave radiation was employed in the
CM2 coupled climate model, as discussed by Griffies et al. (2005). MOM4p1 and later releases
have updated the implementation of this algorithm relative to MOM4.0 by including the time
dependent nature of the vertical position of a grid cell. The MOM4.0 implementation used the
vertical position appropriate only for the case of a static ocean free surface.

— In more recent model development, especially that associated with interactive biogeochemistry,
GFDL modelers have preferred the scheme from Manizza et al. (2005) rather than Morel and
Antoine (1994).

1.4.5.2 Horizontal friction

MOM has a suite of horizontal friction schemes, such as Smagorinsky laplacian and biharmonic schemes
described in Griffies and Hallberg (2000) and the anisotropic laplacian scheme from Large et al. (2001) and
Smith and McWilliams (2003). Code for these schemes is found in the modules

ocean_param/lateral/ocean_lapgen_friction

ocean_param/lateral/ocean_bihgen_friction.

1.4.5.3 Convective adjustment schemes

There are various convective methods available for producing a gravitationally stable column, with the
code found in the module

ocean_param/vertical/ocean_convect.

The scheme used most frequently at GFDL for idealized modeling is that due to Rahmstorf (1993). Chapter
19 details this scheme and other adjustment methods. Note that for realistic climate and regional modeling,
convective adjustment is not recommended. Instead, preference is given towards the use of a large verti-
cal diffusivity, such as that promoted by Klinger et al. (1996). Consequently, the convective adjustment
schemes remain in MOM largely for idealized simulations and legacy purposes.

1.4.5.4 Neutral physics

The parameterization of mesoscale eddies remains amongst the most active areas of theoretical research
impacting ocean models. MOM comes with a suite of options available for treating neutral physics in the
ocean interior as well as in boundary regions. A discussion of the methods is given in Chapter 23. The code
related to this material is available in the directory

ocean_param/neutral.
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1.4.5.5 Restratification effects from submesoscale eddies

There is an option available for parameterizing the restratification effects from submesoscale eddies, as
proposed by Fox-Kemper et al. (2008b) and Fox-Kemper et al. (2011). The MOM formulation is given in
Chapter 24, and the code is available in the module

ocean_param/lateral/ocean_submesoscale.

1.4.5.6 Parameterization of form drag

MOM has various options associated with the parameterization of form drag arising from unresolved
mesoscale eddies, as proposed by Greatbatch and Lamb (1990), Aiki et al. (2004), and Ferreira and Marshall
(2006). The code is available in the module

ocean_param/vertical/ocean_form_drag,

and documentation is given in Chapter 22. The form drag parameterization schemes have not been thor-
oughly used at GFDL.
1.4.5.7 Tidal mixing parameterizations

The tidal mixing parameterization of Simmons et al. (2004) has been implemented as a means to parameter-
ize the diapycnal mixing effects from breaking internal gravity waves, especially those waves influenced by
rough bottom topography. Additionally, this scheme has been combined with that used by Lee et al. (2006),
who discuss the importance of barotropic tidal energy on shelves for dissipating energy and producing
tracer mixing. Chapter 20 presents the model formulation, and

ocean_param/vertical/ocean_vert_tidal

contains the code.

1.4.5.8 An array of vertical mixing schemes

MOM comes with a wide array of vertical mixing schemes, including the following.
* Constant background diffusivity proposed by Bryan and Lewis (1979)

ocean_param/vertical/ocean_vert_mix

* Richardson number dependent scheme from Pacanowski and Philander (1981)

ocean_param/vertical/ocean_vert_pp

* The KPP scheme from Large et al. (1994)

ocean_param/vertical/ocean_vert_kpp

ocean_param/vertical/ocean_vert_kpp_mom4p0

The module ocean_vert_kpp maintains code provides some code updates relative to MOM4.0, such
as to allow for the use of generalized vertical coordinates; features found useful in fresh inland seas;
and modifications introduced by Danabasoglu et al. (2006). The module ocean_vert_kpp-mom4p0
maintains code compatibility with the implementation of MOM4.0 necessary to allow for backwards
compatiblity with the CM2.1 coupled model documented in Griffies et al. (2005).

* GENERAL OceaN TurBULENCE MobDEL (GOTM): Coastal simulations require a suite of vertical mixing
schemes beyond those available in most ocean climate models. GOTM (Umlauf et al., 2005) is a public
domain Fortran90 free software used by a number of coastal ocean modellers

http://www.gotm.net/
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GOTM includes many sophisticated turbulence closure schemes, and is updated periodically. It thus
provides users of MOM4p1 and later releases access to most updated methods for computing vertical
diffusivities and vertical viscosities. GOTM has been coupled to MOM by scientists at CSIRO in
Australia in collaboration with German and GFDL scientists.

The MOM wrapper for GOTM is
ocean_param/vertical/ocean_vert_gotm
with the GOTM source code in the directory

ocean_param/gotm.

1.4.5.9 Overflow schemes

MOM comes with various methods of use for parameterizing, or at least facilitating the representation of,
dense water moving into the abyss. These schemes are documented in Chapter 27, with the following
modules implementing these methods

ocean_param/lateral/ocean_sigma_transport
ocean_param/lateral/ocean_mixdownslope
ocean_param/sources/ocean_overflow

ocean,param/sources/ocean,overexchange

1.4.6 Diagnostics and the FMS diagnostic manager

MOM has traditionally had a plethora of diagnostic features. Indeed, perhaps one of the most appealing
features of MOM is the exceptional range of online diagnostics available for help in understanding all
aspects of the simulation, from details of the subgrid scale parameterizations to water mass transformation
rates. A thorough discussion of various MOM diagnostic features is available in Part VI of this document.

The diagnostic manager is the central tool from the GFDL FMS code repository employed for writing
diagnostics in MOM. The diagnostic manager allows users to decide at runtime whether to save a particu-
lar diagnostic field, and what particular space and time sampling to use. To access the diagnostic manager
facility, the programmer must register a field to be sampled in the appropriate MOM location. This reg-
istration process is straightforward, with thousands of fields presently registered in MOM. But inevitably
there will be a need to add a new diagnostic field. In this case, it is trivial to register this new field by
emulating what has been done for other fields already in MOM. Furthermore, if the new field is deemed of
use to the broader MOM community, then please suggest that it be included in future MOM releases.

1.4.7 Open boundary conditions

Much of the appeal of recent MOM releases is related to its enhanced facilities for regional ocean modeling,
with Herzfeld et al. (2011) documenting a suite of tests that exercise these features. Central to this utility
is the open boundary condition module

ocean_core/ocean_obc

which is documented in Chapter 16 as well as Herzfeld et al. (2011).

1.4.8 Test cases

All of the test cases have been revised as well as the addition of some new tests. These test cases are
provided for computations and numerical evaluation, and as starting points for those wishing to design
and implement their own research models.
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1.5

A flow diagram for the MOM algorithm

This document aims to provide a full rationalization of how MOM updates the ocean state. Prior to delving
into these extensive details, the reader may find it useful to see a coarse-grained perspective provided by
Figure 1.5. Note that the particular order for the calculations are in some cases quite important, as they
follow from the staggered time stepping methods detailed in Chapter 11. We now summarize the basic
steps used in the MOM algorithm.

Drive MOM using either the
driver/ocean_solo.F90

module when running MOM as an ocean-only model, or the module
coupler/coupler_main.F90

when coupling MOM to another component, such as sea ice or the atmosphere.

Initialize ocean related fields for the start of a new time step, with these initialization calls coordi-
nated by the module
ocean_core/ocean_model.F90.

Some of these fields are needed for prognostic calculations, and some are required for diagnostics.

Accumulate surface and bottom boundary fluxes for use in forcing the ocean fluid. The surface fluxes
are computed in
ocean_core/ocean_sbc.F90

and the bottom fluxes are computed in

ocean_core/ocean_bbc.F90.

Compute the vertical mixing coefficients associated with subgrid scale (SGS) parameterizations. These
coefficients are determined according to the chosen parameterization, and they are computed in mod-
ules contained in the directory

ocean_param/.

Compute any sources or sponge data for tracer fields using modules in the directories

ocean_tracers/

ocean_sources/.

If there are biogeochemical tracers, then further sources will be computed in the biogeochemical
modules contained in

ocean_bgc/
ocean_shared/generic_tracers/.

Compute tracer tendencies associated with the first suite of subgrid scale parameterizations. These
processes are computed using the ocean cell thicknesses as updated on the previous time step. Mod-
ules associated with this step are generally located in the directory

ocean_paran/.

Accumulate mass sources for use in updating the sea level or bottom pressure. This task is handled
by code in

ocean_core/ocean_barotropic.F90

ocean_core/ocean_thickness.F90.
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ALGORITHMIC FLOW FOR A TIME STEP OF MOM4r1

ALGORITHMIC TASK code

DRIVER FOR OCEAN ocean_so0lo.F90 or coupler.F90

INITIALIZE OCEAN RELATED

ocean.model.F90
PROGNOSTIC & DIAGNOSTIC FIELDS

ACCUMULATE BOUNDARY FLUXES ocean_sbc.F90, ocean_bbc.F90
!
VERTICAL MIXING COEFFICIENTS ocean,param/
TRACERJ;OURCES ocean_tracers/, oceamparam/source;/
ocean_bgc, ocean_shared/ocean_generic/
I}
TRACER SGS TENDENCIES PART A ocean_param/
!
MASS AND VOLUME TENDENCIES ocean barotropic.F90, ocean_thickness.F90
!
ADVECTION VELOCITY COMPONENTS ocean_advection_velocity.F90
I}
UPDATE 7) OR BOTTOM PRESSURE ocean_barotropic.F90
!
UPDATE T-CELL THICKNESS ocean_thickness.F90
!
TRACER SGS TENDENCIES PART B ocean_param/

UPDATE OCEAN TRACERS,

ocean_tracers/ ocean_density.F90
DENSITY, AND PRESSURE

!
ACCUMULATE ACCELERATION PART A ocean_velocity.F90
!
UPDATE BAROTROPIC SYSTEM ocean_barotropic.F90
I}
ACCUMULATE ACCELERATION PART B ocean_velocity.F90
!
UPDATE U-CELL THICKNESS ocean_thickness.F90
!
UPDATE VELOCITY ocean_velocity.F90
I}
COMPUTE DIAGNOSTIC QUANTITIES ocean_diag/
}

Figure 1.5: A flow diagram for the algorithm used in MOM to time step the ocean equations. Note that
there are a few more steps required when enabling interactive Lagrangian blobs, with these additional
steps detailed in Bates et al. (2012a,b).

» Diagnose the velocity components for use in tracer and velocity advection. The vertical component
is diagnosed through the continuity equation, whereas the horizontal components are based on inter-

polating the velocity components to the tracer and velocity cell faces. This task is handled by code
in

ocean_core/ocean_advection_velocity.F90.
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* Update the sea surface height # (for Boussinesq depth based vertical coordinates) or bottom pressure
(for non-Boussinesq pressure based vertical coordinates) to a new time step. This task is handled by
code in

ocean_core/ocean_barotropic.F90.

» Update the vertical elements to the tracer cell using code in

ocean_core/ocean_thickness.F90.

* Compute tracer tendencies associated with the second suite of subgrid scale parameterizations. These
processes are computed using the updated ocean cell thicknesses. Modules associated with this step
are generally located in

ocean_paran/.

» Update the tracer concentrations using tendencies associated with SGS processes, advection, and
boundary fluxes. Perform the update first using time-explicit processes, and then update vertical
and boundary processes using time-implicit methods. This task is handled by routines in

ocean_tracers/ocean_tracer.F90.
With the updated tracer concentrations, we then update the density in the module
ocean_core/ocean_density.F90

using the equation of state p = p(S(t+1),0(7+1),p(7)), with the hydrostatic pressure computed from
the previous time step. Pressure and density derivatives are then updated using all fields consistently
at the 7 time step.

* Accumulate the first portion of the acceleration, here associated with velocity advection, horizontal
pressure gradients, horizontal friction, momentum sources, and parameterized form drag. Each of
these acceleartions are computed in a time-explicit manner, and they are coordinated by a routine in

ocean_core/ocean_velocity.F90.

* Update the two-dimensional vertically integrated momentum by time stepping the forced shallow
water equations using routines in

ocean_core/ocean_barotropic.F90.

* Accumulate the second portion of the acceleration, here associated with time-explicit portion of the
Coriolis force and time-explicit portion of vertical friction. These calculations are coordinated by a
routine in

ocean_core/ocean_velocity.F90.

» Update the vertical elements to the velocity cell using code in

ocean_core/ocean_thickness.F90.

* Update the three dimensional velocity, including time implicit portions of the Coriolis forcing, verti-
cal friction, and boundary forcing. This calculation is located in

ocean_core/ocean_velocity.F90.

* Complete a time step by computing some optional diagnostic quantities, such as energey analyses,
global tracer budgets, etc. This calculation is coordinated by routines in the directory

ocean_diag/.

* Return ocean fields to the driver, including in particular the surface ocean properties that are used to
compute boundary fluxes exchanged with the sea ice and atmosphere models.
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1.6 Papers and reports providing documentation of MOM

The following is an incomplete list of documents that provide some further documentation of MOM than
that provided here. We list in particular those papers and reports that provide some details of use to help
understand aspects of the code and its use in applications.

* MOM manuals and ocean model monograph: As mentioned at the start of this chapter, the present
document aims to incorporate many of the salient features from previous MOM related technical
guides and monographs. The following lists these other documents.

The MOM3 Manual of Pacanowski and Griffies (1999)
Fundamentals of Ocean Climate Models by Griffies (2004)
A Technical Guide to MOM4.0 by Griffies et al. (2004)
Elements of MOM4p1 by Griffies (2009).

* IPCC AR4 related papers: The main application of MOM at GFDL relates to the study of global
climate. MOM4.0 is largely the product of developing the IPCC AR4 climate models CM2.0 and
CM2.1. MOM4p1 is largely the product of developing the IPCC AR5 models CM3 and ESM2M. The
following papers document these models, with much in these papers of use for understanding MOM.

— The paper by Griffies et al. (2005) provides a formulation of the ocean climate model used in
the GFDL CM2 climate model for the study of global climate variability and change. The ocean
code is based on MOM4.0.

— The paper by Gnanadesikan et al. (2006) describes the ocean simulation characteristics from the
coupled climate model CM2.

— The paper by Delworth et al. (2006) describes the coupled climate model CM2.

— The paper by Wittenberg et al. (2006) focuses on the tropical simulations in the CM2 coupled
climate model.

— The paper by Stouffer et al. (2006a) presents some idealized climate change simulations with the
coupled climate model CM2.

* IPCC AR5 related papers: Recent development of MOM at GFDL, in particular MOM4pl, is largely
associated with development of the IPCC AR5 models.

— ESM2M: Development of the earth system model ESM2M (Dunne et al., 2012a,b) prompted
many developments in MOM. It is anticipated that further papers will be written that focus on
physical aspects of the ocean component.

— CM3: The climate model CM3 was developed using MOM configured very similarly to the
CM2.1 ocean component. Nonetheless, the paper by Griffies et al. (2011) is of use to docu-
ment various aspects of the ocean simulation that may be of use to those wishing to understand
a bit more about MOM.

* Regional modeling: The paper by Herzfeld et al. (2011) documents the use of MOM for regional
modeling.

* Eddying global modeling: The paper by Delworth et al. (2012) documents the use of MOM as a
component to an eddying coupled climate model, with the ocean resolution no coarser than 25km
and the atmospheric resolution roughly 50km. Further development with this model is focused on
the C-grid aspects available in the 2012 release of MOM.

* Lagrangian submodeling: This work largely remains ongoing, with the most extensive documenta-
tion given by Bates (2011) as well as Bates et al. (2012a,b).
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1.7 Remainder of this document

This document aims to provide the reader with a reasonably full accounting of the theoretical foundations
of MOM, along with a thorough understanding of its use as a tool to study the ocean system. This document
is split into chapters, with chapters in turn grouped into parts. An attempt is made to identify that portion
of the code associated with each of the chapters.

It is inevitable that certain topics will be either incomplete or totally absent. Such represents more a
limitation of those contributing to this document than a statement about the reletive importance of a topic.
We value all input on the document and will aim to improve the presentation with future drafts.
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Formulation of the ocean equations

Descriptive methods provide a foundation for physical oceanography. Indeed, many observational oceanog-
raphers are masters at weaving a physical story of the ocean. Once a grounding in observations and exper-
imental science is established, it is the job of the theorist to rationalize the phenomenology. For physical
oceanography, these fundamentals largely rest in the classical mechanics of continuous fluids combined
with continuum linear irreversible thermodynamics. That is, for a fundamental understanding, it is neces-
sary to combine the descriptive, and more generally the experimental, approaches with theoretical methods
based on mathematical physics. Together, the descriptive/experimental and theoretical methods render
deep understanding of physical phenomena, and provide rational, albeit imperfect, predictions of unob-
served phenomena, including the state of future ocean climate.

Many courses in physics introduce the student to mathematical tools required to garner a quantative
understanding of physical phenomena. Mathematical methods add to the clarity, conciseness, and preci-
sion of our description of physical phenomena, and so enhance our ability to unravel the essential physical
processes involved with a phenomenon.

The purpose of this part is to mathematically formulate the fundamental equations providing the ratio-
nal basis of the MOM ocean code. It is assumed that the reader has a basic understanding of calculus and
fluid mechanics. Much of the presentation starts from first principles, and so should be accessible to those
unfamiliar with physical oceanography.
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2.8.1 The accumulation of contact pressure forces . . . . . . .. .. ... ... .. ...... 55
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The purpose of this chapter is to formulate the kinematic and dynamic equations that form the basis for
MOM. Much of this material is derived from lectures of Griffies (2005) at the 2004 GODAE School on Op-
erational Oceanography. The proceedings of this school have been put together by Chassignet and Verron
(2005), and this book contains many pedagogical reviews of ocean modelling. Additional discussions can
be found in Griffies (2004), and Griffies and Adcroft (2008). The material here should be accessible to those
having some exposure to the basics of mathematical physics, yet there is little assumed about knowledge
of fluid mechanics.

2.1 Fluid kinematics

Kinematics is the study of the intrinsic properties of motion, without concern for dynamical laws. The
purpose of this section is to derive some of the basic equations of fluid kinematics applied to the ocean.
As considered here, fluid kinematics is concerned with balances of mass for infinitesimal fluid parcels or
finite regions of the ocean. It is also concerned with the behaviour of a fluid as it interacts with geometrical
boundaries of the domain, such as the land-sea and air-sea boundaries of an ocean basin.

2.1.1 Mass conserving fluid parcels

Consider an infinitesimal parcel of seawater contained in a volume of size!
dV =dxdydz (2.1)

with a mass given by
dM =pdV. (2.2)

In these equations, p is the in situ mass density of the parcel and x = (x,9,z) is the Cartesian coordinate
of the parcel with respect to an arbitrary origin. As the parcel moves through space-time, we measure its

velocity

dx
_ 2.
v T (2.3)

by considering the time changes in its position.>

The time derivative d/dt introduced in equation (2.3) measures time changes of a fluid property as
one follows the parcel. That is, we place ourselves in the parcel’s moving frame of reference. This time
derivative is thus directly analogous to that employed in classical particle mechanics (Landau and Lifshitz,
1976; Marion and Thornton, 1988). Describing fluid motion from the perspective of an observer moving
with fluid parcels affords us with a Lagrangian description of fluid mechanics. For many purposes, it is

L A parcel of fluid is macroscopically small yet microscopically large. That is, from a macroscopic perspective, the parcel’s thermo-
dynamic properties may be assumed uniform, and the methods of continuum mechanics are applicable to describing the mechanics
of an infinite number of these parcels. However, from a microscopic perspective, these fluid parcels contain many molecules, and so
it is safe to ignore the details of molecular interactions. Regions of a fluid with length scales on the order of 10~3cm satisfy these
properties of a fluid parcel. See Section 2.2 of Griffies (2004) for further discussion.

2The three dimensional velocity vector is written v = (u, w) throughout these notes, with u = (1, v) the horizontal components and
w the vertical component.
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useful to take a complementary perspective in which we measure fluid properties from a fixed space frame,
and so allow fluid parcels to stream by the observer. The fixed space frame affords one with an Eulerian
description of fluid motion. To relate the time tendencies of scalar properties measured in the moving and
fixed frames, we perform a coordinate transformation, the result of which is (see Section 2.3.3 of Griffies
(2004) for details)

d
a—at"'v"v, (24)
where
d; = i (2.5)
LT ot :

measures time changes at a fixed space point. The transport term
v-V=u-V,+w g, (2.6)

reveals the fundamentally nonlinear character of fluid dynamics. In this relation, V; is the horizontal
gradient operator taken on surfaces of constant generalized vertical coordinate s, and w(®) measures the
transport of fluid crossing these surfaces. We provide further discussion of this expression in Section 2.1.4.
In general, the operator v -V is known as the advection operator in geophysical fluids, whereas it is often
termed convection in the classical fluids literature.’

It is convenient, and conventional, to formulate the mechanics of fluid parcels that conserve mass.
Choosing to do so allows many notions from classical particle mechanics to transfer over to continuum
mechanics of fluids, especially when formulating the equations of motion from a Lagrangian perspective.
We thus focus on kinematics satisfied by mass conserving fluid parcels. In this case, the mass of a parcel
changes only if there are sources within the continuous fluid, so that

d In(dM) =S™M) (2.7)
dt

where SM) is the rate at which mass is added to the fluid, per unit mass. Mass sources are often assumed

to vanish in textbook formulations of fluid kinematics. However, they can be nonzero in certain cases

for ocean modelling in which mass is moved from one region to another through certain subgrid scale

parameterizations, such as the cross land schemes of Chapters 29 and 30. So it is convenient to carry mass

sources around in our formulation of the equations used by MOM.

Equation (2.7) expresses mass conservation for fluid parcels in a Lagrangian form. To derive the Eulerian
form of mass conservation, start by substituting the mass of a parcel given by equation (2.2) into the mass
conservation equation (2.7) to derive
i1np:—V-V+S(M). (2.8)
dt
That is, the density of a parcel increases when the velocity field converges onto the parcel. To reach this

result, we first note the expression
d
— In(dV)=V_-v, 2.9
S In@dV) =V (2.9)
which says that the infinitesimal volume of a fluid parcel increases in time if the velocity of the parcel
diverges from the location of the parcel. Imagine the parcel expanding in response to the diverging velocity
field.
Upon deriving the material evolution of density as given by equation (2.8), rearrangement renders the
Eulerian form of mass conservation

P +V-(pv)=pS™M), (2.10)
A comma is used here as shorthand for the partial time derivative taken at a fixed point in space
d
p;= a—‘t). (2.11)

3 Convection in geophysical fluid dynamics generally refers to the rapid vertical motions that act to stabilize fluids that are gravita-
tionally unstable (e.g., Marshall and Schott, 1999).
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We use an analogous notation for other partial derivatives throughout these notes. Rewriting mass conser-
vation in terms of the density time tendency

pi=-V-(pv)+pS™), (2.12)

reveals that at each point in the fluid, the mass density increases if the linear momentum per volume of the
fluid parcel,

p=pv, (2.13)

converges to the point.

2.1.2 Volume conserving fluid parcels

Fluids that are comprised of parcels that conserve their mass, as considered in the previous discussion,
satisfy non-Boussinesq kinematics. In ocean climate modelling, it has been traditional to exploit the large
degree to which the ocean fluid is incompressible, in which case the volume of fluid parcels is taken as
constant. These fluids are said to satisfy Boussinesq kinematics.
For the Boussinesq fluid, conservation of volume for a fluid parcel leads to
d, _ s
— In(dV)=8"), (2.14)
dt
where S(V) is the volume source per unit volume present within the fluid. It is numerically the same as
the mass source SM) defined in equation (2.7). This statetment of volume conservation is equivalent to the
mass conservation statement (2.7) if we assume the mass of the parcel is given by

dM =p,dV, (2.15)

where p, is a constant reference density.
Using equation (2.9) in the Lagrangian volume conservation statement (2.14) leads to the following
constraint for the Boussinesq velocity field
V.v=8"), (2.16)

Where the volume source vanishes, the three dimensional velocity field is non-divergent

V.v=0 for Boussinesq fluids with (V) = 0. (2.17)

2.1.3 Mass conservation for finite domains

Now consider a finite sized region of ocean extending from the free surface at z = #(x, v, t) to the solid earth
boundary at z = —H(x,p), and allow the fluid within this region to respect the mass conserving kinematics
of a non-Boussinesq fluid. The total mass of fluid inside the region is given by

1

M:fdxdyfpdz. (2.18)

-H
Conservation of mass for this region implies that the time tendency

1
8tM:jdxdy8t '[dzp (2.19)
H
changes due to imbalances in the flux of seawater passing across the domain boundaries, and from sources

within the region.* For a region comprised of a vertical fluid column, the only means of affecting the mass
are through fluxes crossing the ocean free surface, convergence of mass brought in by horizontal ocean

4We assume no water enters the domain through the solid-earth boundaries.
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currents through the vertical sides of the column, and sources within the column. These considerations
lead to the balance

Ui Ui
BtM:fdxdy Qm+szpS(M)—V~Jd2pu . (2.20)
-H -H

The term Q,, dxdy represents the mass flux of material (mass per unit time) crossing the free surface.> We
provide a more detailed accounting of this flux in Section 2.1.6. Equating the time tendencies given by
equations (2.19) and (2.20) leads to a mass balance within each vertical column of fluid

Ui Ui
d; szp +V-Up:Qm+fdsz(M), (2.21)
—H -H
where
1
UP = szpu (2.22)
-H

is a shorthand notation for the vertically integrated horizontal momentum per volume.
Setting density factors in the mass conservation equation (2.21) to the constant reference density p,
renders the volume conservation equation

1
dm+V-U= Qm/po+fd28(v) (2.23)
-H
appropriate for a Boussinesq fluid, where fluid parcels conserve volume rather than mass. In this equation
1
U= j dzu (2.24)
-H

is the vertically integrated horizontal velocity.

2.1.4 Dia-surface transport

A surface of constant generalized vertical coordinate, s, is of importance when establishing the balances of
mass, tracer, and momentum within a layer of fluid whose upper and lower bounds are determined by sur-
faces of constant s. Fluid transport through this surface is said to constitute the dia-surface transport. This
transport plays a fundamental role in generalized vertical coordinate models such as MOM. Additionally,
when considering the flow of fluid and tracer properties across the ocean surface and bottom, the notions
of dia-surface transport are useful.

Generalized vertical coordinates provide the ocean theorist and modeler with a powerful set of tools to
describe ocean flow, which in many situations is far more natural than the more traditional geopotential
coordinates (x,v,z) that we have been using thus far. Therefore, it is important for the student to gain some
exposure to the fundamentals of these coordinates, as they are ubiquitous in ocean modelling today.

2.1.4.1 Basic formulation

At an arbitrary point on a surface of constant generalized vertical coordinate (see Figure 2.1), the flux of
fluid in the direction normal to the surface is given by

SEAWATER FLUX IN DIRECTION fi = V- i, (2.25)

5Water crossing the ocean surface is typically quite fresh, such as for precipitation or evaporation. However, rivers and ice melt can
generally contain a nonzero salinity. Additionally, for most climate model applications, the mass of salt particles exchanged across
the liquid ocean interface upon melting and freezing of sea ice is ignored when considering the mass balance of the liquid ocean fluid.
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with
Vs

V|

the surface unit normal direction. Introducing the material time derivative ds/dt =s; + v - Vs leads to the
equivalent expression

fi= (2.26)

v-h =|Vs|}(d/dt - dy)s. (2.27)

That is, the normal component to a fluid parcel’s velocity is proportional to the difference between the
material time derivative of the surface and its partial time derivative.

Since the surface is generally moving, the net flux of seawater penetrating the surface is obtained by
subtracting the velocity of the surface v"*¥) in the fi direction from the velocity component v - of the fluid
parcels. We thus define the dia-surface velocity component according to

w(s) = FLUX OF SEAWATER THROUGH SURFACE

=h- (v—vied), (2:28)
The velocity v(*f) is the velocity of a reference point fixed on the surface, which is defined so that
(9; +v) . V)s = 0. (2.29)
Consequently,
v = 5, |vs| 7L, (2.30)

so that the normal component of the surface’s velocity vanishes when the surface is static.

z

Xy

Vref
s=constant

/v

Figure 2.1: Surfaces of constant generalized vertical coordinate living interior to the ocean. An upward
normal direction fi is indicated on one of the surfaces. Also shown is the orientation of a fluid parcel’s
velocity v and the velocity v(**") of a reference point living on the surface.

Expression (2.30) then leads to the following expression for the net flux of seawater crossing the surface

w = - (v—vired)

=|Vs| " (9 +v-V)s (2.31)
1 ds

=|Vs| T

Hence, the material time derivative of the generalized surface vanishes if and only if no water parcels
cross it. This important result is used throughout ocean theory and modelling. It measures the volume of
seawater crossing a generalized surface, per time, per area. The area normalizing the volume flux is that
area dAy) of an infinitesimal patch on the surface of constant generalized vertical coordinate with outward
unit normal fi. When surfaces of constant generalized vertical coordinate are monotonically stacked in the
vertical, this area factor can be written (see equation (6.58) of Griffies (2004))

dA(ﬁ) = |Z/5 VSldA, (232)
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where
dA =dxdy (2.33)

is the horizontal projection of the area element. Hence, the volume per time of fluid passing through the
generalized surface is

(VOLUME/TIME) THROUGH SURFACE = fi - (V — v(ref)) dAw)

(2.34)
=|z4|(ds/dt)dxdy,
and the magnitude of this flux is
- (v—v))dA )| = [w@|dxdy. (2.35)
We introduced the expression
d
w® = z, d_j' (2.36)

which measures the volume of fluid passing through the surface, per unit area dA = dxdy of the horizontal
projection of the surface, per unit time. That is,
- (v—vie)dA

dA (2.37)
(VOLUME/TIME) OF FLUID THROUGH SURFACE

e

AREA OF HORIZONTAL PROJECTION OF SURFACE ’

The quantity w'? is the dia-surface velocity component that appears in the budget equations for mass,
tracer, and momentum in the generalized level formulation of MOM.

2.1.4.2 Alternative expressions for the dia-surface velocity component

To gain some experience with the dia-surface velocity component, it is useful to write it in the equivalent
forms

_, g
T
=2z, Vs (v—v) (2.38)

W

=(2-V;z)-v—-z;
=w—(d;+u-Vy)z

where the penultimate step used the identity (2.40), and where

S=V,z
(2.39)
=-z,V,s
is the slope of the s surface as projected onto the horizontal directions. For example, if the slope vanishes,
then the dia-surface velocity component measures the flux of fluid moving vertically relative to the motion
of the generalized surface. When the surface is static and flat, then the dia-surface velocity component is
simply the vertical velocity component w = dz/dt.
When interpreting the dia-surface velocity component below, we find it useful to note that relation
(2.30) leads to

ref)

Zg Vs- v = Z4. (2.40)

To reach this result, we used the identity s ; z; = —z;, with z; the time tendency for the depth of a particular
constant s surface.
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The expression (2.36) for w? brings the material time derivative (2.4) into the following equivalent
forms

d d d
E:(E)Z+U'VZ+W(£) (241)
d ds( d
=(ﬁ)s+“'vs+a(z) (2.42)
d d
. . @2
_(at)s+u Vi+w (82 ), (2.43)

where
ds=2,0, (2.44)

relates the vertical coordinate partial derivatives. The form given by equation (2.43) motivates some to
refer to w'®) as a vertical velocity component that measures the rate at which fluid parcels penetrate the
surface of constant generalized coordinate (see Appendix A to McDougall (1995)). Indeed, such is part
of the motivation for using the (z) superscript notation. However, we must be careful to distinguish w(?
from the generally different vertical velocity component w = dz/dt, which measures the water flux crossing
constant geopotential surfaces.

We close with a few points of clarification for the case where no fluid parcels cross the generalized
surface. Such occurs, in particular, in the case of adiabatic flows with s = p an isopycnal coordinate. In
this case, the material time derivative (2.43) only has a horizontal two-dimensional advective component
u - V,. This result should not be interpreted to mean that the velocity of a fluid parcel is strictly horizontal.
Indeed, it generally is not, as the form (2.41) should make clear. Rather, it means that the transport of
fluid properties occurs along surfaces of constant s, and such transport is measured by the convergence of
horizontal advective fluxes as measured along surfaces of constant s. We revisit this point in Section 2.6.2
when discussing tracer transport (see in particular Figure 2.7).

2.1.5 Solid earth kinematic boundary condition

We now apply the discussion of dia-surface transport from Section 2.1.4 to perhaps the simplest surface;
namely, the time independent solid earth boundary. This surface is commonly assumed to be impenetrable
to fluid.® The expression for fluid transport at the lower surface leads to the solid earth kinematic boundary
condition. In addition to deriving the bottom kinematic boundary condition, we introduce some mathe-
matical techniques useful when working with non-orthogonal generalized vertical coordinates, as used in
many ocean models such as MOM.

2.1.5.1 Orthogonal coordinates

As there is no fluid crossing the solid earth lower boundary, a no-normal flow condition is imposed at the
solid earth boundary at the depth
z=-H(x,p). (2.45)

To develop a mathematical expression for the boundary condition, note that the outward unit normal
pointing from the ocean into the underlying rock is given by’ (see Figure 2.2)

L V(z+H)
ny = —(m) (246)

Furthermore, we assume that the bottom topography can be represented as a continuous function H(x,p)
that does not possess “overturns.” That is, we do not consider caves or overhangs in the bottom boundary

6This assumption may be broken in some cases. For example, when the lower boundary is a moving sedimentary layer in a coastal
estuary, or when there is seeping ground water. We do not consider such cases here.

7The three dimensional gradient operator V = (dy, dy,dz) reduces to the two dimensional horizontal operator V, = (dy, dy,0) when
acting on functions that depend only on the horizontal directions. To reduce notation clutter, we do not expose the z subscript in cases
where it is clear that the horizontal gradient is all that is relevant.
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where the topographic slope becomes infinite. Such would make it difficult to consider the slope of the
bottom in our formulations. This limitation is common for ocean models.®

z

Xy

z=-H(xy)

Figure 2.2: Schematic of the ocean’s bottom surface with a smoothed undulating solid earth topography
at z = —H(x,y) and outward normal direction fiy. Undulations of the solid earth can reach from the ocean
bottom at 5000m-6000m to the surface over the course of a few kilometers (slopes on the order of 0.1 to 1.0).
These ranges of topographic variation are far greater than the surface height (see Figure 2.3). It is important
for simulations to employ numerics that facilitate an accurate representation of the ocean bottom.

A no-normal flow condition on fluid flow at the ocean bottom implies

A

v-Ag =0 at z=-H(x,v). (2.47)
Expanding this constraint into its horizontal and vertical components yields
u-VH+w=0 at z=-H(x,p). (2.48)
Furthermore, introducing a material time derivative (2.4) allows us to write this boundary condition as

d(z+H)

TR 0 at z=-H(x,7y). (2.49)

Equation (2.49) expresses in a material or Lagrangian form the impenetrable nature of the solid earth lower
surface, whereas equation (2.48) expresses the same constraint in an Eulerian form.

2.1.5.2 Generalized vertical coordinates

We now consider the form of the bottom kinematic boundary condition in generalized vertical coordinates.
Chapter 6 of Griffies (2004) develops a calculus for generalized vertical coordinates. Experience with these
methods is useful to nurture an understanding for ocean modelling in generalized vertical coordinates.
Most notably, these coordinates, when used with the familiar horizontal coordinates (x,y), form a non-
orthogonal triad, and thus lead to some relationships that may be unfamiliar. To proceed in this section,
we present some salient results of the mathematics of generalized vertical coordinates, and reserve many
of the derivations for Griffies (2004).

When considering generalized vertical coordinates for ocean models, we assume that the surfaces in
question do not overturn on themselves. This constraint means that the Jacobian of transformation between
the generalized vertical coordinate

s=5(x,v,21t) (2.50)

8For hydrostatic models, the solution algorithms rely on the ability to integrate vertically from the ocean bottom to the top,
uninterrupted by rock in between. Non-hydrostatic models do not employ such algorithms, and so may in principle allow for arbitrary
bottom topography, including overhangs.
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and the geopotential coordinate z, must be one signed. That is, the specific thickness

0z
2 =2 (2.51)

is of the same sign throughout the ocean fluid. The name specific thickness arises from the property that
dz=2z,ds (2.52)

is an expression for the thickness of an infinitesimal layer of fluid bounded by two constant s surfaces.

Deriving the bottom kinematic boundary condition in s-coordinates requires a relation between the ver-
tical velocity component used in geopotential coordinates, w = dz/dt, and the pseudo-velocity component
ds/dt. For this purpose, we refer to some results from Section 6.5.5 of Griffies (2004). As in that discussion,
we derive the isomorphic relations

z=(d;+u-Vs+5d;)z (2.53)
§=(d;+u-V,+2d,)s, (2.54)
where
. dz
5= I (2.55)
,_ds

are useful shorthands for the vertical velocity components, motivated from similar notation used in classi-
cal particle mechanics. Note that the partial time derivative appearing in each of the expressions is taken
with the corresponding space variables held fixed. That is, d; in equation (2.53) is taken with s held fixed,
whereas d; in equation (2.54) is taken with z held fixed.

Rearrangement of equations (2.53) and (2.54) leads to

z=2z4(d/dt-9d;—u-V,)s. (2.57)

This expression is relevant when measurements are taken on surfaces of constant geopotential, or depth.
To reach this result, we made use of the triple product identities

Zy=—5;2 (2.58)
Zy=—S5y2Z; (2.59)
Zy=—SyZs (2.60)

A derivation of these identities is given in Section 6.5.4 of Griffies (2004). These relations should be famil-
iar to those having studied thermodynamics, where the analogous expressions are known as the Maxwell
relations (e.g., Callen, 1985).

We now apply relation (2.57) to the ocean bottom, which is generally not a surface of constant depth. It
is thus necessary to transform the constant depth gradient V, to a horizontal gradient taken along the bot-
tom. To do so, proceed as in Section 6.5.3 of Griffies (2004) and consider the time-independent coordinate
transformation

(%,v,2,t) = (x,9,—-H(x,v), ). (2.61)

The horizontal gradient taken on constant depth surfaces, V,, and the horizontal gradient along the bottom,
V3, are thus related by
Vz=V,-(VH)d,. (2.62)

Using this result in equation (2.57) yields
s,(w+u-VH)=(d/dt-d;—u-Vz)s at z=-H. (2.63)
The left hand side vanishes due to the kinematic boundary condition (2.48), which then leads to

ds/dt = (d; +u-Vz)s at s=s(x,y,z=-H(x,p),t). (2.64)
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The value of the generalized coordinate at the ocean bottom can be written in the shorthand form

Sbot (%, 9, t) = s(x, 9,2 =—H, 1) (2.65)
which leads to a( \
5= Spbo
—dt“ =0  at s=s5po (2.66)

This relation is analogous to equation (2.49) appropriate to z-coordinates. Indeed, it is actually a basic
statement of the impenetrable nature of the solid earth lower boundary, which is true regardless the vertical
coordinates.

The various mathematical steps that led to the very simple result (2.66) could have been dispensed with
if we already understood some notions of generalized vertical coordinates. Nonetheless, the steps intro-
duced some of the formalism required to work with generalized vertical coordinates, and as such provide
a useful testing ground for later manipulations where the answer is less easy to anticipate. This strategy
is highly recommended to the student working with new formalisms. That is, first test your mathematical
skills with problems where the answer is either known, or can be readily judged correct with basic phys-
ical understanding. After garnering experience and confidence, one may then approach genuinely new
problems using the methods.

2.1.6 Upper surface kinematic condition

To formulate budgets for mass, tracer, and momentum in the ocean, we consider the upper ocean surface
to be a time dependent permeable membrane through which precipitation, evaporation, ice melt, and river
runoff’ pass. The expression for fluid transport at the upper surface leads to the upper ocean kinematic
boundary condition.

2.1.6.1 Orthogonal coordinates

To describe the kinematics of water transport into the ocean, it is useful to introduce an effective transport
through a smoothed ocean surface, where smoothing is performed via an ensemble average. We assume
that this averaging leads to a surface absent overturns or breaking waves, thus facilitating a mathematical
description analogous to the ocean bottom just considered. The value of the geopotential at the ocean
surface takes on the value

z=1(x,p,t) (2.67)

at this idealized ocean surface. Correspondingly, the mass flux of material crossing the ocean surface is
written

(MASS/TIME) THROUGH FREE SURFACE

Q

" HORIZONTAL AREA UNDER FREE SURFACE

pdA(ﬁ)ﬁ . (V—Vref) (268)
== dA at z=17.
In this expression, the outward normal
. [ V(z-n) )
n==|——— at z = 269
(|v<z— Al L (2.69)

points from the ocean surface at z = 7 into the overlying atmosphere (see Figure 2.3). The velocity v*f is
taken from a point fixed on the free surface, so that

di(z—n)+v.V(z—1) =0, (2.70)

9River runoff generally enters the ocean at a nonzero depth rather than through the surface. Many global models, however, have
traditionally inserted river runoff to the top model cell. Such can become problematic numerically and physically when the top grid
cells are refined to levels common in coastal modelling. Hence, more applications are now considering the input of runoff throughout
a nonzero depth. Likewise, sea ice can melt at depth, thus necessitating a mass transport to occur within the ocean between the liquid
and solid water masses.
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or equivalently
w = (d, +V-uh)y (2.71)

or
IV(z—n)h-vf =0,y at z=1. (2.72)

Finally, the area element dA4) measures an infinitesimal area element on the ocean surface z = 7, and it is
given by (see Section 20.13.2 of Griffies (2004))

dAg) =IV(z-n)ldA  at z=7, (2.73)

where dA = dxdy is the horizontal area element. Use of these relations leads to the surface kinematic
boundary condition written in material form

d(z-7n)
dt

=-Qn at z=1. (2.74)
Contrary to the solid earth condition (2.49), where z + H is materially constant, permeability of the ocean
surface leads to a nontrivial material evolution of z—1.

z

A

Figure 2.3: Schematic of the ocean’s upper surface with a smoothed undulating surface at z = 5(x,v,1),
outward normal direction fi,, and normal direction n,, orienting the passage of water across the surface.
Undulations of the surface height are on the order of a few metres due to tidal fluctuations in the open
ocean, and order 10m-20m in certain embayments (e.g., Bay of Fundy in Nova Scotia). When imposing
the weight of sea ice onto the ocean surface, the surface height can depress even further, on the order of
5m-10m, with larger values possible in some cases. It is important for simulations to employ numerical
schemes facilitating such wide surface height undulations.

As an alternative means to develop the surface kinematic boundary condition, return to the expression
(2.21) for mass conservation, rewritten here for completeness

1 Ul Ul
J; fdzp +V. J‘dzpu :Qm+szpS(M). (2.75)
H —H _H

Next, perform the derivative operations on the integrals, making use of Leibnitz’s Rule when differentiating
the integrals. The first step of the derivation leads to

Ui Ui
[p(di+u-V)nl,—y+[pVH ul,- g+ J-dz[p,t +V-(pu)]=Qn+ fdsz(M). (2.76)
-H -H

The Eulerian mass conservation relation (2.10) and bottom kinematic boundary condition (2.48) render the
Eulerian form of the surface kinematic boundary condition

p(@di+u-V)n=Qn+pw at z=1. (2.77)
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2.1.6.2 Generalized vertical coordinates

To derive the s-coordinate surface kinematic boundary condition, we proceed as for the bottom boundary
condition in Section 2.1.5.2. Here, the coordinate transformation is time dependent

(%7,2,1) = (x,9,1(x,9,1),1). (2.78)
The horizontal gradient and time derivative operators are therefore related by

V=V, +(Vy)d, (2.79)

Hence, the relation (2.57) between vertical velocity components takes the following form at the ocean sur-
face
w=2z(d/dt-d;—u-Vz)s+(d;+u-V)y at z=1. (2.81)

Substitution of the z-coordinate kinematic boundary condition (2.77) leads to
pzs(d/dt—df—u-Vz)s =-Qp, at s =Sy (2.82)

where sy, = 5(x,9,z = 11, t) is the value of the generalized vertical coordinate at the ocean surface. Reorga-
nizing the result (2.82) leads to the material time derivative form

d(s - o
pz’s( (5 Stp)

i ) = _Qm at s = Stop (283)

which is analogous to the z-coordinate result (2.74). Indeed, it can be derived trivially by noting that
dz/dt = z,ds/dt. Even so, just as for the bottom kinematic boundary condition considered in Section
2.1.5.2, it is useful to have gone through these manipulations to garner experience and confidence with
the formalism.

2.2 Mass conservation and the tracer equation

We revisit here the mathematical description of a mass conserving fluid parcel for the purpose of introduc-
ing the evolution equation for trace material within a parcel. For brevity, we ignore the possibilities of mass
sources in this discussion, though note as in Section 2.1 that mass sources may be of use for implementing
certain subgrid scale schemes in MOM. This discussion here follows that in Section II.2 of DeGroot and
Mazur (1984), Section 8.4 of Chaikin and Lubensky (1995), and Section 3.3 of Miiller (2006). See also the
discussion in Warren (2009).

2.2.1 Eulerian form of mass conservation

Seawater consists of many material constituents, such as freshwater, salts and biogeochemical components,
with the possibility also for chemical reactions to take place. For brevity, we ignore chemical reactions,
though note that the following discussion can be generalized to such cases (see, for example, Section II-2
in DeGroot and Mazur, 1984).

The mass density of each constituent within a parcel of seawater is given by

mass of component n

= , 2.84
Pr = Solume of seawater parcel ( )
with the total density in a parcel given by the sum over all N constituents
N
_ Z mass of component n
p= — volume of seawater parcel
"~ (2.85)

N
=) _bw
n=1
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Observe that the mass of a seawater parcel is the sum of individual constituent masses (numerator in
equation (2.85)), whereas the volume of the parcel is a complicated function of the temperature, pressure,
and material constituents.

For an arbitrary finite region within the fluid, conservation of mass for each constituent takes the form

at(J- pndV) :—J-ann'dA: (2.86)

dA =1dAy, (2.87)

where

is the area element on the region boundary, with i the outward normal, and v,, is the velocity of constituent
n. Equation (2.86) says that the mass of each constituent within a region is affected by the flow of that
constituent through the region boundaries.

Now apply the mass budget (2.86) to a static volume, in which case we can bring the time derivative
inside the integral, and use Gauss’ Theorem on the boundary integral to render

J-dV(atpn+V-(pnvn)):0. (2.88)

Since the volume is arbitrary, this relation leads to the local expression of mass balance for each constituent
d1pn=-V-(pnVy). (2.89)
Summing over all constituents then leads to the familiar Eulerian expression of mass conservation
dip=-V-(pv), (2.90)
where

N
V:p_1 anvn (2.91)
n=1

is the velocity for the center of mass of the parcel.
The density of seawater is often well approximated by

P = Psalt + Pfresh» (292)

where pg,}; is the mass of ocean “salt” per mass of seawater, and pg., is the mass of fresh water per mass
of seawater. Other material constituents occur in such small concentrations that their contributions to the
seawater density are generally ignored for purposes of ocean modeling.

2.2.2 Mass conservation for parcels

The material time derivative

d
- = . 2.
dt at+V V, ( 93)

measures time changes of a fluid property for an observer moving with the center of mass velocity v. Mass
conservation (2.90) in the moving, or Lagrangian, frame then takes the form

—=—pV-v, (2.94)

indicating that the density of a fluid parcel increases in regions where currents converge, and density
decreases where currents diverge.
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2.2.3 Mass conservation for constituents: the tracer equation

Introducing the material time derivative to the constituent mass balances (2.89) leads to the material budget

d
cft" ==V V=V [pn (Vs —V)] (2.95)
Now define the relative mass flux
Ju=pn (Vi —V) (2.96)
to render an expression for the material evolution of the density for each constituent
d
% =—p,V-v-V-J,. (2.97)

The flux J,, is nonzero for those motions where the constituent n moves relative to the parcel’s center of
mass. This motion can be caused by many effects, with molecular diffusion the canonical example, in
which case we parameterize J,, as a downgradient diffusive flux.!? Notably, the total mass flux vanishes

N
= ZI" o, (2.98)
n=1

which follows since we choose to measure the parcel motion with respect to its center of mass. Hence, there
is no subgrid scale flux for the full density p; i.e., the mass conservation equation (2.90) is exact, even in the
presence of subgrid scale processes.

As a final step in our development of mass conservation, introduce the concentration of a material
constituent, defined by

mass of component n

W=
mass of seawater parcel

=P
p
Substituting this tracer concentration into the constituent density equation (2.97) leads to the material form
of the tracer equation

(2.99)

dC
pd_tn ==V-Ju (2.100)
with the Eulerian form given by
di(pCn)=-V-(pvCy+Jp) (2.101)

This is the Eulerian form of the tracer equation implemented in MOM. It applies to both the material tracers
considered here, and the thermodynamical heat tracer described in Section 2.3.

2.3 Thermodynamical tracers

Heating and cooling of the ocean, as well as mass exchange, predominantly occur near the ocean surface.
In contrast, transport in the interior is nearly adiabatic and isohaline. Hence, the surface ocean experiences
irreversible processes that set characteristics of the water masses moving quasi-isentropically within the
ocean interior. Useful labels for these water masses maintain their values when moving within the largely
ideal ocean interior. Salinity is a good tracer for such purposes since it is altered predominantly by mixing
between waters of varying concentrations, and the resulting salinity after homogenization of two water
parcels is the mass weighted mean of the salinities of the individual parcels. These two properties are basic
to the material tracers considered in Section 2.2. We discuss here desirable properties of a thermodynamic
tracer that tags the heat within a water parcel and evolves analogously to material tracers. Much of this
material follows from Chapter 5 of Griffies (2004).

10For an ocean model, whose grid spacing is far greater than that appropriate for molecular diffusion, the relative motion of a
constituent is also affected by far larger subgrid scale processes, such as unresolved eddy advective and diffusive transport.
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2.3.1 Potential temperature

Vertical adiabatic and isohaline motion in the ocean changes a fluid parcel’s hydrostatic pressure, which
thus causes its in situ temperature to change in proportion to the adiabatic lapse rate as given by

dT =Tdp. (2.102)

Consequently, in situ temperature is not a useful thermodynamic variable to label water parcels of common
origin. Instead, it is more useful to remove the adiabatic pressure effects.

Removing adiabatic pressure effects from in situ temperature leads to the concept of potential tempera-
ture. Potential temperature is the in situ temperature that a water parcel of fixed composition would have
if it were isentropically transported from its in situ pressure to a reference pressure p,, with the reference
pressure typically taken at the ocean surface. Mathematically, the potential temperature 0 is the reference
temperature obtained via integration of dT =I'dp for an isentropic in situ temperature change with respect
to pressure (e.g., Apel, 1987):

P
T =06(s, T,pr)+J-l"(s,6,p')dp', (2.103)
pi’
with I the lapse rate defined in terms of pressure changes. By definition, the in situ temperature T equals
the potential temperature 0 at the reference pressure p = p,. Elsewhere, they differ by an amount deter-
mined by the adiabatic lapse rate. Beneath the diabatic surface mixed layer, a vertical profile of potential
temperature is far more constant than in situ temperature.

As shown in Section 5.6.1 of Griffies (2004), the potential temperature of a parcel is constant when the
parcel’s specific entropy C and material composition are constant. Mathematically, this result follows by
noting that when entropy changes at a fixed pressure and composition, p = p, so that temperature equals
potential temperature. Equation (5.41) of Griffies (2004) then leads to

dC = C,dIno, (2.104)

implying dC = 0 if and only if d6 = 0.

2.3.2 Potential enthalpy

Potential temperature has proven useful for many oceanographic purposes. However, we have yet to ask
whether it is a convenient variable to mark the heat content in a parcel of seawater. Traditionally, it is the
potential temperature multiplied by the heat capacity that is used for this purpose. Bacon and Fofonoff
(1996) provide a review with suggestions for this approach. In contrast, McDougall (2003) argues that
potential temperature multiplied by heat capacity is less precise, by some two orders of magnitude, than
an alternative thermodynamic tracer called potential enthalpy.
To understand this issue from a mathematical perspective, consider the evolution equation for potential
temperature
de
Par
where Jg is a flux due to molecular diffusion, and X¢ is a source. That potential temperature evolves in
this manner is ensured by its being a scalar field. Consider the mixing of two seawater parcels at the same
pressure where the parcels have different potential temperature and salinity. In the absence of the source
term, the equilibrated state consists of a single parcel with mass equal to the sum of the two separate
masses, and potential temperature and salinity determined by their respective mass weighted means. Does
this actually happen in the real ocean? That is, can source terms be ignored? Fofonoff (1962) and McDougall
(2003) note that it is indeed the case for salinity (and any other material tracer due to conservation of
matter), yet it is not the case for potential temperature. Instead, potential temperature contains source
terms that alter the mass weighted average equilibrated state. In contrast, potential enthalpy (discussed
below) maintains the desired conservative behavior when mixing at constant reference pressure, and nearly
maintains this behavior if mixing parcels at a different pressure. Hence, ocean models which set the source
term to zero upon mixing potential temperature are in error. McDougall (2003) quantifies this error.

= V.Jo+%0, (2.105)
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Potential enthalpy is defined analogously to potential temperature. What motivates the use of potential
enthalpy is the observation that the fundamental relation between thermodynamic state variables takes
a nearly conservative form when written in terms of potential enthalpy. To see this point, consider the
evolution of internal energy (see equation (5.94) in Griffies, 2004), and introduce the enthalpy per mass
(specific enthalpy)

H=T+pl/p (2.106)
leads to "y q
p
- —-_V. £ . 2.1
pdt Y% Iq+dt+pe (2.107)
Dropping the frictional dissipation term arising from molecular friction leads to the approximate statement
dH dp
bl SPUNE VIS T 2.1
ar ar TV (2.108)

To proceed, the fundamental thermodynamic relation (see equation (5.31) Griffies, 2004, in) becomes
dH=TdC+p 'dp+pudC (2.109)

in terms of enthalpy. Thus, enthalpy can be written as a function of entropy, salt concentration, and pres-
sure,
H ="H(C,C,p). (2.110)

Transport of a seawater parcel without changing heat, salt, or momentum occurs without change in entropy,
thus rendering

(a—H) =p L. (2.111)
e
Keeping salinity and entropy fixed (or equivalently fixed salinity and potential temperature) leads to
p
H(G,s,p):H"(G,s,pr)+J. o 1(6,s,p")dp’ (2.112)
o

with H°(6,s,p,) defining the potential enthalpy of a parcel with potential temperature 6 and salinity s.
Taking the time derivative and using the approximate relation (2.108) yields

r

dHe ,dp71(0,5,p")
— R - . _— 2.11
G oo v [ (2113
p
McDougall (2003) shows that for the ocean, the integral
p p
oy 80 Osp) (L (3p do dpt ds
P dt B 00 dt  9ds dt
P P ) (2.114)

pV
B do ;1 ds ;1
= f dplp=a—— | dpip B
p p
has magnitude on the order of the ocean’s tiny levels of dissipation arising from molecular viscosity. These

expressions introduced the thermal expansion coefficient @ = —dInp/d6 and saline contraction coefficient
B = JdInp/ds. The time derivatives of potential temperature and salinity can be removed from the pressure

integrals, since they are each independent of pressure. Given the smallness of Lfr dp’dp~1/dt, one can
write the approximate potential enthalpy equation
dH°

P ar

~-V-],. (2.115)
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Hence, potential enthalpy is a state function that approximately specifies the heat in a parcel of seawater,
and it evolves analogously to a material tracer such as salinity. See McDougall (2003) for a proof that H°
more accurately sets the heat for a parcel of seawater than does C, 6. Given that it does, McDougall (2003)
suggests that conservative temperature

0
o= 10:5pr) (2.116)
CP

with p, = 0 is more appropriate than potential temperature as a thermodynamic tracer for use in an ocean
model, and generally for measuring heat in the ocean. In this equation

co— H(O =25°C,s = 35psu,p, =0)
P 25°C (2.117)
=3989.245] kg ! °K ™!

is a heat capacity chosen to minimize the difference between Cj 6 and potential enthalpy H°(6,s, p,) when

averaged over the sea surface.!!

Conservative temperature of McDougall (2003) has been recommended by IOC et al. (2010) as the pre-
ferred means to measure heat content in a seawater parcel. MOM has the ability to use conservative tem-
perature as its prognostic temperature field. Conservative temperature is the preferred method rather than
the older potential temperature, with potential temperature retained for legacy purposes. In the remain-
der of these notes, we maintain the notation 6 to mean conservative temperature, but with all formulas
remaining unchanged if interpreted as potential temperature.

2.4 Material time changes over finite regions

In the following sections, we focus on the mass, tracer, and momentum budgets formulated over a finite
domain. The domain, or control volume, of interest is that of an ocean model grid cell. The budget for a
grid cell is distinct from budgets for infinitesimal mass conserving Lagrangian fluid parcels moving with
the fluid. Mass conserving fluid parcels form the fundamental system for which the budgets of mass, tracer,
momentum, and energy are generally formulated from first principles (see, for example, chapters 3-5 in
Griffies, 2004). Grid cell budgets are then derived from the fundamental parcel budgets.

The grid cells of concern for MOM have vertical sides fixed in space-time, but with the top and bottom
generally moving. In particular, the top and bottom either represent the ocean top, ocean bottom, or a
surface of constant generalized vertical coordinate. We furthermore assume that at no place in the fluid do
the top or bottom surfaces of the grid cell become vertical. This assumption allows for a one-to-one relation
to exist between geopotential depth z and the generalized vertical coordinate s introduced in Section 2.1.5.2
(i.e., the relation is invertible).

To establish the grid cell budget, we integrate the budget for mass conserving fluid parcels over the
volume of the cell. This section is focused on the mathematics required for integrating the density weighted
material time derivative acting on an arbitrary field ¢

d

Pd—lf=(p¢),t+v~(pv¢)- (2.118)

We start with the partial time derivative on the right hand side, and introduce Cartesian coordinates (x, v, z)

!1The value quoted by McDougall (2003) is Cp = 3989.24495292815]kg ™! °K~1.
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for the purpose of performing the grid cell integral

ﬂ]dV(p P = J:dedy dz(p ),

28 P
= dxd sz
Y () (2.119)
k4l

22

(r
= ([ dxdy |0 9)29r22 + (p )y 3121 + 01 jdzmv,b)

21

C
-

The second equality follows by noting that the horizontal extent of a grid cell remains static, thus allowing
for the horizontal integral to be brought outside of the time derivative. In contrast, the vertical extent has
a time dependence, which necessitates the use of Leibniz’s Rule. We now use equation (2.58)

Zp=-5:2 (2.120)

which relates time tendencies of the depth of a generalized surface to time tendencies of the surface itself.
Equation (2.30) is next used to write

Z,t = _S,t Z,S

=z, |VS|ﬁ'V(ref), (2121)

in which we introduced the reference velocity v"*) for a point sitting on the generalized surface. Finally,
recall equation (2.32), which relates the area element on the surface to the horizontal projection dA = dxdy
of the surface

dA(ﬁ) = |Z,s VSldA (2122)

Introducing this area then renders
z;dA=1-vdA ). (2.123)

This equation relates the time tendency of the depth of the generalized surface to the normal component
of the velocity at a point on the surface. The two are related through the ratio of the area elements. This
result is now used for the top and bottom boundary terms in relation (2.119), yielding

J-Hdv(pl’b)’f = (ﬂ pdV‘P)‘ﬂdi“m)ﬁ'v(re“(pw). (2.124)

Hence, the domain integrated Eulerian time tendency of the density weighted field equals the time ten-
dency of the density weighted field integrated over the domain, minus an integral over the domain bound-
ary associated with transport of material across that domain, with proper account taken for time depen-
dence of the domain boundary.

The next step needed for volume integrating the density weighted material time derivative in equation
(2.118) involves the divergence of the density weighted field

JHdVV-(pVIP)z J]‘dA(ﬁ)ﬁ-v(plp), (2.125)

which follows from Gauss’ Law. Combining this result with equation (2.124) leads to the relation

ijpdvi_"f = (jﬂpde)Jr_UdA(mﬁ'(V—V(re”)(PlP)- (2.126)

Hence, the mass weighted grid cell integral of the material time derivative of a field is given by the time
derivative of the mass weighted field integrated over the domain, plus a boundary term that accounts for
the transport across the domain boundaries, with allowance made for moving domain boundaries. The
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manipulations leading to this result focused on an interior grid cell. The result, however, holds in general
for a cell that abuts either the ocean surface or ocean bottom. For the ocean bottom, the boundary term
vanishes since the bottom has a zero reference velocity, and there is no normal flow of fluid across the
bottom. For the ocean surface, we employ relation (2.68) that defines the dia-surface transport of mass
across the ocean surface in a manner analogous to the dia-surface transport (2.37) across an interior surface.

2.5 Basics of the finite volume method

The finite volume method for formulating the discrete equations of an ocean model has been incorporated
to the ocean modelling literature only since the late 1990’s. The work of Adcroft et al. (1997) is a canonical
example of how this method can be used to garner a better representation of the solid earth boundary.
In this section, we briefly outline the basis for this method. The interested reader may wish to look at
chapter 6 of the book by Hirsch (1988), or the chapter by Machenhauer et al. (2009) for a more thorough
introduction, or one of the growing number of monographs devoted exclusively to the method.

The general equations of fluid mechanics can be represented as conservation equations for scalar quan-
tities (e.g., seawater mass and tracer mass) and vector quantities (e.g., linear momentum). As just detailed
in Section 2.4, the conservation law for a scalar W over an arbitrary fluid region can be put in the form

o[ foranr [ s

The volume integral is taken over an arbitrary fluid region, and the area integral is taken over the bounding
surface to that volume, with outward normal fi. The flux F penetrates the surface and acts to alter the scalar,
whereas internal sources S contribute to changes in the scalar throughout the interior of the domain. The
budget for the vector linear momentum can be written in this form, with the addition of body forces that act
similar to the source term written here (see Section 2.9). Fundamental to the finite volume method is that
the fluxes contribute only at the boundary to the domain, and not within the interior as well. Hence, the
domain can be subdivided into arbitrary shapes, with budgets over the subdivisions summing to recover
the global budget.
A discrete finite volume analog to equation (2.127), for a region labeled with the integer J, takes the
form
9, (V; W) = — Z(A(ﬁ)ﬁ-lr)ﬂf,s,. (2.128)

sides

Quantities with the integer | subscript refer to the discrete analogs to the continuum fields and the geo-
metric factors in equation (2.127). In particular, we define the discrete finite volume quantities

v= [ av (2.129)

W= —Hﬂd:‘/\y (2.130)
Sy = [ljdvs (2.131)

[[fav

Again, it is due to the conservation form of the fundamental fluid dynamic equation (2.127) that allows for
a straightforward finite volume interpretation of the discrete equations. Notably, once formulated as such,
the problem shifts from fundamentals to details, with details differing on how one represents the subgrid
scale behaviour of the continuum fields. This shift leads to the multitude of discretization methods avail-
able for such processes as transport, time stepping, etc. In the following, we endeavour to write the fluid
equations of the ocean in the conservation form (2.127). Doing so then renders a finite volume framework
for the resulting discrete or semi-discrete equations.

When working with non-Boussinesq budgets, the finite volume interpretation applies directly to the
tracer mass per volume, p C, rather than to the tracer concentration C. The same applies to the linear
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momentum per volume, pv, rather than to the velocity v. That is, the finite volume model carries the
discrete fields pj, (p C); and (pv);, defined as

Py = Jﬂfdd‘;p (2.132)
(pC)y = jﬂﬂc}%pc (2.133)
_dvey (2134

(pv)y = HJT'

As we will see in the discussions in Sections 2.6 and 2.9, we actually work with a slightly modified fi-
nite volume suite of variables, whereby the finite volume interpretation applies to the seawater mass per
horizontal area, the tracer mass per horizontal area and linear momentum per horizontal area

dA (d

(dzp),z—ﬂfd{AZp (2.135)
dA [dzpC

(dzpcy = 94T dz0C IJdAZp (2.136)
dA (d

(dzpv); = %, (2.137)

where dz is the thickness of a grid cell, and dA = dxdy is the horizontal projection of its area. The inclusion
of thickness facilitates the treatment of grid cells whose thickness is a function of time, such as in MOM.
Note that to reduce notational clutter, we employ the same symbol for the continuum field as for the
discrete, so we drop the ] subscript in the following.

2.6 Mass and tracer budgets over finite regions

The purpose of this section is to extend the kinematics discussed in the previous sections to the case of
mass and tracer budgets for finite domains within the ocean fluid. In the formulation of ocean models,
these domains are thought of as discrete model grid cells.

2.6.1 General formulation

As described in Section 2.2, the tracer concentration C represents a mass of tracer per mass of seawater for
material tracers such as salt or biogeochemical tracers. Mathematically, this definition means that for each
fluid parcel,

mass of tracer

- mass of seawater
_pcdV
- pdVv’

(2.138)

where pc is the mass density of tracer within the fluid parcel. In addition to material tracers, we are
concerned with a thermodynamical tracer that measures the heat within a fluid parcel. In this case, C is
typically taken to be the potential temperature. However, the work of McDougall (2003) prompts us to
consider a modified temperature known as conservative temperature, which more accurately measures the
heat within a fluid parcel and is transported, to within a very good approximation, in a manner directly
analogous to material tracers. We discussed these temperature variables in Section 2.3.
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Given these considerations, the total tracer mass within a finite region of seawater is given by the inte-

gral.
tracer mass in a region = J]f pcdV
- ([ coav.

Correspondingly, the evolution of tracer mass within a Lagrangian parcel of mass conserving fluid is given
by (see Section 5.1 of Griffies, 2004)

(2.139)

dC

Par

where S© is a tracer source in the region, with units of tracer concentration per time. The tracer flux

J arises from subgrid scale transport of tracer in the absence of mass transport. Such transport in MOM

consists of diffusion and/or unresolved advection. As discussed in Section 2.2.3, this flux is computed

with respect to the center of mass of a fluid parcel. It therefore vanishes when the tracer concentration is

uniform, in which case the tracer budget reduces to the mass budget (2.7).

We now develop a regional budget for tracer mass over a grid cell. For this purpose, apply the general

result (2.126) relating the material time derivative to a regional budget, to render

9, (Hjc pdV) = Hfs@ pdV — HdA(ﬁ) f-[(v-v©)pC+]J]. (2.141)

Again, the left hand side of this equation is the time tendency for tracer mass within the finite sized grid cell
region. When the tracer concentration is uniform, the SGS flux vanishes, in which case the tracer budget
(2.141) reduces to the finite domain mass budget

) (fjfpdV) = ﬂ]s(W pdV - ﬂdA(ﬁ) i-[(v-v©p]. (2.142)

In addition to the tracer flux J, it is convenient to define the tracer concentration flux F via

— V.J+pS©), (2.140)

J=pF, (2.143)

where the dimensions of F are velocity x tracer concentration.

In a manner analogous to our definition of a dia-surface velocity component in Section 2.1.4, it is useful
to introduce the dia-surface SGS flux component. For this purpose, consider the tracer mass per time cross-
ing a surface of constant generalized vertical coordinate, where this transport arises from SGS processes.
Manipulations similar to those used to derive the dia-surface velocity component lead to

(SGS tracer mass through surface)/(time) = dAg)fi-J
=2z,Vs-Jdxdy (2.144)
=(2-S)-Jdxdy,

where S is the slope vector for the generalized surface defined in equation (2.39). We are therefore led to
introduce the dia-surface SGS tracer flux

(2.145)

where dA = dxdy is the horizontal cross-sectional area. In words, ] is the tracer mass per time per
horizontal area penetrating surfaces of constant generalized vertical coordinate via processes that are un-
resolved by the dia-surface velocity component w'?.
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S$=S-1

Grid cell k

Figure 2.4: Schematic of an ocean grid cell labeled by the vertical integer k. Its sides are vertical and
oriented according to X and ¥, and its horizontal position is fixed in time. The top and bottom surfaces are
determined by constant generalized vertical coordinates s;_; and s, respectively. Furthermore, the top and
bottom are assumed to always have an outward normal with a nonzero component in the vertical direction
2. That is, the top and bottom are never vertical. We take the convention that the discrete vertical label k
increases as moving downward in the column, and grid cell k is bounded at its upper face by s = s;_; and
lower face by s = sj.

2.6.2 Budget for an interior grid cell

Consider the budget for a region bounded away from the ocean surface and bottom, such as that shown in
Figure 2.4. We have in mind here a grid cell within a discrete numerical model. There are two assumptions
that define a grid cell for our purposes.

* The sides of the cell are vertical, so they are parallel to Z and aligned with the horizontal coordinate
directions (%,¥). Their horizontal positions are fixed in time.

* The top and bottom of the cell are defined by surfaces of constant generalized vertical coordinate s =
5(x,v,2,t). The generalized surfaces do not overturn, which means that s , is single signed throughout
the ocean.

These assumptions lead to the following results for the sides of the grid cell

TRACER MASS ENTERING CELL WEST FACE = -[f dydz(upC+pF¥) (2.146)
X=X

TRACER MASS LEAVING CELL EAST FACE = — JI dydz(upC+pF¥) (2.147)
X=Xp
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where x; < x < x, defines the domain boundaries for the east-west coordinates.'? Similar results hold for
the tracer mass crossing the cell in the north-south directions. At the top and bottom of the grid cell

TRACER MASS ENTERING CELL BOTTOM FACE = .U\ dxdy p (w? C +F®) (2.148)
S=S5k
TRACER MASS LEAVING CELL TOP FACE = — J.J- dxdy p (w'? C + F©@), (2.149)
S=Sk-1

To reach this result, we used a result from Section 2.1.4 to write the volume flux passing through the top
face of the grid cell

dA)h- (v—vwf) =w® dxdy, (2.150)

with w(?) =z ds/dt the dia-surface velocity component from Section 2.1.4. A similar relation holds for the
bottom face of the cell. The form of the SGS flux passing across the top and bottom is correspondingly
given by

dAgn-J =77 dxdy, (2.151)

which follows from the general expression (2.145) for the dia-surface tracer flux.

In a model using the generalized coordinate s for the vertical, it is sometimes convenient to do the
vertical integrals over s instead of z. For this purpose, recall that with z ; single signed, the vertical thickness
of a grid cell is given by equation (2.52), repeated here for completeness

dz=2z,ds. (2.152)

Bringing these results together, and taking the limit as the volume of the cell in (x,y,s) space goes to zero
(i.e., dxdyds — 0) leads to

Ii(z5pC)=2,p8' V=V, [z,p(uC+E)] -0, [p(w? C+F)] (2.153)

Notably, the horizontal gradient operator V, is computed on surfaces of constant s, and so it is distinct
generally from the horizontal gradient V, taken on surfaces of constant z.

As indicated at the end of Section 2.5, we prefer to work with thickness weighted quantities, given
the general time dependence of a model grid cell in MOM. Hence, as an alternative to taking the limit
as dxdyds — 0, consider instead the limit as the time independent horizontal area dxdy goes to zero,
thus maintaining the time dependent thickness dz = z ;ds inside the derivative operators. In this case, the
thickness weighted tracer mass budget takes the form

d4(dzpC)=dzpS'© -V, [dzp(uC+F)]-[p ' C+F)|_,,  +[pw? C+F)]_,. (2.154)
Similarly, the thickness weighted mass budget is
di(dzp) = dzpS™M -V, - (dzpu) - (pw')oy, | + (pw!)oey. (2.155)

For clarity, note that the horizontal divergence operator acting on the mass transport takes the form

1 0 1 d
VS‘(dzpu)_d—ya(dydzpu)Jraa—y(dxdzpv). (2.156)

The mass source S™ has units of inverse time that, for self-consistency, must be related to the tracer
source via

SM = 5@ c =1). (2.157)

12We use generalized horizontal coordinates, such as those discussed in Griffies (2004). Hence, the directions east, west, north, and
south may not correspond to the usual geographic directions. Nonetheless, this terminology is useful for establishing the budgets,
whose validity is general.
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Additionally, the SGS tracer flux vanishes with a uniform tracer
F(C=1)=0. (2.158)

Note that by setting the tracer concentration in equation (2.154) to a uniform constant, SGS transort fluxes
vanish, thus revealing the mass conservation budget. This procedure for deriving the mass budget from the
tracer budget follows trivially from the definition of the tracer concentration given by equation (2.138). It
represents a compatibility condition between the discrete budgets, and this condition is critical to maintain
within a numerical model in order to respect tracer and mass conservation in the simulation. We have more
to say about the compatibility condition in Section 2.7.1.

One reason that the thickness weighted budget given by equation (2.154) is more convenient than equa-
tion (2.153) is that equation (2.154) expresses the budget in terms of the grid cell thickness dz, rather than
the specific thickness z;. Nonetheless, this point is largely one of style and convenience, as there is no
fundamental reason to prefer one form over the other for purposes of developing the discrete equations of
an ocean model.

2.6.3 Cells adjacent to the ocean bottom

S=Skbot—l

Grid cell k=kbot

= z=-H
5%

Figure 2.5: Schematic of an ocean grid cell next to the ocean bottom labeled by k = k. Its top face is a
surface of constant generalized vertical coordinate s = s;,;_1, and the bottom face is determined by the
ocean bottom topography at z = —H where sp,.(x,v,t) = s(x,y,z2 = —-H, ).

For a grid cell adjacent to the ocean bottom (Figure 2.5), we assume that just the bottom face of this cell
abuts the solid earth boundary. The outward normal fiy to the bottom is given by equation (2.46), and the
area element along the bottom is

dAy =|V(z+ H)|dxdy. (2.159)
Hence, the transport across the solid earth boundary is
- deAHﬁH (vpC+]) = dexdy(VH +2)-(vpC+]). (2.160)

We assume that there is zero advective mass flux across the bottom, in which case the advective flux drops
out since v-(VH +2) = 0 (equation (2.48)). However, the possibility of a nonzero geothermal tracer transport
warrants a nonzero SGS tracer flux at the bottom, in which case the bottom tracer flux is written

Qlpay = (VH +2)-J. (2.161)

The corresponding thickness weighted budget is given by

(€

e (2.162)

9y(dzpC) = dzpS'9 -V, [dzp(uC +F)]-[p(w? C+2,Vs-F)]

S=Skbot-1
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and the corresponding mass budget is

9,(dzp) = dzpS™ -V, - (dzpw) = (pw)ecqy, , + Qoory (2.163)
where allows for the possibility of mass entering throu eothermal boundary sources. For brevity,
here Q) allows for the possibility of g through geothermal boundary brevity,

we drop this term in the following, since it generally is ignored for ocean climate modeling.
2.6.4 Cells adjacent to the ocean surface

S=Sep z=n

Grid cell k=1

\/ o
$=%=1

Figure 2.6: Schematic of an ocean grid cell next to the ocean surface labeled by k = 1. Its top faceisat z =7,
and the bottom is a surface of constant generalized vertical coordinate s = s;_;.

For a grid cell adjacent to the ocean surface (Figure 2.6), we assume that just the upper face of this cell
abuts the boundary between the ocean and the atmosphere or sea ice. The ocean surface is a time dependent
boundary with z = 7(x,y,t). The outward normal 1, is given by equation (2.69), and its area element dA,
is given by equation (2.73).

As the surface can move, we must measure the advective transport with respect to the moving surface.
Just as in the dia-surface transport discussed in Section 2.1.4, we consider the velocity of a reference point

on the surface

ref f

vief = uref g qpref, (2.164)

Since z = 1] represents the vertical position of the reference point, the vertical component of the velocity for
this point is given by
w = (9, +u™ - V)y (2.165)

which then leads to
v V(z—n) =1, (2.166)

Hence, the advective transport leaving the ocean surface is

ﬂdA(f,)ﬁ-(v—vfef)pc = JIdxdy(—m +w-u-Vn)pC

z=1 z=1

= —fjdxdy QnC,

z=n

(2.167)

where the surface kinematic boundary condition (2.77) was used. The negative sign on the right hand side
arises from our convention that Q,, > 0 represents an input of mass to the ocean domain. In summary, the

ELEMENTS oF MOM October 8, 2012 Page 50



CHAPTER 2. FUNDAMENTAL EQUATIONS Section 2.7

tracer flux leaving the ocean free surface is given by

ffdA(ﬁ)ﬁ‘ [(v—vref)pC +J]= J]dxdy(—Qm C+V(z-n)-)). (2.168)
2=1

z=1]

In equation (2.168), we formally require the tracer concentration precisely at the ocean surface z = #.
However, as mentioned at the start of Section 2.1.6, it is actually a fiction that the ocean surface is a smooth
mathematical function. Furthermore, seawater properties precisely at the ocean surface, known generally
as skin properties, are generally not what an ocean model carries as its prognostic variable in its top grid
cell. Instead, the model carries a bulk property averaged over roughly the upper few tens of centimeters.

To proceed in formulating the boundary condition for an ocean climate model, we consider there to be
a boundary layer model that provides us with the total tracer flux passing through the ocean surface. De-
veloping such a model is a nontrivial problem in air-sea and ice-sea interaction theory and phenomenology.
For present purposes, we do not focus on these details, and instead just introduce this flux in the form

Q) = -Qu Con + Q) (2.169)

where C,, is the tracer concentration within the incoming water. The first term on the right hand side
represents the advective transport of tracer through the surface with the fresh water (i.e., ice melt, rivers,

precipitation, evaporation). The term tacu)rb) arises from parameterized turbulence and/or radiative fluxes,
such as sensible, latent, shortwave, and longwave heating appropriate for the temperature equation. A
positive value for Q((tcu)rb) signals tracer leaving the ocean through its surface. In the special case of zero
fresh water flux, then

V(Z—n)‘IZQEtlerb) if Qn=0. (2.170)

In general, it is not possible to make this identification. Instead, we must settle for the general expression
A re C

deA(ﬁ)n . [(V—V f) (o] C+ I] = —[\dedy (_Qm Cm + Q:tu)rb))' (2171)

z=1 =1
The above results lead to the thickness weighted tracer budget for the ocean surface grid cell

d;(dzpC) = dsz(C) -V-[dzp(uC+F)]
(2) (turb) (2172)
o Crz Vs B +(QnCn-Q"),

S=S5k

and the corresponding mass budget

d;(dzp) = dsz(M) —Vs-(dzpu)+(p w(Z))s:sk:1 + Q- (2.173)

2.7 Special considerations for tracers

The purpose of this section is to describe some special considerations for tracers in a numerical ocean
model.

2.7.1 Compatability between vertically integrated mass and tracer budgets

In Section 2.6.2, we considered issues of compatibility between the tracer and mass budgets within a grid
cell. Such compatibility follows trivially from the definition of tracer concentration given in Section 2.6.1.
We briefly revisit compatibility here, by focusing on the vertically integrated tracer and mass budgets.
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Combining the surface tracer budget (2.173), the bottom budget (2.162), and interior budget (2.154),
renders the vertically integrated tracer budget

d; (ZdzpC] = Zdsz(C) - V- Zdzp(uC+F)]
k k k

(turb) (bott)

+ (Qm Cn- QU™+ QY )

(2.174)

As expected, the only contributions from vertical fluxes come from the top and bottom boundaries. Fur-
thermore, by setting the tracer concentration to a uniform constant, in which case the SGS turbulent terms
vanish, the tracer budget reduces to the vertically integrated mass budget

at(Zdzp]: Zdsz(M)—VS-UP+Qm, (2.175)
k k

where

UP:Zdzpu (2.176)
k

is the discrete form of the vertically integrated horizontal momentum per volume defined by equation
(2.22). As for the individual grid cells, this vertically integrated compatiblity between tracer and mass
budgets must be carefully maintained by the space and time discretizations used in an ocean model. Oth-
erwise, conservation properties of the model will be compromised (Griffies et al., 2001).

2.7.2 Fresh water budget

Seawater is comprised of freshwater with a relatively fixed ratio of various salts. It is common to consider
the budget for the concentration of these salts, which is described by the tracer equation (2.154). As a
complement, it may be of interest to formulate a budget for freshwater. In this case, we consider the mass
of fresh water within a fluid parcel

mass of fresh water = mass of seawater — mass of salt
=pdV (1-5) (2.177)
=pdV W,

where S is the salinity (mass of salt per mass of seawater), and
W=1-§ (2.178)

is the mass of fresh water per mass of seawater. Results from the tracer budget considered in Section 2.6.2
allow us to derive the following budget for fresh water within an interior ocean model grid cell

d;(dzp W) =dzp(S™M -8 -V, .[dzp(uW -F)]

(2.179)
- [P (w(Z) W - P(Z))]s:sk_l + [P (w(z) W - F(z))]s:sk-

In these relations, the SGS tracer flux components F and F@ are those for salt, and S') is the salt source.
Equation (2.179) is very similar to the tracer equation (2.154), with modified source term and negative
signs on the SGS flux components.

2.7.3 Theideal age tracer

Thiele and Sarmiento (1990) and England (1995) consider an ideal age tracer for Boussinesq fluids. We

consider the generalization here to non-Boussinesq fluids, in which

p‘;_‘;‘+v.]:ps(A>, (2.180)
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where the age tracer A has dimensions of time and it is initialized globally to zero. It is characterized by
the dimensionless clock source S4), which takes the values

(A) _ Oifz:q
S _{ 1 ifz<y, (2.181)

In a finite difference model, the boundary condition at z = #; is applied at the top grid cell k = 1. In MOM,
various age tracers can be defined that differ by the region that their boundary condition is set to zero.
Given these prescriptions, A measures the age, in units of time, that a water parcel has spent away from the
region where it was set to zero. Therefore, visual maps of A are useful to deduce such physically interesting
properties as ventilation times.

From equation (2.154), the budget for tracer mass per area in a grid cell is given by

d;(dzpA)=dzpSA -V, .[dzp(uA +F)]

(2.182
~lpwP A+ FI)],  +[pw? A+ FI)] . )

In practice, the clock source is added to the age tracer at the very end of the time step, so that it is imple-
mented as an adjustment process. In this way, we remove the ambiguity regarding the time step to evaluate
the pdz factor that multiplies the age source.

2.7.4 Budgets without dia-surface fluxes

To garner some experience with tracer budgets, it is useful to consider the special case of zero dia-surface
transport, either via advection or SGS fluxes, and zero tracer/mass sources. In this case, the thickness
weighted mass and tracer mass budgets take the simplified form

di(dzp) =—V;-(dzpu) (2.183)
di(dzpC)=-V,-[dzp(uC +F)]. (2.184)

The first equation says that the time tendency of the thickness weighted density (mass per area) at a point
between two surfaces of constant generalized vertical coordinate is given by the horizontal convergence
of mass per area onto that point. The transport is quasi-two-dimensional in the sense that it is only a
two-dimensional convergence that determines the evolution. The tracer equation has an analogous inter-
pretation. We illustrate this situation in Figure 2.7. As emphasized in our discussion of the material time
derivative (2.43), this simplification of the transport equation does not mean that fluid parcels are strictly
horizontal. Indeed, such is distinctly not the case when the surfaces are moving.

A further simplification of the mass and tracer mass budgets ensues when considering adiabatic and
Boussinesq flow in isopycnal coordinates. We consider p now to represent the constant potential density of
the finitely thick fluid layer. In this case, the mass and tracer budgets reduce to

di(dz) ==V, - (dzu) (2.185)

d1(dzC)=-V,-[dz(uC+F)]. (2.186)

Equation (2.185) provides a relation for the thickness of the density layers, and equation (2.186) is the
analogous relation for the tracer within the layer. These expressions are commonly used in the construction

of adiabatic isopycnal models, which are often used in the study of geophysical fluid mechanics of the
ocean.

2.8 Forces from pressure

Pressure is a contact force per area that acts in a compressive manner on the boundary of a finite fluid
domain (e.g., see Figure 2.8). Mathematically, we have

Fpress = —deA(ﬁ)ﬁp, (2.187)
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Figure 2.7: Schematic of the horizontal convergence of mass between two surfaces of constant generalized
vertical coordinates. As indicated by equation (2.183), when there is zero dia-surface transport, it is just
the horizontal convergence that determines the time evolution of mass between the layers. Evolution of
thickness weighted tracer concentration in between the layers is likewise evolved just by the horizontal
convergence of the thickness weighted advective and diffusive tracer fluxes (equation (2.184)). In this way,
the transport is quasi-two-dimensional when the dia-surface transports vanish. A common example of this
special system is an adiabatic ocean where the generalized surfaces are defined by isopycnals.

where p is the pressure (with units of a force per area) acting on the boundary of the domain with outward
normal fi and area element dA ). The minus sign accounts for the compressive behaviour of pressure. The
accumulation of contact pressure forces acting over the bounding area of the domain leads to a net pressure
force acting on the domain.

Through use of the Green-Gauss theorem of vector calculus, we can equivalently consider pressure to
exert a body force per area at each point within the domain, so that

Fpress = _Jf dVVp, (2188)

where dV is the volume element. That is, the volume integral of the pressure gradient body force over the
domain yields the net pressure force.

In the continuum, the two formulations (2.187) and (2.188) yield identical pressure forces. Likewise,
in a finite volume discretization, the two forms are identical (e.g., Section 6.2.2 of Hirsch, 1988). But with
finite differences, as used in earlier versions of MOM for pressure forces, the two forms can lead to different
numerical methods. In the remainder of this section, we further explore the computation of pressure forces
according to the two different formulations. Further details of discrete expressions are presented in Chapter
3.

Figure 2.8: Schematic of a grid cell bounded at its top and bottom in general by sloped surfaces and vertical
side walls. The top and bottom surfaces can represent linear piecewise approximations to surfaces of
constant generalized vertical coordinates, with s = s; at the top surface and s = s, at the bottom surface.
They could also represent the ocean surface (for the top face) or the ocean bottom (for the bottom face).
The arrows represent the pressure contact forces that act in a compressive manner along the boundaries
of the grid cell and in a direction normal to the boundaries. These forces arise from contact between the
shown fluid volume and adjacent regions. Due to Newton’s Third Law, the pressure acting on an arbitrary
fluid parcel A due to contact with a parcel B is equal and opposite to the pressure acting on parcel B due to
contact with parcel A. If coded according to finite volume budgets, as in Lin (1997) or Adcroft et al. (2008),
this law extends to the pressure forces acting between grid cells in an ocean model.
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2.8.1 The accumulation of contact pressure forces

Pressure acts as a contact or interfacial stress on the sides of a finite region of fluid. In particular, the total
pressure force acting on the grid cell in Figure 2.8 is given by summing the pressure forces acting on the
six cell faces

Foressure = Fxzxy + Fyox, + Fyoy +Fyoy) +Foog +Fog,. (2.189)
The pressure acting on faces with a zonal normal can be written
Z]
Fooy =% de szp (2.190)
22 xX=x1
2]
Froyy =X jdydeP (2.191)
22 X=X

where the vertical integral extends from the bottom face at z, = z(x,y,5 = s,t) to the top face at z; =
z(x,y,s = s1,t). Likewise, the meridional pressure forces are

2]
Fyop =¥ de szp (2.192)
2 Y=n
2]
Fyop,=-y de szp . (2.193)
i y=12

On the top face, the pressure force is given by

Fo_ = —(defdxpz,S Vs)
§=851
:—(jdyjdxp(—vsz+i)) .

1

(2.194)

Note the contribution from the generally non-horizontal top face as represented by the two dimensional

vector
Vsz=8, (2.195)

which is the slope of the surface of constant generalized vertical coordinate relative to the horizontal plane.
The pressure force on the bottom face has a similar appearance

Fo_, = (J-dyjdxp(—vsz+i)) R (2.196)

2

If the top and bottom faces are horizontal, as for z-models, the pressure force acting at s = s; and s = s, acts
solely in the vertical direction. More generally, the pressure force per area on the top and bottom faces is
oriented according to the slope of the faces and so has a nontrivial projection into all three directions.

To garner a sense for how pressure acts on the face of a grid cell, consider the case where the top surface
of a grid cell rises to the east as shown in Figure 2.9. In this case, the pressure force per area in the x —z
plane takes the form

PRESSURE FORCE PER AREA ON TOP FACE = —p [2 — (dz/dx)s X]. (2.197)

Since (dz/dx)s > 0 for this example, the pressure force per area has a positive component in the % direction,
as indicated by the arrow normal to the top surface in Figure 2.9.
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Figure 2.9: The sides of the grid cell, with the slopes top and bottom surfaces more enhanced here than in
Figure 2.9. The corners are denoted A, B, C, and D, and oriented in a counterclockwise manner. This is the
orientation appropriate for performing a contour integral in order to compute the pressure force acting on
the area.

When the top surface represents the surface of the ocean at z = 1), the pressure p is the applied pressure
P. arising from any media above the ocean, such as the atmosphere and sea ice. In this case,

PRESSURE FORCE PER AREA ON OCEAN SURFACE = —pa ( — T])
=-p,(2-Vn),

where V1 is the slope of the ocean surface. Likewise, if the bottom of the grid cell is bounded by the solid
earth boundary,

(2.198)

PRESSURE FORCE PER AREA ON OCEAN BOTTOM = p, V(2 + H)

) (2.199)
=Db (Z + VH),

where VH is the bottom slope.
A sum of the pressure forces acting on the six faces of the grid cell determines the acceleration due to
pressure acting on a grid cell. Organizing the forces into the three directions leads to

21 Z1
~
Fpressure =| | dv JdZP - de Jde (2.200)
J
22 X=x1 22 X=x
Xy X,
+ dejdxz'xp - fd;ujdxz’xp (2.201)
X1 5=5 X1 s=s)
zy z1
-
Fl:y)ressure = dx szp - J.dx J.de (2.202)
- 2 _ Z) _
+ defdyzyp dejdyzyp (2.203)

$=Sp

pressure _(J-J-dxdyp) (J:[-dxdyp) . (2.204)

Making the hydrostatic approximation, whereby the vertical momentum equation maintains the inviscid
hydrostatic balance, allows us to note that the difference in pressure between the top and bottom surfaces
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of the region is determined by the weight of fluid between the surfaces,

[ axayp- [[ axavp=sg [ pav. (2.205)

5=5; s=51

It is notable that this expression relates the difference in contact forces acting on the domain boundaries to
the integral of a body force (the gravitational force) acting throughout the domain interior.

We now work on reformulating the horizontal pressure forces into a manner amenable to finite volume
discretization. Referring to Figure 2.9, we can write the horizontal forces in a manner than builds in the
orientation of pressure via a counterclockwise contour integral

22 X
r r
F}))Cressure == J dy fdzp - dy j dx Zxp
J
“ X=X1 . s=s,
2] X1
r r
_ ddezp - dyjdxz’xp
J J

22 = *2 5=51

X=X
F4) X2
=- jdyJ.dzp - J‘dyfdzp (2.206)
21 xX=x, X1 5=5,
21 X1
r r
- | dy J dzp - | dy j dzp
J J
22 X=x5 X2 5=51

4y § e

ABCD

In the penultimate step, we set z,dx = dz, which is an relation valid along the particular contour ABCD.
That is, in all the integrals, the differential increment dz is taken along the contour surrounding the cell.
The counter-clockwise orientation of the integral follows from the compressive nature of pressure. Since
the contour of integration is closed, we have the identity

F;)Cressure == fdy é p dz

ABCD (2.207)

:fdy 96 zdp.
ABCD

The contour integral form of the pressure force is key to providing a finite volume discretization that is
consistent with Newton’s Third Law (Lin, 1997; Adcroft et al., 2008). What is needed next is an assumption
about the subgrid profiles for pressure and geopotential @ = gz in order to evaluate the contour integral.

2.8.2 Pressure gradient body force in hydrostatic fluids

In the early finite difference formulations of the pressure force, modelers discretized the gradient of pres-
sure and performed certain grid averages so that the gradient occurs at the appropriate grid point. Guid-
ance to the discretization details was provided by concerns of energetic consistency (Chapter 14), whereby
work done by pressure in the discrete algorithm is balanced by buoyancy work (Bryan, 1969). This general
philosophy still guides the formulation of the pressure force in MOM.

As with the contact forces formulation, in a hydrostatic fluid we are only concerned with horizontal
pressure gradients, since the vertical momentum equation is reduced to the inviscid hydrostatic balance.
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Hence, we are concerned with the horizontal acceleration arising from pressure differences in a hydrostatic
and non-Boussinesq fluid, and this acceleration can be written!3

P Vap=p (Vi=Vizd:)p
=p ' V,p+gV,z (2.208)
=p 'V,p+V,D,
where the hydrostatic relation p , = —p g was used to reach the second equality, and
D=gz (2.209)
is the geopotential. To reach this result, we used the expression
V,=V,-V,zd,, (2.210)

which relates the lateral gradient operator acting on constant depth surfaces, V,, to the lateral operator
acting on surfaces of constant generalized vertical coordinate, V.

Depending on the choice for the vertical coordiante s, discretizations of the pressure gradient body force
can result in both terms in equation (2.208) being large and of opposite sign in many regions. This issue
is especially pernicious for terrain following coordinates in regions of nontrivial topographic slope (e.g.,
Griffies et al., 2000a). Hence, this calculation exposes the discrete pressure gradient force to nontrivial
numerical truncation errors which can lead to spurious numerical pressure gradients and thus to incorrect
simulated currents. Significant effort has gone into reducing such pressure gradient errors, especially in ter-
rain following models where undulations of the coordinate surfaces can be large with realistic topography
(e.g., see Figure 5.3). Some of these issues are summarized in Section 2 of Griffies et al. (2000a).

The pressure gradient force acting at a point represents the infinitesimal limit of a body force. We see
this fact by multiplying the pressure gradient acceleration by the mass of a fluid parcel, which leads to the
pressure force acting at a point in the continuum

PRESSURE GRADIENT FORCE = —(pdV/) p_1 V.p
=-dVV,p (2.211)
=—-dV (Vsp+pV;D).

Hence, the pressure force acting on a finite region is given by the integral over the extent of the region

PRESSURE GRADIENT FORCE OVER REGION = — J‘Jf(p dv) p_1 V.p

_ _mdvvzp.

As stated earlier, a finite volume discretization of this force will take the same form as the finite volume
discretization of the pressure contact force discussed in Section 2.8.1, as it should due to the Green-Gauss
Theorem invoked to go from equation (2.187) to (2.188). However, these formulations generally do not
provide for a clear energetic interpretation as promoted by the finite difference formulation of Bryan (1969).

(2.212)

2.9 Linear momentum budget

The purpose of this section is to formulate the budget for linear momentum over a finite region of the
ocean, with specific application to ocean model grid cells. The material here requires many of the same
elements as in Section 2.6, but with added richness arising from the vector nature of momentum, and the
additional considerations of forces from pressure, friction, gravity, and planetary rotation. Note that we
initially formulate the equations using the pressure contact force, as this provides a general formulation.
Afterwards, we specialize to hydrostatic fluids, and thus write the pressure force as a gradient (Section
2.8.2), as commonly done in primitive equation ocean models

I3For a Boussinesq fluid, equation (2.208) is modified by a factor of p/p,.
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2.9.1 General formulation

The budget of linear momentum for a finite region of fluid is given by the following relation based on
Newton’s second and third laws

at(jjfdvpv):jjjdvs(w_f_[df“(ﬁ)[r‘l-(v—vref)]pv .
+'[[dA(ﬁ)(ﬁ'T_ﬁp)_ijdvp[gi+(f+M)i/\v]. 220

The left hand side is the time tendency of the region’s linear momentum. The first term on the right hand
side, S, is a momentum source, with units momentum per volume per time. This term is nonzero if,
for example, the addition of mass to the ocean via a source occurs with a nonzero momentum. Often, it is
assumed that mass is added with zero velocity, and so does not appear as a momentum source. The second
term is the advective transport of linear momentum across the boundary of the region, with recognition
that the region’s boundaries are generally moving with velocity v'*f. The third term is the integral of the
contact stresses due to friction and pressure. These stresses act on the boundary of the fluid domain. We
already discussed the forces from pressure in Section 2.8. The stress tensor 7 is a symmetric second order
tensor that parameterizes subgrid scale transport of momentum. The final term on the right hand side is
the volume integral of body forces due to gravity and the Coriolis force.'* In addition, there is a body force
arising from the nonzero curvature of the spherical space. This curvature leads to the advection metric
frequency (see equation (4.49) of Griffies (2004))

M=vd,Indy —ud,Indx. (2.214)

In spherical coordinates where
dx = (rcos¢p)dA (2.215)
dy =rde¢, (2.216)

with r the distance from the earth’s center, A the longitude, and ¢ the latitude, the advective metric fre-
quency takes the form

M = (u/r) tan ¢. (2.217)

The advection metric frequency arises since linear momentum is not conserved on the sphere.!> Hence, the
linear momentum budget picks up this extra term that is a function of the chosen lateral coordinates.

2.9.2 An interior grid cell

At the west side of a grid cell, i = —%X whereas fi = % on the east side. Hence, the advective transport of
linear momentum entering through the west side of the grid cell and that which is leaving through the east
side are given by

TRANSPORT ENTERING FROM WEST = JJ dydsz u(pv) (2.218)
X=X
TRANSPORT LEAVING THROUGH EAST = — —U dydsz u(pv). (2.219)
X=X)

14The wedge symbol A represents a vector cross product, also commonly written as x. The wedge is typically used in the physics
literature, and is preferred here to avoid confusion with the horizontal coordinate x.

151 inear momentum is not conserved for ideal flow on a sphere. Instead, angular momentum is conserved for ideal fluid flow on
the sphere in the absence of horizontal boundaries (see Section 4.11.2 of Griffies (2004)).
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Similar results hold for momentum crossing the cell boundaries in the north and south directions. Momen-
tum crossing the top and bottom surfaces of an interior cell is given by

TRANSPORT ENTERING FROM THE BOTTOM = J]dx dy w (pv) (2.220)
5=S8y
TRANSPORT LEAVING FROM THE TOP = — J:[dx dy w? (pv). (2.221)

§=8§1

Forces due to the contact stresses at the west and east sides are given by

CONTACT FORCE ON WEST SIDE = — \J] dydsz,(x-T—-Xp) (2.222)
X=X1
CONTACT FORCE ON EAST SIDE = J] dydsz,(x-T—-xp) (2.223)
X=X3

with similar results at the north and south sides. At the top of the cell, dA)f = Vsdxdy whereas dA ) fi =
—Vsdxdy at the bottom. Hence,

CONTACT FORCE ON CELL TOP = JI dxdy z.(Vs-T—pVs) (2.224)
S=5k-1

CONTACT FORCE ON CELL BOTTOM = — JI dydszs(Vs-t—pVs). (2.225)
S=Sk

Bringing these results together, and taking limit as the time independent horizontal area dxdy — 0, leads
to the thickness weighted budget for the momentum per horizontal area of an interior grid cell

di(dzpv) = dzsW -V [dzu(pv)]+ (w(z) PV)sms, — (w(z) pv)
+0y[dz(k-T—%p)]+dy[dz(y-T—-yp)]

$=Sk-1

(2.226)
+ [Z,s (VS T _pvs)]s:sk_1 - [Z,s (VS T —PVS)]s:sk

—pdz[gz+(f+ M)z AV].

Note that both the time and horizontal partial derivatives are for positions fixed on a constant generalized
vertical coordinate surface. Also, the pressure force as written here is a shorthand for the more complete
contour integral formulation provided in Section 2.8 (e.g., equation (2.207)). Additionally, we have yet to
take the hydrostatic approximation, so these equations are written for the three components of the velocity.

The first term on the right hand side of the thickness weighted momentum budget (2.226) is the mo-
mentum source, and the second is the convergence of advective momentum fluxes occurring within the
layer. We discussed the analogous flux convergence for the tracer and mass budgets in Section 2.7.4. The
third and fourth terms arise from the transport of momentum across the upper and lower constant s inter-
faces. The fifth and sixth terms arise from the horizontal convergence of pressure and viscous stresses. The
seventh and eigth terms arise from the frictional and pressure stresses acting on the constant generalized
surfaces. These forces provide an interfacial stress between layers of constant s. Note that even in the ab-
sence of frictional stresses, interfacial stresses from pressure acting on the generally curved s surface can
transmit momentum between vertically stacked layers. The final term arises from the gravitational force,
the Coriolis force, and the advective frequency.

2.9.3 Cell adjacent to the ocean bottom

As for the tracer and mass budgets, we assume zero mass flux through the ocean bottom at z = —H(x, ).
However, there is generally a nonzero stress at the bottom due to both the pressure between the fluid
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and the bottom, and unresolved features in the flow which can correlate or anti-correlate with bottom
topographic features (Holloway (1999)). The area integral of the stresses lead to a force on the fluid at the
bottom

Fyottom = — jj dxdy[V(z+H)-t—pV(z+H)]. (2.227)
z=—H
Details of the stress term requires fine scale information that is generally unavailable. For present purposes
we assume that some boundary layer model provides information that is schematically written
' =V(z+H) t (2.228)

where 7% is a vector bottom stress. Taking the limit as the horizontal area vanishes leads to the thickness

weighted budget for momentum per horizontal area of a grid cell next to the ocean bottom

at(dsz)=d25(v) s-[dzu(pv)]-(w (z)pv)s—skbarl
+dy[dz(k-T-%p)]+dy[dz(y-T-Yp)]
+[z5(Vs-T—pVs)]
'+ ppV(z+H)
-pdz[gz+(f+ M)z A V].

(2.229)

5=Skbot-1

2.9.4 Cell adjacent to the ocean surface

There is a nonzero mass and momentum flux through the upper ocean surface at z = 7(x, 9, t), and contact
stresses are applied from resolved and unresolved processes involving interactions with the atmosphere
and sea ice. Following the discussion of the tracer budget at the ocean surface in Section 2.6.4 leads to the
expression for the transport of momentum into the ocean due to mass transport at the surface

—deA(ﬁ)ﬁ~[(v—vref)pv: JIdxdy QmV. (2.230)

zZ=n

The force arising from the contact stresses at the surface is written

Fcontact:J dXdy[V(Z—W)T—PV(Z—U)] (2231)

zZ=n

Bringing these results together leads to the force acting at the ocean surface

Fourface = JJ.dXd}?[V(Z— 17) : T_PV(Z_TI) + va]' (2232)

zZ=n

Details of the various terms in this force are generally unknown. Therefore, just as for the tracer at z = in
Section 2.6.4, we assume that a boundary layer model provides information about the total force, and that
this force is written

Fsurface = JJdXd}) [ ,rtop —Pa \Y (Z - 77) + vam]’ (2’233)
z=1n

where v, is the velocity of the water crossing the ocean surface. This velocity is typically taken to be equal
to the velocity of the ocean currents in the top cells of the ocean model, but such is not necessarily the case
when considering the different velocities of, say, river water and precipitation. The stress '°P is that arising
from the wind, as well as interactions between the ocean and sea ice. Letting the horizontal area vanish
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leads to the thickness weighted budget for a grid cell next to the ocean surface

9;(dzpv) =dz8™ -V, [dzu(pv)]+ (W pv)eg,_,
+0y[dz(%-T—%p)]+ 9, [dz(y-T—Yp)]
—[z5(Vs-T=pVs)ls=5_, (2.234)
+[ TP = p, V(2= 1) + Qm Vin]
—pdz[gZ+(f+M)Z A V].

2.9.5 Horizontal momentum equations for hydrostatic fluids

We now assume the fluid to maintain a hydrostatic balance, which is the case for primitive equation ocean
general circulation models. In this case, we exploit the pressure gradient body force as discussed in Section
2.8.2. Specializing the momentum budgets from Sections 2.9.2, 2.9.3, and 2.9.4 to use the hydrostatic
pressure gradient force (again, interpreted according to the finite volume form given in Section 2.8) leads
to the horizontal linear momentum budget for interior, bottom, and surface grid cells

[0 + (f + M)2A](pdzu) = dzS8™ -V, -[dzu(pu)]
-dz(Vsp+pV; D)
+0y(dzk-T)+ 0, (dzy - 7) (2.235)
—[w® pu- 25 Vs Tle—g, |

+ [w(z) pu-z,Vs- Tl

[0, +(f + M)2A](pdzu) =dzS8™ -V, - [dzu(pu)]
-dz(Vsp+p Vs D)
+dy(dzk-T)+ 0, (dzy 1) (2.236)

2)

- [w( pu—-z,Vs- fc]szskhm_1

_ ,rbottom

[0;+(f + M)2A](pdzu) = dzS8™ -V, - [dzu(pu)]
-dz(Vsp+pV; D)
+0y(dzk-T)+ 0, (dzy - 7) (2.237)
+[r 4 Quy, ]

+[w® pu—z,Vs- Tls=s, -

2.10 The Boussinesq budgets

We consider various depth-based vertical coordinates in Section 5.1. These coordinates are used to dis-
cretize the Boussinesq model equations where the volume of a parcel is conserved rather than the mass. A
detailed discussion of the interpretation of the Boussinesq equations in terms of density weighted fields is
given by McDougall et al. (2002) and Griffies (2004). For now, we gloss over those details by quoting the
Boussinesq equations for volume, tracer, and momentum as arising from setting all density factors to the
constant p,, except when multiplied by the gravitational acceleration in the hydrostatic balance (i.e., for
calculation of pressure and geopotential, the full density is used). The density p, is a representative density
of the ocean fluid. In MOM4 we set

po, = 1035kg/m>, (2.238)

although this value can be changed via altering a parameter statement and thus recompiling the code). For
much of the ocean, the in situ density deviates less than 3% from 1035kgm™=> (see page 47 of Gill (1982)).
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The replacement of density in the mass, tracer, and linear momentum budgets over a grid cell in the
ocean interior leads to the following budgets for the hydrostatic model
d¢(dz) = dzSY) -V, (dzu) — (w?) g, | + w5y,
94(dzC) =dz8© -V, -[dz(uC +F)]
~ WP CHFE)
+ (W@ C+F@)
[0; + (f + M)2A](p,dzu) = dzS™ —V, - [dzu (p,u)] (2.239)
-dz(Vsp+pV; D)
+dy(dzx-T)+ 0, (dzy  7)
- [w(z) Pou—2,Vs Tl |
+[w® p,u—2z,Vs- Tls=s,-
The first equation reduces to a volume budget rather than a mass budget found for the non-Boussinesq
system. In this equation, SV is a volume source with units of inverse time. Likewise, S™ is a velocity
source (with units of acceleration). The Boussinesq equations for a grid cell adjacent to the ocean bottom
are given by
9;(dz) = dz8™Y) -V, - (dzu) - (w?)
04(dzC)=dz8'® -V, -[dz(uC +F)]
—(w® C+F®)
+ Q:E‘jt)
[0; + (f + M)2A](p,dzu) = dzS™ — V, - [dzu (p, u)]
—dz(Vsp+p VD)
+ 0y (dzx 1)+ d, (dzy - T)

S=Skbot-1

S=Skbot-1

(2.240)

z
—[w' )pou—z'S Vs Tlszspor
_ ,l_bottom

and the equations for a cell next to the ocean surface are

9;(dz) =dz8™ -V, - (dzu) + (W)=, + Qu/po
9;(dzC) =dz8'© -V, .[dz(uC +F)]
+(w® C + F@))

S=5k=1
(turb)

+ ((Qm/Po)Cm - Q(C) )
[0; + (f + M)2A](p,dzu) = dzS™ -V, - [dzu(p, u)]

-dz(Vsp+pV; D)

+0y(dz%-7)+ 0, (dzy - 1)

+[7 "+ Qpuy,]

(2.241)

+[w® p,u—z,Vs- Tls=s, -
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The purpose of this chapter is to detail issues related to computing the pressure force in hydrostatic
ocean models. Care is taken to split the pressure force into its slow and fast components, thus facilitating
a split of the momentum equation for use in an explicit time stepping scheme. Additional consideration is
given to the distinct needs of the B-grid and C-grid implementations available in MOM.

In Section 2.8, we encountered two formulations of the pressure force. The first computes the pressure
gradient body force (Section 2.8.2), and considers the pressure force to be acting at a point. This inter-
pretation follows from a finite difference interpretation of the velocity equation, following the energetic
approach of Bryan (1969) and all versions of MOM. The second formulation applies a finite volume inter-
pretation advocated in Chapter 2, with particular attention given to the contour integral form of pressure
as derived in Section 2.8.1. The finite volume approach does not lend itself to straightforward energetic
conversion arguments (Chapter 14). It is for this reason that we maintain the finite difference approach of
Bryan (1969) in MOM.

3.1 Hydrostatic pressure forces at a point

A hydrostatic fluid maintains the balance

dp _
5, - P& (3.1)

This balance means that the pressure at a point in a hydrostatic fluid is determined by the weight of fluid
above this point. This relation is maintained quite well in the ocean on horizontal spatial scales larger than
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roughly 1km. Precisely, when the squared ratio of the vertical to horizontal scales of motion is small, then
the hydrostatic approximation is well maintained. In this case, the vertical momentum budget reduces to
the hydrostatic balance, in which case vertical acceleration and friction are neglected. If we are interested
in explicitly representing such motions as Kelvin-Helmholtz billows and flow within a convective chimney,
vertical accelerations are nontrivial and so the non-hydrostatic momentum budget must be used.

The hydrostatic balance greatly affects the algorithms used to numerically solve the equations of motion.
Marshall et al. (1997) highlight these points in the context of developing an algorithm suited for both
hydrostatic and non-hydrostatic simulations. However, so far no long-term global climate simulations have
been run at resolutions sufficiently refined to require the non-hydrostatic equations. Additionally, many
regional and coastal models, even some with grid resolutions finer than 1km, still maintain the hydrostatic
approximation, and thus they must parameterize the unrepresented non-hydrostatic motions.

As discussed in Section 2.8.2, at a point in the continuum, the horizontal acceleration arising from
pressure differences in a hydrostatic and non-Boussinesq fluid can be written!

p ' Vp=p T (Vs-V,s20,)p
=p ' Vip+gV,z (3.2)
=p N (Vsp+p VD)

where the hydrostatic relation d, p = —p ¢ was used to reach the second equality, and
b=gz (3.3)

is the geopotential. The general expression for the horizontal pressure gradient to evaluate in an ocean
model is thus given by
Vap=Vsp+pV; D (3.4)

For cases where the density is constant on s surfaces, we can combine the two terms on the right hand
side into the gradient of a scalar, thus rendering a horizontal pressure gradient force with a zero curl.
This special case holds for geopotential and pressure coordinates. It also holds for isopycnal coordinates
in the special case of an idealized linear equation of state. However, it does not hold in the more general
case, in which the difficulty of numerically computing the acceleration from pressure arises when there are
contributions from both terms. Generally, both terms can be large and of opposite sign in many regions. In
this case, the simulation is exposed to nontrivial numerical truncation errors that can, for example, lead to
spurious pressure gradients that spin up an unforced fluid with initially flat isopycnals. However, in certain
cases one term dominates, in which case an accurate pressure gradient is simpler to compute numerically.

Significant effort has gone into reducing such pressure gradient errors, especially in terrain following
models where undulations of the coordinate surfaces can be large with realistic bottom topography (e.g.,
see Figure 5.3). Some of these issues are summarized in Section 2 of Griffies et al. (2000a). Perhaps the most
promising approach is that proposed by Shchepetkin and McWilliams (2002). It is notable that difficulties
with pressure gradient errors have largely been responsible for the near absence of sigma models being
used for long term global ocean climate simulations.?

3.2 Pressure gradient body force

As stated above, the presence of both terms on the right hand side of equation (3.4) complicates the nu-
merical implementation of the horizontal pressure gradient force. The problem is that numerical errors
in one term are often not compensated by the other term, and such can lead to spurious flows. For the
quasi-horizontal depth based and pressure based coordinates supported by MOM (i.e., s =z,5 =2", s = p,
or s = p*; see Chapter 5), these errors are quite small. The reason is that these choices ensure that one of
the two terms appearing in equation (3.4) is significantly smaller than the other. Nonetheless, it is useful
to provide a formulation that even further reduces the potential for errors for both the quasi-horizontal
coordinates, as well as the terrain following coordinates ¢(*) and oP) (Chapter 5).

1To obtain this result for a Boussinesq fluid, multiply both sides of equation (3.2) by p/p-
2The work of Diansky et al. (2002) is one example of a published global sigma model used for climate purposes.
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In addition to reducing errors associated with a numerical computation of the pressure gradient, we aim
to split the pressure gradient into two terms associated with the slowly evolving internal modes and the
faster external mode. Details of this split are a function of the vertical coordinate. This split in the pressure
gradient then facilitates our treatment of the vertically integrated momentum equations, as discussed in
Section 10.9.

In the following, we are motivated by the formulation of the pressure gradient commonly applied to
z-models. Adcroft and Campin (2004) extended this treatment to the z* vertical coordinate. We take it one
more step in order to handle all vertical coordinates supported by MOM. Hallberg (1997) goes further by
treating the pressure gradient in isopycnal layered models using a realistic equation of state, and Adcroft
et al. (2008) present a more accurate approach for generlized vertical coordinate models.

3.2.1 Depth based vertical coordinates

As mentioned on page 47 of Gill (1982), in situ density in the bulk of the ocean deviates less than 3% from
the constant density

p, = 1035kg/m>. (3.5)
The hydrostatic pressure associated with this constant density has no horizontal gradients, and so it does
not contribute to horizontal pressure gradient forces. For increased accuracy computing the horizontal

pressure gradient, it is useful to remove this term from the calculation of hydrostatic pressure. For this
purpose, we write the hydrostatic balance as

Ip
9z~ 8P (3.6)
=—g(po+p’)
which has an associated split in the hydrostatic pressure field

P =Patpo(2)+p(x,9,21). (3.7)

We can solve for the pressures by assuming

Po(z=1n)=0 (3.8)
p'(z=n)=0, (3.9)
which leads to
Po=—8pPo(2—1) (3.10)
=P P+gpo1,
and
Ui
p'=gj p'dz, (3.11)
z
and thus
P=Pat8Po1—Po@+p". (3.12)

Splitting off the free surface height is advantageous as it allows for a split of the pressure gradient
into its fast two dimensional barotropic contributions and slow three dimensional baroclinic contributions.
This split in pressure gradient facilitates the development of a split-explicit time stepping method for the
momentum equations considered in Section 10.9. Details of the split in pressure are dependent on the
vertical coordinate choice. We now discuss the three depth based vertical coordinates used in MOM.
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3.2.1.1 Geopotential vertical coordinates

We first consider the horizontal pressure gradient realized with geopotential vertical coordinates. We are
here motivated by the desire to split the dynamics into fast and slow portions, as approximated by depth
integrating the momentum equation (Section 10.9).

The anomalous pressure p’ maintains a dependence on surface height through the upper limit on the
vertical integral in equation (3.11). When working with geopotential vertical coordinates, it is very conve-
nient to isolate this dependence by exploiting a very accurate approximation described below. This split
then allows us to exclusively place the surface height dependent pressure gradient into the vertically inte-
grated momentum equation. The slow component to the pressure gradient then has no dependence on the
surface height; it is instead just a function of the anomalous density. The slow pressure gradient component
thus vanishes when the density is horizontally unstratified; i.e., when there is no baroclinicity.

To facilitate the split described above, we proceed in the following manner

p'=g | p'dz
Jz

0 i

=g p'dz+gf p'dz

Jz 0

0

~g | p'dz+ g1 pLu

z

(3.13)

. ’
=Pclinic T Psurf

The approximation made in the third step remains good where density is well mixed between z = 0 and
z = 1], and this is generally the case for large scale modelling. Here, density in the surface region of the
ocean is assumed to take on the value

Psurf = Po t p;urf’ (3.14)

which is a function of horizontal position and time. The anomalous pressure p” has therefore been separated
into two pressures, where the anomalous surface pressure

Pourt = Peur 871 (3.15)

is a function of the surface height and surface density, and the pressure

0
pélinic = gj p,dZ (316)
z

is the anomalous hydrostatic baroclinic pressure within the region from a depth z < 0 to z = 0. Again, the
baroclinic pressure is independent of the surface height, and so its horizontal gradients are only a function
of density.

This split of pressure thus renders the horizontal pressure gradient (equation (3.4))

(Vzp)approx =Vsp+ pvsq)
=Vs(pat+8po —po P +p) +p VP
~V(Pa+ 800 + Pourt) + Vs Pliinic + (0 = Po) Vs @ (3.17)
=V (Pa+&Psuri 1)+ Vs Pllinic + " Vs P

fast slow

In a geopotential vertical coordinate model, interior grid cells are discretized at levels of constant geopo-
tential. Hence, the gradient V; reduces to the constant geopotential gradient V,. In this case the horizontal
gradient of the geopotential vanishes, V,® = 0. At the bottom, however, MOM employs bottom partial
step topography (Pacanowski and Gnanadesikan, 1998). The bottom cells are thus not discretized along a
constant geopotential. Hence, just at the bottom, there is a nontrivial gradient of the geopotential ® (see
Figure 5.1). In general, note how the geopotential is multiplied by the anomalous density p’ = p — p,, thus
minimizing the impact of this term.
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3.2.1.2 z*and o vertical coordinate

The new issue that arises when moving away from geopotential coordinates is that the geopotential ® = gz
has a nonzero along coordinate gradient in the interior, whereas with geopotential coordinates it remains
nonzero only along the partial bottom stepped topography. The presence of ® gradients in the interior is
fundamental.

Following the discussion in Section 3.2.1, we are led to the following expressions for the horizontal
pressure gradient. The exact expression relevant for the z* and ¢! coordinates is given by

(ViDP)exact = Vsp +pVs @
=Vs(patpo+p)+pV,®
=Vs(pa—po P +8pon +p") +pVs P (3.18)
=V(pa+gpon)+Vsp'+p Vs @.

fast slow

Note that we have assumed that the geopotential falls inside the slow portion of the pressure gradient. This
assumption is made even though the depth of a grid point is a function of the undulating surface height.
The validity of this assumption can be assessed by the integrity and stability of the simulation.

To facilitate a unified treatment in subsequent manipulations, we define

Psurf = Psurf8Y S=2
Psurf = P08 5=Z*,O'(Z) (319)

and

’ O 7
p :gJZpdz s=z (3.20)
’ nm _ o ~(2) :
p _gjzpdz s=2z 0%,

In both the exact and aproximated pressure gradient expressions, the geopotential gradient V,® in the
ocean interior is weighted by the small density deviation p’ = p — p,. For quasi-horizontal depth-based
vertical coordinates supported in MOM (Section 5.1), the horizontal gradient of the geopotential is small,
and the p” weighting further reduces its contribution. For terrain following coordinates, the horizontal
gradient term is not small, and the p” weighting is essential to reduce its magnitude.

3.2.2 A test case for zero cross-coordinate flow

In the development of generalized vertical coordinates, a useful test case was suggested by Alistair Adcroft.
We focus here on the special case of s = z*. In this test, initialize the density field as a function only of the
vertical coordinate z*. The domain is flat bottomed and doubly periodic in the horizontal, thus precluding
pressure gradients due to side boundaries or topography. In a state of rest, there is no horizontal pressure
gradients, and so no motion. As a body force is applied to the barotropic equations, such as through an ideal
tidal forcing, there will now be a nontrivial surface height field 7 as well as a nontrivial barotropic velocity.
Both pieces of the slow contribution to the horizontal pressure gradient (3.18) develop a nontrivial vertical
structure, and this will initiate baroclinic structure and thus a nonzero cross coordinate vertical velocity
w'). This cross coordinate velocity will be much smaller in the s = z* case than with s = z, given than z*
follows the motion of the free surface.

In order to further test the integrity of the z* implementation, we wish to truncate the pressure cal-
culation in this test so that there will be no slow pressure gradients developed when the tidal forcing is
applied, and hence there will be no cross coordinate motion. For this purpose, truncate the slow piece of
the horizontal pressure gradient (3.18) as

VSP""P,VSCD _)vspt,runcate' (321)

In this truncation, we drop the geopotential term p’V,®, as this term will produce nontrivial horizontal
gradients as the surface height undulates. We also introduce a truncated perturbation pressure determined
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by
’ ’1 7
p =gf p dz
z

s(17)
=g j p'zsds
s(z)

0
=g(1 +17/H)J p’dz*

zZ

(3.22)

0
= Piruncate * (871/H) J p'dz".

z

To reach the penultimate step, we used z; = (1 + #/H) for s = z*. The coordinate increments used to de-
fine the pressure field pj,uncate are static in a model discretizing the vertical according to s = z*. Hence,
Vs Piruncate = 0 if the density is a function only of z*. So when the model’s slow pressure field is comprised of
just pl.uncate, the ideal tidal test in the torus should maintain zero cross coordinate flow, w? = 0, even as the
surface height fluctuates. Testing to see that this property is maintained is a useful means for evaluating
the integrity of the algorithm.

3.2.3 Pressure based vertical coordinates

A complementary discussion to the above is now given for pressure based vertical coordinates. Since for
pressure based vertical coordinates we solve for the bottom pressure, it is useful to formulate the geopo-
tential in terms of the bottom pressure rather than the atmospheric pressure. For this purpose, consider
the following identities

z
z
P+gH=g¢ | dz
_“H
(o
z
= —d
8 ) ap p
Pb
p
[
=—|p dp
J
Pb
. (3.23)
(1, 1
== | (o +p~" —po)dp
J
Pb
P
= (Po=PVpo+ 05" J(p’/p)dp
Pb
z
= (po = P)/po = (8/p0) f p'dz.
-H
We are thus led to the expression
Po® = pp=p+p, (P +P’), (3.24)
where ,
PP =-¢ J p’dz (3.25)

-H
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is an anomalous geopotential similar to the anomalous hydrostatic pressure introduced in Section 3.2.1,
and
D, =-gH (3.26)

is the geopotential at the ocean bottom. The horizontal pressure force is therefore written

Vsp+p V@ =Vsp+(p/po) V(s + 0o Ps) = (p/00) Vsp +p Vs @
=(P/po)V(Pb+Po®b)+PVS‘D'—(P'/pa)V5P~ (3.27)

fast slow

Note that the three-dimensional pressure term (p’/p,) Vs p is weighted by the generallly very small density
deviation p’ = p — p,. For the non-terrain following quasi-horizontal pressure-based vertical coordinates
supported in MOM (Section 5.2), the horizontal gradient of the pressure is small, and the weighting by
(p’/p,) further reduces its contribution. Also note that the fast contribution is here weighted by the density,
and so this term may appear to require further splitting into p = p, + p’ before identifying the fast two
dimensional contribution. However, as the non-Boussinesq formulation here considers momentum per
area, the baroclinic velocity includes density weighting (see equation (11.1)). This is how we are to split the
horizontal momentum equations into fast two dimensional motions and slow three dimensional motions
for purposes of time stepping. We consider these issues further in Sections 10.9 and 11.1.

During the testing of this formulation for the pressure gradient, we found it useful to write the anoma-
lous geopotential in the following form

~(po/8) P’ = J p'dz

-H
1

= J p'dz—

-H

p'dz

N%Q

(3.28)
1
= %_Po(H“ﬂ—JP,dZ

z
_Po=Pa-p
4

To reach this result, we used the hydrostatic balance for the full ocean column in the form

po (H +1).

n
J- p'dz= I%—po(H+q), (3.29)
“H

as well as the definition (3.11) of the anomalous hydrostatic pressure
1
p’:ng’dz (3.30)

z

used in Section 3.2.1 for the depth based vertical coordinates. These results then lead to the identiy

Po+ 00 (Pp+ D) =p'+pa+ 0,81 (3.31)

3.3 Pressure gradient body force in B-grid MOM

We now detail how the pressure gradient body force is represented in the B-grid generalized level coordi-
nate version of MOM. As the pressure force acts to accelerate a fluid parcel, our aim is to determine the
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pressure force acting at the velocity cell point. Much in the derivation of the pressure force depends on
assumptions regarding where pressure is computed in the discrete model. For the B-grid and C-grid, hy-
drostatic pressure is coincident with the tracer fields as shown in Figure 2.9, which illustrates a typical case
where a grid cell is bounded by vertical sidewalls with generally nonhorizontal tops and bottoms.

As mentioned in Section 2.8.2, we prefer to discretize the pressure gradient body force as it facilitates
the splitting of the pressure force into fast and slow components. The result here is a derivation of the
Pacanowski and Gnanadesikan (1998) discrete pressure gradient body force as originally implemented
for the treatment of partial step bottom topography. Their discussion is relevant here, since the pressure
gradient force in the presence of partial step bottoms must account for the pressure between cells that live
at different depths. This is also the essential issue for the treatment of pressure with the generalized level
coordinates of MOM.

/ .

Figure 3.1: Illustration of a vertical slice through a set of grid cells in the x-z plane for a generalized
level coordinate version of MOM. The center point in each cell is a tracer point. As the temperature and
salinity tracers, along with pressure, determine density, and as density determines hydrostatic pressure,
the hydrostatic pressure is coincident with tracer points.

3.3.1 Depth based vertical coordinates

The aim here is to discretize the pressure gradient body force written in the forms (3.18) and (3.17)
Vsp+pVs® =V (pa+ psurs) + Vsp' + 0" Vs @, (3.32)

where pg,r and p’ are defined according to equations (3.19) and (3.20), respectively. Our focus here is
the slowly evolving three dimensional terms V,p’ + p’V,®. The first term is straightforward to discretize
according to the assumptions regarding the placement of pressure given in Figure 3.1. Pressure sits at
tracer points, which are at the corners of velocity cells. Hence, to approximate pressure at the west and
east faces of the cell, one can average the pressure found at the corners. A grid weighted average may be
appropriate, but the simplest method, which is energetically consistent (see Sections 14.6 and 14.8) is an
unweighted average in which

V,p’ ~ X FDXNT(FAY(p')) +§ FDY_ET(FAX(p’)) (3.33)
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The forward algebraic averaging operators are defined according to

A+ A
FAX(A) = 4;" = % (3.34)
—y A +A;
FAX(Y)= A} = % (3.35)

with the second expression in each equation exposing the notation used in the ocean model code. Addi-
tionally, finite difference operators have been introduced

FDX_NT(A) = Ain = A
dxui,]’ (3 36)
Ajr1 — 4, '
FDYET(A) = —2.
dyui,j

These operators are used for fields that live at the north face and east face, respectively, of a tracer cell.

The geopotential contribution in (3.45) is computed using the geopotential values at the tracer points,
and so its gradient is located at the tracer cell faces. To have the density multiplier at the same point
requires that it be averaged prior to multiplying. Finally, an orthogonal spatial average is required to place
the product onto the velocity point. The result is given by

0’ Vi@ ~ % [FAY[5,D FAX(p’)]/dxui,j] +y [FAX[(S]-QD FAY(p’)]/dyuilj]. (3.37)

Exposing just the pressure gradient force, the corresponding zonal and meridional momentum equa-
tions for the B-grid Boussinesq fluid take the form

d; (u py dzu)P™™™ = —dzu (FDX,NT(FAY(pa + Psure + p’)) + FAY[5;D FAX(p’)]/dxuirj) (3.38)
91 (v, dzu)™™ = —dzu(FDY ET(FAX(p, + paust + ') + FAX[8;® FAY(p")/dyu, ;). (3.39)

3.3.2 Pressure based vertical coordinates

The aim is to discretize the pressure gradient body force written in the form (3.27)
Vep+pVs® = (p/po)V (py + 0o Po) + p Vs @' = (0"/po) Vs p (3.40)

and to do so in a manner analogous to the Boussinesq case. In particular, we consider here the slow three
dimensional contribution p V, @’ - (p’/p,) Vs p and write for the pressure term

p'Vsip =% |FAY[S;p FAX(p')]/dxui,j] +y [FAX[éjp FAY(p')]/dyuirj , (3.41)

which is analogous to the discrete p’V,® contribution in equation (3.37). The geopotential term is dis-
cretized as

p V@’ ~% p FDXNT (FAY(D))+§ p FDY_ET (FAX(D')), (3.42)

which is analogous to the discrete version of V;p’ in equation (3.33). Note that the density p in equation
(3.42) is centered on the velocity cell.

Exposing just the pressure gradient force, the zonal and meridional momentum equations for the B-grid
non-Boussinesq fluid take the form

¢ (urho_dzu)™™ = —rho_dzu FDX_NT(FAY(py/p, + @y + @) + dzu FAY[6;p FAX(p'/p,)]/dxu; j (3.43)
d; (v rho_dzu)™** = —rho_dzu FDY_ET(FAX(py/p, + @y, + @) + dzu FAX[6;p FAY(p//po)]/dyui’]-. (3.44)
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3.4 Pressure gradient body force in C-grid MOM

We now detail how the pressure gradient body force is represented in the C-grid generalized level coordi-
nate version of MOM.

3.4.1 Depth based vertical coordinates
The aim here is to discretize the pressure gradient body force written in the forms (3.18) and (3.17)
Vsp+pVs® =V (pa+ Pourt) + Vsp' + 0’ Vs @, (3.45)

where pg,r and p’ are defined according to equations (3.19) and (3.20), respectively. Our focus here is
the slowly evolving three dimensional terms V;p’+ p’V;®. The first term is straightforward to discretize
according to the assumptions regarding the placement of pressure on a C-grid (Figure 9.2)

V,p' ~ % FDX_T(p’) +§ FDY_T(p'), (3.46)

where the averaging operators required for the B-grid are absent. Additionally, finite difference operators
have been introduced

FDX_T(A) = Aiv —4i
dxte,-,]-
A4, (3.47)
FDY_T(A) = -1
dytni'j

where the grid distances are defined in Figure 9.7. These operators are used for fields that live at the tracer
point.

The geopotential contribution in (3.45) is computed using the geopotential values at the tracer points,
and so its gradient is located at the tracer cell faces. To have the density multiplier at the same point
requires that it be averaged prior to multiplying, so that

0’V @ ~ % FAX(p") FDX_T(®) +§ FAY(p’) FDY_T(®D). (3.48)

Exposing just the pressure gradient force, the corresponding zonal and meridional momentum equa-
tions for the C-grid Boussinesq fluid take the form

di (up, dzte) ™ = —dzte [FDX_T(p, + psurs + P’) + FAX(p”) FDX_T(D)] (3.49)
9; (v po dztn)™ = —dztn [FDY_T(p, + peuss + p’) + FAY(p’) FDY_T(D)]. (3.50)

3.4.2 Pressure based vertical coordinates
The aim is to discretize the pressure gradient body force written in the form (3.27)
Vep+pVs® = (p/po) V(py + o Pp) +p Vs @’ = (p"/ps) Vs p (3.51)

and to do so in a manner analogous to the Boussinesq case. In particular, we consider here the slow three
dimensional contribution p V, @’ - (p’/p,) Vs p and write for the pressure term

p'Vsp ~xFAX(p") FDX_T(p) +y FAY(p’) FDY_T(p), (3.52)

which is analogous to the discrete p’V,® contribution in equation (3.48). The geopotential term is dis-
cretized as
pV; @ =% p FDX_T (®')+§ p FDY_T (D). (3.53)

Importantly, the density factor in each term is on the respective tracer cell faces.
Exposing just the pressure gradient force, the corresponding zonal and meridional momentum equa-
tions for the C-grid non-Boussinesq fluid take the form

d; (u rho_dzte)™* = —rho_dzte FDX_T(py/p, + P, + P’) + dzte FAX(p'/p,) FDX_T(p) (3.54)
d; (v rho_dztn)>** = —rho_dztn FDY_T(py/p, + Py, + ) + dztn FAY(p’/p,) FDY_T(p). (3.55)
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The parameterization of subgrid scale (SGS) processes is of fundamental importance to ocean models.
Details of how these processes are parameterized depend on the choice of vertical coordinates. The pur-
pose of this chapter is to describe how various SGS parameterizations are formulated with generalized level
coordinates of MOM. As we will see, by diagnosing the vertical grid cell thicknesses according to the meth-
ods described in Section 10.3, parameterizations implemented in the geopotential MOM4.0 code remain
algorithmically unaltered when converting to the generalized level coordinate MOM.

4.1 Friction

The convergence of frictional stress leads to a friction force acting on fluid parcels. The purpose of this
section is to detail the form of friction appearing in the generalized level coordinates of MOM. For this
purpose, we follow much of the discussion in Chapter 17 of Griffies (2004). In particular, Section 17.3.4
leads us to take the physical components to the frictional stress tensor in the form

(e ™  pxu,
= ™ - pxv, |, (4.1)
PKU, PKV, 0
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where x is a non-negative viscosity with units m?s~!. Taking 733 = 0 is consistent with use of the hydrostatic
approximation, which reduces the vertical momentum equation to the inviscid hydrostatic balance. We
comment in Section 4.1.3 on the form of the two-dimensional transverse elements ™* and Y. Further
details of lateral friction are given in Chapter 25.

4.1.1 Vertical friction

As the gravitational force is so critical to stratified fluids close to a hydrostatic balance, it is typical in ocean
modelling to single out the vertical direction. In particular, closures for the unresolved vertical exchange
of momentum are usually taken to be proportional to the vertical derivative, or shear, of the horizontal
velocity field. This argument leads to the form of the stress tensor given by equation (4.1). For a generalized
level coordinate model, the vertical shear elements take the form

pKU,=pKS, U (4.2)

In MOM, the left hand side of this expression is numerically evaluated for purposes of computing the
vertical shear. That is, vertical derivatives are computed for arbitrary vertical coordinates just as in geopo-
tential coordinates. This result follows by diagnosing the vertical grid cell thicknesses using the methods
described in Section 10.3, where we make use of the relation between vertical coordinates

dz=2z,ds. (4.3)

Now return to the thickness weighted momentum budget for a grid cell discussed in Section 2.9. The
above considerations lead us to write the frictional stress acting on a generalized surface as

zsVs-t=(2-8)-7
~i-T (4.4)

=pKu,.

The second step used the small angle approximation to drop the extra slope term. Alternatively, we can
interpret the dia-surface frictional stress z; Vs - T as parameterized by px u ,. Either way, the result (4.4) is
the form that vertical frictional stress is implemented in MOM.

4.1.2 A comment on nonlinear vertical friction

As noted above, we choose in MOM to implement vertical friction, and vertical tracer diffusion (Section
4.2.1) just as in a geopotential coordinate model. This method is facilitated by diagnosing the vertical
thickness of a grid cell according to equation (4.3) (see Section 10.3), prior to computing vertical derivatives.

We now mention an alternative method, not implemented in MOM, since this method is often seen in
the literature. The alternative is to compute the vertical shear according to the right hand side of equation
(4.2). The density weighted inverse specific thickness p/z; adds a nonlinear term to the vertical friction,
and this complicates the numerical treatment (Hallberg, 2000). It is reasonable to approximate this factor
by a constant for the dimensionful quasi-horizontal coordinates considered in Sections 5.1 and 5.2.! For
the Boussinesq case with depth-based vertical coordinates, this approximation results in

pK/zs = poK, (4.5)

where z; =~ 1 follows from the results for all but the sigma coordinate in Table 5.1. The vertical friction
therefore becomes

(px u,z),z ~PoSz (x S,z u,s),s

(4.6)
= Po (Ku,s),s-
Likewise, dimensionful pressure-based coordinates used for non-Boussinesq fluids have
pr/2s~ 8Py K, (4.7)

ITerrain following sigma coordinates, which are dimensionless, are notable exceptions to this result.
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as follows for all but the sigma coordinate in Table 5.2. The vertical friction therefore becomes

(pKu,Z),Z zpﬂ (ng)Z(Ku,S),S‘ (4‘8)

The above approximations are well motivated physically since the value of the vertical viscosity is not
known to better than 10%, and the above approximations are well within this range for vertical coordinates
whose iso-surfaces are quasi-horizontal. Similar arguments were presented by Losch et al. (2004). Addi-
tionally, the approximations are very conveinent numerically since they allow us to continue implementing
vertical physical processes in a linear manner as traditionally handled in z-models. Such facilitates straight-
forward time implicit methods to stably handle large vertical viscosities. Without these approximations,
or without use of the geopotential-based approach described above in Section 4.1.1, vertical physical pro-
cesses are nonlinear. Arbitrarily stable numerical methods for such processes require an iterative scheme
such as that discussed by Hallberg (2000) employed in isopycnal models.

4.1.3 Lateral friction

There is no fundamental theory to prescribe the form of lateral friction at the resolutions available for large
scale ocean modelling. Indeed, many argue that the form commonly used in models is wrong (Holloway,
1992). We take the perspective that lateral friction in ocean models provides a numerical closure. This
perspective motivates us to prescribe friction in a manner that maintains basic symmetry properties of the
physical system, and which is convenient to implement.

The deformation rates are a basic element of the lateral frictional stress. Using generalized orthogonal
horizontal coordinates and z for the vertical, the deformation rates given in Section 17.7.1 of Griffies (2004)
take the form

er = (dy)(u/dy) x — (dx) (v/dx) , (4.9)
s = (dx) (u/dx),, + (dy) (v/dy) , (4.10)

where dx and dy are the infinitesimal horizontal grid increments. Consistent with lateral friction being
considered a numerical closure, we place no fundamental importance on the horizontal derivatives being
taken on constant z surfaces. Hence, we propose to use the same mathematical form for the deformation
rates regardless the vertical coordinate. That is, for the generalized level coordinates used in MOM, the
deformation rates are computed according to the lateral strains within surfaces of constant vertical coordi-
nate.

As shown in the Appendix to Griffies and Hallberg (2000), and further detailed in Section 17.10 of
Griffies (2004), the divergence of the thickness weighted lateral stress within a layer, V- 7, leads to the
thickness weighted forces per volume acting in the generalized horizontal directions

dzpF* = (dy)™?
o n

(dy)®dz*¥] , + (dx)~* [(dx)*dz 7],
dzpF? = x

[
?[(dx)*dz 1], + (dy) 2 [(dy)> dz 7] ;.

We extend the forms for the stress tensor given in Chapter 17 of Griffies (2004) by assuming that all hor-
izontal derivatives appearing in the stress tensor are taken along surfaces of constant generalized level
coordinate. Notably, the forms all have an overall density factor, such as the general form given by equa-
tion (17.119) in Griffies (2004)

XX Xy (Aep+DARY) (Aes+DAR%)
xy x | =P v };1 , (4.12)
T -T (Aes+DARY) (-Aer+DARY)
with R a rotation matrix
(my [ sin20  —cos20
R(n)—(—cosze ~sin20 |’ (4.13)

A > 0 is a non-negative viscosity weighting the isotropic stress tensor, and D > 0 is a non-negative viscosity
weighting the aniostropic stress tensor. For the Boussinesq fluid, the density factor in the stress tensor is
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set to the constant p,. Furthermore, the specific thickness z is a depth independent function when using
the depth-based Boussinesq vertical coordinates (Table 5.1 in Section 5.1). For the mass conserving non-
Boussinesq pressure-based vertical coordinates (Table 5.2 in Section 5.2), the density weighted specific
thickness pz; is a depth independent function, which then simplifies the density weighted thickness of
a grid cell pdz = pzds. These results are familiar from the analogous simplifications arising for other
terms in the scalar and momentum budgets discussed in Chapter 2. We consider the needs of spatial
discretization for the B-grid and C-grid in Chapter 25.

4.1.4 Bottom stress

We exposed the form of bottom stress in Section 2.9.3, and it generally leads to a bottom force given by

Fiottom = — JJ‘ dxdyV(z+H) -t

z=—H

- _ J.J‘ dx dy Tbottom'

z=—H

(4.14)

A common method to parameterize this force is to consider unresolved small scale processes to give rise to
a dissipative drag written in the form

Fbotmm=—j dxdy[pCp uy(u? + )], (4.15)
z=—H

where it is only the horizontal bottom force that appears in hydrostatic models. In this equation, Cp is a
dimensionless drag coefficient with common values taken as

Cp~1073. (4.16)
Because the precise value of Cp is not well known, the product p Cp is approximated in MOM as
pCD =X Po CD' (4:].7)

The velocity uy4. represents a residual horizontal velocity that is not resolved in models running without
tidal forcing. Hence, even with the bottom flow weak, the residual velocity keeps the drag nontrivial. A
common value for the residual velocity is

[uge] ~ 0.05ms ™. (4.18)

The velocity uy, is formally the velocity within the bottom boundary layer, but it is commonly taken in
models as the velocity at the grid cell adjacent to the bottom. Note that our assumed form of the unresolved
bottom stresses take the form of a bottom drag. See Holloway (1999) for more general forms where the
unresolved bottom stresses may act to accelerate the resolved flow field.

4.1.5 Summary of the linear momentum budget

The horizontal linear momentum budgets for interior, bottom, and surface grid cells are given by equations
(2.226), (2.229), and (2.234). We rewrite them here for future reference, incorporating the more detailed
form for friction appropriate for hydrostatic models

[0;+(f + M)2A](dzpu) = pdzS™ -V, - [dzu(pu)]

—-dz(Vsp+pV;®)+dzpF
fj pYs 0 (4.19)
- [P (w u- Ku,z) ]s:sk,l

+ [P (w(s) u- Ku,z) ]s:sk
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[Or+(f + M)2A](dzpu) = psz(“) —-V;-[dzu(pu)]

—dz(Vip+poV.D)+dzpF
(st; pV;®) P (4.20)
- [P (w u- Ku,z) ]5:5kbot—1
_Tbottom
[0;+(f + M)2A](dzpu) = pdzS™ -V, - [dzu(pu)]
—dz(Vip+pV.D)+dzpF
(Vsp+p V) P (4.21)

+ [+ Qp iy, ]
+ [P (w(s) u- Ku,z) ]s:sk:1 .

As discussed in Section 2.8.2, we prefer to work with the pressure gradient body force acting within the
grid cell of a primitive equation ocean model, rather than the accumulation of contact pressures acting at
the faces. This formulation in terms of body forces is convenient in a hydrostatic fluid as it facilitates a
numerical treatment of pressure in the discrete ocean climate model (Section 3.3).

4.2 Diffusion and skew diffusion

Some of the results for friction are also applicable for diffusion. However, neutral diffusion and skew
diffusion require some added considerations.

4.2.1 Vertical diffusion

Dianeutral tracer transport is often parameterized with a diffusive closure, and these closures require the
dianeutral derivative of tracer. For most parameterizations, dianeutral derivatives are computed with a
vertical derivative (see Section 7.4 of Griffies (2004)), and these derivatives are computed in MOM just
as done for the velocity shears for vertical friction described in Section 4.1.1. Hence, vertical diffusion of
tracer concentration is implemented by a direct computation of the finite differenced vertical derivative

(pxCz)z~0,(pxCy) (4.22)

where C is the tracer concentration and « is the vertical diffusivity.

4.2.2 Horizontal diffusion

Horizontal diffusion is used infrequently in the interior regions of the ocean in climate simulations with
MOM4, since neutral physics is preferred for physical reasons. However, near the surface boundary, argu-
ments presented in Treguier et al. (1997), Ferrari et al. (2008), and Ferrari et al. (2010) motivate orienting
lateral diffusive processes along surfaces of constant generalized level coordinate when in the surface tur-
bulent boundary, and along topography following coordinates for the bottom turbulent boundary layer.
Hence, it is useful to consider the form that horizontal diffusion takes in generalized level coordinates.
When computing the horizontal fluxes as downgradient along surfaces of constant vertical coordinate
s, we consider
pF=-pAV.C, (4.23)

with A a horizontal diffusivity. The thickness weighted horizontal diffusion operator is therefore given by

RM™ = V. (dzpF). (4.24)

4.2.3 Neutral physics

As for horizontal and vertical diffusion, we compute the tracer flux from neutral physics as pF, where
F is the tracer concentration flux formulated as in a Boussinesq model, and p is the in situ density for a
non-Boussinesq model and p, for a Boussinesq model. This approach requires a bit of justification for the
neutral skewsion from Gent and McWilliams (1990), and we provide such in this section. The bottomline

ELEMENTS oF MOM October 8, 2012 Page 79



CHAPTER 4. PARAMETERIZATIONS WITH GENERALIZED LEVEL COORDINATES Section 4.2

is there are no nontrivial issues involved with implementing this scheme in a non-Boussinesq model. The
only issue arising with generalized level coordinates thus relates to the computation of neutral direction
slopes.

Neutral diffusion fluxes are oriented relative to neutral directions. Hence, the slope of the neutral
direction relative to the surface of constant vertical coordinate is required to construct the neutral diffusion
flux.

The scheme of Gent and McWilliams (1990) requires the slope of the neutral direction relative to the
geopotential surface, since this slope provides a measure of the available potential energy. For simplicity,
we use the same slope for both neutral diffusion and skew diffusion in MOM. Doing so facilitates a straight-
forward extension of the neutral physics technology employed in the z-model MOM4.0 to the generalized
coordinates supported for later versions of MOM. It however produces a modified Gent and McWilliams
(1990) scheme in which skew diffusion relaxes neutral directions toward surfaces of constant vertical co-
ordinate rather than constant geopontential surfaces. For surfaces of constant vertical coordinate that are
quasi-horizontal, the modified skew diffusion scheme should act in a manner quite similar to that in a
z-model. However, for the terrain following coordinates 0@ and ¢P), novel issues arise which have have
not been considered in the MOM formulation of Gent and McWilliams (1990) skewsion. Hence, the use of
neutral physics parameterizations with terrain following vertical coordinates is not recommended in MOM.

4.2.3.1 The velocity field from Gent and McWilliams (1990)

As formulated by Gent et al. (1995), the parameterization of Gent and McWilliams (1990) is typically
considered from the perspective of a Boussinesq ocean model. For the purposes of advective transport of
tracer, we add a non-divergent velocity v = V A W to the non-divergent resolved scale velocity v. The
parameterized vector streamfunction is given by

W=_kSAZ (4.25)

where S is the neutral slope and x > 0 is a kinematic diffusivity. In this way, volume conservation remains
unchanged, thus removing the need to modify the model’s kinematic relations used to diagnose the vertical
velocity component w.

The above results can be seen from a finite volume perspective by considering the volume conservation
equation for an interior model grid cell (Section 2.10), in which

d(dz) = dz8M) —V, - (dzu) - (w¥)g, | + W)y, (4.26)

5=5k-1

where S) is a volume source, and w'? is the dia-surface velocity component defined in Section 2.1.4. Use
of the Gent et al. (1995) advective velocity

u' =-d,(xS) (4.27)

leads to the finite volume result
Zk-1

J dzu* = —(xS)r_1 + (kS)k, (4.28)
Zk
which renders
Zk-1
-V,- j dzu*|-w; ; +w, =V, (xS)i_1 = Vs (kS)y —w,_, +w;
s k=1 k 5( )kl s( )k k=1 k (4.29)
Zk
=0.
Hence, there is no modification of the volume in a grid cell from the Gent et al. (1995) velocity field.

We now extend the formulation to a non-Boussinesq fluid, in which case the mass conservation takes
the form (see equation (2.155) in Section 2.6.2)

94(dzp) =dzpSM -V, - (dzpu) - (pw@)sy, | + (pw)eeg,, (4.30)
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with SM) a mass source. Define a density weighted horizontal advection velocity according to
pu’ =-d;(pxS), (4.31)

in which case the vector streamfunction from the Boussinesq case is extended to the non-Boussinesq merely
by introducing a density weighting

pW=—pxS AL (4.32)
This result then leads to
Zk-1
-V, f pdzu’ [—(pw)s=s, | +(pW')s=s, =
2k (4.33)
Vs (pxS)k-1 = Vs (P Sk = (P W )55y + (P W)=,

=0,

which means there is no modification to the mass of a grid cell through the introduction of the non-
Boussinesq Gent et al. (1995) parameterization.

Note that in the continuum, the above finite volume results mean that the non-Boussinesq Gent et al.
(1995) velocity satisfies

Vi-(pzsu')+ds(pzsw') =0, (4.34)
where s is the vertical coordinate. For the geopotential case with s = z, we have
V.-(pu')+ . (pw) =0, (4.35)
which reduces to the familiar non-divergence condition
V, u +d,w =0 (4.36)

in the Boussinesq case.

4.2.3.2 Neutral slopes

A key to the implementation of neutral physics is the slope of a neutral direction relative to either the
geopotential or a surface of constant generalized level coordinate. Implicit in the following is the assump-
tion that the neutral slope is finite relative to each surface.

The neutral slope relative to the geopotential is

S(yrz)=Vyz

(4.37)
=-z, V.y

with y the locally referenced potential density. The (y/z) subscript notation highlights that the neutral

slope is computed relative to a geopotential. The relation between this slope and the others can be seen by

noting that in generalized vertical coordinates, the horizontal gradient V, is computed using the transfor-

mation (6.33) in Griffies (2004) so that

S(y/2) = =2y (Vs =S8(52)92) ¥

(4.38)
= S(y/s) + S(s/z)-
This equation identifies the slope of the vertical coordinate surface relative to the geopotential
S(s72) = Vsz
(/2= (4.39)
=-z:;V,s
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and the slope of the neutral direction relative to the vertical coordinate surface

S(yrs) = Vy s
=-2,Vsy (4.40)
=255,y Vsy.

In words, equation (4.38) says that the slope of the neutral direction relative to the geopotential equals
to the slope of the neutral direction relative to the vertical coordinate surface plus the slope of the verti-
cal coordinate surface relative to the geopotential. In isopycnal models, the slope S, 5 is very small for
much of the ocean. Except for the sigma coordinates, each of the depth-based and pressure-based vertical
coordinates discussed in Sections 5.1 and 5.2 have S(,/,) typically less than 107* and S(yss) less than 1072,
For sigma coordinates, both S, ;) and S/, can be nontrivial in much of the model domain affected by
topography.

Figure 4.1 illustrates the relation (4.38) between slopes. This figure shows a particular zonal-vertical
slice, with slope given by the tangent of the indicated angle. That is, the x-component of the slope vectors
are given by

S(s/z) =tanayy)
S(y/z) =tana, ;) (4.41)
S(yss) = tana(ys).

In this example, S(s/;) < 0 whereas S(,/,) > 0. Note that the angle between the generalized surface and the
isopycnal surface, S(, /), is larger in absolute value for this example than S, ,). This case may be applicable
to certain regions of o-models, whereas for isopycnal models S, /) will generally be smaller than S, /,). The
generally nontrivial angle S, /5) found in sigma models is yet another reason we do not recommend the use
of neutral physics as implemented in MOM along with terrain following vertical coordinates. Significant
work is required to ensure a proper treatment of neutral physics with terrain following coordinates, and
we are not prepared to support such in MOM.

Z

A4

y-surface

s-surface

> X/Y

Figure 4.1: Relationship between the slopes of surfaces of constant depth, constant generalized vertical
coordinate s, and locally referenced potential density . Shown here is a case where the slope is projected
onto a single horizontal direction, so that the slope is given by the tangent of the indicated angle.

4.2.3.3 Fluxes for neutral diffusion

The relative slope between the neutral direction and vertical coordinate is required to compute the neutral
diffusion flux. We assume here that this slope is small, thus allowing us to approximate the full diffusion
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tensor of Redi (1982) with the small slope approximated tensor of Gent and McWilliams (1990). To lend
mathematical support for these comments, we start with the neutral diffusion flux as written for the small
slope approximation in z-models. As discussed in Section 14.1.4 of Griffies (2004), this flux has horizontal
and vertical components given by
FW=—A;v,C (4.42)
F® =—A;S(,)-V,C. (4.43)
Converting this flux to a form appropriate for general vertical coordinates requires a transformation of the
gradient operator
Vy =V, + S(y/z) 8Z
=Vs+ [S(y/z) - S(s/z)] az (4-44)
= Vs + s()//s) az.
The third equality used the slope relation (4.38).

As seen in Section 2.6, the thickness weighted tracer budget contains a contribution from the conver-
gence of a SGS flux in the form

R=-V,-(dzyF)~[yzsVs-Fle—s, , +[yzsVs-Fli—,. (4.45)
We are therefore led to consider the dia-surface flux component

F) =z Vs-F
=(2-S(yz)-F
=—=A1(S(y/2) =S(s72)) -V, C (4.46)
=484 Vy C

h

This flux component, as well as the horizontal flux component, take forms isomorphic to those for the
specific case of s = z given by equations (4.42) and (4.43). This isomorphism follows from the need to only
have information about the relative slope between the generalized surfaces of constant s and the neutral
directions.

4.2.3.4 Fluxes for skew diffusion

An arbitrary tracer has a Gent and McWilliams (1990) skew flux in the form
F=Agn(S(y/2)Cz=2S(y/,) -V, C), (4.47)

where A, is a non-negative skew diffusivity. The horizontal component of this flux is converted to general
coordinates via

M = Agm (S(y/5)+S(5/2)) C 2

(4.48)
~ Agm S(y/5) C.z

Consistent with this same approximation, we are led to the dia-surface component of the skew flux

z;Vs-F= (i—S(S/Z)).F
= _Agm (S(V/Z) Vot S(V/Z) : S(s/z) d,)C
= —AgnS(y/2)* (Vs = S(52)92) C = Agm S(y/2) * S(572) 92 C (4.49)
= ~AgmS(y2)- Vs C
= _Agms()//s) . Vs C.
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These approximations are reasonable where [S(y/;)| is much smaller than S, ,)| if S(, ) is nontrivial. When
the neutral slope S, ;) vanishes, as for regions of zero baroclinicity, this approximation may not be valid
when s # z. However, in regions of vanishing baroclinicity, we expect the error to be of minimal conse-
quence to the simulation since either the z or s based skew fluxes are close to zero. In general, approximat-
ing the slope as proposed here leads the modified Gent and McWilliams (1990) scheme to dissipate neutral
slopes as they deviate from surfaces of constant generalized vertical coordinate. So long as these surfaces
are quasi-horizontal, the modified scheme should perform in a physically relevant manner.

4.2.3.5 Summary of the neutral fluxes

The horizontal and dia-surface components to the small angle neutral diffusion flux take the form

F(h) = _AI (Vs + S(}//s) 82) C

(4.50)
E6) = S(ys) .FM
where the slope is given by
S =V,s
(v/s) 14 (4.51)
=-z, Vsy.
The horizontal and dia-surface skew flux components are approximated by
FM ~ Ay S, C
gm0 2 (4.52)

F9 ~ —AgnS(ys5) - Vs C.

Each of these neutral fluxes are isomorphic to the fluxes used in the z-model MOM4.0. This isomorphism
enables us to transfer the neutral physics technology from MOM4.0 directly to the generalized level ver-
sions of MOM.
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The purpose of this chapter is to document issues related to the choice of vertical coordinates. In MOM,
only depth-based and pressure-based coordinates are supported. Isopycnal coordinates are not supported.
Furthermore, terrain following sigma coordinates are coded in MOM. However, more work is required in
MOM to reduce pressure gradient errors (Section 3.2) and consistently employ neutral physics (see Lemarié
et al. (2012b) for some intriguing results on these topics of terrain coordinate ocean models). Much in this
chapter is derived from lectures of Griffies (2005) at the 2004 GODAE School.

5.1 Depth based vertical coordinates

We use depth based vertical coordinates in this section to discretize the Boussinesq equations.! Depth based
coordinates are also known as volume based coordinates, since for a Boussinesq model that uses depth as the
vertical coordinate, the volume of interior grid cells is constant in the absence of sources. Correspondingly,
depth based coordinates are naturally suited for Boussinesq fluids.

1 Greatbatch and McDougall (2003) discuss an algorithm for non-Boussinesq dynamics in a z-model. Their methods are imple-
mented in mom4p0a and mom4pO0b of Griffies et al. (2004). This approach may be of special use for non-Boussinesq non-hydrostatic
z-models. However, when focusing on hydrostatic models as we do here, pressure based vertical coordinates discussed in Section 5.2
are more convenient to realize non-Boussinesq dynamics.
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5.1.1 Depth coordinate
With a free surface, the vertical domain over which the z-coordinate
s=z (5.1)
ranges is given by the time dependent interval
-H<z<n. (5.2)

Consequently, the sum of the vertical grid cell increments equals to the total depth of the column
Zdz:H+11. (5.3)
k

The trivial form of the specific thickness z; = 1 greatly simplifies the Boussinesq budgets.
The depth coordinate is very useful for many purposes in global climate modelling, and models based
on depth are the most popular ocean climate models. Their advantages include the following.

* Simple numerical methods have been successfully used in this framework.

* For a Boussinesq fluid, the horizontal pressure gradient can be easily represented in an accurate
manner.

* The equation of state for ocean water can be accurately represented in a straightforward manner (e.g.,
Jackett et al. (2006)).

* The upper ocean mixed layer is well parameterized using a z-coordinate.
Unfortunately, these models have some well known disadvantages, which include the following.

* Representation of tracer transport within the quasi-adiabatic interior is cumbersome, with problems
becoming more egregious as mesoscale eddies are admitted (Griffies et al. (2000b)).

* Representation and parameterization of bottom boundary layer processes and flow are unnatural.

Grid cells have static vertical increments ds = dz when s = z, except for the top where d; (dz) = d;#. The
time dependent vertical range of the coordinate slightly complicates a numerical treatment of the surface
cell in z-models (see Griffies et al. (2001) for details of one such treatment).

Placing all changes in ocean thickness in the top gric cell exposes the free surface geopotential co-
ordinate models to two pesky problems. First, when adding fresh water to the ocean, such as for with
simulations of land ice melting, the top cell thickens, which means the representation of vertical processes
is coarsened. Conversely, the surface cell can be lost (i.e., can become dry) if the free surface depresses
below the depth of the top grid cell’s bottom face. This is a very inconvenient feature that limits the use
of z-coordinates.? In particular, the following studies may require very refined vertical resolution and/or
large undulations of the surface height, and so would not be accessible with a conventional free surface
z-model.

* Process studies of surface mixing and biological cycling may warrant very refined upper ocean grid
cell thickness, some as refined as 1m.

* Realistic tidal fluctuations in some parts of the World Ocean can reach 10m-20m.

* Coastal models tend to require refined vertical resolution to represent shallow coastal processes along
the continental shelves and near-shore.

* When coupled to a sea ice model, the weight of the ice will depress the ocean free surface.

2Linearized free surfaces, in which the budgets for tracer and momentum are formulated assuming a constant top cell thickness,
avoid problems with vanishing top cells. However, such models do not conserve total tracer or volume, and so are of limited use for
long term climate studies (see Griffies et al. (2001) and Campin et al. (2004) for discussion).
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5.1.2 An example of depth coordinates

In some of the following discussion, we illustrate aspects of vertical coordinates by diagnosing the values
for the coordinates from a realistic z-model run with partial step thicknesses. Partial steps have arbitrary
thickness set to accurately represent the bottom topography. The partial step technology was introduced
by Adcroft et al. (1997) in the C-grid MITgcm, and further discussed by Pacanowski and Gnanadesikan
(1998) for the B-grid Modular Ocean Model (MOM). Figure 5.1 compares the representation of topography
in a z-model using partial steps as realized in the MOM code of Griffies et al. (2004). Many z-models have
incorporated the partial step technology as it provides an important facility to accurately represent flow
and waves near topography.

Because of partial steps, the level next to the ocean bottom has grid cell centers that are generally at
different depths. Hence, the bottom cell in a partial step z-model computes its pressure gradient with
two terms: one due to gradients across cells with the same grid cell index k, and another due to slopes in
the bottom topography. Details of the pressure gradient calculation are provided in Chapter 3. All other
cells, including the surface, have grid cell centers that are at fixed depths. Figure 5.2 illustrates the lines of
constant partial step depth for this model.

Full step topography
| |

00
00
00
00
00

200°W 100°w 0°
Longitude

Partial step topography
0 | | | |
00

00

00
00
00

200°W 100°W 0°
Longitude

Figure 5.1: Comparison of the partial step versus full step representation of topography as realized in the
z-model discussed by Griffies et al. (2005). This vertical section is taken along the equator. The model
horizontal grid has one degree latitudinal resolution. The main differences are in the deep ocean in regions
where the topographic slope is gradual. Steep sloped regions, and those in the upper ocean with refined
vertical resolution, show less distinctions.

5.1.3 Depth deviation coordinate

The depth deviation coordinate
s=2z-1 (5.4)

removes the restriction on upper ocean grid cell resolution present with s = z. That is, s = 0 is the time
independent coordinate value of the ocean surface, no matter how much the free surface depresses or
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/depth surfaces

80°S 40°S 0° 40°N 80°N
Latitude

Figure 5.2: This figure contours the depth of grid cell centers used in a modern geopotential ocean model.
Deviations from the horizontal occur next to the bottom due to use of a partial bottom step representation
of topography, as illustrated in Figure 5.1. In this case, the bottom cell has an arbitrary thickness according
to the methods of Adcroft et al. (1997) and Pacanowski and Gnanadesikan (1998). This technology is
common in modern geopotential ocean models, as it provides a more faithful and robust representation of
the ocean bottom. Shown here is a north-south section along 150°W.

grows. Hence, no surface cells vanish so long as # > —H. If § < —H, the bottom topography is exposed,
in which case the model’s land-sea boundaries are altered. Such necessitates a model that can allow for
wetting and drying of grid cells. Alternatively, it requires a model where ocean is extended globally, with
infinitesimally thin ocean layers present over land. We do not have such features in MOM.

The depth deviation coordinate ranges between —(H +#) < s < 0. The only time dependent interface
in s-space is at the bottom of the column. Consequently, by solving the problem at the ocean surface, the
deviation coordinate introduces a problem to the ocean bottom where bottom cells can now vanish. To see
this problem, discretize the deviation coordinate s according to time independent values s;. For example,
the s values can be set as the depths of cells in a model with s = z. When # evolves, depth zand s =z -7
become different, and so the depth of a grid cell must be diagnosed based on the time independent value
of s; and the time dependent surface height

Zp =S+ 1. (55)

If the time dependent depth of the upper interface of a bottom grid cell is diagnosed to be deeper than
the actual bottom depth z = —H, then we know that the bottom grid cell has vanished and so there are
problems. To maintain nonvanishing cells requires a limit on how negative # can become. For example, if
the upper interface of a bottom cell is —-5000m and the bottom interface (at the ocean bottom) is H = 5005m,
then the bottom cell is lost if 7 < —5m. This restriction is of some consequence when aiming to use partial
bottom steps (see Figure 5.1) along with tides and sea ice. In practice, if one is interested in allowing thick
sea ice and nontrivial tidal fluctuations, then it will be necessary to keep the bottom partial steps thicker
than roughly 10m-20m. This is arguably a less onerous constraint on the model’s vertical grid spacing than
the complementary problem at the ocean surface encountered with the traditional z-coordinate s = z.
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In summary, grid cells have static grid increments ds = dz for all cells except the bottom. At the bottom,
d;(dz) = d;(ds) = ;. Hence, the thickness of the bottom cell grows when the surface height grows, and it
thins when the surface height becomes negative. The bottom cell can be lost if 71 becomes too negative. The
sum of the vertical increments yields the total depth of the column } ;ds = (H + 77). Because the surface
height fluctuations are so much smaller than changes in bottom topography, the depth deviation coordinate
appears nearly the same as the depth coordinate when viewed over the full depth range of a typical model
such as in Figure 5.2.

The author knows of no model routinely using the depth deviation coordinate. It does appear to have
advantages for certain applications over the depth coordinate. However, the zstar coordinate discussed next
resolves problems at both the top and bottom, and so is clearly preferable. The depth deviation coordinate
is not implemented in MOM for these reasons.

5.1.4 Zstar coordinate

To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate

. z2—1
Z _H(H+17)' (5.6)

This coordinate is closely related to the “eta” coordinate used in many atmospheric models (see Black (1994)
for a review of eta coordinate atmospheric models). It was originally used in ocean models by Stacey et al.
(1995) for studies of tides next to shelves, and it has been recently promoted by Adcroft and Campin (2004)
for global climate modelling.

The surfaces of constant z* are quasi-horizontal. Indeed, the z* coordinate reduces to z when # is zero.
In general, when noting the large differences between undulations of the bottom topography versus undu-
lations in the surface height, it is clear that surfaces constant z* are very similar to the depth surfaces shown
in Figure 5.2. These properties greatly reduce difficulties of computing the horizontal pressure gradient
relative to terrain following sigma models discussed next. Additionally, since z* = z when # = 0, no flow is
spontaneously generated in an unforced ocean starting from rest, regardless the bottom topography.> This
behavior is in contrast to the case with sigma models, where pressure gradient errors in the presence of
nontrivial topographic variations can generate nontrivial spontaneous flow from a resting state, depend-
ing on the sophistication of the pressure gradient solver.* The quasi-horizontal nature of the coordinate
surfaces also facilitates the implementation of neutral physics parameterizations in z* models using the
same techniques as in z-models (see Chapters 13-16 of Griffies (2004) for a discussion of neutral physics in
z-models, as well as Section 4.2.3 and Chapter 23 in this document for treatment in MOM).

The range over which z* varies is time independent

~H<z'<0. (5.7)

Hence, all cells remain nonvanishing, so long as the surface height maintains > —H. This is a minor
constraint relative to that encountered on the surface height when using s=zors=z-1.

Because z* has a time independent range, all grid cells have static increments ds, and the sum of the
vertical increments yields the time independent ocean depth

st =H. (5.8)
k

The z* coordinate is therefore invisible to undulations of the free surface, since it moves along with the free
surface. This property means that no spurious vertical transport is induced across surfaces of constant z*
by the motion of external gravity waves. Such spurious transport can be a problem in z-models, especially
those with tidal forcing. Quite generally, the time independent range for the z* coordinate is a very conve-
nient property that allows for a nearly arbitrary vertical resolution even in the presence of large amplitude
fluctuations of the surface height, again so long as > -H.

3Because of the use of partial bottom steps, there are two terms contributing to horizontal pressure gradients within the bottom
level when s = z. As discussed by Pacanowski and Gnanadesikan (1998), these two terms lead to modest pressure gradient errors.
These errors, however, are far smaller than those encountered with o coordinates.

4Shchepetkin and McWilliams (2002) provide a thorough discussion of pressure gradient solvers along with methods for reducing
the pressure gradient error.

ELEMENTS oF MOM October 8, 2012 Page 89



CHAPTER 5. DEPTH AND PRESSURE BASED VERTICAL COORDINATES Section 5.1

5.1.5 Depth sigma coordinate
The depth-sigma coordinate
o=z/H

[z-n (5.9)
_(H+17)

is the canonical terrain following coordinate. Figure 5.3 illustrates this coordinate in a realistic model. The
sigma coordinate has a long history of use in coastal modelling. For reviews, see Greatbatch and Mellor
(1999) and Ezer et al. (2002). Models based on the sigma coordinate have also been successfully extended
to basinwide studies (e.g., Lemarié et al., 2012b), as well as global work by Diansky et al. (2002).
Just as for 2%, the range over which the sigma coordinate varies is time independent. Here, it is given by
the dimensionless range
-1<0<0. (5.10)

Hence, all cells have static grid increments ds, and the sum of the vertical increments yields unity
st = 1. (5.11)
k

So long as the surface height is not depressed deeper than the ocean bottom (i.e., so long as # > —H), then
all cells remain nonvanishing.>
Some further key advantages of the sigma coordinate are the following.

It provides a natural framework to represent bottom influenced flow and to parameterize bottom
boundary layer processes.

* Thermodynamic effects associated with the equation of state are well represented with this coordi-
nate.

However, some of the disadvantages are the following:

¢ As with the z-models, representation of the quasi-adiabatic interior is cumbersome due to numerical
truncation errors inducing unphysically large levels of spurious mixing, especially in the presence of
vigorous mesoscale eddies. Parameterization of these processes using neutral physics schemes may be
more difficult numerically than in the z-models. The reason is that neutral directions generally have
slopes less than 1/100 relative to the horizontal, but can have order unity slopes relative to sigma
surfaces. The larger relative slopes precludes the small slope approximation commonly made with z-
model implementations of neutral physics. The small slope approximation provides for simplification
of the schemes, and improves computational efficiency.

* Sigma models have difficulty accurately representing the horizontal pressure gradient in the presence
of realistic topography, where slopes are commonly larger than 1/100 (see Section 2.8 for a discussion
of the pressure gradient calculation).

Griffies et al. (2000a) notes that there are few examples of global climate models running with ter-
rain following vertical coordinates. Diansky et al. (2002) is the only exception known to the author. This
situation is largely due to problems representing realistic topography without incurring unacceptable pres-
sure gradient errors, as well as difficulties implementing parameterizations of neutral physical processes.
There are notable efforts to resolve these problems, such as the pressure gradient work of Shchepetkin and
McWilliams (2002). Continued efforts along these lines may soon facilitate the more common use of terrain
following coordinates for global ocean climate modelling. At present, the sterrain following igma coordi-
nate is coded in MOM in hopes that it will motivate researchers to further investigate its utility for ocean
modelling.

5If § < —H, besides drying up a region of ocean, the specific thickness zs = H + 1 changes sign, which signals a singularity in the
vertical grid definition. The same problem occurs for the z* coordinate.
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Figure 5.3: Constant sigma surfaces as diagnosed in a z-model. Shown here is a section along 150°W, as in
Figure 5.2. Note the strong variations in the contours, as determined by changes in the bottom topography.

5.1.6 Summary of the depth based vertical coordinates

Depth based vertical coordinates are natural for Boussinesq equations. These coordinates and their specific
thicknesses z; are summarized in Table 5.1. Notably, both the sigma and zstar coordinates have time
independent ranges, but time dependent specific thicknesses. In contrast, the depth and depth deviation
coordinates have time dependent depth ranges and time independent specific thicknesses. If plotted with
the same range as those given in Figure 5.2, surfaces of constant depth deviation and constant zstar are
indistinguishable from surfaces of constant depth. This result follows since the surface height undulations
are so much smaller than undulations in the bottom topography, thus making the depth deviation and zstar
coordinates very close to horizontal in most parts of the ocean.

COORD DEFINITION RANGE Zg
geopotential | z -H<z<y 1
z-deviation | z'=z-y -(H+n)<2z'<0 | 1

z-star Z*=H(z-n)/(H+n) | —-H<z"<0 1+n/H
z-sigma o@D =(z-n)/(H+n) | -1<0<0 H+y

Table 5.1: Table of vertical coordinates based on depth. These coordinates are naturally used for discretiz-
ing the Boussinesq equations. Note that the specific thickness z; is depth independent. This property
proves to be important for developing numerical algorithms in Section 10.8. The coordinates s = z, s = 27,

and s = 0@ are coded in MOM, whereas the depth deviation coordinate is not.
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5.2 Pressure based coordinates

The second class of vertical coordinates that we discuss is based on pressure. Pressure-based coordinates
are used to discretize the non-Boussinesq equations, and these coordinates are also known as mass based
coordinates. This name is based on noting that for a non-Boussinesq fluid using pressure, the mass of
interior grid cells is constant without sources (e.g., see equation (2.205)).

Pressure coordinates provide a straightforward way to generalize Boussinesq z-models to non-Boussinesq
pressure models (Huang et al., 2001; DeSzoeke and Samelson, 2002; Marshall et al., 2004; Losch et al.,
2004). The reason is that there is an isomorphism between the Boussinesq equations written in depth based
coordinates and non-Boussinesq equations written in pressure based coordinates. The root of this isomor-
phism is the simplification of the density weighted specific thickness pz for pressure based coordinates.
We detail this point in the following discussions.

Pressure based vertical coordinates that we consider include the following:

s=p pressure
S=p-p, pressure-deviation
P—Pa .
s= pressure-sigma (5.14)
(pb ~Pa ) &
s=pp (ﬂ) pressure-star. (5.15)
Pb—Pa

In these equations, p is the hydrostatic pressure at some depth within the ocean fluid, p, is the pressure
applied at the ocean surface z = 1§ from any media above the ocean, such as the atmosphere and sea ice, p,
is the hydrostatic pressure at the solid-earth lower boundary arising from all fluid above the bottom (ocean
water and p, above the ocean), and py is a time independent reference pressure, usually taken to be the
bottom pressure in a resting ocean.® Since p, = —p g < 0 is single signed for the hydrostatic fluid, pressure
provides a well defined vertical coordinate. Strengths and weaknesses of the corresponding depth based
coordinates also hold for the pressure based coordinates, with the main difference being that pressure based
models are non-Boussinesq.

5.2.1 Pressure coordinate

With a free surface, the vertical domain over which the p-coordinate
s=p (5.16)

ranges is given by
Pa <P =Py (5.17)

Hence, the surface and bottom boundaries are time dependent, whereas the density weighted specific thick-
ness is constant

pzs=-g " (5.18)

where the hydrostatic equation p , = —p g was used. Relation (5.18) is the root of the isomorphism between
Boussinesq depth based models and non-Boussinesq pressure based models.

The time dependent range for the pressure coordinate complicates the treatment of both the top and
bottom cells. In particular, if the bottom pressure is less than the time independent discrete pressure level
at the top interface of the lowest cell, then there is no mass within the bottom cell. Likewise, if the applied
pressure is greater than the discrete pressure level at the bottom interface of the top cell, then there is no
mass in the top cell. These results mean that grid cells have static vertical coordinate increments ds = dp
for all cells except the top and bottom. At the top, d;(ds) = d; p, and at the bottom d; (ds) = -9, p,. The

SNote that equation (11.64) of Griffies (2004) used the time dependent py, rather than the time independent reference pressure
pg. The former vertical coordinate has not been used in practice, and so we focus here on that coordinate defined with the reference
pressure pp.
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associated mass per unit area in the cells evolves according to d,(pdz) = —g~' d;p, at the surface, and
d; (pdz) = g7 9, py, at the bottom. Hence, the mass within the top cell decreases when the applied pressure
increases, and the mass in the bottom cell increases when the bottom pressure increases. Both the surface
and the bottom cells can therefore vanish depending on the applied and bottom pressures.

The sum of the vertical coordinate increments can be found by noting the total mass per area is given

by
g (p-p)=) pdz
= szlsds (5.19)

=—g! st,

thus yielding the time dependent result

) ds=~(py-pa). (5.20)

5.2.2 Pressure deviation coordinate

The pressure deviation coordinate
s=p-pa (5.21)

removes the restriction on upper ocean grid cell resolution since s = 0 is the time independent value of the
ocean surface. That is, this coordinate ranges between

0<s5<p,—pa (5.22)

This coordinate is isomorphic to the depth deviation coordinate s = z—# discussed in Section 5.1.3, and
shares the same limitations which prompt us not to have this coordinate coded in MOM.

In summary, grid cells have static vertical coordinate increments ds for all cells except the bottom. At
the bottom d; (ds) = —d; (py, — p.). The associated mass per unit area in the bottom cell evolves according
to d; (pdz) = g1 9; (py — pa)- As for the pressure coordinate, the sum of the vertical coordinate increments
yields

) ds=~(py-pa). (5.23)
5.2.3 Pstar coordinate
The pstar coordinate is given by
* o P~ Pa
—po | PZPa ) 5.24
p=p () (5.24)

where pp is a time independent reference pressure. Two possible choices for py include

0
Pg =& sz pi“it’ (525)
-H

or the simpler case of
P} =gpoH. (5.26)

The p* coordinate is isomorphic to the z* coordinate, with p* extending over the time independent range

0<p*<pp. (5.27)
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The sum of the vertical coordinate increments can be found by noting the total mass per area is given
by

g (po—pa)=) pdz

=) pzeds (5.28)
( gpy 2 d
thus yielding the time independent result
st =—p?. (5.29)
5.2.4 Pressure sigma coordinate
The pressure-sigma terrain following coordinate
o) = ( P=Pa ) (5.30)
Po ~ Pa

is the pressure analog to the depth based sigma coordinate o(*) = (z—1#)/(H + 7). This coordinate has been
used by Huang et al. (2001), and it shares the same advantages and disadvantages as the depth-based sigma
coordinate. Grid cells have static vertical coordinate increments ds for all cells. The associated mass per
unit area never vanishes in any cell, so long as the bottom pressure is greater than the applied pressure.

The sum of the vertical coordinate increments can be found by noting the total mass per area is given
by

g (po-pa)=) pdz
:szrsds (5.31)
=—g ' (po—pa) )_ds,

st:—l. (5.32)

5.2.5 Summary of the pressure based vertical coordinates

thus yielding the time independent result

A technical reason that the pressure based coordinates considered here are so useful for non-Boussinesq
hydrostatic modelling is that pz; is either a constant or a two-dimensional field. In contrast, for depth
based models pz; is proportional to the three-dimensional in situ density p, thus necessitating special
algorithmic treatment for non-Boussinesq z-models (see Greatbatch and McDougall (2003) and Griffies
(2004)). Table 5.2 summarizes the pressure-based coordinates discussed in this section. The pressure and
pressure deviation coordinates have time dependent ranges but time independent specific thicknesses pz.
The sigma and pstar coordinates have time independent range but time dependent specific thickness.

As Table 5.2 reveals, the specific thickness z; is negative for the pressure-based coordinates, whereas
it is positive for the depth-based coordinate (Table 5.1). The sign change arises since upward motion in a
fluid column increases the geopotential coordinate z yet decreases the hydrostatic pressure p. To establish
a convention, we assume that the thickness of a grid cell in z space is always positive

dz=2z,ds>0 (5.33)

as is the case in the conventional z-models. With z; < 0 for the pressure-based vertical coordinates, the
thickness of grid cells in s space is negative

ds<0 for pressure-based coordinates with z; < 0. (5.34)
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COORD DEFINITION RANGE gp er
pressure p Pa<p<py -1
p-deviation | p’=p—p, 0<p <pp-pa | -1

pstar P =pp(p—pP)/(po—pa) | O<p"<pp —(p, —pa)/pyp
p-sigma P =(p—p)/(py—pa) | 0<0<1 —(Pb— Pa)

Table 5.2: Table of vertical coordinates based on pressure. These coordinates are naturally used for non-
Boussinesq dynamics. Note that the density weighted specific thickness pz is depth independent. This
property proves to be important for developing numerical algorithms in Section 10.8. The coordinates

s=p,s=p*,and s = 0P) are coded in MOM, whereas the pressure deviation coordinate is not.
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EQUATION OF STATE AND RELATED QUANTITIES
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The purpose of this chapter is to present features of the equation of state used in MOM, with the dis-
cussion here an extension of that given in Griffies et al. (2004). The following summarizes the realistic
equations of state available in recent versions of MOM.

* MOM4.0 uses the McDougall et al. (2003) equation of state.

* MOM4p1 uses the Jackett et al. (2006) equation of state.

* MOM as of the 2012 release uses either of the Jackett et al. (2006) equation (retained for legacy
purposes) or the IOC et al. (2010) version recommended for new simulations.

The following MOM module is directly connected to the material in this chapter:

ocean_core/ocean_density.F90

6.1 Introduction

It is important that the equation of state be accurate over the range of temperature, salinity, and pressure
values occurring in ocean simulations. Reasons for needing such accuracy include the following.

* Density is needed to compute the hydrostatic pressure, whose horizontal gradients drive ocean cur-
rents in the primitive equations.

e The locally referenced vertical derivative of density determines the static stability of a vertical fluid
column. This stability determines conditions for convective instability and is used to compute Richard-
son numbers necessary for mixing for such schemes as Pacanowski and Philander (1981), Chen et al.
(1994), Large et al. (1994), and Simmons et al. (2004).
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* The locally referenced derivatives with respect to potential temperature and salinity

dp
p.o _(%)p,s (6.1)

dp
0s= (_85 ) (6.2)
p.0

are important for computing both the vertical stratification, and to compute the neutral slopes used
for sub-grid-scale tracer transport as in Griffies et al. (1998); Griffies (1998).

* The following combination of second derivatives is used to diagnose the potential for cabbeling to
occur in the ocean McDougall (1987b)

da _ada [a 28ﬁ
C—%”m‘(z) as

2
R PR (R_9)+ (P_e) .
P [P,ee Pos| 5| TPss| o

* The following combination of second derivatives is used to diagnose the potential for thermobaricity
and halobaricity to occur in the ocean McDougall (1987b)

7o)
_da adp
o B op (64

Note that the name thermobaricity is generally used for this parameter, and we evaluate it as given
here. However, there are actually contributions from both halobaricity (dependency of haline con-
traction coefficient on the pressure) and thermobaricity (dependency of thermal expansion coefficient
on the pressure). But the thermal piece is generally far larger McDougall (1987b).

In early versions of MOM, density was computed according to the Bryan and Cox (1972) cubic poly-
nomial approximation to the UNESCO equation of state (Gill, 1982). That approach was quite useful for
certain applications. Unfortunately, it has limitations that are no longer acceptable for global climate mod-
eling. First, the polynomials are fit at discrete depth levels. The use of partial cells makes this approach
cumbersome since with partial cells it is necessary to generally compute density at arbitrary depths. Sec-
ond, the cubic approximation is inaccurate for many regimes of ocean climate modeling, such as wide
ranges in salinity associated with rivers and sea ice. For these two reasons, a more accurate method is
desired.

Feistel (1993), Feistel and Hagen (1995), and Feistel (2003) studied the equilibrium thermodynamics
of seawater and produced a more accurate EOS than UNESCO by using more recent empirical data. Mc-
Dougall et al. (2003) produced a fit to Feistel and Hagen (1995) to render an expression convenient for use
in ocean models, and Jackett et al. (2006) updated this equation of state based on Feistel (2003). Finally,
IOC et al. (2010) presents a recent update to the equation of state that is the result of a SCOR working
group on the thermodynamics of seawater.

The following equations of state (EOS) are currently available in MOM for computing density.

* A linear equation of state whereby density is a linear function of potential temperature and salinity.
This EOS is relevant only for idealized simulations.

* The second EOS is that proposed by Jackett et al. (2006).
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* The third is that recommended by IOC et al. (2010).

Either the Jackett et al. (2006) or IOC et al. (2010) equation of state are more accurate than the UNESCO
EOS due to the use of more accurate empirical data as reported in Feistel (1993), Feistel and Hagen (1995),
and Feistel (2003). Such equations of state are now standard in ocean climate modeling.

6.2 Linear equation of state

The default linear equation of state in MOM assumes that density is a linear function of potential tem-
perature and salinity. There is no pressure dependence. Due to the absence of pressure effects, the linear
equation of state leads to a density that is more precisely thought of as a potential density. The form used
for this equation of state is

p(x,t) = po— A 0O(x,t)+ fs(x,1). (6.5)
The default settings are
@ = 0.255(kg/m?) °K ! (6.6)
p=0
po = 1035kg/m”.
Hence, the density partial derivatives are given by
po=-a (6.9)
ps=p (6.10)

The cabbeling and thermobaric parameters vanish for this linear equation of state.

6.3 The two realistic equations of state

The equation of state for Jackett et al. (2006) has 25 terms, and the IOC et al. (2010) equation of state from

McDougall et al. (2012) has 48 terms. The form for both equations are motivated by that of Wright (1997)

and it takes the following form for the in situ density p written in terms of pressure, salinity, and potential

or conservative temperature

_ bu(s,0,p)
Py(s,0,p)’

where p is the gauge pressure in units of decibars, 6 is the potential temperature referenced to zero pressure
in units of Celsius, and s is salinity in psu. Note the conversion between mks pressure and decibars is given
by

p(s,0,p) (6.11)

107*db =1Pa. (6.12)

The gauge pressure is given by
P = Papsotute —10.1325dbars (6.13)

where the absolute pressure is the in situ pressure measured in the ocean.

For the Jackett et al. (2006) equation of state, salinity is measured in practical salinity units (psu).
For the IOC et al. (2010) equation of state available in MOM, salinity is measured in parts per thousand
appropriate for the absolute salinity or preformed salinity.

6.3.1 The Jackett et al. (2006) equation of state

The Jackett et al. (2006) equation of state has been fit over the range

Opsu <s < 40psu (6.14)
-3°C<6<40°C (6.15)
0db < p <8000db. (6.16)
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A check value for the density is p = 1033.213387kg.m™3 with s = 35psu, 6 = 20°C, and p = 2000db =
2 x 107Pa. The coefficients a,, and b,, are tabulated in Table A2 Jackett et al. (2006).

The polynomial functions P, and P; appearing in the 25-term equation of state (6.11) of Jackett et al.
(2006) are given by

Pn:ao+a19+a262+a393+a4s+a559+a652

+ayp+agpO® +agps+ajgp’ +ay p’6? (6.17)
Pi=b,+b;O+by0%>+b30%+bs0*+bss+bgsO+bys0°+bgs’?+bgs¥? 02
+byop+by p? 0 +byyp> 6. (6.18)

Rearrangement in order to reduce multiplications leads to

P,=a,+0 (a1 +0(ay+a30))+s(ag+as60+ags)

+play+ag0?+ags+p(ayg+a; 6%)) (6.19)
Py=Dby+0(by+0(by+0(bs+0by)))+5(bs + 0 (bg + by 0%) + 52 (bg + by 6?))
+p(bio+p6(b11 6% +by;p)). (6.20)
The first order partial derivatives of density for the 25 term equation of state are
ap) (1 (apn) 1 (apd) )
281 =p|— S ) (6.21)
(36 op P, \ 06 op P;\ 06 op
ap) 1 (apn) 1 (apd)
hil =p| — (2" -—|=£ 6.22
(85 0,0 p(P71 Js 0,p P\ os 0,p ( )
ol 5 ), w (), )
PV o= (Z2) ——(Z4) ). (6.23)
(817 0.5 P P, \ dp 0.5 P\ dp 0,5

Since divisions are computationally more expensive than multiplications, we find it useful to rearrange
these results to

A I AN
(%)S,p‘“’d’ (%)S,p "(%)

(6.24)

%), e (%), o (%)
- =@ |5 -el5-
(85 0,p i 0s 0,0 Js 0,0

dp\ i [(op, JP;
(a—p)a,;‘P” _(5)9,5”((97)9,5] (6.26)

1

(6.25)

where (P;)~! can be saved in a temporary array, thus reducing the number of divisions.
The second order density partial derivatives are

BZP 1 razpn ap apd aZPd
(W)s,p B | 962 25690 ° 992] (6.27)
azp . PaZPn ap an aZPd
(ﬁ 9,p_(Pd) i 052 - EX_PTSZ ] (6.28)
%p 4 [2*B, dpar; Jp IP 2P,
(9599)_(Pd) Lawa"%%"%z#’—aga@] (6.29)
p L [d*p, dpapr; dpopy 2P,
(859p)_(Pd) Lasap_gg_za_p_p(?m?p] (6.30)
ﬁ_( )_1’32Pn _dpdby dpopy PPy 651
0op| 4 |00dp  dp d6 9O dp d9 dp .

I'We thank Trevor McDougall for pointing out this simplification.
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The first order partial derivatives of the equation of state functions are given by
apn _ 2 2
50 =a1+2a,0+3a30“+ass+2agpO+2ay,p 0 (6.32)
sp
P,
( ”) =ag+as0+2ags+agp (6.33)
ds 0,0
apn _ 2 2
=a;+ag0” +ags+2agp+2a;p0O (6.34)
ap 0,s
P,
(%) =b; +2b,0+3b30%+4b,0° +bgs+3by;s0% +2bgs?0 (6.35)
s,p
+ 3b11p292 + b12p3
JP,
(W) =bs+bg0+b;0%+(3/2)bgs"/? +(3/2) bys'/? 62 (6.36)
0.p
oP
(—d) :b10+2b11p63+3b12p29 (637)
8[) 0,s
with rearrangement leading to
dp,
50 =a1+0(2a,+3a30)+ass+2p0(ag+a1p) (6.38)
s.p
(apn) :a4+a59+2a6s+a9p (639)
ds 0,0
aPn _ 2 2
—(17+6186 +a95+2a10p+2a11p6 (64:0)
ap 0,s
(@) =b;+0(2by+ 0 (3b3+4b40))+5(bg+ 60 (3b;0 +2bys"?)) (6.41)
0 sp
+p?(3b11 0% +by2p)
P,
(% = b5 + 6 (bg +b; 0%) +(3/2)s"? (bg + by 6?) (6.42)
0.p
(%) :b10+2b11p63+3b12p26. (643)
ap 0,s
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The second order partial derivatives of the equation of state functions are given by

a;epzn:2(12+6a36+2agp+ZLzllpz (6.44)
a;slzn ~2a, (6.45)
8852183,; —a (6.47)
;921;’;7 =2ag0+4a;;p0O (6.48)
% =20, +6b30+12b,6% +6b;50 +2bgs>? +6by, p0 (6.49)
T 3/ 1 (/1) by 5207 (6:50)
%:b6+3b762+3b951/29 (6.51)
3525; o (6.52)
88921;(; :6b11P92+3b12p2' (6.53)

6.3.2 TEOS-10 equation of state

Documentation of the TEOS-10 equation of state relies on the work of IOC et al. (2010) and the paper by
McDougall et al. (2012) in preparation. The form of the equation of state is analogous to the 25 term form
of Section 6.3.1, with new polynomial terms needed to bettere account for a wider range of temperature
and salinity.

The TEOS-10 equation of state uses the following prognostic temperature and salinity fields:

* CONSERVATIVE TEMPERATURE: The conservative temperature variable of McDougall (2003).
* PrReErORMED saLINITY: The preformed salinity variable detailed in IOC et al. (2010).

Although the salinity variable time stepped by the model is preformed salinity, there is a translation made
to absolute salinity before computing the density, since the equation of state is a function of absolute salin-
ity, not preformed salinity.

Caveat

Testing of the TEOS-10 equation of state, and in particular the use of preformed salinity, remains in-
complete. Additionally, some of the model diagnostics remain incomplete, such as the dianeutral transport
diagnostics detailed in Chapter 36.
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The purpose of this chapter is to formulate the dynamical equations of the ocean in the presence of a
space and time dependent gravitational acceleration. This formulation has applications for the implemen-
tation of astronomical tide forcing (Chapter 8). In addition, inhomogeneities in mass distributions cause
the earth’s gravity field to be non-spherical. Of increasing interest to climate science is the study of how
the ocean responds to changes in mass distributions associated with melting land ice. Given the nontrivial
impact that melting land glaciers has on the earth’s geoid (Farrell and Clark (1976) and Mitrovica et al.
(2001)), we formulate the dynamical equations of a liquid ocean in the presence of a space-time dependent
gravity field.

The following MOM module is directly connected to the material in this chapter:

ocean_core/ocean_barotropic.F90

7.1 Gravitational force: conventional approach

The effective gravitational force is noncentral due to the Earth’s rotation. Hence if the Earth were a homo-
geneous ideal fluid, matter would flow from the poles toward the equator, thus ensuring that the Earth’s
surface would everywhere be perpendicular to the effective gravitational acceleration, g. Indeed, the Earth
does exhibit a slight equatorial bulge. However, inhomogeneities in the Earth’s composition and surface
loading by continents, glaciers, and seawater make its shape differ from the ideal case.

Veronis (1973), Phillips (1973), and Gill (1982) discuss how the Earth’s geometry can be well approx-
imated by an oblate spheroid, with the equatorial radius larger than the polar due to centrifugal effects.
With this geometry, surfaces of constant geopotential are represented by surfaces with a constant oblate
spheroid radial coordinate (page 662 of Morse and Feshbach, 1953). However, the oblate spheroidal metric
functions, which determine how to measure distances between points on the spheroid, are less convenient
to use for ocean modelling than the more familiar spherical metric functions.
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To provide a simpler form of the equations of motion on the Earth, Veronis (1973) and Gill (1982) (see
in particular page 91 of Gill) indicate that it is possible, within a high level of accuracy, to maintain the
best of both situations. That is, surfaces of constant radius r are interpreted as best fit oblate spheroidal
geopotentials, yet the metric functions used to measure distance between points in the surface are approx-
imated as spherical. As the metric functions determine the geometry of the surface, and hence the form of
the equations of motion, the equations are exactly those that result when using spherical coordinates on a
sphere. Hence, in global ocean climate modelling, one generally considers the geometry of the Earth to be
spherical as in Figure 7.1, yet the radial position r represents a surface of constant geopotential, which is
approximated by an oblate spheroid.

In summary, the gravitational field traditionally used for ocean climate modelling is an effective gravi-
tational field, which incorporates the effects from the centrifugal force. The effective gravitational field is
conservative, so that the gravitational acceleration of a fluid parcel can be represented as the gradient of a
scalar,

g=-VOo, (7.1)

with @ known as the geopotential. With the mass of a fluid parcel written as pdV, then
P=(pdV)D (7.2)

is the gravitational potential energy of a parcel, thus making @ the gravitational potential energy per mass
of a fluid parcel.
In this equation, p is the in situ density and dV its volume. In most ocean modelling applications, the
local vertical direction is denoted by
z=r—-R, (7.3)

with z = 0 the geopotential surface corresponding to a resting ocean. The geopotential in this case is given
by case
DPx=P)=gz (7.4)

with g ~ 9.8 ms~2 the typical value taken in ocean climate models for the acceleration due to gravity at the
earth’s surface.

x3

x2

x1

Figure 7.1: The position vector for a point in 3D Euclidean space can be represented in terms of many
sets of coordinates, such as the Cartesian coordinates (xl,xz,x3) or the spherical coordinates (A, ¢,r). In
a geophysical context, the angular coordinate 0 < A < 27 is the longitude, with positive values measured
eastward from a meridian passing through Greenwich, England. The angular coordinate ¢ is the latitude,
with values ¢ = 0 at the equator and ¢ = 7/2(—7/2) at the north (south) poles. The radial distance r is
measured here with respect to the center of the sphere. The coordinate transformation between Cartesian

and spherical is given by (xl, x2, x3) =r(cosPcos A, cosPsin A, sin@).
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7.2 Gravitational force: general approach

Absent changes to gravity and crustal rebound, the melting of Greenland would add about 7 m of water to
the ocean’s sea level. As shown by Farrell and Clark (1976) and Mitrovica et al. (2001), the melting of land
ice over Greenland, Antarctica, or mountain glaciers, creates a sizable perturbation to the present-day static
equilibrium sea level, which we refer to as the geoid in the following. For example, according to Farrell and
Clark (1976) and Mitrovica et al. (2001), if all of Greenland melted, much of the northern North Atlantic
and Arctic Ocean would see only a fraction of the 7 m rise, with some regions close to Greenland actually
seeing a reduction in sea level (see Figure 1A in Mitrovica et al., 2001), whereas other ocean regions, such
as the central and South Pacific, Indian, and South Atlantic, would see more than 7m sea level rise.

It is generally assumed by climate modellers that changes in the geoid can be used post facto to renor-
malize projections of sea level change from global climate models simulated with a fixed geoid. The results
from Farrell and Clark (1976) and Mitrovica et al. (2001) prompt us to question this assumption, especially
for dramatic changes associated with melting Greenland or Antarctica. Furthermore, changes in the geoid
associated with past glacial periods, such as ice ages, would likewise be a nontrivial modification to sea
level.

The study of Kopp et al. (2010) represents the first attempt to partially remove the constant geoid
assumption for purposes of global ocean climate. In that study, the prognostic sea level from an ocean
climate model was combined with an evolving equilibrium sea level determined as a function of changing
mass of seawater and land ice. The Kopp et al. (2010) study only partially addresses the main question
associated with this issues: namely, will the drastic and rapid changes in the geoid associated with land
ice melting have a nontrivial impact on ocean circulation? To address that question requires ocean climate
models to be run with an evolving gravity field. It is to this issue that we now turn.

Consider a generalized geopotential written in the form

D =Dy(r)+ Dy (r, A, P, 1), (7.5)

where @(r) is the unperturbed geopotential given by equation (7.4), and ®@; incorporates perturbations to
the geopotential associated with changes in land ice cover. Within the ocean fluid, the radial dependence of
@, is generally quite weak, though it can be large for regions near the melting land ice. We thus maintain
this dependence for purposes of generality, though it will be dropped for certain specialized examples. The
calculation of ocean tides arising from astronomical forcing is formulated with a space-time dependent
geopotential as in equation (7.5), with the radial dependence of ®; neglected (e.g., Section 9.8 in Gill,
1982). Arbic et al. (2004) provide a recent discussion of global tide modelling.

7.2.1 Momentum equation

The linear momentum of a fluid parcel is given by
P=vpdV, (7.6)

where again pdV is the mass of the parcel. Through Newton’s Second Law of Motion, momentum changes
in time due to the influence of forces acting on the parcel. As recently reviewed by Griffies and Adcroft
(2008), the equation for linear momentum of a fluid parcel takes the form

p%+20/\pv:—(Vp+pV®)+V~T. (7.7)

The left-hand side of this equation is the material time change for the linear momentum per volume of a
parcel, along with the Coriolis force, and the right-hand side is the sum of the pressure, gravitational, and
frictional forces.

In writing the momentum equation in the form of (7.7), we have chosen to retain an orientation af-
forded by the unperturbed geopotential surfaces, which correspond to surfaces of constant depth z. This
approach reflects that commonly used to study ocean tides. In the presence of a perturbed geopotential @,
the “horizontal” directions defined by surfaces of constant z are no longer parallel to geopotential surfaces.
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We thus may interpret the sum V,p+pV,® as an orientation of the pressure gradient along surfaces of con-
stant geopotential, where the geopotential is determined by ® = @, + ®;, rather than just the unperturbed
geopotential @y. This result is familiar to those who have formulated ocean models in generalized vertical
coordinates (see, for example, Chapter 6 of Griffies, 2004).

We next write the momentum equation in component form using spherical coordinates. For this pur-
pose, introduce the orthogonal unit vectors A, 43 , and #, each moving with the rotating sphere (Figure
7.1). The vector A points in the positive longitude direction, ¢ points in the positive latitude direction,
and # points radially outward from the center of the sphere. In spherical coordinates, the angular rotation
velocity for the sphere takes the form

Q=Q(#sing +¢ cos), (7.8)

and the velocity of a fluid parcel is written

v=A1 (rcosA)d—/\+r¢ dd)

dt dt (7.9)
=ul +v qb +wz,
where Z = t is the radial/vertical unit vector, and
(u,v,w) = (r cos¢pdA/dt, rd¢p/dt,dr/dt) (7.10)

are spherical components to the velocity vector. Hence, the Coriolis force per mass is given by

20 Av=2Q(wcosp-vsing) A

R (7.11)
+2Qusingpd —2Qu cost.
Introducing the notation
f=2Qsin¢
fr=2Qcos¢, (7.13)
leads to the equation of motion
i+(zf+,i fIN|v==(VP+p ' Vp)+F (7.14)
which takes the component form
d——vf+wf ~(@ +p p)+ F® (7.15)
dv _1
S Huf =@+ py)+ FY (7.16)
‘i—’f—uf = (D, +pp,)+FO. (7.17)
In these equations, we defined
1
F=-V-.-7t (7.18)
p
as the friction vector per unit mass, wrote
d 1 d
— = =— 7.19
dx rcos¢ dA (7.19)
Jd 14
EERrr (7.20)
Jd 0
— == .21
dz or (7.21)

as the three-dimensional gradient operator in spherical coordinates, and introduced a comma as a short-
hand for partial derivative.
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7.2.2 Primitive equations

Large-scale ocean general circulation models are typically based on the hydrostatic primitive equations.
Here, the vertical momentum equation is reduced to its static inviscid form with f* =0

d,p=—pd, P

=—p(g+d. D). 722

This hydrostatic balance filters motions associated with strong vertical accelerations, such as may occur in
regions of gravitational instability. It also filters out the majority of acoustic modes, with only the Lamb
Wave remaining (see, for example, Griffies and Adcroft, 2008, for further discussion). The hydrostatic
balance is modified from its traditional form for cases where the perturbation geopotential ®; exhibits
nontrivial depth dependence. This extra term represents a potential significant modification to the usual
primitive equations of an ocean model.

Vertical integration of the hydrostatic balance (7.22) from the ocean surface to an arbitrary depth z leads
to the hydrostatic pressure

n n
p(x,y,z,t):pa+gdez+fpaz®1 dz, (7.23)
z z

where p, is the pressure applied to the ocean surface from the media above the ocean (e.g., the overlying
atmosphere or ice).

Consistent with the hydrostatic balance, we drop the w f* term appearing in the zonal momentum
equations, thus reducing the momentum equation (7.14) to the primitive equation set

(%+if/\)u:—(vz®1+p_1Vzp)+F (7.24)

d.p=-p(g+d, D), (7.25)

where u = (u,v) is the horizontal velocity vector, and V, = (d,, ay,O) is the horizontal gradient taken on
surfaces of constant z. For a volume conserving Boussinesq fluid, such as used for CM2.1 and ESM2M we
make one final assumption for the pressure gradient, whereby the momentum equations become

d
(a+if/\)u:—p;1Vz(p0®1+p)+F (7.26)

d.p=-p(g+3d,Py), (7.27)
where p, is the constant reference density for a Boussinesq fluid. The Boussinesq form makes the addition

of a perturbed geopotential quite straightforward, in which it is gradients in p, ®; + p that take the place of
gradients in pressure p.

7.2.3 Depth independent perturbed geopotential

The simplest case to consider is a depth independent perturbed geopotential
(D1 :<D1(x,y, t). (728)

As stated earlier, this is precisely the form assumed for studies of ocean tides. In this form, we are motivated
to write the full geopotential as
D =g(z-h) (7.29)

where
D, =-gh (7.30)

introduces a perturbed geopotential height field h = h(x, y, ). Rather than z = 0, the zero of the geopotential
is now set by z = h. The impact of the perturbed geopotential is isolated to the depth integrated momentum
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equations, which for a Boussinesq fluid' takes the form (see Section 10.9)

po(at"'fi/\)U:G_(H+’7)V(pa+psurf+po®l)r (731)
where
Ui
U = f udZ (732)
-H

is the vertically integrated horizontal velocity, G is the vertical integral of the depth dependent terms on
the right hand side of the momentum equation (7.24). G embodies all contributions which are generally
evolving on a slower baroclinic time scale. The surface pressure is given by

Psurf = & Psurf 1, (733)

and it represents the hydrostatic pressure at z = 0 associated with water in the region between z = 0 and
z =1. The applied pressure p, is the pressure applied at the top of the ocean arising from media above the
ocean, such as the atmosphere and sea ice. To within a good approximation, we can combine the surface
pressure and geopotential terms to bring the momentum equation to the form

po(at +fi/\)U =G- (H+ U)V[Pa +gpsurf(77 _h)] (7-34)

In this way, modifications to the geopotential, embodied by the perturbed geopotential height field h =
h(x,v,t), are isolated to their impacts on the horizontal pressure gradients acting on the vertically integrated
momentum field. As stated earlier, this formulation is identical to that associated with the study of ocean
tides, where in the case of tides, fluctuations in & arise from astronomical perturbations to the earth’s gravity
field. For our present considerations, / arises from perturbations in terrestrial masses, such as the melting
land ice on Greenland or Antarctica. In contrast to ocean tides, geoid perturbations associated with melting
land ice are not periodic. Furthermore, as evidenced by Figure 1 in Mitrovica et al. (2001), the amplitude
of geoid perturbations can be far greater than typical open ocean tide fluctuations.

Changes in the geoid associated with nontrivial & = h(x,y,t) will propagate throughout the vertically
integrated momentum field on a rapid barotropic time scale. Consequently, the ocean’s free surface will
adjust within a few days of geoid perturbations, just as it does for ocean tides. In contrast, it is unclear
how the depth dependent ocean circulation will adjust, with a general circulation model a useful tool for
considering the slower baroclinic adjustment processes.

We note that when coupling to a sea ice model, it is the effective sea level given by

Pa
w=N+|——|-h 7.35
Ne = 1] (gpsurf) ( )

that is to be passed from the ocean model to the sea ice model for the purpose of computing horizontal
pressure gradients acting on the ice.

1See Section 8.2 for the non-Boussinesq mass conserving form.
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The purpose of this chapter is to describe the formulation of lunar and solar tidal forcing implemented
in MOM. This chapter was written by Harper Simmons (hsimmons@iarc.uaf.edu) with some additions and
edits by Stephen.Griffies@noaa.gov.

The following MOM module is directly connected to the material in this chapter:

ocean_core/ocean_barotropic.F90

8.1 Tidal consituents and tidal forcing

As formulated in Chapter 7 (see also Marchuk and Kagan (1989)), tidal forcing appears in the momentum
equations as a depth independent acceleration. Consequently, tide dynamics can be isolated in the verti-
cally integrated momentum budget. As shown in Section 10.9.3, the equation for the vertically integrated
transport U in a Boussinesq version of MOM takes the form (equation (10.137))

P00+ f2A) ) (dz) = G=(H+1)V(ps+ Puurt): (8.1)

In this equation, G is the vertically integrated forcing arising from baroclinic effects, p; is the pressure
associated with undulations of the surface height, p, is the applied pressure from the atmosphere and sea
ice, H is the depth of the ocean, and 7 is the surface height deviation from a resting state with z = 0. Our
goal is to modify this equation to account for gravitational forcing that give rise to ocean tides.

Tidal forcing arising from the eight primary constituents (M2, S2, N2, K2, K1, O1, P1, Q1) (see Gill
(1982)) can be added to the forcing for U in MOM. The formulation follows Marchuk and Kagan (1989),
by considering a tide generating potential (g7.q) with corrections due to both the earth tide (1 + k —h) and
self-attraction and loading («). In this approach, the depth independent pressure gradient acceleration is
modified to the form

0o V(ps+pa) = P V(ps+pa)+ gV [an —(1+k=)neg)- (8.2)
The term 7, is known as the equilibrium tide, and it arises from the astronomically derived gravity produc-
ing forces. It is modified by several factors. The Love numbers, k and &, named for the physicist A.L. Love,

account for the reduction of the ocean tide because of the deformation of the solid earth by tidal forces.
The Love numbers are frequency dependent, with 1 + k — h generally close to 0.7 (Wahr (1998)).

109



CHAPTER 8. TIDAL FORCING FROM THE MOON AND SUN Section 8.3

The term a in equation (8.2) accounts for a modification of the ocean’s tidal response as a result of self-
attraction and loading (SAL) (Hendershott (1972)). Self attraction is the modification of the tidal potential
as a result of the redistribution of the earth and ocean due to the equilibrium tidal forcing. Loading refers
to the depression of the earth’s crust by the mounding of tides. Calculation of the SAL term requires an
extremely cumbersome integration over the earth surface, rendering equation (8.2) an integro-differential
equation (Ray (1998)).

Instead of solving the integro-differential form of equation (8.2), MOM4 uses the scalar approximation
to SAL. We feel this is justified since our purpose in introducing tidal forcing is to study the effects of
tides on the general circulation, not the details of the tides themselves. The conjecture is that precise
calculation of the SAL term is not needed for to understand tidal effects on the general circulation. For the
scalar approximation, a is usually set between 0.940 — 0.953. MOM4 uses a = 0.948. Limitations of the
scalar approximation to SAL are discussed by Ray (1998), who concluded that the scalar approximation
introduces phase errors of up to 30° and amplitude errors of 10% into a global scale tidal simulation.

8.2 Formulation in non-Boussinesq models

The horizontal acceleration from pressure gradients is given by the two terms (see Section 10.9.4, where we
drop here the tilde notation used in that section)

971 (VZ p)without tidal forcing = 971 V5 p+ Vs o. (83)

In this equation, p is the hydrostatic pressure at a grid point, ® is the geopotential at this point, and s is the
generalized vertical coordinate. The p~! factor is set to p,! for Boussinesq models, but remains nontrivial
for non-Boussinesq, pressure-based vertical coordinates in MOM. As noted in Section 8.1, gravitational
forces giving rise to ocean tides can be incorporated into MOM by adding a depth independent acceleration
throughout the water column. Following the approach used for the Boussinesq case, we add to the non-
Boussinesq pressure gradient a modification to the geopotential due to tidal acceleration

P_l (Vzp)with tidal forcing = P_l Vsp + vsq) + gV [0( - (1 +k- h)ﬂeq]f (84)

where the tidal term is taken from equation (8.2). Inserting this modified acceleration into the vertically
integrated momentum equation (10.145) yields

O+ 520 ) (dzpw) = G=E B2V (py + 0, @y + g e (8.5)
o
where
e :an_(l"'k_h)ﬁeq (8.6)

is shorthand for the tidal term, py, is the pressure at the ocean bottom, and @, = —g H is the geopotential at
the bottom.

8.3 Implementation in MOM

The equilibrium tide is written for the #'" diurnal tidal constituent as

Negn = Hysin2¢ cos(w, t + 1), (8.7)
and for the n'" semi-diurnal constituent as

Negn = Hy cosz({)cos(wnt+2/\), (8.8)

where ¢ is latitude and A is longitude. Recognizing that equations (8.7) and (8.8) require the evaluation of
trigonometric functions at every grid point and every time-step, tidal forcing is introduced into MOM4 in
the following mathematically equivalent form. Making use of the identity

cos(A + B) = cos(A) cos(B) —sin(A) sin(B), (8.9)
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constit name origin w(l/day) 14+k-h a(m)
1 Ky Luni-solar declinational 0.7292117 0.736 0.141565
2 ] Principal lunar declinational ~ 0.6759774  0.695  0.100661
3 P Principal solar declinational =~ 0.7252295 0.706 0.046848
4 Q1 Larger lunar elliptic 0.6495854 0.695 0.019273
5 M,  Principal lunar 1.405189 0.693  0.242334
6 Sy Principal solar 1.454441 0.693 0.112743
7 N> Largerl lunar elliptic 1.378797 0.693 0.046397
8 Ky Luni-solar declinational 1.458423 0.693 0.030684

Table 8.1: Frequencies, Love numbers, and amplitude functions for the eight principle constituents of tidal
forcing available in MOM4.

we can write the eight tidal forcing constituents as

Neq =2

4
n

:1[ﬁn a, coszq)[cos(wn t)cos2A —sin(w, t)sin2A]+

Brsayiasin2¢ [cos(w,, 4t)cos2A —sin(w,,4t)sin21] ],

(8.10)

which allows all the trigonometric functions of ¢ and A to be precomputed. Note that we have written

B =1+k,—h,. The frequencies (w,), amplitudes (a,,) and Love numbers are listed in Table 8.1.
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Numerical formulations

The purpose of this part of the document is to describe algorithms used to numerically solve the ocean
primitive equations in MOM. We address discretization issues for both space and time stepping the contin-
uum equations.
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B AND C GRID DISCRETIZATIONS
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The purpose of this chapter is to detail the horizontal grids used in MOM as well as the specification of
field and grid values in halo regions. Details of the vertical discretization are presented in Section 10.1 (see
in particular Figure 10.1. This chapter builds from Chapter 4 in Griffies et al. (2004), with newer material
here concerned with the C-grid option now under development in MOM. Further information about the
MOM grids and topography can be found in Chapters 16 and 18 of the MOM3 Manual (Pacanowski and

Griffies, 1999).
The following MOM module is directly connected to the material in this chapter:

ocean_core/ocean_grid.F90

9.1 B and C grids used in MOM

The continuum partial differential equations of MOM are derived and discussed in Part I, as well as in
Griffies (2004). Bryan (1969) cast the discrete version of these equations on an Arakawa B-grid. As sum-
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marized in the review article by Griffies et al. (2000a), the B-grid allows for a reasonably accurate represen-
tation of geostrophic currents, even when running a coarse grid model. However, many recent applications
with other model codes such as GOLD, HYCOM, MITgcm, NEMO, and ROMs exploit the advantages of a
C-grid, with the following two advantages notable.

* Atresolutions where the baroclinic radius is well resolved, the C-grid presents certain advantages for
rotating stratified flow over the B-grid (Section 3.2 of Griffies et al. (2000a)).}

* For coastal applications, details of the fractal land/sea boundary are critical. Use of the B-grid leads
to complexities associated with the need to distinguish between tracer and velocity cells. That is,
to have advective flow through a tracer cell requires two adjacent velocity cells. The net effect is
that narrow straights may need to be unphysically widened to facilitate advective transport. This
situation hinders the utility of the B-grid for representing complex land/sea regions, with particular
importance placed on such details for coastal modeling.

It is for these reasons that MOM, which has traditionally used exclusively a B-grid, will soon have a C-grid
option. The C-grid option is presently not available for general use, but development during late 2012 will
focus nearly exclusively on this layout, given the focus at GFDL on mesoscal eddy permitting and resolving
simulations.

9.1.1 Variables on the B-grid

Figure 9.1 illustrates the horizontal arrangement of prognostic model fields used with the B-grid. The B-
grid places both horizontal prognostic velocity components at the same point, the corner of the tracer cell.
This placement is natural when computing the Coriolis Force. However, it is unnatural for computation of
advective tracer transport or the horizontal pressure gradient force acting on velocity. The need to perform
an averaging operation when computing the horizontal pressure gradient leads to the computational mode
associated with gravity waves on the B-grid (see Section 31.1 and references cited there).

MOM follows a northeast convention, whereby the velocity is positioned at the northeast corner of the
corresponding tracer cell. With half-integer notation, the velocity U-point lives at (i+1/2,j+1/2) with
the T-point at (i,j). There are good reasons to employ the half-integer convention when representing
discrete quantities on a grid. However, we choose to avoid such notation, preferring instead to keep the
grid variable placements implied by use of the northeast convention.

The B-grid placement leads to the following placements for the discrete fields realized in MOM on the
grid.

* As density is a function of temperature, salinity, and pressure, density is naturally defined at the
tracer point. Correspondingly, so is hydrostatic pressure and the surface ocean height.

* For each tracer cell there is a corresponding velocity cell, as depicted in Figure 9.1. Fluxes through
the faces of the velocity cell are related to those through the faces of the tracer cell via remapping
operations as detailed in Chapter 15.

* The vertical velocity component is defined according to the requirements of continuity across the
tracer and velocity cells. Hence, the vertical velocity component lives at the bottom face of the corre-
sponding tracer or velocity cell. Once the horizontal grid placement is defined, the vertical position is
specified for both the grid point and the vertical velocity position. Chapter 16 of The MOM3 Manual
provides further details of the vertical grid.

9.1.2 Variables on the C-grid

Figure 9.2 illustrates the horizontal arrangement of prognostic model fields used with the C-grid. The C-
grid places the zonal velocity component on the zonal tracer cell face, and meridional velocity component

1 As pointed out by Webb et al. (1998), there will potentially always be important unresolved baroclinic modes, such as in the
equatorial region. Hence, it will be very useful to have both B and C grid options in MOM to better examine the pros and cons for any
particular application.

ELEMENTS oF MOM October 8, 2012 Page 116



CHAPTER 9. B AND C GRID DISCRETIZATIONS Section 9.2

T(i’j lk)

Figure 9.1: Illustration of how fields are placed on the horizontal B-grid used in MOM using a northeast
convention. Velocity points U(1i, j, k) are placed to the northeast of tracer points T(i, j, k). Both horizontal
velocity components u; jx and v; j; are placed at the velocity point U(i, j, k). Both the tracer point and
velocity point have a corresponding grid cell region, denoted by the solid and dashed squares.

on the meridional tracer cell face. This placement is suited for computation of advective tracer transport. It
is also suited for computing the stress tensor and the horizontal pressure gradient force acting on velocity
components. However, it is not natural for computation of the Coriolis Force. The need to perform an
averaging operation to compute the Coriolis Force leads to the presence of a computational null mode
associated with geostrophically balanced flow (Adcroft et al., 1999).

Following a northeast convention, MOM places its zonal velocity component u; j; on the east face of
the tracer cell T(i,j), and the meridional velocity component v; j ; at the north face of the same tracer
cell. With half-integer notation, the zonal velocity component Ui jk lives at the (i+1/2, j) point whereas
the meridional velocity component v; ; x lives at the (i, j+1/2) point. This C-grid convention leads to the
following placements for the discrete fields realized in MOM.

* As density is a function of temperature, salinity, and pressure, density is naturally defined at the
tracer point. Correspondingly, so is hydrostatic pressure and the surface ocean height. Indeed, all
tracer quantities from the B-grid are correspondingly on the same tracer cell using the C-grid. This
agreement means that nearly all processes associated with tracer transport have direct correspon-
dence across the B and C grids, without any changes required for the code.

* The vertical velocity component is defined according to the requirements of continuity across the
tracer cell. Hence, the vertical velocity component lives at the bottom face of the tracer cell. Addi-
tionally, it is necessary to prescribe a means to compute the vertical velocity used to advect zonal and
meridional velocity. This velocity component is prescribed in terms of averages of the corresponding
tracer grid vertical velocity component.

* The B-grid velocity point, which sits at the corner of the tracer cell, is the natural position for the
vertical component of vorticity

dv  du
=2-(VAV)=5——-5-. 9.1
=2 (VAv=50- 5 (9.1)
When writing the velocity equation in a vector-invariant form (see Section 4.4.4 of Griffies (2004)), as
in GOLD, MITgcm, and NEMO, the vorticity point is also the natural location for defining the Coriolis
parameter, f, for use in computing the total vorticity C + f.

9.2 Describing the horizontal grid

With the use of generalized horizontal coordinates in MOM, there are many grid distances required to
compute discrete derivatives, integrals, and areas. When constructing the grid distances in MOM, we
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Figure 9.2: Illustration of how fields are placed on the horizontal C-grid used in MOM. As for the B-
grid, MOM’s convention is that the zonal velocity component u; ; sits at the east face of the tracer cell
T(i,j), and the meridional velocity component v; ; i sits at the north face of the tracer cell T(i, j, k). This
convention follows the northeast convention also used for the B-grid. However, note that the notion of a
corresponding “velocity cell” that surrounds each velocity component is less tenable for the C-grid.

aimed to design a structure useful for both B and C-grids. It is with this goal in mind that the names for the
grid distances in the grid_generator module are distinct from grid distances used in MOM’s grids module.
We note the mapping between the two grid conventions in the following.

9.2.1 Four basic grid points and corresponding cells

On both the B and C grids, it is useful to consider the tracer cell as the basic cell, and all other cells in
their relation to the tracer cell. Given this convention, there are four basic grid points and corresponding
grid cells that can be identified: T(i,j), E(i,j),C(i,j),and N(i,j). Figure 9.3 illustrates these points as
oriented according to the tracer cell.

* T(i,]) is the usual tracer point that is surrounded by a tracer cell region.

* C(i,]) sits at the northeast corner of the tracer cell, and so is equivalent to the B-grid velocity point
U(i,j) and the C-grid vorticity point q(i,j).

¢ E(i,]) sits at the east face of the tracer cell and so is where the zonal velocity component u; ; x sits on
the C-grid.

* N(i,j) sits at the north face of the tracer cell and so is where the meridional velocity v; ;  sits on the
C-grid.

The geographical coordinates of these four points is sufficient to place them on the discrete lattice.

9.2.2 Horizontal layout of wet and dry cells

The ocean land-sea boundary is fractal in nature, with each refinement in resolution introducing new
smaller scale features. The representation of the land-sea boundary is thus fundamental to the utility
of an ocean model for realistic simulations. We outline in this section the arrangement of grid variables on
both the B and C grids of MOM, with reference made to Figure 9.4.

Figure 9.4 depicts an array of tracer cells, each with a corresponding northeast corner point denoted by
an X. On the B-grid, the northeast corner is where both velocity components, u; jx and v; j  are located,
whereas for the C-grid this is where the vorticity C; j x sits. Any corner point that touches a land cell will
have both components of the B-grid velocity set to zero. Arrows crossing the zonal and meridional faces
of a cell depict the tracer flux moving across the cell faces. There are no arrows drawn entering land, due
to the no-normal flow boundary condition. On the C-grid, arrows also represent the horizontal velocity
components. For both the B and C grids, arrows depict the advective and diffusive tracer flux components.

A fundamental distinction between the B and C grids is their treatment of narrow straights and through-
flows. We illustrate this distinction by examining the advective tracer transport through tracer cells T(3,2)
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Figure 9.3: The four basic grid points for the B and C grids that surround the fundamental tracer cell.
T(i,j,k) isthe usual tracer point; C(1i,j,k) is the corner point; E(i, j, k) is on the east side; and N(1i, j, k)
is on the north side. The corner point is the position for the two horizontal velocity components for the
B-grid, whereas it is the vorticity position on the C-grid. The east and north points are the position of the
zonal and meridional velocity components on the C-grid.

and T(4,2). For these cells, the B-grid horizontal velocity components are zero, since the corner points
touch land. Hence, there is zero zonal advective flux through these cells for the B-grid. We conclude that
to allow advective tracer transport on the B-grid requires no less than two adjacent ocean tracer cells. In
contrast, the C-grid allows for advective tracer transport through a single tracer cell, and so has nonzero
advective tracer transport through tracer cells T(3,2) and T(4,2).

9.2.3 Computing the grid distances

To support a discrete calculus for casting the model equations on a grid, we must specify distances between
grid points and the grid cells. Knowing the geographical position of the four basic grid points as well as
the vertices of their corresponding grid cells is not sufficient. In addition, we need information regarding
the metric or stretching functions specific to the coordinate system used to tile the sphere.

The traditional approach is to use spherical coordinates for tiling the sphere. In this method, the dis-
tance between two points zonally displaced a finite distance from one another is given by the analytic
formula

Ap
Ax[a,b] :Rcos¢fdA: (Rcos ) (A, — Ay), (9.2)
/\ﬂ

and the distance between two points along a line of constant longitude is given by

bp
Ay[a,b] :Rjdd) = R(y— ba). (9.3)
(lbﬂ

Writing these expressions in a general manner leads to the generalized zonal and generalized meridional
distance given by
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TRrRACER CELLS T(1,j) WITH FLUXES AND LAND/SEA MASKING

B T L T L L] i
J' T(1,4) T(2,4) T(3,4) T(4,4)
—1> —1>
A A 4 = tracer point
i L | L | L L N
(L, 3) (2,3 TG, 3 T(4,3) W = corner point
- ¢ —— ¢ =B-grid velocity
A A =C-grid vorticity
L | L | L L |
T(L,2) T(2,2) T(3,2) T(4,2)
— —> ¢ — — —
L L L L N
T(L,1) T(2,1) T3, 1) T(4,1)

Figure 9.4: Shown here is a 4x4 region of a horizontal domain of tracer cells T(1i, j), with ocean cells (un-
shaded) and land land cells (shaded). The notional tracer “point” is depicted by a solid triangle. Each
tracer cell has a corresponding northeast corner point depicted by a solid square. On the B-grid, the north-
east corner is where both velocity components are located. Any corner point that touches a land cell will
have the B-grid velocity set to zero. For the C-grid, the corner point is the vorticity location. It is also the
location of the shearing rate of strain eg (Chapter 25), which is set to zero for a free-slip C-grid model (Sec-
tion 25.6.2). Arrows crossing the zonal and meridional faces of a cell depict the tracer flux moving across
the cell faces. On the C-grid, these arrows are also where the horizontal velocity components are placed.
For both the B and C grids, the arrows depict the advective and diffusive tracer flux components. There
are no arrows drawn crossing into or from land cells, due to the no-normal flow boundary condition. For
tracer cells T(3,2) and T(4,2), the B-grid velocity components are zero, so there is zero zonal advective
flux through these cells on the B-grid. In contrast, the C-grid has advective transport through these cells.
This is a fundamental distinction between the B and C grids in their treatment of narrow straights and
throughflows.

ELEMENTS oF MOM October 8, 2012 Page 120



CHAPTER 9. B AND C GRID DISCRETIZATIONS Section 9.3

where (&1,&;) represent generalized orthogonal coordinates, and (hy, h,) are the stretching functions spe-
cific to the coordinate system. They determine the distance between two infinitesimally close points via the
line element formula

(ds)? = (hy d&;)? + (hyd&)*. (9.6)

With dx = hy d&; and dy = h, d¢&,, the line element formula takes the form of the usual Cartesian expression
(ds)? = (dx)* + (dyp)*. (9.7)

MOM makes use of dx and dy, with units of metre, to allow for cleaner expressions of length, area, and
volume.

It is not possible to perform the distance integrals analytically for an arbitrary general orthogonal co-
ordinate system. Therefore, approximations must be made. Indeed, in MOM3 the analytical form for the
zonal distance was actually approximated according to

Ax ~ R cos ¢ (9.8)

where 5 = (¢1 + ¢2)/2 (see discussion in Section 39.6 of Pacanowski and Griffies (1999)). Assuming infor-
mation is available only at the grid points and at the cell vertices, MOM chooses to compute the distance
between two points along a generalized zonal direction (i—line) as

Ax[a,b] = |g§“) - 5?’)' (h(l“’ + h(lb))/z. (9.9)
Likewise, the distance along a generalized meridional direction (j—line) is computed as

Myl =[ef! = &) (5 + 1)) 2 (9.10)

9.2.4 Grid distances carried by the model

Given coordinates for the grid points and grid vertices, as well as the stretching functions evaluated at these
points, we can use the approximate expressions (9.9) and (9.10) to compute distances between the T,U,N,
and E points. Figure 9.5 shows the notation for the grid distances that define four quarter-cells splitting up
each tracer and velocity cell. Shown is the notation used in the grid descriptor module as well as that used in
MOM. The full dimensions of the tracer and velocity cells are shown in Figure 9.6, where again the distances
computed in the grid descriptor module are translated into the grid distances used in MOM. Finally, Figure
9.7 shows the distances specifying the separation between adjacent tracer and velocity points.

9.3 The Murray (1996) tripolar grid

The Murray (1996) tripolar grid (see his Figure 7) has been a focus of ocean climate model development
with MOM and GOLD during 2001-2002. This grid is comprised of the usual spherical coordinate grid
southward of a chosen latitude circle, typically taken at 65°N. This part of the grid has a single pole over
Antarctica, which is of no consequence to the numerical ocean climate model. In the Arctic region, the
Murray grid places a bipolar region with two poles situated over land, and so these poles are also of no
consequence to the numerical ocean model.

Figure 9.8 illustrates the grid lines used to discretize the ocean equations in the Arctic using Murray’s
grid. The placement of discrete model tracer and velocity points along the bipolar grid lines is schemati-
cally represented in Figure 9.9. The arrangement of northern and eastern vector components centered on
the tracer cell faces is shown in Figure 9.10. Details for how to transfer information across the bipolar prime
meridion located along the j = nj line are provided in Section 9.4.

Motivation for choosing the Murray (1996) grid includes the following:

* It removes the spherical coordinate singularity present at the geographical north pole.
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Figure 9.5: Upper panel: Grid distances used to measure the distance between the four fundamental grid
points shown in Figure 9.3. These distances are computed in the FMS grid descriptor module. The naming
convention is based on a Cartesian grid with the origin at the lower left corner of the tracer cell at (0,0),
the upper right hand corner is (2,2), the center at (1,1), and all other points set accordingly. The distances
are then named as distances between these grid points. Note that each tracer cell has a local Cartesian
coordinate set as here, and so there is redundancy in the various grid distances. Lower panel: when read
into MOM, the grid distances set the distance between the tracer and velocity points used in the model
(Figure 9.1) and the sides of the corresponding grid cells. A translation of the upper panel distance names
to those used in MOM is made within the module ocean_core/ocean_grid.F90. Note that the names in
the lower panel are chosen to correspond to a B-grid, though the lengths are used for both B and C grid

calculations.
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Figure 9.6: Grid cell distances used for computing the area of a grid cell. These dimensions are related
to the fundamental quarter-cell dimensions shown in Figure 9.5. Upper panel: distances computed in the
FMS grid descriptor module. Lower panel: names of the distances used in MOM. Note that the names in
the lower panel are chosen to correspond to a B-grid, though the lengths are used for both B and C grid
calculations.

* It maintains the usual spherical coordinate grid lines for latitudes southward of the Arctic region,
thus simplifying analysis.

* The grid resolution in the Arctic is more isotropic than the alternative approach of a displaced pole
used in simulations with POP (Smith et al., 1995), with isotropic grids generally preferred for numer-
ical accuracy.

¢ It is locally orthogonal, and so can be used with the MOM generalized horizontal coordinates.

* A similar global grid has been successfully run by the GOLD model code at GFDL (Dunne et al,,
2012a), as well as the European NEMO modeling group (Madec and Imbard, 1996).

9.4 Specifying fields and grid distances within halos

MOM has been designed to run on multiple parallel processors. The computation of finite derivative oper-
ators requires the passage of information across processor boundaries. In particular, the decomposition of
the model’s global domain into multiple local domains requires that fields and grid information from one
local domain be mapped to halos of adjacent local domains. For second order numerics, the calculation of
derivatives on the boundary of a local domain requires information within one grid row halo surrounding
the local domain. Higher order numerics require larger halos.

9.4.1 Interior domains

Within the interior of the ocean model, away from global boundaries, the mapping between domains is
performed using an FMS utility that fills the halo points for one local domain using information available
to another local domain. Figure 9.11 illustrates this basic point. Shown is a central processor, arbitrarily
labelled PE(0), and a surrounding hatched region representing halo points. The width of the halo is a
function of the numerics used in the model. For second order numerics, a halo width of a single point is
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Figure 9.7: Distances between fundamental grid points (upper panel) as computed by the grid descriptor
module. These distances are taken into MOM and used to set the distances between tracer and velocity
points (lower panel). Note that the names are chosen to correspond to a B-grid, though the lengths are used

for both B and C grid calculations.
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Figure 9.8: Illustration of the grid lines forming the bipolar region in the Arctic. This figure is taken
after Figure 7 of Murray (1996). The thick outer boundary is a line of constant latitude in the spherical
coordinate grid. This latitude is typically at the latitude nearest to 65°N. As in the spherical coordinate
region, lines of constant i move in a generalized eastward direction. They start from the bipolar south pole
at i = 0, which is identified with i = ni. The bipolar north pole is at i = ni/2. As shown in Figure 9.9,
the poles are centered at a velocity point. Lines of constant j move in a generalized northward direction.
The bipolar prime-meridion is situated along the j-line with j = nj. This line defines the bipolar fold that
bisects the tracer grid. Its fold topology causes the velocity points centered along j = nj to have a two-fold
redundancy (see Figure 9.9 for more details).
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Figure 9.9: Schematic representation of the tracer and velocity cells on the bipolar grid shown in Figure
9.8. The global computational domain consists of ni = 12 i-points for this example. The j = nj line bisects
the tracer grid, which means there are redundant velocity points along this line. Along an i—line of velocity
points, velocity cells with i = ni/2 live at the bipolar north pole, whereas velocity cells with i = 0 = ni live
at the bipolar south pole.
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Figure 9.10: Schematic representation of fields living at the north and east faces of the tracer cells as
configured using the bipolar grid shown in Figure 9.8. Typical fields of this sort are diffusive and advective
tracer flux components, and so they are components to a vector field, hence the vector notation. The global
computational domain consists of ni = 12 i-points for this example. The j = nj line bisects the tracer grid,
which means there are redundant velocity points along this line. Along an i—line of velocity points, velocity
cells with i = ni/2 live at the bipolar north pole, whereas velocity cells with i = 0 = ni live at the bipolar
south pole.

sufficient, whereas fourth order numerics requires two grid points in a halo. The values of fields and grid
factors within the halo are transmitted from the surrounding processors to PE(0) in order for PE(0) to time
step its portion of the ocean equations discretized on its local domain.

9.4.2 Exterior domains

For processors whose boundary touches the global model boundary, it is necessary to specify whether the
global boundary is a solid wall as in a sector model, periodic as in a zonal channel, or folded as in the
bipolar grid of Murray (1996). Each of these three topologies requires special consideration of the mpp code
used for transmitting information across processor boundaries. The information about grid topology is
defined in the grid specification file during the preprocessing step used to create the grid. We focus here on
the three common topologies supported by MOM. A fourth case, radiating open boundaries, is discussed
separately in chapter 16 (see also Herzfeld et al. (2011)).

9.4.2.1 Solid wall boundary conditions

For a solid wall boundary condition, all fluxes passing across the walls are zeroed out via masks, and fields
within the solid wall are either trivial or masked. Hence, no halo updates are necessary for fields and fluxes
at solid walls. However, it is important to specify self-consistent grid distances separating points within
the solid wall from those within the model’s computational domain. The reason is that various remapping
operators require grid distances be well defined for all points within the computational domain, including
those distances reaching into the halo. See Chapter 15 for details of remapping operators. For this reason,
we extend the grid into the solid wall halo so that resolution in this region is given by the resolution between
the two nearest interior points.

9.4.2.2 Periodic boundary conditions

Zonally periodic channels (x-cyclic) are commonly run for idealized studies. Additionally, for realistic
global domains, the zonal direction is periodic. Meriodionally periodic (y-cyclic) domains may also be of
interest for simulations on an f—plane or f-plane. For these reasons, we need to specify grid factors within
the halo assuming periodicity at the global domain boundary.
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PE(2)
'

PE(1)

PE(3)

PE(S) PE(4)

Figure 9.11: Elements of halos needed for computing finite difference operators on a local or computational
domain. The hatched region is comprised of halo points needed for the processor labelled PE(0) in order to
time step its equations. The halo values must be transmitted from the surrounding processors, since they
live outside of PE(0)’s local or computational domain. The union of the halo region plus the computational
domain defines the data domain. Fields that must be known in both the halo region and computational
domain have their array sizes set by the data domain. Most fields in MOM are routinely dimensioned over
the data domain, even if their halos values are never required.
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Figure 9.12: A zonally periodic array of tracer and velocity (assuming B-grid placements) points with a
single halo point. In this example there are ni = 6 points in the global computational domain, and halo =1
point in the surrounding halo region. The cyclic mapping leads us to specify halo points with values
Tiz0,j = Tizni,j» Ti=ni+1,j = Ti=1,j, and Uj=q,j = Uj=p; -

We focus here on the needs of the more common zonally periodic boundary conditions, and refer to
Figure 9.12. The same considerations hold for y-cyclic conditions. For either case, we envision the grid
wrapped onto itself in the appropriate direction. With second order numerics, computation of the prog-
nostic tracer in grid cells T;_; ; requires information regarding T;—¢ ;. Likewise, T;_,; ; requires information
about T;_;1,j. Higher order numerics will need to reach out further.

First consider the eastern boundary of the domain where i = ni. For a single grid halo, we need to
specify values of fields living at the T, E, N, and C points at i = ni + 1 (recall Figures 9.1 and 9.3 where the
C point is equivalent to the B-grid U point). Zonal periodicity renders the equalities

Thiv1,; = Ty (9.11)
Eniv1,j = Ei (9.12)
Nyuis1,j = Nij (9.13)
Cuiv1,j = Cuj (9.14)
More generally, halo points with ni <i < ni + halo acquire the x-cyclic mapping

Ti,j = Ti—nz] (9.15)
Ei,j = Ei—m] (9.16)
Ni,j = Ni—m] (9.17)
Ci,j = Cz?m] (9.18)

At the western boundary, similar considerations lead to halo points 1 — halo < i < 1 mapped to interior
points according to

Tij = Tinij (9.19)
Eij = Eiinij (9.20)
Nij = Niij (9.21)
Cij = Cisnij- (9.22)

9.4.3 The bipolar Arctic grid

The ideas considered for the cyclic case are now generalized to the more complex topology of the Murray
(1996) bipolar grid shown in Figures 9.8 and 9.9. In particular, Figures 9.9 and 9.10 allow us to deduce
the mappings between related points on the grid. We focus here on the B-grid naming conventions, and
assume that both horizontal velocity components both sit at the corner point C. However, C-grid relations
follow by placing the zonal velocity component at the east point, E, and meridional velocity component at
the north point, N.
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9.4.3.1 Fields defined at points T,U,N, and E

The generalized zonal direction (along a constant i-line) is treated with the x-cyclic conditions shown Figure
9.12. It is the bipolar prime meridion along the j—-line with j = nj that introduces the most subtle issues.
This line bisects the tracer grid. Relating points across the prime meridion requires knowledge of the
tensorial nature of the field being considered. In particular, scalar fields map without a change in sign,
whereas components of a vector field have a sign change.

The U—points contain a two-fold redundancy of points along the j = nj line. For scalars living at these
points, such as some grid factors, we have the identity

Uinj = Unizinj- (9.23)

Likewise, scalars living at the northern face of a tracer cell contain a two-fold redundancy of points along
the j = nj line so that
Niuj = Nuizis1,nj- (9.24)

For vector components living at U—points, such as the B-grid horizontal velocity field, we associate transi-
tion across the j = nj meridion with a sign change

Uinj =  —Uni—inj (9.25)
Vinj = “Vni-inj (9.26)

This sign change takes the right handed orientation into a right handed orientation across the meridion.
Likewise, for components of vector fluxes living at the north face of a tracer cell, we have
Fﬁ]i,nj - _Fllz]ni—iﬂ,nj' (9.27)
Note that numerical roundoff may compromise these equalities in the model. Such compromise will gener-
ally make the model energetics appear to be larger than when running with the spherical grid, or with the
tripolar grid with the fold closed (debug_tripolar = .true.).
Moving along a j-line, halo points for scalar fields with nj < j < nj + halo are evaluated according to the
following rules
Tij = Thizis1,2nj-j+1
Uii=Upizioni-i . .
by i 2n) for nj<j<mnj+halo (9.28)
Nij=Nyi-is1,2nj-j
E

i,j = Eni-i2nj—j+1

Vector components living at these points have the same index mapping along with a sign flip for the field
values.

9.4.3.2 Grid distances for horizontal quarter-cells

Grid distances must also be specified in halo points. Some distances also maintain redundancy relations.
Since grid distances are taken between T,U,N, or E points, their redundancy relations and halo mappings are
determined by those of their endpoints. We start by considering the grid factors defining the dimensions
of quarter-cells defined in Figure 9.5. These require the most care. Figure 9.13 illustrates the placement
of these factors on the bipolar grid. Immediately we see that the two-fold redundancy in the velocity cells
Ui nj leads to the two-fold redundancy in grid cell distances

duejn; = duwyi_jnj (9.29)
duw;n; = duegi_jnj (9.30)
duninj = duspi_jnj (9.31)
dusin; = dungi_j,j. (9.32)

Now consider the mappings needed to evaluate distances within halos. First consider the distances
associated with the tracer cells. By definition, dte; j measures the distance between the tracer point Tiy]»
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and its “eastern” neighbor E; j, and dtw; ; is the distance between T; ; with its “western” neighbor E; y ;,
where “eastern” and “western” are in a generalized sense. Mathematically, these distances are

AX(TI ],E ) = dtei’j (933)

Ax(Tl],E, 1]) = dtWi’]‘ (934)

where Ax(A, B) is the distance between points A and B computed according to the generalized zonal distance
in equation (9.9). The question is how to map these distances across the bipolar fold. To do so, we note that
if we are in a halo region where nj < j < nj+halo, then the scalar mappings given by equation (9.28) lead to

Ax(T;j,Eij) = Ax(Tyiziv1,2nj-j+15 Enizi2nj-j+1) (9.35)
Ax(Tij,Eic1j) = Ax(Tyiciv1,2nj-j+1r Enicie1,20j-j+1)- (9.36)

Comparison of these equalities with the definitions of dte and dtw then leads to the halo cell relations

dte; j =dtwpi_j11,2nj-j+1

for nj<j<nj+halo 9.37
dtw; j =dtenii+1,2nj-j+1 } J=i=m (9:37)

Distances to the northern and southern faces of the tracer cell, dtn and dts, are defined by

Ay(T, 1,, ij) = dtng (9.38)
Ay(T; j, N j- 1) = dts;; (9.39)

where Ay is the generalized meridional distance given by equation (9.10). Equation (9.28) indicate that
within the halo region nj < j < nj+ halo,

Ay(T 1]1 ij) = AY(Tuiziv1,2nj-j+1 Nuizit1,2nj-j) (9.40)
A}/( i,jr 1] l) = Ay(Tni7i+l,2njfj+lthi—i+1,2njfj+l)' (9'41)

Comparison of these equalities with the definitions of dtn and dts leads to the halo cell relations

dtn; j =dtspi—it1,2nj—j+ for nj<j<nj+halo 42
dtsij =dtngi_it1onj—j+1

Velocity cell distances are defined by

AX(UI ]1N1+1 ]) = dUeLj (943)
Ax(Ulj,N ) = dUWL]‘ (944)
Ay(U 1]1 ,j+1 1) = dun; (9.45)
Ay( 1], ) = dUSL]‘ (946)
Equation (9.28) indicate that within the halo region nj < j < nj + halo,
Ax(Uz ]er+1 ]) - Ax(Uni—i,znj—j'Nni—i,an—j) (9-47)
Ax(U; ],N ) = Ax(Uni—i,an—jrNni—i+1,2nj—j) (9.48)
Ay(U i,jr 11+ 1) = AX(Uni—i,anfjlEnifi,Zrtjfj) (9.49)
Ay(Uij,Eij) = Ax(Unizi2nj-j» Eni-i2nj-j+1) (9.50)
which then leads to the halo cell relations
duei’]' = dUWni_LG]’_]'
du, ;= dueni-iani-i Lgor nj<j<nj+halo (9.51)

dun; ; =dusp;_j onj-j
dus; j =dunp;_jonj-j
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Figure 9.13: Placement of quarter-cells distances at the bipolar fold. For this example, there are ni = 4
points in the generalized zonal computational domain. Equivalance of grid factors on the fold leads to the

two-fold redundancy for velocity cell distances due; ,,; = duw,i_; nj and dus; ,j = duny;_; nj-
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9.4.3.3 Grid distances for horizontal full cells

Inspection of Figures 9.6 and 9.7, with the definitions of grid points shown in Figure 9.3, leads to the
definitions of distances for full horizontal cells

Ax(E;j_1,E;ij) = dxty; (9.52)
Ay(N, i,j-1r ]) = dyty; (9.53)
Ax(U;_ 1], ij) = dxtng; (9.54)
Ay(U;j, Uij1) = dytey (9.55)
Ax(Tl],T j) = dxte;; (9.56)
Ay(T; i Tt 1) = dytng; (9.57)
Ax(Nl],NHl]) = dxuj (9.58)
Ay(E ijr z;+1) = dyu; (9.59)

Figures 9.14, 9.15, and 9.16 show these distances for regions surrounding the bipolar fold. To generate
the redundancy conditions and halo mappings, we again use the scalar mappings given by equation (9.28).
Using these relations we see that redundancy is satisfied by the distances

dxtnin; = dxtngi_jiqnj (9.60)
dytnjn; = dytngijiqnj (9.61)
dxujnj = dXUpi_jnj (9.62)
dyuing = dyUpj_inj (9.63)
Equation (9.28) indicates that within the halo region nj < j < nj+ halo,
Ax(Ei1,j,Eij) = Ax(Eniziv1,2nj-j+1, Enizi2nj—j1) (9.64)
A}/( i,j—1s ]) = Ay(Nm z+1,2n]—]+1:Nni—i+1,2nj—j) (9-65)
Ax(U;- 1], ij) = Ax(Uni-is1,20j-j» Uni-i,2nj-j) (9.66)
Ay(U 1]’ -1) = Ay(Upi- z,2n]—]’Unz—i,2nj—j+l) (9.67)
AX(T,],T ) = Ax(Thizin ,2nj— ]+1'Tni—i,2nj—j+l) (9.68)
Ay(T, 1]/ j+1 1) = AY(Thizina 2nj— ]+1:Tni—i+1,2nj—j) (9.69)
Ax(Nz]er]) = Ax(Nyi-it1,20j-j» Nni-i2njj) (9.70)
Ay( i,jr 1]+1) = Ay(Em i,2nj— ]+11Eni—i,2nj—j) (9~71)
which then leads to to the halo cell relations
dxtyj =dxtni_i+1,2nj—j+1
dyti ; =dytni—is1,2nj—j+1
dxtng ;= dXtnpi_ji1,2ni-j
dyte; = dyteni-izni-ji Lo i< j<nj+halo (9.72)

dxte; j = dxteni_i2nj—j+1
dytn; j =dytngi_ii1,2nj-j
dxuj, j = dXUpi_i2nj—j
dyu;,j = dyUni_i 2nj—j

9.4.3.4 Summary of redundancies and halo mappings

Table 9.1 summarizes the halo relations and redundancies realized at the bipolar fold. Notice that those
distances exhibiting a redundancy have their halo relations reduce to their redundancy relations for j = nj.
Additionally, the quarter-cell distances all transform from a right handed system to a right handed system.
In general, this table should be sufficient to deduce relations for any derived fields, fluxes, etc., computed
in the model.
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Figure 9.14: Placement of tracer cell dimensions at the bipolar fold. For this example, there are ni = 4
points in the generalized zonal computational domain. Equivalance of grid factors on the fold leads to the
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Figure 9.15: Velocity cell distances at the bipolar fold.
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Figure 9.16: Grid distances for tracer points at the bipolar fold.

Halo relations (nj < j < nj + halo)

Redundancy relations

Uij = €Unizionj-j

Uinj = € Uni—inj

Tz',j =€ Tnifi+1,2njfj+l

Ni; =€Nyiit1,2nj-j

Ninj = €Nniziv1,nj

Eij=¢Ei-ionj-j+1

dtej ;= dtwni_i41,2nj—j+1

dtw; j =dteni—it1,2nj-j+1

dtni ; =dtspi_i41,2nj—j+1

dts; j =dtnni_i41,9nj-j+1

due; j = duwpi_jonj-j

due;j nj = duwpi_jnj

duw; j = dueni_jonjj

dUWi’n]' = duem-,]-ln]-

dun; j =duspi_jonj-j

dun; nj =duspi_jnj

dus; j =dunp;_jonj-j

dUSi’n]’ = dunm-,]-ln]-

dxty,j =dxtni—i+1,2nj—j+1

dyt;j =dytni—it1,2nj-j+1

dxtn;,j =dxtngi—i+1,2nj—]

dxtn;nj =dXtngi—i+1,nj

dyte; j =dyteni—ionj—j+1

dxte;,; = dxteni—ji2nj—j+1

dytn; ; =dytngi_ig1,onj—j

dytn; nj = dytngi_ising

dXUi,j = dXUni—i,2nj—j

dXULn]’ = dxuni—i,nj

dyui ; = dyuni_ionj—j

dyui nj = dyUni—inj

Table 9.1: Summary of the halo mappings and redundancies realized at the bipolar fold. The symbol ¢ is 1
for scalar fields, and —1 for horizontal components of vector fields.
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Adcroft and Hallberg (2006) characterize two types of primitive equation ocean models. Eulerian ver-
tical coordinate algorithms, such as used in MOM, ROMS, and NEMO, diagnose the dia-surface velocity
component from the continuity equation. Lagrangian vertical coordinate algorithms, such as used in GOLD
and HYCOM, specify the dia-surface velocity component (e.g., zero diapycnal velocity in adiabatic simula-
tions with isopycnal coordinates). Eulerian in this context does not mean that a grid cell has a time constant
vertical position. Hence, the term quasi-Eulerian is used in this chapter.

In this chapter, we develop the semi-discrete budgets of a hydrostatic ocean model and present quasi-
Eulerian solution algorithms. Notably, as implemented in MOM, the quasi-Eulerian algorithms are formu-
lated assuming a time independent number of grid cells. That is, MOM does not allow for vanishing cell
thickness. This assumption simplifies the algorithms in many ways, but in turn limits the extent to which
this code can be used for simulations where water masses change in a nontrivial manner.

The following MOM modules are directly connected to the material in this chapter:

ocean_core/ocean_advection_velocity.F90
ocean_core/ocean_barotropic.F90
ocean_core/ocean_pressure.F90
ocean_core/ocean_thickness.F90
ocean_core/ocean_velocity.F90
ocean_core/ocean_velocity_advect.F90
ocean_tracers/ocean_tracer.F90

ocean_tracers/ocean_tracer_advect.F90

10.1 Pressure and geopotential at tracer points

We discussed the discrete pressure gradient body force appropriate for a finite difference discretization in
Sections 3.2 and 3.3. We require the anomalous hydrostatic pressure in the depth based models, and the
anomalous geopotential height in the pressure based models. That is, for depth based vertical coordinate
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models, we need a discretization of the anomalous hydrostatic pressure (equation (3.20))
0
p':gJ. p'dz  fors=z (10.1)
z

1
=g .r p'dz  fors=z",00. (10.2)
z

For pressure based vertical coordinate models, we need a discretization of the anomalous geopotential
(equation (3.25))

z

D' =—(g/p,) f p'dz. (10.3)
-H
The vertical integrals involve some ambiguity for the finite difference formulation, since the tracer point
is not vertically centred within the tracer cell for the case of a vertically nonuniform grid. In this case, we
may choose to compute the pressure and geopotential at the tracer point using a more accurate vertical
integration that accounts for the non-centred placement of the tracer point.

The purpose of this section is to describe two methods used for the calculation of the pressure and
geopotential at the tracer grid point. Details of this discretization affect the manner used for diagnosing the
pressure conversion to buoyancy work, as described in Sections 14.6, 14.7, 14.8, and 14.9. The MOM code
provides both choices, with both producing analogous results for the surface height and bottom pressure.

10.1.1 Pressure at tracer point: energetic method

If the equation of state is linear, and both density and velocity are advected with second order centered
differences, then the conversion of pressure work to buoyancy work will balance potential energy changes.
This equality led Bryan (1969) to formulate the hydrostatic pressure calculation according to

’ 5z
Prs1 = Pi+ g dzwtypp . (10.4)

That is, anomalous hydrostatic pressure is computed given knowledge of the thicknesses dzwt and the
density p;. In this equation, primes refer to anomalies relative to the reference Boussinesq density

P'=p—po (10.5)
and

5% _ ’

Pr = (Pr+ Prsr /2 (10.6)
is the simple vertical average of density. This average is the same as a finite volume average only if the
grid cell thicknesses are uniform. With stretched vertical grids, the simple average differs from the finite
volume average presented in Section 10.1.2. At the ocean surface, no average is available, so we use the
finite volume value for the pressure

Proy = 8dzwty_gpp_;- (10.7)
Given this surface value, we then integrate downwards according to equation (10.4) to diagnose the anoma-
lous hydrostatic pressure at each discrete k-level.

10.1.2 Pressure at a tracer point: finite volume considerations

Although the finite volume method for computing the pressure force requires the pressure and geopotential
to be computed at the bottom of the tracer cells, we may choose to use a finite volume motivated approach
for computing the pressure and geopotential at the tracer point. Referring to the right hand panel in Figure
10.1, a finite volume motivated computation of hydrostatic pressure at a tracer point is given by

Py = 8dztupioy piy (10.8)
pl,<+1 :pl/c'i'gdZtlok pl/<+gdZtUpk+1 pl’<+1' (10.9)

The pressure at k = 1 is the same as prescribed in the energetic method. However, for stretched vertical
grid cells, the interior cells have a different discrete pressure from that computed in the energetic method.
The finite volume approach is more accurate for stretched vertical grids.
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10.1.3 Discrete geopotential based on energetic considerations

Following in a manner analogous to the anomalous hydrostatic pressure in Section 10.1.1, we have the
discretized anomalous geopotential

D _por = —(8/P0) dZWtk—kpor Preipor (10.10)
, ’ %
O =Dy, —(8/p,)dzwty oy - (10.11)

Iteration starts from the bottom at k = kbot using the finite volume expression, and moves upward in the
column towards the surface.

10.1.4 Discrete geopotential based on finite volume considerations

Following in a manner completely analogous to the anomalous hydrostatic pressure in Section 10.1.2, we
have the discretized anomalous geopotential

cI)I::kbot = —(8/p0) dZt10xpor P;(:kbot (10.12)
O =D; . —(8/po) dztupyst pryq — (8/p) dzt1loy py. (10.13)

Iteration starts from the bottom at k = kbot using the finite volume expression, and moves upward in the
column towards the surface.

dzwt(k=0) dztup(1)
dzt(k=1)
[ ] [ ]
dztlo(1)
dzwi(k+1)
dztup(2)
[ ] [ ]
dzt(k=2
dztlo(2)
dzwi(k=2)

dztup(k=kbpot)

o dzt(k=kbot) Y

dzwi(krkbot) dztlo(k=kbot)

Figure 10.1: A vertical column of three tracer cells and the corresponding vertical cell dimensions. In
MOM, the vertical spacing is related by dzty = (dzwt,_q + dzwty)/2. With this specification, the average
tracer T = (Ti + Tr41)/2 lives at the bottom of the tracer cell Ty and so is co-located with the dia-surface
velocity component w_bty. The right column exposes the half-distances, which measure the distance from
the tracer cell point to the top and bottom faces of the tracer cell. The half-distances are used in the finite
volume formulation of pressure and geopotential computed at the tracer points (Sections 10.1.2 and 10.1.4),
whereas the grid spacing dzwt is used for the energetically based computation of pressure and geopotential
computed at the tracer points (Sections 10.1.1 and 10.1.3).
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10.2 Initialization issues

When initializing a Boussinesq model, we place a fluid with initial in situ density p'™' onto a grid with
vertical increments dzt. Hence, both the density and volume of the grid cells are specified. The initial
mass of fluid is implied by this initialization method. Furthermore, by definition, the surface elevation 7 is
zero.

For the non-Boussinesq model, we place a fluid with initial in situ density p"™* onto a grid with vertical
pressure increments dst. Hence, both the density and mass of the grid cells are specified. The initial
volume of fluid is thus implied from this initialization method. Furthermore, by definition, the bottom
pressure anomaly, pbot_t —pbot0, is zero if we choose pbot0 as the initial bottom pressure.

The initialization methods are isomorphic. Notably, when initializing the Boussinesq model, there is
no guarantee that its bottom pressure anomaly will be intially zero. Likewise, there is no guarantee that
the surface elevation # will be zero with the non-Boussinesq initialization. For many applications, the
nonzero sea level may be of little concern, with the sea level adjusting rapidly on a barotropic time scale.
Nonetheless, we next outline three possible means to ensure a zero sea level results from initializing a
non-Boussinesq model. Such may be of interest for careful comparisons between Boussinesq and non-
Boussinesq simulations, such as considered by Losch et al. (2004).

init

10.2.1 Modification of dst

There are three general ways to approach non-Boussinesq initialization. First, we can modify the vertical
pressure increments dst of the grid cells to accomodate the initial density and to retain a zero surface
height. This approach generally requires nontrivial horizontal deviations in the dst array, so that it has
full grid dependence dst(i, j, k). Such dependence is generally acceptable for the bottom, where partial
cells introduce three-dimensional dependence to the vertical grid increments. However, with this added
dependence in the ocean interior, there is a possibility for introducing pressure gradient errors, depending
on the magnitude of the horizontal variations. If the variations are minor, then this approach may be
acceptable.

10.2.2 Modification of the density field

A second approach is to modify the initial density field. This approach, however, may fail after some time
integration, depending on the surface forcing. That is, over time the model may be forced towards a density
structure similar to the initial structure, in which case the possibility exists for losing the bottom cell in the
model if the evolved bottom pressure becomes lighter than the pressure at the top of the bottom cell.

10.2.3 Modification of the bottom topography

A third approach is motivated by one used with the MITgcm. Here, we deepen the bottom topography
so that the initial mass (as set by the pressure increments) and density result in vertical columns with
zero initial surface height. This approach may appear to be the least desirable, as we know the bottom
topography generally more accurately than the initial density. Yet depending on details of the initial density
field and the pressure increments, the changes in the bottom topography are often quite minor. We detail
this approach in Section 10.4.4.

10.3 Vertical dimensions of grid cells

The density weighted thickness of a grid cell is of fundamental importance in the formulation presented
in this document. In particular, density weighted thickness of a tracer cell is a basic ingredient and the
values on a velocity cell are diagnosed according to the minimum surrounding tracer cell values. Given
these fields, most of the equations for the ocean model retain the same appearance for arbitrary vertical
coordinates. The technology of generalized vertical coordinates then resides in the module specifying pdz
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COORD DEFINITION CELL THICKNESS
geopotential | z dz

zstar Z*=H(z-n)/(H+n) dz=(1+n/H)dz"

z-sigma o = (z—n)/(H+1n) dz=(H +1)dc®@

pressure p dz=—-(pg)Tdp

pstar P =py(P—pa)/(po—pa) | dz=-[(po—pa)/(pgpy)ldp’
p-sigma o = (p—pa)/(po—pa) | dz=—[(py—p.)/(pg)1do?

Table 10.1: Table of vertical thicknesses dz for grid cells as determined on the tracer grid using the vertical
coordinates discussed in Chapter 5. The vertical coordinate increments are specified, and the vertical
thicknesses dz are diagnosed.

(the MOM module ocean_core/ocean_thickness module), with extra work also needed for the pressure
and grid modules.

In addition to the density weighted thicknesses, we are in need of the depth of a grid cell center, depth of
the grid cell bottom, and vertical dimensions within the grid cell. Information is needed for these distances
both in depth space (z-coordinate), and coordinate space (s-coordinate). These needs introduce new time
dependent arrays that are updated and saved for restarts.

Figure 10.1 defines notation for the grid cell thicknesses used in MOM. Here, the left figure exposes the
vertical dimensions of the tracer grid cell, dzt and the distance between the T-cell points, dzwt. The right
figure exposes the half-distances, which measure the distance from the T-cell point to the upper face of the
cell, dztup, and the lower face, dztlo.

10.3.1 Thickness of a grid cell

The thickness of a grid cell is written
dz=2z,ds. (10.14)

For a tracer cell, this expression is written in the MOM codes as
dzt =dzt_dst = dst. (10.15)

Inspection of the results from Tables 5.1 and 5.2 lead to the thicknesses given in Table 10.1, which are again
applied to the tracer grid. The corresponding velocity cell thicknesses are diagnosed based on the tracer
cell values.

For the finite volume approach to computing the pressure and geopotential, as discussed in Section
10.1.2, we need a method to compute the half-thicknesses. For this purpose, we assume the specific thick-
ness factor dzt_dst is constant across the thickness of a tracer cell. We also assume knowledge of the
half-s-thicknesses dstlo and dstup, thus leading to

dztlo=dzt_dst = dstlo (10.16)
dztup = dzt_dst * dstup. (10.17)

The full cell thickness is then recovered by setting
dzt =dztlo+dztup, (10.18)

where
dst =dstlo+dstup. (10.19)

10.3.2 Vertical distance between tracer points

Through summation from the ocean surface, knowledge of the tracer cell thicknesses dzt, within a vertical
column provides the depth of the bottom of any tracer cell within the column. For many purposes, it is also
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important to know the depth where the tracer point is located. This information is obtained via vertical
summation from the distance between two vertically adjacent tracer cell points. As seen in Section 10.1
when discussing the hydrostatic pressure and the geopotential, the vertical distance between tracer points
is known as dzwt and the corresponding velocity cell vertical distance is dzwu.

10.3.2.1 Energetic based approach

For depth based vertical coordinates, dzwt is computed according to the results in Table 10.1 given the
corresponding coordinate thicknesses dswt. For pressure based vertical coordinates using the energetic
approach from Section 10.1.1, we are guided by the result (10.4) for the hydrostatic pressure computed in
a depth based vertical coordinate model. In general, this expression takes the form

Z

ds=(s,) dz (10.20)

where @* = (a + ay,1)/2 is an unweighted discrete vertical average. Introducing model arrays leads to

2
dzwt, =| ———— | dswt,. (10.21)
: ( (S,Z)k + (5,z)k+1 ) X
For example, with s = p, this relation takes the form
2
dzwty = —(—)dswtk, (10.22)
&Pk + Pr+1)

where dswt is known and is negative, since pressure decreases upward, whereas geopotential increases
upward.

10.3.2.2 Finite volume approach

From the finite volume approach described in Section 10.3.1, we follow expressions (10.16) and (10.17) for
the thickness of a grid cell to write

dzwt,—g = dztup,—1 (10.23)
dzwtys1 =dztlo,_q+ dztup (10.24)
dZWtk:kbot = dZtlok:kbot' (1025)

10.4 Summary of vertical grid cell increments

We now summarize the results from Section 10.3 for the vertical coordinates z, z*, 0@, p, p*, and aP). The
notation used in MOM is used to allow for direct comparison to the model code.

10.4.1 Geopotential vertical coordinate
The geopotential vertical coordinate has the following grid dimensions
dzt_dst(i, j,k)=1

dzwt(i, j,k=0)=zt(k = 1)+ eta_t(i, j) (10.26)
dzt(i, j,k =1)=2zw(k = 1)+ eta_t(i, j).

The initial values of the depth of tracer points, depth_zt, remain unchanged in time. However, the thick-
ness of the top cell is time dependent.
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10.4.2 z* vertical coordinate

The z* coordinate has the grid dimensions

dzt_dst(i, j, k)= 1+eta_t(i, j)/ht(i,]j)
dst(i, j,k dzt(i, j,k)|,=
(i,j,k)= (1, 3,K)lr=0 (10.27)
dSWt(l ]7 ) dZWt(i, j;k)|T:0
dzt(i, j, k) =dzt_dst(i, j, k) * dst(i, j,k).

For the energetically based computation of hydrostatic pressure (Section 10.1.1), the distance between
tracer points is computed according to

dswt(i, j,k =0)
dst_dzt(i, j,k=1)
2dswt(i, j, k)
dst_dzt(i, j,k)+dst_dzt(i, j,k+1)
dswt(i, j, k = kmt)
dst_dzt(i, j, k = kmt)’

dzwt(i, j,k=0)=

dzwt(i, j,k=1,kmt—1) =

(10.28)

dzwt(i, j,k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section 10.1.2), the distance between
tracer points is computed according to equations (10.23)-(10.25). Notice how the s-grid increments are
constant in time, and are set by the z-grid increments at the initial model time step.

10.4.3 Terrain following 0% vertical coordinate

For the terrain following ¢(?) coordinate, we proceed in a different manner than for the geopotential and z*
coordinates. Here, a dimensionless partition of the ¢(*) coordinate is prescribed during initialization, and
then the vertical grid dimensions deduced from knowledge of the depth field ht. The partitioning of o(?
can be chosen in many ways. We choose to base this partition on the vertical grid dimensions dzt(k) and
dzw(k) available in the Grid derived type. These are the full cell grid dimensions, which thus make dst and
dswt independent of horizontal position (i, j).

dzt_dst(i, j, k) =ht(i,j)+eta-t(i,j)
dst(i, j, k) =dzt(k)/zw(nk) (10.29)
dswt(i, j, k) = dzw(k)/zw(nk)
dzt(i, j, k) =dzt_dst(i, j, k) * dst(i, j, k).

For the energetically based computation of hydrostatic pressure (Section 10.1.1), the distance between
tracer points is computed according to

dswt(i, j,k =0)
dst_dzt(i, j,k=1)
2 * dswt(i, j, k)
dst_dzt(i, j,k)+dst_dzt(i, j,k+1)
dswt(i, j, k = kmt)
dst_dzt(i, j, k = kmt)’

dzwt(i, j,k=0)=

dzwt(i, j,k =1, kmt—1) = (10.30)

dzwt(i, j,k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section 10.1.2), the distance between
tracer points is computed according to equations (10.23)-(10.25).

10.4.4 Non-terrain following pressure vertical coordinate

As described in Section 10.2, initialization of the non-Boussinesq model must take place in a manner dif-
ferent from the Boussinesq model. That is, specifying the vertical grid increments with pressure vertical
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coordinates introduces a fundamentally new consideration. Namely, the vertical grid dimensions dzt are a
function of the initial in situ density pi““. However, with the present structure of MOM, we only know the
initial density after an initial grid structure is established. Furthermore, MOM does not allow for vanishing
layers. Hence, there is a possibility that a first guess at a vertical grid layout based on the bottom topog-
raphy and the initial density, will not provide for a realizable grid in a pressure model absent vanishing
layers. This point necessitates a multiple step process in the initialization of the pressure based model. We
clarify these points in the following discussion.

The first step of the initialization takes the initial temperature and salinity fields, and initial grid speci-
fication file, all generated using the familiar MOM4 preprocessing code that assumes geopotential vertical
coordinates. From this information, we compute a vertical density profile function

L Yij dati,jdzto(i,j,k)pi“it
Polk) = Y., dat;;dzt0i,j,k)

(10.31)

Here, the initial density pi“it is assumed to live on the initial grid specified by thicknesses dzto(i,j,k) that
are created just as if the model vertical coordinate were geopotential (including bottom partial cells). The
model is run for a time step to allow for this function to be generated and written to a netCDF file. Then the
model is rerun, now reading in this function as an input file for use in subsequent steps of the initialization.

Note that the vertical density profile function p,(k) takes account of the possibility for larger averaged
density in the deep ocean, in which case the vertical pressure increments increase at depth even moreso
than suggested by the generally larger vertical depth increments towards the deeper ocean. The utility of
the density profile for specifying the pressure levels is a function of many model details. For example, in
the global one degree model used for CM2.1 ( Griffies et al. (2005), Gnanadesikan et al. (2006), Delworth
et al. (2006), Wittenberg et al. (2006), and Stouffer et al. (2006a)) and ESM2M (Dunne et al. (2012a)), using a
reference profile proved to be detrimental to the abyssal flow in the tropics. We hypothesize that the profile
produced a vertical grid spacing that was much coarser than otherwise provided with a depth basic vertical
coordinate. Another possibility is there is a bug with the nontrivial p,(k) profile. Hence, we recommend
the trivial choice

Po(k) = po. (10.32)

Other model configurations may find different profiles to be more useful.

We now proceed to generate the vertical grid increments dst. As the model is pressure-based, these
increments should be a function only of the vertical grid index k, with the only exception being at the
bottom where partial bottom steps allow for i, j dependence

dstlo(i,j, k) = —g p,(k)dzt10°(i, j, k) (10.33)
dstup(i, j, k) = —g p,(k) dztup®(i, j, k) (10.34)
dst(i,j, k) = dstlo(k)+ dstup(k), (10.35)
where again
dzt%(i, j,k) = dzt10°(i, j, k) + dz tup®(i, j, k) (10.36)

are generated by assuming the model is a geopotential model so that the i, j dependence arises just from
the bottom partial cell adjustments.

Now that we have the vertical pressure increments dst(i, j, k), dstlo(i,j, k), and dstup(i,j, k), and the
initial density p'", we recompute the vertical depth increments so that

.. dstlo(i,j,k))
dZth1 1, ,k) = —(— 1037
( ] gpmlt(l,],k) ( )

.. dstup(i, j, k)
dZtUp1 1, ,k Z—(—H) 10.38
1,4 gp™(i, ], k) ( )
dzt!(i,j,k) = dztlo(i, ], k) + dztup(i, j, k). (10.39)

The fundamental question is whether the above procedure allows for the same number of vertical grid
cells to exist in a column with the pressure coordinate model as for the analog geopotential model. A
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general aim followed here is to include pressure coordinate models in MOM in a manner that represents an
overall modest adjustment to what is commonly done for initializing geopotential models. Given this aim,
we assume that both the geopotential model and pressure model have the same number of vertical grid
cells within each column. That is, the kmt(i, j) array computed for the geopotential model is the same as
for the pressure model. This assumption is self-consistent with the same bottom topography array ht(i, j)
only if
k=kmt(i,j)
Z dzt(i,j, k) <ht(i, j). (10.40)
k=1

More stringently, we aim to allow for a nontrivial bottom cell thickness dztmin in the pressure model in
order to regularize the numerical calculations in this cell, so that

k=km(i,j)~1
Z dzt(i,j, k) <ht(i, j) - dztmin. (10.41)
k=1

If this condition fails, then we are unable to initialize the pressure model with the same density distribu-
tion and bottom depths as in the geopotential model. There are two options: modify the density or modify
the bottom. Although not commonly applied at GFDL, the option of modifying the bottom has been fa-
cilitated in MOM, with documentation given in subroutine ocean_thickness_init_adjust in the module
ocean_core/ocean_thickness.F90. Depending on details of the initial density and dztmin, modifications
of the bottom have been found to be modest, and mostly localized to shallow ocean shelf regions. There is
no general rule, and the researcher may wish to iterate somewhat to refine the choice of bottom topography
for use with the pressure model.
To appreciate the problem a bit more, we write the sum (10.41) in the form

k=kmt(i,j)-1 . Kkt j)-1 dst(i, j, k)
Z dzt(l,],k):— — it 1
L = gp (l;];k)
: = (10.42)
k=kmt(i,j)-1 (k)
- dzt°(i, j, k) ,fzo—
k=1 P (i j k)

Thus, if we admit regions of the ocean where density is far less than the profile p,(k), then the vertical
column will be relatively thick. Hence, in order to maintain the same number of vertical grid cells in
the pressure and geopotential model, we are forced to depress the bottom topography by some nonzero
amount.

Assuming the bottom topography is chosen according to one of the above conventions, we have the
following means for computing the grid increments with the pressure vertical coordinate model. Here are
the equations that summarize this step

dzt_dst(i, j, —(g * rho(i, j, k)™

dswt(i, j,k = 1,kmt — 1) = —g = rho_o(k) * dzwt(i, j, k)|;=o

dst(i, j,k =2,kmt — 1) = —g * rho_o(k) * dzt(i, j, k)|¢=0

k)=
)
)=
dswt(i, j,k =0)=—-st(i, j,k = 1)+ patm(i, j) (10.43)
dswt(i, j,k = kmt) = st(i, j,k = kmt) — pbot(i, j)
dst(i, j,k =1)=—-sw(i, j,k = 1)+ patm(i, j)
dst(i, j,k = kmt) = sw(i, j,k = kmt — 1) —pbot(i, j)
dzt(i, j, k) =dzt_dst(i, j, k) *dst(i, j, k).

For the energetically based computation of hydrostatic pressure (Section 10.1.1), the distance between
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tracer points is computed according to

dzwt(i, j,k = 0) = dswt(i, j,k = 0)
dst_dzt(i, j,k=1)

B 2 = dswt(i, j, k)

" dst_dzt(i, j, k) +dst_dzt(i,j,k+1)
dswt(i, j, k = kmt)

dst_dzt(i, j, k = kmt)’

dzwt(i, j,k = 1,kmt — 1)

(10.44)

dzwt(i, j,k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section 10.1.2), the distance between
tracer points is computed according to equations (10.23)-(10.25).

10.4.5 p*vertical coordinate

The same initialization procedure is followed for p* as for pressure. Following the initialization, the model
employs the following equations for setting the vertical grid increments

pbOt(i, j)_patm(ix ])
g * rho(i, j, k) * pbotO(i, j)

dzt_dst(i, j,k)=—

dswt(i, j, k) =dswt(i, j, k)|r=o (10.45)
dst(i, j, k) = dst(i, j, k)|,=o
dzt(i, j,k) = dzt_dst(i, j, k) * dst(i, j, k)

For the energetically based computation of hydrostatic pressure (Section 10.1.1), the distance between
tracer points is computed according to

_ dswt(i, j,k=0)
~ dst_dzt(i, j,k=1)
2 = dswt(i, j, k)
dst_dzt(i, j, k) +dst_dzt(i, j,k+1)
dswt(i, j, k = kmt)
dst_dzt(i, j,k = kmt)’

dzwt(i, j,k =0)

dzwt(i, j,k = 1,kmt—1) = (10.46)

dzwt(i, j,k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section 10.1.2), the distance between
tracer points is computed according to equations (10.23)-(10.25).

10.4.6 Steps to initialize pressure and p* based models

We now summarize the steps required to initialize the pressure and p* based models.

¢ Determine dzto(i,j,k) as z-model, with lejrlt(i'j) dzto(i,j,k) =ht(i, j)

* Determine the density profile function rho_o(k) according to equation (10.31), with default rho_o(k) =
Po-

* Set the pressure increments according to

dstlo(i,j, k) = —grho_o(k)dzt10°(i, j, k) (10.47)
dstup(i,,k) = —g rho_o(k)dztup®(i, j, k) (10.48)
dst(i,j, k) = dstlo(k)+dstup(k), (10.49)

* Insert the initial temperature and salinity to the grid points (i, j, k) to then determine the initial den-
sity p"™*(4, j, k).

ELEMENTS oF MOM October 8, 2012 Page 145



CHAPTER 10. QuASI-EULERIAN ALGORITHMS FOR HYDROSTATIC MODELS Section 10.5

* Determine the modified thickness of the grid cells according to

. dstlo(1 ,k)
dztlo'(i,j, k)= ————22 1 (10.50
] ) gplmt(l, ) )
.. dstup(1 , k)
dztup'(i,j k)= ————-22""1 (10.51
R gp™ (i j, k) )
dzt!(i,j,k) = dztlo(i, ], k) + dztup(i, j, k). (10.52)
¢ Determine if
k=kmt(i,j)—
Z dzt(i,j, k) <ht(i, j)—dztmin. (10.53)
=1

If so, then make no modifications to the bottom topography. If not, then deepen the bottom topogra-
phy so that the following equality is satisfied

k=kmt(i,j)-1
ht(i, j)"°% = Z dzt(i,j, k) +dztmin. (10.54)
k=1

* Determine the bottom cell thickness according to

k=kmt(i,j)-1

dzt(i, j,kmt) = ht(i, j) - Z dzt(i, ], k). (10.55)
k=1

10.4.7 Terrain following ¢P) coordinate

For the terrain following oP) coordinate, we use the same dimensionless partition as for the 0@ coordinate
to initialize the grid arrangement. However, we have been unable to derive a self-consistent method to
incorporate the in situ density into the algorithm, since to compute the bottom pressure we must know
dzt, but to know dzt requires the bottom pressure. Hence, we expect there to be a large and spurious
deviation in surface height just after initialization for runs with o) coordinate.

During the integration, we make use of the following grid increments

pbot(i, j)—patm(i, j)
g * rho(i, j, k)
dswt(i, j, k) = —dzw(k)/zw(nk) (10.56)
dst(i, j, k) = —dzt(k)/zw(nk)
dzt(i, j,k) = dzt_dst(i, j, k) * dst(i, j,k)

dzt_dst(i, j, k) = —

For the energetically based computation of hydrostatic pressure (Section 10.1.1), the distance between
tracer points is computed according to

dswt(i, j,k =0)
dst_dzt(i, j,k=1)
2 = dswt(i, j, k)
dst_dzt(i, j,k)+dst_dzt(i, j,k+1)
dswt(i, j, k = kmt)
dst_dzt(i, j, k = kmt)’

dzwt(i, j,k=0) =

dzwt(i, j,k =1,kmt—1) =

(10.57)

dzwt(i, j,k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section 10.1.2), the distance between
tracer points is computed according to equations (10.23)-(10.25).
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10.5 Surface height and bottom pressure diagnosed

The purpose of this section is to detail how the surface height and bottom pressure are diagnosed in non-
Boussinesq and Boussinesq models, respectively.

10.5.1 Surface height diagnosed in pressure based models

For models using a pressure based vertical coordinate, the surface height 7 is diagnosed, whereas for depth
based models it is computed prognostically (Section 10.6). To diagnose the surface height, we use the
identity

1=-H+) dz (10.58)

given the thickness dz of each cell determined via Table 10.1. This is the original calculation provided in
MOM for 7, with the associated diagnostic table entry being

etat=—H+ Z dz. (10.59)

Another diagnostic method, identical in the continuum but differing numerically due to finite precision,
uses the following identity valid for the three pressure-based vertical coordinates supported in MOM

1

H+q:(M)—I(ﬂ)dz (10.60)
Po8 Po

This alternative calculation separates the smaller density contribution arising from density anomaly p’ =
p — po, from the larger bottom pressure contribution. This separation aims to facilitate a more precise
calculation by reducing numerical roundoff. However, in practice there is very little difference from the
original calculation in equation (10.58). The diagnostic table entry for the modified diagnostic is given by

—p.—p.oH _
eta_tmod = Po—Pa"Po8 —Z(—p p“)dz. (10.61)
Po& Po

10.5.1.1 Concerning nonzero areal average

It is useful to note a common occurrance with pressure based models. Namely, the surface height will
generally have a nonzero areal average even in the absence of mass fluxes. Such should be expected since the
pressure based models conserve mass, not volume. For example, surface height can actually decrease even
when mass is added to a column, so long as the column density increases by a sufficient amount. Hence,
we are unable to make a general statement regarding the sign of the surface height without knowledge
of both the mass per area in the column (as determined by the bottom pressure) as well as the vertical
sum of the inverse density. Relatedly, the steric effect will cause the surface height to rise in regions of
heating/freshing and decrease in regions of cooling/evaporation.

10.5.1.2 Concerning small scale features

For a non-Boussinesq pressure-based simulation, the sea level is diagnosed through either equation (10.58)
or equation (10.60). The cell thickness, dz, appearing in these equations is a function of density and mass
in a cell. The density and mass change according to the flow, the temperature and salinity, and the cell
pressure. There are opportunities for relatively small scale features to appear in the diagnosed sea level
through the imprint of small scale features in the density and mass fields. Furthermore, adding the thick-
ness from small cells (e.g., thin bottom partial cells) to those from large cells offers an opportunity for
truncation errors, especially when later subtracting the summed depth of a resting ocean to compute the
sea level. For those familiar with the smoother sea level fields arising from a Boussinesq simulation, the
application of a smoothing operator to the diagnosed eta is a suitable approach to removing some of the
small scale features.
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In summary, the prognosed sea level from a Boussinesq simulation is generally smoother than the di-
agnosed sea level in a non-Boussinesq pressure-based simulation. The physical reason is that the non-
Boussinesq sea level is impacted by the density and mass that sits within a fluid column, whereas the sea
level in a Boussinesq fluid is impacted by density only through the impacts on the convergence of depth
integrated currents.

10.5.2 Bottom pressure diagnosed in depth based models

For models using a depth based vertical coordinate, it is necessary to diagnose the bottom pressure p;, using
the following identity

Pob=Pat+g Zpdz. (10.62)

Here, we use the in situ density p and the thickness dz of each cell.

10.6 Vertically integrated volume/mass budgets

The vertically integrated mass and volume budgets determine, respectively, the bottom pressure and the
surface height. The purpose of this section is to derive these budgets for use with depth based and pressure
based vertical coordinates.

10.6.1 Vertically integrated volume budget

The budget for the volume per unit horizontal area for a Boussinesq fluid integrated over the depth of a
grid cell takes the following forms, depending on whether the cell is in the interior, the bottom, or the
surface

94(dz) = -V, - (udz) - (w) oy, | + (WH)oey, + SV d2 (10.63)
9¢(dz) = -V, (udz) - (), +SVdz (10.64)
d;(dz) = -V - (udz) + (W), + Qu/pp + SV dz (10.65)

We obtained these equations from the mass budgets (2.155), (2.163), and (2.173), with density set to the
constant Boussinesq reference value p,, and with S™) a volume source (with units of inverse time). The
vertical sum of these budgets leads to
9 (H+n)=-V-U+ Qm/p0+ZS(V)dz, (10.66)
k

where we used

Zdz:H+ry, (10.67)
k
which is the total thickness of the water column, and we introduced the depth integrated horizontal velocity

Zudz - U. (10.68)
k

Since H is the time independent ocean bottom, equation (10.66) provides a prognostic relation for the
surface height

9 =-V-UtQu/po+ ) SVdz. (10.69)
k

This is the free surface equation used for depth based vertical coordinate Boussinesq models.
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10.6.2 Vertically integrated mass budget

The budget of the mass per unit horizontal area for a non-Boussinesq fluid integrated over the depth of
a grid cell takes the following forms, depending on whether the cell is in the interior, the bottom, or the
surface

di(pdz) = -V, - (updz) - (pw)seg , +(pw)oeg, + S pdz (10.70)
d;(dzp) = -V, (updz) - (pw)s_y,,  +S™pdz (10.71)
9;(dzp) = -V (updz) + (pw@)sey, + Qp +S™pdz. (10.72)

These are equations (2.155), (2.163), and (2.173). The vertical sum of these budgets lead to the vertically
integrated balance of mass per area for a column of fluid

Qt[Zpdz]:—V~[Zupdz]+Qm+ZS(M)pdz. (10.73)
k k k

The vertical integral } ; pdzis the total mass per area in the fluid column. In a hydrostatic fluid, this mass
per area is equal to the difference in pressure between the bottom and top of the column

Eipdz— (Po— Pa). (10.74)

Consequently, the mass budget generally takes the form

Zupdz]+ng +g ZS(M)pdz
k k

=—gV-UP+gQ+g ZS(M)pdz
k

d¢(pp—pa) =gV~

(10.75)

where
UP = Zupdz (10.76)
k

is the vertically integrated density weighted horizontal velocity. Equivalently, it is the vertically integrated
horizontal momentum per horizontal area. The time tendency for the applied pressure could be provided
by another component model. Without this information, it can be approximated by, for example,

W) —pa(t—1
atpa%p—() Apt( ) (10.77)

For the vertical integral of the horizontal momentum per volume, pu, note that z p is depth independent
for either choice of pressure based coordinates given in Table 5.2. In summary, for the pressure based
coordinates in Table 5.2, the depth integrated mass balance (10.73) takes the form

9t (po—pa)=—¢V-UP+gQn+g ZS(M)pdz. (10.78)
k

10.6.3 Summary of the vertically integrated volume/mass budgets
In summary, the vertically integrated volume and mass budgets take on the isomorphic form
9,1 =-V-UtQu/po + ZS(V) dz
k
(10.79)
g0 (py—pa) =-V-UP +Qp+ ) SMpdz
k

These budgets provide prognostic relations for the surface height # in the Boussinesq case, and the bottom
pressure py, in the non-Boussinesq case. The tendency for the applied pressure p, must be determined by
another component model, or approximated via equation (10.77).
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10.7 Compatibility between tracer and mass

Although we do not time step the vertically integrated tracer budget in an ocean model, it is useful to write
it down for diagnostic purposes. Furthermore, it allows us to introduce a compatibility condition between
tracer and mass budgets. To do so, recall the tracer budgets for the interior, bottom, and surface grid cells,
given by equations (36.122), (2.162), and (2.172)

di(Cpdz) = S(C)pdz—VS -[pdz(uC +F)]
- [P (w(Z) C+ F(s))]szsk,l
+[p(w? C+FY)],.

9;(Cpdz) =89 pdz-V,-[pdz(uC +F)]
—[p(w(z)C—i-F(s))]

S$=Skbot-1
(©)
+Qpor)
d;(Cpdz) = s© pdz—V;-[pdz(uC +F)]
+ [p (w® C+ F(S))]

S=5k=1

urb
+Qun Cn - Q)"

Summing these budgets over a vertical column leads to

&’t[Zdez
k

= ZS(C)pdz—VS- Zpdz(uC+F)]
k k
(turb)

(bott)
+ (Qm Cm - Q(C) + Q(C) )

(10.80)

As expected, the only contributions from vertical fluxes come from the top and bottom boundaries. Fur-
thermore, by setting the tracer concentration to a uniform constant, all the turbulent flux terms vanish, in
which case the budget reduces to the vertically integrated mass budget discussed in Section 10.6.2. This
compatiblity between tracer and mass budgets must be carefully maintained by the discrete model equa-
tions.!

10.8 Diagnosing the dia-surface velocity component

The key distinction between Eulerian vertical coordinates and Lagrangian vertical coordinates is how they
treat the dia-surface velocity component

oz as
T Os dt’

e

(10.81)
The Lagrangian models prescribe it whereas Eulerian models diagnose it. The purpose of this section is
develop Eulerian algorithms for diagnosing the dia-surface velocity component for the depth based and
pressure based vertical coordinates of Chapter 5. As we will see, a crucial element for the utility of these
algorithms is that the specific thickness z ; is depth independent using depth based coordinates in a Boussi-
nesq fluid, and pz is depth independent using pressure based coordinates in a non-Boussinesq fluid.

1 As discussed by Griffies et al. (2001), local conservation of an algorithm for tracer and volume/mass can readily be checked by
running a model with uniform tracer concentration and blowing winds across the ocean surface. Surface height undulations will
ensue, thus causing changes in volume for the grid cells. But the tracer concentration should remain uniform in the absence of surface
fluxes. Changes in tracer concentration will not occur if the volume/mass and tracer budgets are compatible in the sense defined in
this section.
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10.8.1 Depth based vertical coordinates

Rearrange the grid cell volume budgets (10.63)-(10.65) to express the dia-surface velocity component for
the top cell, interior cells, and bottom cell as

(w)sms,_, = 9+ (dz) - SV dz + Vs - (udz) - Qu/p, (10.82)
(w)ses, = 94(d2z) - SMdz + Vs - (udz) + (w'?)eey, (10.83)
0=0;(dz) -8V dz+V,- (udz) + (w®?) (10.84)

S=Skbot-1"
These equations are written from the surface to the bottom, with this order familiar from the z—coordinate
version of MOM4.0. Equation (10.84) indicates that there is no transport through the ocean bottom. In a
numerical model, this equation provides a useful diagnostic to check that dia-surface velocity components
in the cells above the bottom have been diagnosed correctly. A nonzero result at the bottom signals a code
bug.

We now detail how the dia-surface velocity component is diagnosed for the depth based vertical coor-
dinates discussed in Section 5.1. To do so, we determine diagnostic relations for the time tendency d; (dz)
of the grid cell thickness as a function of vertical coordinate. Because z is independent of depth for these
coordinates, we are able to express d; (dz) as a function of d;#, which in turn can be diagnosed using the
vertically integrated volume budget.

10.8.1.1 Depth coordinate

For s = z, the only grid cell that admits a non-zero d; (dz) is the surface cell, where d;(dz) = d;#. Also, in

MOM4.0 we assumed that there are no volume sources for k > 1. But this assumption is not fundamen-

tal. Indeed, volume sources throughout the column are not a problem, so long as their affects on volume

conservation for the cell are properly handled in the diagnosis of the vertical velocity component. These
results lead to the following expressions for the dia-surface velocity component w!? = dz/dt = w

(W),ep, =911 -SVdz+V, - (ud2) - Qu/p, (10.85)

W),y ==V dz+V, - (udz) + (w?),_,, | (10.86)

0=-8Vdz+V,-(udz)+ (w?) (10.87)

Z=Zkbot-1"

The right hand side of the surface height equation (10.69) can be used to eliminate d,# in equation (10.85),
thus leading to a purely diagnostic set of equations

(W), =-8Vdz+V, - (udz) + Zsm dz-V-U (10.88)
k

(w),op, = -8V dz+V, - (udz) + (w'?),,, | (10.89)
0=-8Vdz+V,-(udz)+ (w?) (10.90)

2=Zkbot-1"
The algorithm starts at k = 1 given knowledge of the right hand side terms in equation (10.88). Movement
down the vertical column leads to the diagnosis of w for the full column.

10.8.1.2 Depth deviation coordinate

For s = z— 1, the only grid cell that admits a non-zero d; (dz) is the bottom cell where d; (dz) = d;1. The
dia-surface velocity component w'® = w — ds/dt thus is diagnosed via

(W)sos,_, = ~SVdz+ V- (udz) - Qu/p, (10.91)
(W¥)szg, = =SV dz+V, - (udz) + (w?) g, | (10.92)
0=2,1n-8Vdz+V,-(udz) + (W), , - (10.93)
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As with the depth coordinate s = z, we use the surface height equation (10.69) to eliminate d, 7 in equation
(10.93) and so lead to a fully diagnostic set of equations

(W)smg,, = ~SVdz - Qu/py + V. - (udz) (10.94)
(W'?),ey, = ~SVdz+ (W), +V, - (udz) (10.95)
0=-8Vdz+w?),_,,  +V, (udz)
+| Qm/po—V-U+ ZS(V)dz . (10.96)
k

10.8.1.3 Zstar coordinate

For s =z" = H(z—-1)/(H +1), all grid cells have time independent ds since the range for z* is time indepen-

dent. However, the specific thickness z; =1 + 7/H is time dependent. The dia-surface velocity component
is thus diagnosed via the equations

(W)eeg,_, =dsH ' 9y~ SVdz+V, - (udz) - Qu/p, (10.97)

(w)oog, =dsH ' 917 = SV dz+ V- (udz) + (w?) oy, (10.98)

0=dsH™ 9, -8Vdz+V,-(udz) + (w?) (10.99)

S=Skbot-1"

The surface height equation (10.69) is used to eliminate d;n from each of these equations. Note that in
verifying the correctness of these results, recall that } ; ds = H for s = z".

10.8.1.4 Depth-sigma coordinate

For s = 0(?) = (z—#)/(H + 1), all grid cells have constant ds since the range for o is time independent. How-

ever, it has a time dependent specific thickness z; = H + 7. These results lead to the following expressions
for the dia-surface velocity component

(w)ses,_, =ds Iy~ SV dz+ V- (udz) - Qu/p, (10.100)

(W')sos, = ds i~ SV dz + V- (udz) + (w?)s_y, | (10.101)

0=dsd; -8V dz+V;-(udz) + (w'?) (10.102)

S$=Skbot-1"

The surface height equation (10.69) is used to eliminate d;7 from each of these equations. In verifying the
correctness of these results, recall that ) ,ds=1 fors= o,

10.8.1.5 General expression for dia-surface velocity component

In summary, for depth based vertical coordinates, the dia-surface velocity component is diagnosed via

(W')sz,_, = 94 (dz) - SV dz + V, - (udz) - Qu/p,

(w(z))S:Sk = 9,(dz) - SMdz+ V,-(udz)+ (w(Z))s:Ski1 (10.103)
0=0,(dz)-SVdz+ V- (udz) + (), |
where the thickness of a grid cell evolves according to
di(dz) = 6y1 9in s=z
di(dz) =96 d =z-
£ (d2) = O kpot 1] s=z-1 (10.104)

dy(dz) =ds(dyn/H)  s=H(z-n)/(H+1n)
d;(dz) = dsdyn s=(z-n)/(H+n).
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The surface height evolution
9 =-V-UtQu/po+) SVdz (10.105)
k

embodies volume conservation for a Boussinesq fluid column. The right hand side of (10.105) is used in
equations (10.104) to produce a purely diagnostic expression for the dia-surface velocity components.

10.8.2 Pressure based vertical coordinates

We now diagnose the dia-surface velocity component for pressure based vertical coordinates. For this
purpose, rearrange the grid cell mass budgets (10.70)-(10.72) to express the vertical velocity component as

(pw)sms,, =91 (pd2) - S™ pdz+ V. - (updz) - O, (10.106)
(pw')szs = di(pdz) 8™ pdz+ V- (updz) + (pw)scy, (10.107)
0=10J;(pdz)— SM) pdz+V;-(updz)+(p w(z))s:mm_l . (10.108)

As for the depth based vertical coordinates, we write these equations from the surface to the bottom. Equa-
tion (10.108) indicates that there is no transport through the ocean bottom. In a numerical model, this
equation provides a useful diagnostic to check that velocity components in the cells above the bottom have
been diagnosed correctly. A nonzero result at the bottom signals a code bug.

We proceed as for depth based vertical coordinates by determining diagnostic relations for d; (pdz) as
a function of the pressure based vertical coordinates discussed in Section 5.2. Because pz is independent
of depth for these coordinates, we are able to express d;(pdz) as a function of Jd;p, and J;p,. The time
tendency of the applied pressure is set according to other component models, or approximated as (10.77).
The time tendency for the bottom pressure is set according to the vertically integrated mass budget (10.78).
Finally, we note that it is the density weighted dia-surface velocity component p w(® which is most naturally
diagnosed in this approach. Conveniently, it is pw(*) that is required for the non-Boussinesq tracer and
momentum budgets discussed in Sections 2.6 and 2.9.

10.8.2.1 Pressure coordinate
For s = p, the density weighted specific thickness is a constant for all grid cells
pzs=-g", (10.109)

but both the surface and bottom grid cells admit a non-zero d; (pdz). At the surface?,

dz=-¢g'd
P g_l b (10.110)
=-& (pa — Pbottom of cell k=1 )
which then leads to
d;(pdz) =g~ 9 pa. (10.111)

That is, the top cell mass per area decreases when the applied pressure increases. This result follows since
the bottom face of the top cell has a fixed pressure, but the top face is at the applied pressure p,. As noted
in Section 5.2, if the applied pressure becomes greater than pyoiom of cell k=1, then the top cell vanishes. For
the bottom cell,

dz=-¢'d
P gfl P (10.112)
=—& (ptop of cell k=kbot — pb)'

ZRecall that our convention in equation (5.34) is that ds < 0 for pressure based vertical coordinates. At the surface with pressure
coordinates s = p, the coordinate increment is dp = pa — Ppottom of cell k=1- Lhis increment is negative since the applied pressure is
less than the pressure at the bottom interface to cell k = 1. For the bottom cell, dp = piop of cell k=kbot — Pb» Which is negative when the
bottom pressure is greater than the pressure just above it.
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and so
d(pdz) =g 9, py. (10.113)

Hence, the bottom cell thickness increases as the bottom pressure increases. If the bottom pressure de-
creases below pyop of cell k=kbot» then the bottom cell vanishes. These results lead to the following expressions
for the density weighted dia-surface velocity component

(pw™)egy; = 9y pa—dsS™ + V- (dsu) + g Qun (10.114)

(pw)ses, = —dsSM +V, - (dsu) + (pw) oy, | (10.115)
O:—Btpb—dSS(M)+Vs-(dzu)+(pw(z)) (10.116)

S$=Skbot-1"

As a check, a sum of these equations leads to the vertically integrated mass budget (10.78) written in
pressure coordinates. These equations are converted to diagnostic expressions for the dia-surface velocity
component by substituting the known time tendencies for the applied pressure d; p, (e.g., equation (10.77))
and the bottom pressure d; p;, via the column integrated mass budget (10.78).

10.8.2.2 Pressure deviation coordinate

For s = p — p,, the only grid cell that admits a non-zero d; (pdz) is the bottom cell. At this cell,

dz=-g'd
g’ g_l g (10.117)
=-8 [ptop of cell k=kbot — (Pb _Pa)]:
and so
¢ (pdz) =g~ 9; (py — pa). (10.118)

The right hand side can be diagnosed via the column integrated mass budget (10.78). These results lead to
the following expressions for the dia-surface velocity component

(pw)sms,, = —dsS™M + V- (dsu) + g Qp (10.119)

(pw!?),es, = —dsSM + V- (dsu) + (pw)_y, | (10.120)

0=—0;(pp—pa) —dzS™M 1+ V- (dsu) + (pw'?) (10.121)

S=Skbot-1"

As a check, the sum of these equations recovers the vertically integrated mass budget (10.78) written in
pressure coordinates.

10.8.2.3 Pstar coordinate

For s = p* with
p"=pp(p—pa)/(py—pa) (10.122)

all grid cells have time independent constant ds. We are then led to the following mass per horizontal
volume of a grid cell

pdz=pz.ds 10123
=~(gpy)™! (Po—pa)ds.
The time tendency
9;(pdz) = ~ds(gpg)~" 9 (pp —pa) (10.124)

can be diagnosed via the column integrated mass budget (10.78). We then use these results in the general
expressions (10.106)-(10.108) to generate the algorithm for diagnosing the vertical velocity components.
As a check, the sum of these equations recovers the vertically integrated mass budget (10.78) written in
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pressure coordinates. Note that in verifying this identity, it is important to note that ), ds = —p{ for the
pstar coordinate, which results from the following identities

Po-pa=g ) pdz
k
:g;pzfsds (10.125)
Pb —Pa
=—(——— ds,
( Py ) ;
where we used the hydrstatic balance (10.74) for the first equality.

10.8.2.4 Pressure sigma coordinate

For s = ¢P) = (p — p,)/(py — p.), all grid cells have time independent ds since the range for ¢ is time inde-
pendent. However, this coordinate has a time dependent density weighted specific thickness, thus leading

to
dz=pz.ds
paz=p ° (10.126)
=-¢  (pb—pa)ds.

We use these results in the general expressions (10.106)-(10.108) to generate the algorithm for diagnosing
the vertical velocity components. As a check, the sum of these equations recovers the vertically integrated
mass budget (10.78) written in pressure coordinates. In verifying this identity, it is important to note that
Y ds=—1fors=clP.

10.8.2.5 General expression for the dia-surface velocity component

In summary, for pressure based vertical coordinates, the dia-surface velocity component is diagnosed via

(pw)s—s_, = 94 (pdz) - SM pdz+V, - (updz) - Qn

(pw)szy, = 9i(pdz) ~S™pdz+ V- (updz) + (pw)osy, | (10.127)
0=20;(pdz)— sM) pdz+V;-(updz)+(p w(z))szskbm_1 .
where the density weighted thickness of a grid cell evolves according to
89¢(pdz) = =01 9t pa+ Ok kbot dtPy  S=Pp
di(pdz) =0 d; (py — =p—
8 9¢(pdz) = Ok kot ot(pb Pa) s PO Pa (10.128)
89i(pdz) = ~(ds/pg) 91 (po — pa) =Py (P~ Pa)/(Py — Pa)
89i(pdz) = —ds dy (py —pa) s =(p=pa)/(po—Pa)
and the bottom pressure evolution
91 (po=pa) =—gV-UP +gQn+g ) SMpdz (10.129)
k

embodies mass conservation for a non-Boussinesq fluid column.

10.8.3 Comments about diagnosing the dia-surface velocity component

We emphasize again that a critical element in the Eulerian algorithms for diagnosing the vertical velocity
components is the ability to exploit the depth independence of the specific thickness z; for the depth
based coordinates for a Boussinesq fluid, and the density weighted specific thickness pz; for the pressure
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based coordinates for a non-Boussinesq fluid. These properties allow us to remove the time tendencies for
surface height and pressure from the respective diagnostic relations by substituting the depth integrated
budgets (10.69) for the depth based models, and (10.78) for the pressure based models. Absent the depth
independence, one would be forced to consider another approach, such as the time extrapolation approach
to approximate the time tendency proposed by Greatbatch et al. (2001) and McDougall et al. (2002) for
implementing a non-Boussinesq algorithm within a Boussinesq model.

10.9 Vertically integrated horizontal momentum

We now outline the split between the fast vertically integrated dynamics from the slower depth dependent
dynamics. This split forms the basis for the split-explicit method used in MOM to time step the momentum
equation. For this purpose, we formulate the budget for the vertically integrated momentum budget.

10.9.1 Budget using contact pressures on cell boundaries

Before proceeding with a formulation directly relevant for MOM, we note the form of the vertically in-
tegrated budget arising when we consider pressure acting on a cell as arising from the accumulation of
contact stresses. For this purpose, we vertically sum the momentum budgets given by equations (2.226),
(2.229) and (2.234), which leads to

(Di+ fZA) Z(udzp) =— Z(i A (Mupdz)+V;- [u(updz)])

+ Z(_vs (pdz)+dez) (10.130)

+[paV7/I+TWind+prmum]

+ [pb VH - Tbottom].

Contact pressures on the top and bottom of the grid cells cancel throughout the column, just as other
vertical fluxes from momentum and friction. The remaining contact pressures are from the bottom and
top of the ocean column and the vertically integrated contact pressures on the sides of the fluid column.
Correspondingly, if we integrate over the horizontal extent of the ocean domain, we are left only with
contact pressures acting on the solid boundaries and undulating free surface. Such is to be expected, since
the full ocean domain experiences a pressure force only from its contact with other components of the earth
climate system.

10.9.2 Budget using the pressure gradient body force

As discussed in Section 2.8.2, we prefer to formulate the contribution of pressure to the linear momentum
balance as a body force, whereby we exploit the hydrostatic balance. Hence, to develop the vertically
integrated horizontal momentum budget, we start from the form of the budget given by equations (4.19),
(4.20), and (4.21), rewritten here for the interior, bottom, and surface grid cells

[0;+(f + M)z A](updz) = pdzS™ -V, - [u(updz)]
-dz(Vsp+pV;D)+Fpdz

) (10.131)
—[P(w uz)]s =Sk-1
+[P u Kuz)]s =Sk
[0;+(f + M)2A](updz) = S™ pdz -V, [u(updz)]
—dz(V, V. D d
=V p+p J+Fpdz (10.132)

- [p( Ju- Ku, )]stkbor—l
_ ,l_bottom
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[0; + (f + M)2A](updz) = SW pdz -V, -[u(updz)]
-dz(Vsp+p V@) +Fpdz

. 10.133
1 Qg 10:433)
+ [ Y (w(Z) u- Ku,z) ]SZSk:l .
A vertical sum of the momentum budgets leads to
(9 + f2A) Z(updz): ZS(“)pdz
- Z(z A (Mupdz)+ V- [u(updz)])
(10.134)

+ Zdz(—VSp—pVSd) +pF)
+ ,l_wind _ Tbottom + Qm u,.

Fluctuations in the surface height contribute both to fluctuations in the horizontal pressure gradient and
the geopotential gradient. These fluctuations lead to fast barotropic or external gravity waves, and so
they must be integrated with a small time step. In contrast, the slower baroclinic or internal motions can
be integrated with a larger time step, upwards of 100 times longer depending on details of the motions.
Hence, it is advantageous for ocean climate modeling to develop an algorithm that splits between the
motions when time stepping the equations. Details of this split depend on whether we work with a depth
based or pressure based vertical coordinate.

10.9.3 Depth based vertical coordinates

We follow the discussion in Section 3.2.1 where the pressure gradient is split according to either equation
(3.18) for s = z* or s = 0¥, and equation (3.17) for s = z. For geopotential coordinates s = z this split takes
the form

Vsp+pVs® =V (P, + Pourt) + Vs Plinic + 0" Vs @ (10.135)

fast slow

where po, s =p(z=0)gn, p=p,+p and pl;,.. = ¢ LO p’ dz. For zstar or sigma coordinates, this split takes
the form

Vip+pVs® =V (p,+pogn)+Vsp' +p Vs @ (10.136)

fast slow

where p’ = ¢ Lﬂ p’dz is the anomalous pressure field. The Boussinesq form of the vertically integrated
momentum budget (10.134) thus takes the form

Po(@r+f2A) ) (udz)= G=(H+n)V(ps + Puut) (10.137)

for s = z coordinates, and similarly for s = z* and s = 0@ coordinates. In either case, G is the vertical integral
of the depth dependent terms on the right hand side of equation (10.134). G embodies all contributions
that are generally evolving on the slower baroclinic time scale. This equation, along with the vertically
integrated volume budget discussed in Section 10.6, form the barotropic system for the Boussinesq fluid in
MOM. These equations are time stepped to resolve the fast waves using a predictor-corrector or leap-frog
scheme discussed in Chapter 12 of Griffies (2004) (see also Section 11.2), where G is held fixed over the
course of the barotropic cycle. Note that the predictor-corrector is preferred due to its enhanced dissipation
of small spatial scale features, which are of some concern on the B-grid due to the gravity wave null mode
(Killworth et al., 1991; Griffies et al., 2001).
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10.9.4 Pressure based vertical coordinates

We now follow the discussion in Section 3.2.3 where the pressure gradient is split according to equation
(3.27) into a slow three dimensional term and fast two dimensional term

Vsp+pVs® = p Vi@ —(p'/po) Vs p+(p/po) V(po + po Py).- (10.138)
slow fast
where Z
D' =—(g/p,) J p'dz. (10.139)
-H

The vertically integrated pressure gradient can be written

) dz(Vip+pV,®) =) dz[pV,® = (p"/p,) Vsp]
+V(py+po®y) ) (p/po)dz

(10.140)
=) dz[pV, @'~ (p'/p,) Vsp]
+(200) ™ (Po = Pa) V(P + Po Dy),
where we used the hydrostatic balance to write
g) pdz=py-p, (10.141)
The vertically integrated momentum budget (10.134) thus takes the form
(Dr+f2n) Z(ude) = G=(gpo) " (Po—Pa) V(pp + Po Dp)s (10.142)

where G is the vertical integral of the depth dependent terms on the right hand side of equation (10.134),
including the slow contribution to the pressure gradient force. The time stepping of equation (10.145) then
proceeds as for the Boussinesq case discussed in Section 11.2. To help reduce errors in the calculation of
the pressure gradient, it is useful to consider the following split of the bottom pressure

Po=py+p.gH, (10.143)

so that the vertically integrated mass and momentum budgets take the form
91 (py=pa) =—gV-UP+gQn+g ) S™Mpdz (10.144)
k

9+ f2A)UP = G=(gp,) " (po—Pa) Vi, (10.145)

The advantage of this formulation is that we remove the time independent bottom geopotential p, g H from
the pressure gradient contribution to the vertically integrated velocity. As this contribution is huge, its
removal enhances the numerical accuracy of the resulting pressure gradient.
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TIME STEPPING SCHEMES
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The purpose of this chapter is to detail various issues of time stepping the discrete equations of MOM. It
is written in two main parts, with the first part focusing on details of the scheme inherited from MOM4.0,
and successfully used for climate modelling. The second part revisits the MOM4.0 scheme, and pro-
poses some alternatives that are presently under investigation. The motivation for revisiting the MOM4.0
schemes is that they show problems when used with radiating open boundary conditions. Martin Schmidt
led the studies into these alternative time stepping schemes, with some details shared with the more sub-

stantial methods studied by Shchepetkin and McWilliams (2005).
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The following MOM modules are directly connected to the material in this chapter:

ocean_core/ocean_barotropic.F90
ocean_core/ocean_velocity.F90

ocean_tracers/ocean_tracer.F90

11.1 Split between fast and slow motions

An algorithm of practical utility for climate modeling must split the fast and slow dynamics so that the
slow dynamics can be updated with a much longer time step than the fast dynamics. These algorithms are
known as split-explicit methods. Alternatives exist whereby the fast dynamics are time stepped implicitly
and so may use the same time step as the slow dynamics. We prefer split-explicit methods since they are
more efficient on parallel computers and arguably more straightforward (Griffies et al., 2001).

For a hydrostatic fluid, the fast motions can be approximated by the vertically integrated dynamics of
Section 10.9 and the vertically integrated mass or volume budgets of Section 10.6. The remainder consti-
tutes an approximation to the slower dynamics. Motions constituting the fast dynamics are embodied by
the barotropic or external mode, and the slower motions are embodied by advection as well as the baroclinic
or internal mode. Given the fundamental nature of the mass conserving non-Boussinesq flow, we formulate
the split between the fast and slow modes using density weighting. For the Boussinesq flow, the density
weighting reduces to an extra p, factor that trivially cancels.

Following the discussion in Section 12.3.5 of Griffies (2004), we consider the following split of the
horizontal velocity field

u

(u— Yk updz)+(zk updz)
Y pdz )i pdz

slow fast

(11.1)

a+u?

The fast barotropic velocity
ur

- Y pdz

is updated according to the vertically integrated momentum equation of Section 10.9. The slow baro-
clinic velocity @ has zero density weighted vertical sum, and so its update is independent of any depth
independent forcing, such as fast fluctuations in the surface height associated with external gravity waves.
Therefore, we choose to update the slow dynamics using all pieces of the momentum equation forcing, ex-
cept contributions from the rapid pressure and geopotential fluctuations. This update produces a velocity
u’ that is related to the baroclinic velocity via

dou - ZkwPdz (11.3)

Yipdz
A similar relation was discussed in Section 12.4.2 of Griffies (2004). For global climate simulations, the
time step available for the update of the slow dynamics is much larger (50 to 100 times larger) than the fast
dynamics. It is this large time split, and the attendant improved model efficiency, that motivate the added
complication arising from splitting the modes. Completing the updates of u” and U allows for an update
of the full horizontal velocity via
u (u’ Lk u/sz) ur

+ .
Yrpdz | Yypdz

=2

(11.2)

(11.4)

11.2 Time stepping the model equations as in MOM4.0

We present here some details of the time stepping schemes available in MOM. Much of this section is taken
from the paper Griffies et al. (2005) that documents two ocean climate models developed at GFDL; the
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OM3.0 and OM3.1 models. Time stepping in OM3.0 is based on the standard MOM approach originating
from the work of Bryan (1969), and detailed for an explicit free surface by Killworth et al. (1991) and
Griffies et al. (2001). An alternative was developed for OM3.1.

The main motivation for developing an alternative was to address tracer non-conservation associated
with time filtering used to suppress the leap frog computational mode appearing in the older method. The
proposed time staggered method has much in common with that used by Hallberg (1997) for his isopyc-
nal model, as well as by Marshall et al. (1997) and Campin et al. (2004) for their hydrostatic and non-
hydrostatic z-coordinate models.

The purpose of this section is to detail features of the time stepping schemes employed in OM3.0 and
OM3.1. Further details are provided in Chapter 12 of Griffies (2004). We also refer the reader to the
pedagogical treatments of time stepping given by Mesinger and Arakawa (1976), Haltiner and Williams
(1980), and Durran (1999). For simplicity, we focus here on the Boussinesq system assuming z-coordinates
for the vertical. The more general case of arbitrary vertical coordinates with Boussinesq or non-Boussinesq
equations follows trivially from the discussions here. Additionally, the original implementation of these
ideas was based on the B-grid spatial discretization of MOM (Chapter 9). We include discussion here of
modifications required for the C-grid available in MOM.

11.2.1 The MOM4.0 scheme used in OM3.0

We start by describing the standard approach used in MOM4.0 for time stepping tracers and baroclinic
velocity. For the thickness weighted tracer equation, this update takes the form

+1 _ (3,11
kT) AT L) v, [(huyT % 4 BTET = gy [wt T FI. (11.5)
leap

Here, h is the time dependent thickness of a tracer cell and T is the associated tracer concentration. Hor-
izontal and vertical advection velocity components are written (u,w), and (F, F,) are the horizontal and
vertical SGS flux components. The horizontal gradient operator is written V,, and 0y is the vertical finite
difference operator acting across a discrete level k. Prognostic fields are updated in time increments of
ATjeap- The thickness of a tracer cell is updated analogously to the tracer, as required to maintain compati-
blity between volume and tracer evolution (see Section 10.7 as well as Griffies et al. (2001)).

The time tendency in equation (11.5) has been aproximated with a centred in time discrete operator.
Skipping the central time step 7 introduces a spurious computational mode, where even and odd time steps
decouple. We choose time filtering to suppress the associated instability, with i and T denoting the time
filtered thickness and tracer concentration. Absent time filtering, the discrete time tendency has a second
order global truncation error, whereas time filtering degrades the truncation error to first order (see Section
2.3.5 of Durran (1999)). We comment further on time filtering in the subsequent discussion, as it one of
the two main reasons we consider alternative time stepping schemes to be preferable.

Global ocean models generally employ anisotropic grids, with significantly more refined vertical spac-
ing than horizontal. When admitting realistically fast vertical mixing processes, parameterized by F,,
a time implicit method is used to overcome the stringent time step constraints of an explicit approach.
Hence, F; is evaluated at the future time 7 +ATe,,,. In contrast, coarser grid spacing in the horizontal gener-
ally allows for an explicit implementation of the horizontal SGS fluxes. Due to the dissipative nature of SGS
fluxes, stability considerations require them to be evaluated at the lagged time 7 — ATy, with evaluation at
the central time T numerically unstable. That is, the horizontal SGS fluxes are implemented with a forward
time step of size 2 Atje,p.

In contrast to dissipative terms, numerical stability dictates that tracer concentration in the advection
operator be evaluated at the central time 7 if using central spatial differencing. As reviewed by Griffies
et al. (2000a), this approach was common in z-models for decades, particularly prior to around 2005. This
form of the time stepping gives rise to the commonly referred name leap frog applied to the older time
stepping method used in MOM4.0. However, it is important to note that leap frog in the tracer equation
is used only for advection, and only for central spatial discretizations of advection. Dissipative terms are
implemented with either a forward or an implicit time step as described above.

For purposes of ocean climate modeling with OM3.0, we found the dispersive errors from central dif-
ferenced tracer advection to be unacceptable, due to the introduction of spurious tracer extrema and large
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levels of spurious dianeutral mixing when convective adjustment acts on dispersion errors (Griffies et al.,
2000b). To help remedy these problems, we chose a third order upwind biased scheme. As reviewed in
Durran (1999), upwind biasing introduces a damping or dissipative element to numerical advection. Con-
sequently, upwind biased fluxes must be evaluated at the lagged time 7 — A7y, just like the dissipative
horizontal SGS fluxes. A similar situation arises when implementing the Quicker advection scheme, in
which one separates a dissipative portion evaluated at the lagged time step from a non-dissipative piece
evaluated at T (Holland et al., 1998; Pacanowski and Griffies, 1999). This is the origin of the two time labels
placed on the tracer concentration for the advective flux in equation (11.5).

For the Sweby advection scheme used in OM3.0, the split into dissipative and non-dissipative terms is
not possible. The full advective flux is thus evaluated at the lagged time step T — Atje,p- This result may
suggest increased levels of dissipation using Sweby relative to Quicker. Indeed, this is the case in regions
where dissipation is welcomed, such as near river mouths where Quicker was found to introduce unac-
ceptable tracer extrema. In other regions, we have seen negligible differences between the two advection
schemes.

An update of the thickness weighted baroclinic velocity using the leap-frog scheme on a B-grid takes
the form

BTl gl ET*I i

2AT

=-M"2Zxhu"+wu)—(wa")_; -V, (h"u"u")
~h"(f 2 X Wrapesoidal = 1" V2 (pT/po) + hT (B*)(T-17+1), (11.6)

As for the tracer update, time filtering is applied to the lagged values of velocity and velocity cell thickness
to suppress time splitting. Central differences are used to spatially discretize velocity self-advection, thus
necessitating its evaluation at the central time step. Pressure is temporally evaluated likewise. The friction
operator (F*)(""L7*1) arises from horizontal and vertical fluid deformations. Analogous to the treatment
of tracer SGS fluxes, horizontal deformations are evaluated at 7 — ATy, (forward time step) and vertical
deformations at 7 + Aty,,, (implicit time step).

Inertial energy is realistic in the coupled climate model CM2.0 since it includes a diurnal cycle of solar
insolation, and the atmosphere and sea ice fields passed to the ocean (wind stress, fresh water, turbulent
and radiative fluxes)! are updated every two hours. Inertial energy has important contributions to the
mixing coefficients determined by the model’s boundary layer scheme.

The model’s baroclinic time step Atje,, = one hour is smaller than that needed to resolve inertial oscilla-
tions (e.g., Section 12.8.3 of Griffies (2004)). We nonetheless encountered an inertial-like instability in the
climate model’s Arctic sector when implementing the Coriolis force explicitly in time (see Chapter 12 for a
discussion of a discrete implementation of the Coriolis Force). This instability is presumably related to the
coupling between the ocean and sea ice, although the precise mechanism remains under investigation. The
climate model remained stable, however, when implementing the ocean’s Coriolis force with a trapezoidal
or semi-implicit method (Section 12.2). Hence, the semi-implicit method is employed in both OM3.0 and
OM3.1.?

11.2.2 Problems related to tracer conservation
Consider now the discrete time tracer equation in the abbreviated form
(hT)" A%eap = (T)"AMeap 4 2ATG, (11.7)

where G symbolizes the advective and diffusive terms as well as boundary fluxes (we ignore source/sink
terms for brevity). Thickness at the lagged time step results from a time average as described in Griffies
et al. (2001), whereas time filtering of tracer concentration is taken in the form suggested by Robert (1966)

1 As recommended by Pacanowski (1987), wind stress applied to the ocean surface is computed using the relative velocity between
the atmospheric winds and the ocean currents.

ZRecall that both OM3.0 and OM3.1 used the B-grid, which allows for an implicit implementation of the Coriolis force. See Sections
12.2 and 12.3 for details.
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and Asselin (1972) (see also Section 2.3.5 of Durran (1999)).3 Integrating equation (11.7) over the model
domain leads to the balance of total tracer content in the model. Total tracer at time 7+ A7, is determined
by the input of tracer through boundaries during the 2 A1, time step, plus the volume integrated product

of the time filtered thickness and tracer concentration, 1T, at the lagged time T — ATjeap- Notably, because
of time filtering, the model’s total tracer changes even in the case of zero boundary fluxes.

The magnitude of tracer change associated with time filtering can be negligible for many purposes, as
discussed in Griffies et al. (2001). However, we found the changes unacceptable when developing ecosys-
tem models, where precise conservation is desired. Additionally, filtering contributed to a globally aver-
aged heat non-conservation in the climate model on the order of £0.03W m~2. This non-conservative heat
flux is a few percent of the surface insolation change expected from doubling greenhouse gas concentrations
in the atmosphere. It is therefore of concern for our climate change simulations. Consequently, alternative
approaches were investigated.*

11.2.3 The time staggered scheme used in OM3.1

The alternative scheme we employ in OM3.1 discretizes the time derivative with a forward time step. That
is, it does not skip any time levels. Additionally, it staggers tracer and velocity fields by one-half time step
in a manner analogous to spatial staggering on Arakawa grids. We therefore refer to this method as a time
staggered scheme.

Forward time stepping does not admit time splitting, and so no time filters are needed. The alterna-
tive scheme therefore ensures tracer is conserved, which is our primary motivation for moving away from
the OM3.0 method involving the leap frog. There are other consequences of changing the time tendency
discretization, and the purpose of this section is to expose these issues.

A time staggered update of thickness weighted tracer is given by

(h T)T+1/2 _ (h T)T—1/2

i =V, [(hu)T TT—1/2 + hr—l/Z FT—1/2 ] — & [wr Tr—1/2 + F;Hl/z ] (11.8)
stag

The two equations (11.5) and (11.8) become identical when the following holds:
* time steps are related by Aty,; = 2 ATieqp,
* time filtering in the OM3.0 leap frog method is not used,
* tracer advection employs an upwind biased scheme.

In effect, the time staggered method stays on just one of the two leap frog branches. This is the fundamental
reason that the two methods should be expected, for many purposes, to yield similar solutions.

We note the following points to keep in mind when transitioning to the staggered approach from the
leap-frog.

* Centred spatial differencing of advection is unstable with a forward time step. Hence, for tracer
advection we must employ an upwind biased advection scheme when using the staggered approach.
For our purposes with global ocean climate modelling, such advection schemes are motivated to
resolve problems with other schemes. Nonetheless, this consequence of changing the time stepping
scheme may be unacceptable for certain applications. An alternative method is to retain the ability
to discretize advection with centred spatial differences, but to alter the temporal evaluation of the
advection operator according to Adams-Bashforth methods (Durran, 1999), or other schemes. In
particular, we chose a temporally third order accurate Adams-Bashforth method for velocity self-
advection, thus maintaining the traditional centred spatial differences of this operator. The third
order Adams-Bashforth method requires the advection operator at time steps 7, T —1, and 7 - 2, thus
increasing memory requirements.

3We chose filtering for tracer over the alternative of periodically using a forward or backward time step, which was the method
used by Cox (1984). The use of a periodic forward or backward time step introduces an unphysical periodicity to the simulation, and
in particular was found by Marotzke (1991) to interact in unphysical ways with convective adjustment.

4Leclair and Madec (2009) propose a method to maintain conservation with the leap-frog scheme. We propose an alternative
staggered scheme for MOM discussed in Section 11.2.3.
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* When choosing a forward time step for the tendency, the Coriolis force on the B-grid must be com-
puted using an implicit or semi-implicit approach, whereas on the C-grid we wrap the Coriolis force
into the momentum advection using a 3rd order Adams-Bashforth scheme (see Chapter 12 for details
of the Coriolis force). A time explicit approach is numerically unstable using a forward time step. In
contrast, the OM3.0 approach with the leap frog on the B-grid allows for an explicit leap frog time
stepping of the Coriolis force, as well as the semi-implicit or implicit.

* A leap frog discretization of the time tendency updates the ocean state by At,, through taking a
2 ATy, step for the discrete time tendency. Consequently, gravity waves and dissipative operators
(i-e., diffusion, friction, and upwind biased advection) are time step constrained based on 2A7,,. In
constrast, the staggered scheme updates the ocean state by Atg,, and it employs Az, to compute
tendencies. It is therefore time step constrained based on a Atg,, time step. Hence, the staggered
time step Aty,, can generally be twice that of the leap frog A1,

ATgag = 2 ATyeqp- (11.9)

The computational cost of OM3.1 with the staggered scheme is therefore one-half that of OM3.0 using
the older leap frog based scheme. There can be little argument that such an improvement in efficiency
is of great use for ocean modelling.

11.2.4 Sensitivity to the time stepping scheme

During the bulk of our development, the ocean model employed the older leap frog based time stepping
scheme for tracer, baroclinic, and barotropic equations. Upon developing the staggered time stepping
scheme for the tracer and baroclinic equations, we became convinced that the modified scheme has util-
ity for our climate modelling applications. The question arose whether switching time stepping schemes
would require retuning of the physical parameterizations.

Tests were run with the ocean and ice models using an annually repeating atmospheric forcing with
daily synoptic variability, again repeating annually. Runs using the staggered scheme had a two hour time
step for both tracer and baroclinic momentum, and a predictor-corrector scheme (e.g., Killworth et al.,
1991; Griffies, 2004) for the barotropic equations with a 90s time step.> The comparison was made to
the older time stepping scheme using one hour time steps for the tracer and baroclinic equations, and
(3600/64)s for the leap frog barotropic equations.

Analysis of these solutions after 10 years revealed that regions with relatively high frequency temporal
variability, such as the equatorial wave guide, exhibit the most differences instantanously. Figure 11.1
illustrates the situation along the equator in the East Pacific. The older scheme exhibits substantial time
splitting, even with a nontrivial level of time filtering from a Robert-Asselin time filter. Moving just five
degrees north of the equator, however, reveals that the simulation has much less relative variability, and a
correspondingly negligible amount of time splitting. Even though the simulation along the equator showed
substantial time splitting, over longer periods of time, the large scale patterns and annual cycles showed
negligible differences between time stepping schemes. Indeed, time averaging, even over just a day, seems
sufficient to smooth over most of the instantaneous differences.

Tests were then run with the GFDL coupled climate models CM2.0 (using OM3.0 as the ocean compo-
nent) and CM2.1 (using OM3.1). Instantaneous differences were much larger, as expected due to the non-
trivial natural variability in the coupled system with a freely evolving atmospheric component. Nonethe-
less, differences for large scale patterns and seasonal or longer time averages were within levels expected
from the model’s natural variability.

11.2.5 Dissipative aspects of the predictor-corrector

The purpose of this section is to expose the dissipative aspects of the predictor-corrector scheme available
for use in the barotropic equations in MOM. A similar treatment is given in Section 12.8.1 of Griffies (2004).

5We found the predictor-corrector to be suitable for the barotropic equations due to our ability to increase the barotropic time
step beyond that of the leap frog. Additionally, it preferentially dissipates grid scale features, which are commonly found when
discretizing gravity waves on a B-grid (Killworth et al., 1991; Griffies et al., 2001). We present an analysis of the dissipative aspects
in Section 11.2.5.
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Figure 11.1: Upper left panel: Instantaneous sea surface temperature over January 1 at (105°W,0°N) as
realized in a simulation using the standard time stepping scheme with an hour tracer time step (noisy
time series) and the staggered scheme with a two hour tracer time step (smooth time series). Upper right
panel: Surface heating applied at (105°W,0°N) from the Robert-Asselin time filter used to damp the leap
frog splitting. Lower left panel: Instantaneous sea surface temperature over a single day at (105°W,5°N)
as realized in a simulation using the standard scheme with an hour tracer time step and the staggered
scheme with a two hour tracer time step. Note the width of the temperature range is set the same as at the
equator. In general, the agreement of the solution off the equator, where the leap frog splitting is minimal,
is far greater than on the equator. Lower right panel: Surface heating applied at (105°W,5°N) from the
Robert-Asselin filter. Note the much smaller magnitude relative to the values on the equator.

In two space dimensions, the predictor-corrector equations for an update of the surface height and
vertically integrated horizontal velocity in a Boussinesq model are

* n

n-n

N =—yV.U" (11.10)

Un+1_Un 5

— =y (11.11)
At

1711+1_11n

A—t:—V-U””, (11.12)

where n symbolizes the barotropic time step. For brevity we dropped the fresh water and source terms
appearing in the free surface equation (10.69), and we assumed an unforced linear shallow water system
with squared wave speed c? = g H. Setting the dimensionless dissipation parameter ¥ > 0 to zero recovers a
forward-backward scheme discussed by Killworth et al. (1991). Keeping ¥ > 0 was useful in our simulations
and was motivated by similar experiences in the Hallberg Isopycnal Model (Hallberg, 1997).
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Eliminating the predicted surface height #* leads to

n+l _ymn

%:—CZVU"—i-)/czAtV[V-U"] (11.13)
n+l _ n

% =-V.U"t, (11.14)

To directly see how the surface height evolves, eliminate U to find

17”+1 _ 277” + 1711—1
(At)?

= (V)" +y (V) (n"=n""). (11.15)

Taking the limit At — 0, yet with y At constant, leads to a dissipative wave equation
(D — 2V = (y At)(cV)? 9, 1. (11.16)
A single spatial Fourier mode with wavenumber amplitude « thus satisfies
(d2/de? +y At (cx)® d/dt + (cx)*) 5 = 0. (11.17)

This is the equation for a damped harmonic oscillator with inverse e-folding time (1/2)y At (cx)?. With
y > 0, external gravity waves are selectively dissipated in regions where the surface height is changing in
time, and where the spatial scales are small. Faster waves are damped more readily than slower waves.
These properties are useful when aiming to suppress the B-grid computational null mode discussed in
Killworth et al. (1991) and Griffies et al. (2001).

11.3 Introduction to time stepping in MOM

For the remainder of this chapter, we step back from the OM3 simulations and revisit some of the basic
algorithmic details of the time stepping schemes used in MOM. For this purpose, it is sufficient to focus
on the Boussinesq version, where volume is conserved rather than mass. The exact same issues arise when
using mass conserving non-Boussinesq vertical coordinates.

To start, we summarize advantages of the staggered time stepping scheme employed by MOM and
introduced in Section 11.2.3 when discussing the OM3.1 model. For climate modelling, this scheme has
proven to be a great improvement over the traditional leap-frog based methods found in earlier GFDL
ocean codes, as well as many other ocean circulation models (Griffies et al. (2000a)). The improvements
include the following.

* There is no need to employ explicit time filters (e.g., Robert-Asselin filter) with the staggered scheme,
thus enhancing temporal accuracy over the time filtered leap-frog scheme.

* The time staggered scheme conserves seawater volume/mass and tracer mass to within numerical
roundoff, whereas the leap-frog based methods, due to the use of explicit time filtering, fail to con-
serve.

* The time staggered scheme updates the state of the ocean one time step by employing tendencies
based on that one time step. In contrast, leap-frog based schemes update the state over one time step
by using tendencies based on two time steps. Hence, the leap-frog based schemes have a CFL stability
constraint based on the two time step tendencies, and so can be run at only one-half the time step of
the staggered scheme. Thus, the staggered scheme is generally one half the computational cost of the
leap-frog based schemes.

The purpose of the following sections of this chapter is to expose salient points regarding the time
stepping algorithm that have been raised when developing the radiating open boundary condition.
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11.4 Basics of staggered time stepping in Boussinesq MOM

Fundamental to the time staggered method is the need to provide a surface height # at integer time steps
n(t) as well as half integer time steps #(7 + At/2). The surface height at integer time steps is needed
to couple to velocity variables, which are placed on integer time steps, whereas half integer time steps
provide a surface height for tracers. In addition, due to the split between barotropic and baroclinic modes,
the surface height is updated over the small barotropic time steps 11“’)(”(, t,), where a raised (b) denotes a
field evaluated on the small barotropic time step. The first time label 7 designates which baroclinic branch
the cycle started, and

t,=T+nAt (11.18)

is the barotropic time step. The relation between the large time step At and small time step At is given by
2AT=NAt. (11.19)

The barotropic time stepping procedes from the initial barotropic time ty =  to the final time ty = 7+ 2Ar.
The integer N is a function of the split between barotropic and baroclinic gravity waves, which can be
on the order of 100 in a global model. Deducing the connection between #(7), 11(t + At/2), and q(b)(r, th)
is a focus of these notes. Correspondingly, we require a connection between the barotropic time cycled
vertically integrated velocity U and U(x).

The barotropic cycle integrates over time 2 At for every At update of the baroclinic system. Why the
doubling of the time integration? This method is based on experience with split-explicit time stepping
schemes, where we have found it important to provide sufficient time averaging to damp instabilities aris-
ing from the incomplete split between the fast and slow motions available with a vertical integration.
Longer time averaging is possible, though less convenient algorithmically, less accurate, and more expen-
sive.

A fundamental constraint of any time stepping scheme is that the tracer and volume/mass equations
must remain compatible. Compatibility means that the tracer concentration equation reduces to the vol-
ume or mass conservation equation when setting the tracer concentration to a constant. Without compati-
bility, tracer and volume/mass conservation are lost, and the algorithm is of limited use for ocean climate
modelling.

After completing the barotropic cycle, which extends from ty = 7 to ty = 7+ 2A7, we aim to have a
prescription for updating the vertically integrated velocity U(7 + A7), the free surface height (7 + At/2), as
well as 7(7 + Ar).

11.5 Predictor-corrector for the barotropic system

The preferred barotropic time stepping algorithm is the predictor-corrector scheme. The first step in the
algorithm “predicts” the surface height (again, we are focusing on the Boussinesq version of MOM) via

77(*)(’(, the1) = 7//(b)(71 tn)
y At

=-v.UM(g,1,)+€, (11.20)

where € is the fresh water forcing or volume source, both of which are held constant over the course of the
barotropic cycle. We expose the time labels on these fields in later discussions. The raised (*) denotes an
intermediate value of the surface height. This is the “predicted” value, to be later “corrected.” The nondi-
mensional parameter 0 < y acts to dissipate the small scales of motion (see Section 12.8 of Griffies (2004)).
Setting y = 0 recovers a second order accurate forward-backward scheme, in which case the predictor step
(11.20) is eliminated. Larger values of y reduce the order of accuracy, yet provide effective damping. How-
ever, as shown in Section 12.8 of Griffies (2004), values of y larger than 1/4 can compromise the scheme’s
stability. The value y = 1/5 has been found useful for many purposes.
The predicted surface height 17(*)(1, t,.+1) is used to compute the surface pressure via

_(* % 1/2
00 BT, t1) = g7 (T 1) oL (11.21)
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where the applied pressure p, has been dropped for brevity but can be trivially added. The surface pressure
is used to update the vertically integrated velocity

(b) —_y® (b (b)
U0 ) OB ) _ |y ) VA0 DO bist) )9, g0, ) 4600|1122

For the vertically integrated transport, the Coriolis force on the B-grid version of MOM is evaluated us-
ing the Crank-Nicholson semi-implicit time scheme in equation (11.22). Inverting the B-grid simi-implicit
approach provides an explicit update of the vertically integrated transport

U, tye1) = [1+(f A/2)2 ] TUP (T, ) + (f A/2) VIO (T, 1)) (11.23)
VO(T, tyar) = [T+ (f A2 VI, tr) = (F A/2) UP (1, 141)] (11.24)

where U#)(t,t,,,1) is updated just with the time-explicit tendencies

Ut t,0) - Uz, 1)

At =(f/2)V®(z,t,)-D(t )axps (T, tpe1) + G*(7) (11.25)
(#) _yb)
VO i VRO _ (5 72) U1, 1,) - Do) 3y 0 )+ G (), (11.26)

For the C-grid version of MOM, the Coriolis force is evaluated using an Adams-Bashforth scheme (see
Section 12.3).
The “corrector” part of the scheme steps the surface height using the updated transport

W(b)(T: tus1) = W(b)(Tr tn) _

N VU (g, t,,1)+E. (11.27)

Note that 17 ®)(t,t,,,) is used rather than the predicted height 17 (T, tp41), since 17(*)(1, t,.1)is computed with
the altered time step y At. Temporal dissipation is localized to the predictor portion of the time stepping,
with the corrector part hidden from this dissipation. Because of the predictor step, the convergence of
the vertically integrated transport is computed twice in the predictor-corrector scheme, thus increasing the
cost relative to a forward-backward approach where y = 0. The payoff is an extra parameter that can be
used to tune the level of dissipation. Additionally, there is added stability towards representing gravity
waves so that At can be longer than when using the leap-frog method.

Let us detail how the barotropic steps accumulate over the course of a particular barotropic cycle. For
this purpose, write out the first and second corrector steps (11.27) for the surface height

U(b)(Tr tn:l ) - Tl(b)(T’ tn:O)
At

r](b)(T' tn:Z) - ﬂ(b)(T’ tn:l)
At

=F(ty=1) (11.28)

=F(ty=2), (11.29)
where the right-hand side of equation (11.27) is abbreviated as F. Adding these two equations leads to

n®N(T, t,-0) = ON(T, £,2)
At

=F(ty=1) + F(ty=2), (11.30)

where the intermediate value q(b)(r, t,—1) has identically cancelled. This result easily generalizes, so that

®)(7,t,_y) — 1) N
1Az, n_NI\)]A’Z (7, tu=0) Z (11.31)
n=1

This result does not hold for a leap-frog algorithm, since the intermediate values of the surface height do
not generally cancel completely, as they do here for the predictor-corrector.
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11.6 The Griffies (2004) scheme

The only piece of the forcing F(t,) that changes during the barotropic cycle is the convergence of the ver-
tically integrated velocity. The result (11.31) then suggests that the time averaged vertically integrated
velocity should be given back to the baroclinic part of the model upon completion of the barotropic cycle.
To have this velocity centered on the integer time step T + A7, it is necessary to run the barotropic cycle to
7+ 2At. Hence, upon reaching the last barotropic time step

ti-n =T+ 2AT, (11.32)

the vertically integrated velocity is time averaged,

N
1
U= NZU“’)(T,t,,). (11.33)

n=1

To produce the updated vertically integrated velocity at baroclinic time 7 + At, the vertically integrated
velocity U(7 + Art) is identified with this time averaged value,

U(t+At)=U. (11.34)

The surface height is needed at the integer time steps in order to specify the thickness of the velocity
cells. There are two options for updating the surface height to time step v + A7. First, we could take the
instantaneous value from the barotropic portion of the cycle

(T +At) = n®NT, tyn ). (11.35)
This approach has not been tried, since it likely leads to a meta-stable algorithm due to the absence of time

averaging, depending on the predictor-corrector dissipation parameter y. In contrast, extensive experience
indicates that added stability is realized by using the time averaged surface height

N
1
- (b)
Nt +AT) = Zq (T, ). (11.36)
n=0

Notably, tracer and volume conservation is not compromised by this specification since it is only used to
define the surface height carried by the velocity cells. However, the surface height at half integer timesteps
needed for the tracer equation is diagnosed using equation (11.33),

n(t+At/2) —n(t —At/2)
At

= -V -U(7) + gy (1) + S"(1). (11.37)

As described in Section 11.7, this approach may cause divergence of sea level at integer and half integer
time steps.

11.7 Algorithms motivated from predictor-corrector

The previous algorithm makes a distinction between how the integer and half-integer surface heights are
updated. This distinction exposes the algorithm to possible time splitting between these surface heights.
The splitting has been found to be unacceptable for models with radiating open boundary conditions,
whereas other boundary conditions have shown no problem. Given the interest in radiating boundary
conditions, we consider here an alternative approach which is motivated from details of the barotropic
predictor-corrector method. It will turn out that the schemes developed here are not algorithmically closed.
However, approximations are considered in 11.8.2 to close the algorithms.
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11.7.1 Barotropic time stepping and surface height on integer time steps

The predictor step in the predictor-corrector algorithm updates the surface height according to
1O, tar) =N 1) = AL (41, (11.38)
We now expose the time labels on all terms appearing in the forcing, whereby we set volume sources
F(tysr) = =V-UO(1, 1) + o (T + AT/2) + S (T + At/2). (11.39)

Only the convergence of the vertically integrated velocity U”)(t,t,,,) changes on each barotropic time step,
whereas the water forcing gq,,(7 + At/2) and source S (1 + At/2) are held fixed.
To begin the barotropic integration of the surface height, it is necessary to prescribe an initial condition.
We choose to set
10z, t0) = (1) (11.40)
for the surface height, and
U(1,t5) = U(1) (11.41)

for the vertically integrated velocity. This choice of the starting point is essential for #, but different ap-
proximations are possible for the vertically integrated velocity. Here, #(7) and U(7) are centred at an integer
baroclinic time step, which again is the time step where the velocity field is centred using the MOM time
staggered method. These two prescriptions lead us to ask how to compute the updated surface height
1(T+ A7) and vertically integrated velocity U(t + At). Experience with various versions of the split-explicit
time stepping in MOM motivates us to take for the surface height a time average over the full suite of
barotropic surface heights according to

N
1
n(t+At) = N7l Zn(b)(r,t,,). (11.42)
n=0

We choose this simple form of time filtering, in which all terms within the barotropic time stepping con-
tribute equally. Although more sophisticated time filters are available, this one has been found suitable for
our purposes. Without time filtering, the algorithm can be very unstable and thus is unsuitable for large
scale modelling. As shown below, this time averaging for the surface height motivates a different form for
the time averaging of the vertically integrated velocity field.

11.7.2 Surface height on half-integer time steps

The fundamental prescription (11.42) for the integer time step surface height is readily extended to the
half-integer surface height by setting

() +1(t+ A1)
5 .

This prescription couples the integer and half-integer time steps, and ensures that both are determined by
time averages over the barotropic cycle. The question then arises how to make this prescription compatible
with the time stepping for the tracer concentration. Compatibility is required for conservation of volume
and tracer, and so is of fundamental importance. Compatibility is also needed with the baroclinic veloc-
ity scheme, but keeping in mind the uncertainties of wind stress parameterisation, minor approximation
should be possible. Addressing these issues forms the remainder of this section.

To proceed, we first deduce the time stepping algorithm for the integer time steps which is implied
from the barotropic time stepping (11.38) and the time average (11.42). For this purpose, start by using the
initial condition (11.40) in the time average (11.42) to find

n(t+At/2)= (11.43)

N
1
n(t+At)= Nl Zq(b)(r, ty) (11.44)
n=0
1(7) 1\ (b)
:N+1+N+1Z’7 (T,t,). (11.45)
n=1
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Iterating the barotropic time stepping equation (11.38) and using the initial condition (11.40) renders
n
q(b)(r,tn):17(T)+AtZF(ti). (11.46)

Substitution of this result into equation (11.45) then leads to

N
(T +AT)—1(T) = Z E(t;). (11.47)

The double sum on the right hand side arises from the need to ensure that over the course of the barotropic
cycle, changes in volume correspond to changes in forcing; in particular, with changes in the convergence of
the depth integrated transport. To facilitate computing the double sum within the barotropic time stepping
scheme, we employ the following identity to reduce the double sum to a single sum

ZZP :ZN n+1)E(t,), (11.48)

which can be readily verified by induction.

The sum (11.48) does not represent a straightforward time average. It does, nonetheless, motivate
defining a “modified average” forcing that is implied by the barotropic cycle running from t,_y = 7 to
ty = T+2A7. In particular, the relation 2At = N At between baroclinic and barotropic time steps motivates
the following definition for the averaged forcing

N
=D N(N+1) ZZP
nlzf

(11.49)
) N
Em (N—-n+1)F(t,),
n=1
which renders A
M AD =n(T) (11.50)

AT

Note that the average operator (11.49) reduces to the trivial result F = F in the special case when each of
the barotropic time steps see a constant forcing F(t;) = F. That is,

iZP :FZ (11.51)

n=1 i=1
F(N/2)(N +1), (11.52)

where the last step used a common summation identity. This special case supports our definition of the

averaging operator, and furthermore checks the integrity of the manipulations. In particular, since the
fresh water and volume source are assumed to be constant over the barotropic time steps, we have

N+1 ZZP (11.53)

n=1 i=1
2 N
- b
=S ;ZV U (T, 1) + gy (T + AT/2) + SU(1 + AT/2) (11.54)

which leads to
=-V-U+q(t+A1/2) + S (1 + At/2). (11.55)
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So far, we have avoided placing a time label on the modified average operator. In particular, the question
arises how the averaged vertically integrated velocity

N n
— 2
-_ < (b) .
U= NONTD) ;:1 ;1 U (1) (11.56)

is related to the updated velocity U(t + A7) or U(t + At/2). Absent the second summation, the resulting
average would be closely centred on the time step 7+A7, but the barycenter of the double sum is at T+A7/2.
We now discuss algorithms based on both approximations.

11.7.3 Method A: U(t+A7)=U

In this method, we consider U(t + A1) = U, so that

N =n
2

U(T+AT) = ——— U, ). 11.57

(v + A1) N(NH);H (e.t:) (11.57)

=

Given this assumed time labelling of U, we are able to update the three dimensional velocity to the new time
step T + At after the baroclinic velocity is updated. The prescription (11.57) implies that the integer time
step surface height, which is computed as the time average in equation (11.42), also satisfies the following
time tendency equation

n(t+A7)-n(7)

A =V -U(T + A1) + gy (T + AT/2) + SUD(T + AT/2). (11.58)

The definition (11.43) of the half-integer time step surface height then implies that it satisfies the tendency
equation
n(t+At/2)—n(t—At/2)

- = V- U(T +A1/2) + gy, (1) + S"(7), (11.59)
where
Ut +At/2) = w (11.60)
gu(T) = qw(r+AT/2)42rqw(T—Ar/2) (11.61)
S () = SW(HAT/z);sW(T—AT/z)_ (11.62)

11.7.3.1 Compatibile tracer concentration

For the surface height on half integer time steps, we must maintain compatibility with tracer concentration
fields, which are also centered on half-integer time steps. Compatibility means that time stepping the
surface height must take the identical form to time stepping tracer concentration, so that the two equations
agree in the special case of a constant tracer concentration. Without such compatibility, tracer and volume
are not conserved by the discrete model. This point was emphasized by Griffies et al. (2001) in the context
of the leap-frog based algorithm exclusively used in earlier versions of MOM.

Compatibility implies that the tracer concentration must be forced with the water source (11.61), the
volume source (11.62), and, because of equation (11.59), with the half-integer advection velocity. Given
these considerations, a compatible staggered time discretization of thickness weighted tracer, absent sub-
grid scale processes, takes the form (note the shorthand used for the time labels)

hT+1/2 Cr+1/2 _ hr—1/2 CT—1/2
At

Z—VS-[(hu)T+1/2 CT—I/Z] (11.63)

4 [wr+l/2 Cr—l/Z]k _[wr+1/2 CT_l/Z]k—lr (11'64)
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where the thickness weighted advection velocity on half-integer time steps is given by

veiyp _ () 4 (bt

(hu) 5 (11.65)

11.7.3.2 Why this scheme is not closed

This algorithm is not closed, and so is not practical. The reason is that the compatible tracer equation
(11.64) requires the thickness weighted advection velocity (hu)™*1/2. However, this velocity requires the
updated thickness weighted velocity (hu)™*!, but the velocity at time u™! is not known until the momen-
tum is updated.

11.7.4 Method B: U(t + A1/2)=U

Since the barycenter of the double sum (11.48) is T + At/2, it is reasonable to prescribe U(t + A1/2) = U, so
that

N
U(t +At/2) = m ZZU(b)(T, ). (11.66)

The prescription (11.57) implies that the integer time step surface height, which is computed as the time
average in equation (11.42), also satisfies the following time tendency equation

n(t+At)-1(1)

A = -V -U(T +A1/2) + gy (T + AT/2) + S (1 + A1/2). (11.67)

The definition (11.43) of the half-integer time step surface height then implies

n(t+At/2)—n(t—At/2)

At ==V U(1) + 4y (1) + S"(x), (11.68)
where
Ulr) = U(T+AT/2)-;U(T—AT/2) 1169)
Gu(7) = qw(’f-i-AT/Z);—qw(T—AT/Z) (11.70)
S () = S(t +AT/2)-;S(’])(T—AT/2)' A1.71)

11.7.4.1 Compatibile tracer concentration

Compatibility implies that in contrast to Section 11.7.3.1, the tracer concentration must be forced with the
water source (11.70), the volume source (11.71), and, because of Equation (11.68) with the integer advection
velocity. The compatible staggered time discretization of thickness weighted tracer, absent subgrid scale
processes, takes the form

hT+1/2 CT+1/2 _ hr—l/Z CT—1/2

_ T 71/
i =-V,-[(hu)*C*1/?] (11.72)

+[wT CT*l/Z]k_[wT Crfl/Z]k_l’ (11.73)
where the thickness weighted advection velocity on integer time steps is given by

(hu)r+1/2 + (hu)r—l/Z
2

(hu)® = (11.74)
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11.7.4.2 Why this scheme is not closed

This scheme is not closed algorithmically. That is, the velocity scheme cannot be completed after the
barotropic sequence is ready, because U(7 + A7) is still unknown. The compatible tracer equation (11.73)
requires also the thickness weighted advection velocity (hu)™'/2, which itself requires the updated thick-
ness weighted velocity (hu)™!. The velocity at time u™*!, however, is not known until the momentum
is updated which in turn requres the barotropic scheme to be completed. Yet the momentum is updated
only after the tracer is updated. The repeated mapping between integer to half integer steps would reduce
accuracy. A significant rearrangement of the baroclinic and tracer equation may facilitate the use of this
algorithm. However, many attempts have failed.

11.8 Algorithms enforcing compatibility

We present three methods for time stepping the equations in MOM. Method I is that one discussed in
Section 11.6 based on Griffies (2004) and Griffies et al. (2005). Method III is a modification to Method I,
and Method II is a closed algorithm based on the barotropic predictor-corrector from Section 11.7. Methods
IT and III each aim to provide a closed and compatible scheme that maintains stability with the radiating
open boundary condition. Methods I and II are implemented in MOM, with Method III remaining untested.

11.8.1 Method I: Griffies (2004)

We first summarize the method of Griffies (2004) and Griffies et al. (2005), as described in Section 11.6.
To produce an algorithm that maintains compatibility with tracer concentration, and is algorithmically
closed, we take the philosophy here that the fundamental fields are those which live on the baroclinic time
steps (including baroclinic velocity and tracer fields). The barotropic fields are coupled to the baroclinic
and tracer fields, but details of the barotropic algorithm do not dictate details of the baroclinic and tracer
algorithm. In particular, details of whether we use a barotropic leap-frog or predictor-corrector are unim-
portant, nor are details of the initial values used for the surface height and vertically integrated velocity
(so long as the initial values are reasonable). This philosophy is in contrast to that taken in Section 11.7,
and further described in Method III below, where the barotropic predictor-corrector motivated details of
the baroclinic and tracer updates.

The main steps of this scheme prescribe an updated vertically integrated velocity and updated surface
height, both as time averages over the barotropic time steps

N
1
e+ A7) = ZU(b)(T, t,) (11.75)
n=1
1 N
_ (b)
Nt +AT) = ;11 (T,t,). (11.76)

The half-integer time step surface height is driven by the convergence of the time averaged vertically inte-
grated velocity, as well as surface boundary fluxes and interior volume sources
n(t+At/2)—n(t—At/2)
At

The compatible evolution equation for the tracer concentration follows from the update to the half-integer
surface height

= -V -U(7) + gy (1) + S"D(1). (11.77)

h’[+1/2 CTH/Z _ hrfl/Z CT—1/2

I v T ~T-1/2
= =V, [(hu)TCT12] (11.78)

+[w CTV2) — [w' CTV2) . (11.79)

There is a distinction in this method between 7(7 + A7), which is based on a time average, and 7(7 + At/2),
which is based on a baroclinic forward time step. This dichotomy has been found to allow splitting between
the surface heights when using radiating open boundary conditions.
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11.8.2 Method II: Algorithm based on barotropic predictor-corrector

We were led to the non-closed algorithms in Section 11.7 by aiming to treat the barotropic system in a
systematic manner, and by prescribing the use of a particular form of time averaging for the surface height.
Alternative methods can be found by altering the form of the time average, or by jettisoning time averaged
operators altogether. However, we are not in favour of jettisoning the time average, as past explorations of
this approach have led to unacceptably unstable schemes. Instead, we consider approximations described
in the following that close the algorithm.

To start, we follow the scheme proposed in Section 11.7.4, in which the integer time step surface height
is updated via a time average as in equation (11.76)

N
1
- E (b)
n(t+At) = +1n:011 (T, t,), (11.80)

and the half-integer time step surface height is also a time average via

n(7) +n(t+ A1)

n(t+At/2) = 5

(11.81)
Following the details of the barotropic predictor-corrector, we are led to the updated vertically integrated
velocity via the sum in equation (11.66) and using the barycenter for the time step placement as in Section
11.7.4

z

U(t+A1/2) = m Z ZU(M(T, t;)

n=1 i=1

(11.82)

z

__ 2 _ ) 4.
= NNTT) (N=n+1)UY(1,t).

n

Il
—_

As described in Section 11.7.2, this sum arises from the need to maintain consistency with volume fluxes
passing across the radiating open boundaries, and thus for providing a stable scheme with radiating open
boundaries.

As noted in Section 11.7.4, the prescription (11.82) does not lead to a closed algorithm, since we need
to know the updated velocity U(7 + At) at the end of the barotropic cycle in order to update the three
dimensional velocity field u(tr + At). The following approximation which closes the algorithm has also
been found to lead to a stable scheme with radiating open boundaries

U(t + At) = U(T + At/2). (11.83)

The half-integer time step surface height, which is defined by the time average (11.81), also satisfies the
time tendency equation

n(t+At/2)—n(t—At/2)

- = V- U(1) + gy (1) + (7). (11.84)

It follows that the compatible tracer equation is given by

hr+1/2 Cr+1/2 _ h’c—l/z CT—1/2

_ T ~1-1/
v =-V,-[(hu)* C*1?] (11.85)

+[wT CTV2 ) = [wt CTV2), . (11.86)
The discrete tracer equation thus takes the same form as in Methods I and III.

11.8.3 Method III: Modified Griffies (2004)

To possibly resolve the problem of splitting between the integer and half-integer time steps encountered
with Method I in radiating open boundary problems, we consider here an alternative approach, whereby
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the integer time step surface height is prescribed as the time average of the half-integer time step surface
height
2n(t+ A7) =y(t + At/2) + (T + 3A1/2). (11.87)

That is, the integer time step surface height is no longer based on a time average, but instead evolves
according to
n(t+ A7) —n(7)

- = -V -U(T+A1/2) + gy (T + AT/2) + S (1 + AT/2), (11.88)
where
2U(t+At/2) =U(t + A1)+ U(1) (11.89)
2q9,(T+AT/2) = g (T + AT) + 4, (T) (11.90)
28" (r+ At/2) = S (T + At)+ S(7). (11.91)

The problem with this prescription is that it is not closed, since the surface boundary condition module
only provides information about the surface forcing at the present time step. Likewise, we do not know the
updated volume source. Hence, to close the algorithm we make the following approximation

Gw(T+AT/2) = q,,(7) (11.92)
S (T + At/2) ~ (1), (11.93)
which amounts to saying that the boundary forcing and volume source term remain constant over the

course of a baroclinic time step; i.e., we cannot obtain information at higher frequency for these fields.
Hence, we are led to the following update for the integer time step surface height

n(t+A7)—n(7)

A =V -U(T +A1/2) + gy (1) + S (7). (11.94)

Although of some interest, this scheme has not yet been coded in MOM. It thus remains untested.
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The purpose of this chapter is to present the methods used in MOM for discretizing the Coriolis force
in space and time. We pay particular attention to the distinct needs of a B-grid and C-grid implementation
(Section 9.1), as well as considering differences between forward time stepping (Section 11.4) and the older
leap frog (Section 11.2). Some of this material was presented in the MOM4 Guide of Griffies et al. (2004),
with new considerations here to handle the density and thickness weighting used in MOM.

The following MOM modules are directly connected to the material in this chapter:

ocean_core/ocean_coriolis.F90
ocean_core/ocean_velocity.F90
12.1 The Coriolis force and inertial oscillations

The inviscid horizontal momentum equation in the absence of pressure gradient forces is given by

&%+fiA)u:0, (12,1

which is equivalent to the second order free oscillator equation

(:li—:erfz)u:O. (12.2)
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Here, d/dt is the material time derivative relevant for Lagrangian observers. Motions which satisfy this
equation are termed inertial oscillations and they have period given by

21t 11.97
Tinertial = T = sinqb

hour (12.3)

where Q = 7.292 x 107s7! is the earth’s angular speed. The period of inertial oscillations is smallest at
the North pole where ¢ = 71/2 and Tyya11est ® 12hour. An explicit temporal discretization of the inertial
oscillation equation (12.1) will be unstable if the time step is longer than some fraction of the inertial
period, where the fraction depends on details of the time stepping.

12.1.1 B-grid considerations

Coarse resolution models (models with resolutions on the order of 3 degrees or coarser) generally have
weak advection velocities. Hence, these models can have their baroclinic momentum equation partially
time step limited by inertial oscillations. To get around this limitation, a semi-implicit temporal treatment
has been traditionally considered, as in Bryan (1969). Temporally implicit treatment is available only for
the B-grid, where the two horizontal velocity components sit at the same grid point (Figure 9.1).

Additional issues with coupling to sea ice may warrant an implicit treatment even for ocean models
run with a momentum time step that well resolves the inertial period. In these cases, temporal details of
ocean-ice coupling have been found to cause enhanced energy at the inertial period. Semi-implicit time
stepping of the Coriolis force may assist in damping this energy.

It is for these reasons that MOM provides an option for implementing the Coriolis force on the B-grid
either explicitly in time or semi-implicitly for the baroclinic portion of the model. The namelist parameter
acor sets the level of implicitness, as described in Section 12.2.4.2. For the barotropic time stepping on the
B-grid, MOM generally uses a semi-implicit approach (Section 11.5).

12.1.2 C-grid considerations

Horizontal velocity components sit at different faces of the tracer cell (Figure 9.2). Hence, a spatial averag-
ing must be applied to bring the Coriolis force onto the proper position. Consider the Coriolis force acting
on the zonal velocity component u;,j sitting at the east face of the tracer cell T(i, j). There are various ways
to construct the averaging. We follow that used in GOLD for the energy conserving approach of Sadourny
(1975), in which the zonal Coriolis force per area acting to accelerate the zonal velocity u; ; is given by

(f vPd2),,0 conotororee ¥ (1/4) [fi,j (vpdz)ij+ fij(vpdz)iiy,j+ fij-1 (vpdz)ij + fij (vpdz)iﬂ,]’—l]
-, (12.4)
=[f (wpdayi)]

where we introduced northeast grid averaging operators

—Xx A+ A; 1
— A+A;
Al = ’Tf“ (12.6)

The discretization (12.4) computes the Coriolis parameter f at the vorticity point (northeast corner of the
tracer cell), which accords with the energy conserving method of Sadourny (1975) and GOLD. The normal-
ization by 1/4 holds regardless the land-sea mask, as such is required to maintain global energy conser-
vation from the Coriolis force. The meridional Coriolis force per area acting to accelerate the meridional
velocity v; ; follows similarly to the zonal Coriolis force

—(fupda), oo toree © —(174) [fi—l,j (updz)i_yj+ fi1,j(updz)iy ju + fij(updz)ij+ fij (u sz)i,j+1] (
12.7)

X

= —[f ((Wy)]i—l '
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The spatial averaging used on the C-grid makes it impractical to compute the Coriolis force implicitly
in time.! Furthermore, the C-grid in MOM has been implemented solely for the staggered two-level time
scheme. To maintain temporal stability, we thus follow the approach used for the advection of momentum
(Section 11.2.3), in which a third order Adams-Bashforth method is used (Durran, 1999).

12.2 Time stepping for the B-grid version of MOM

We now consider examples relevant to MOM of how the Coriolis force can be discretized in time for the
B-grid version of MOM.

12.2.1 Explicit temporal discretization with a leap frog

Consider now just the linear part of the inertial oscillation equation, where advection is dropped
(i +f2ZA)u=0. (12.8)

Following the time integration discussions in O’Brien (1986) and Bryan (1989) (see also Section 2.3 of
Durran (1999)), introduce the complex velocity

w=u+iv (12.9)

where i = V-1 and w should not be confused with the vertical velocity component. In terms of w, equation
(12.8) takes the form

drw=—ifw (12.10)
which has an oscillatory solution .
w=w,el! (12.11)
with period
Tinertial = 27/f. (12.12)
Time discretizing equation (12.10) with a centered leap-frog scheme leads to
w(t+ A7) = w(t— A7) —idlw(T) (12.13)
with
A=2fAr (12.14)

a dimensionless number. We can write the finite difference solution in terms of an amplification factor
w(t + A1) = Gw(7). (12.15)
Substituting this ansatz into equation (12.13) leads to the quadratic equation
G?+iAG-1=0 (12.16)

whose solution is
T V-A2+4

2

G (12.17)

If
A2=fAr<], (12.18)

then |G| = 1, which means the two finite difference solutions are neutral and stable. One root is an unphys-
ical mode, known as the leap-frog computational mode, and the other corresponds to the physical solution.
If A > 2 then |G| > 1 which means both roots are unstable. Hence, stability requires a time step satisfying

At < fL (12.19)

11t is practical to compute the Coriolis Force implicitly in time when time stepping the single-layer shallow water equations as in
(Adcroft et al., 1999).
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That is,
Tinertial 2m
— = ——>127, 12.20
At fAT ( )
meaning the leap-frog scheme remains stable if there are at least 27t time steps per inertial period. At the
North Pole, this constraint means

At < 1.9hours. (12.21)

For the baroclinic part of the model algorithm, At < 1.9hours can be the limiting time step for coarse
resolution global models, thus motivating an alternative approach discussed in Section 12.2.2.

12.2.2 Semi-implicit time discretization with a leap frog

To overcome the time-step constraint (12.21) on the baroclinic time step, we now consider a semi-implicit
time stepping scheme within the leap-frog portion of the baroclinic algorithm. As with any implicit ap-
proach, stability can be enhanced relative to explicit schemes. The price to pay is dissipation of the inertial
motions. See section 2.3 of Durran (1999) for discussion.

A semi-implicit treatment of the Coriolis force, within a leap-frog scheme, leads to

w(t+At)—w(t—At) =i A[(1 - p)w(t - AT) + Yy w(T + AT)] (12.22)

where
0<y<1 (12.23)

is a dimensionless number whose value is set according to stability considerations. We can write w(t+At) =
Gw(t — A1), with the semi-implicit scheme yielding the amplification factor

C1-iA(1-yp)
G= ST (12.24)

The squared modulus |G|? is used to determine conditions for stability

[1-yA2(1-p)]?+ A2

2 _
= oaer

(12.25)

For y =0, |G| > 1 which leads to an unstable scheme. For y = 1/2, |G| = 1 and so the scheme is neutral. With
1/2 <y <1,|G| <1, and so the scheme is unconditionally stable. Hence, we arrive at the stability range for
the semi-implicit parameter

1/2<y<1, (12.26)

with y =1 yielding the most stable scheme. Section 2.3.2 of Durran (1999) details the impact on the phase
and amplitude of inertial waves depending on the value of y. That analysis shows that y = 1/2 is the most
accurate, with zero amplitude error and favorable phase errors relative to other methods.

12.2.3 Semi-implicit time discretization with a forward time step

As discussed in Section 12.8.3 of Griffies (2004) (see also page 51 of Durran (1999)), the Coriolis force with
a forward time step is unstable, and so an alternative must be considered. We apply here the semi-implicit
approach from Section 12.2.2 with a forward time step rather than the leap frog. Here, we consider

w(t+At)—w(t)=—iA[(1-y)w(t)+ yw(t + AT)] (12.27)

where again 0 < y <1 is a dimensionless number whose value is set according to stability considerations.
The dimensionless parameter A is given by
A= fAr. (12.28)

Note the factor of 2 needed for the leap frog scheme (equation (12.14)) is now absent for the forward
scheme. All of the analysis in Section 12.2.2 follows through, with the factor of 2 the only distinction.
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12.2.4 Discretization for the B-grid MOM

We now detail the treatment in MOM when employing the B-grid. Both an explicit and semi-implicit
treatment of the Coriolis force in the baroclinic equations are available when using leap frog tendencies.
However, the semi-implicit treatment is required when using the forward tendencies. For both cases, the
semi-implicit piece is handled at the end of a baroclinic time step, even after the implicit treatment of
vertical mixing. The logic used in the code can be a bit confusing, so it is useful to expose some details
here.

12.2.4.1 Algorithm in the code

Let us separate that portion of the Coriolis force proportional to the dimensionless parameter y (see equa-
tion (12.23)) from the portion independent of y in order to ease coding for the case with a fully explicit
Coriolis force. We also expose the thickness and density weighting used in MOM. Since velocity is updated
first as the density and thickness weighted velocity, it is useful to introduce a shorthand

u=(pdz)u. (12.29)
We consider now three cases for handling the Coriolis force.
* An explicit treatment of the Coriolis force with the leap frog takes the form
—-fzAu——fzATu(r), (12.30)
* whereas a semi-implicit Coriolis force with the leap frog is

—fzAuU—->—f2A[(1-yp)u(t—AT)+pyu(r+AT)]

s~ . _ (12.31)
=—f2AU(t—-AT)-fyiA[u(t+AT)-u(r—-AT1)],
* and a semi-implicit Coriolis force with a forward time step is
—-fiAnu——-fZA[(1-p)u(t)+yu(rt+ArT)] (12.32)

=—fzAU(t)-fyzA[u(t+Ar)-u(T)].

We now consider the remaining terms in the equations of motion. As stated earlier, when treating the
Coriolis force with an implicit piece (i.e., with y > 0), this is handled last. We write those accelerations
independent of y in the form

o, u"=F (12.33)

where F includes the thickness weighted and density weighted accelerations from velocity self-advection,
the horizontal pressure gradient force, friction force (both explicit and implicit), as well as that piece of the
Coriolis force independent of y. If the Coriolis force is computed explicitly, then F is the full time tendency
for the baroclinic velocity. For the semi-implicit treatment, we require those contributions proportional to
y. For the leap frog, this leads to

U(t+ A7) =u(t—AT) +2AT6, W — Ay Z A [u(t+ At) —u(t - A1) ] (12.34)
where again A = 2 f At. Writing out the components leads to

UW(T+AT) =U(t—AT)+2AT 6. 0 + Ay [V(T+ At) - V(T — AT)] (12.35)
T+ AT)=V(r - A7)+ 2AT 6,V — Ay [u(t +At)-u(tr - A1), (12.36)

and solving for u(7 + At) renders

_ _ S T+ Ay 8,7
u(r+Ar)=u(r—Ar)+2Ar(#) (12.37)
S i = Ay 8,01
V(T + A1) =9(1 - A1)+ 2AT Oclt Z AV Ol (12.38)
1+(Ay)?
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The forward time stepping scheme is handled analogously, which leads to the update for the two compo-
nents

— — O W+ Ay o, V"
M(T+AT)=L£(T)+AT(W) (12.39)
O U = Ay o 0
Tt + At) = 3(r) + Ar [ S 2V O ) (12.40)
1+(Ay)?
where again A = f At.
12.2.4.2 Namelist parameters
In the code,
At =dtuv (12.41)
is the baroclinic time step, and
y =acor (12.42)

is a namelist parameter setting the level of implicit treatment for the Coriolis force. The method for dis-
cretizing the Coriolis force in the baroclinic part of the model is set according to the value of acor, with

acor = 0 = explicit Coriolis: only stable for leap frog (12.43)
1/2 < acor < 1 = semi-implicit Coriolis: required if using forward step. (12.44)

The vertically integrated part of the model algorithm typically uses a time step much smaller than f~!.
Hence, it is not necessary to discretize the Coriolis force semi-implicitly when time stepping the vertically
integrated equations with a leap frog algorithm. However, when using the predictor-corrector described in
Section 12.7 of Griffies (2004), 1/2 < y <1 is required for stability, and we choose y =1/2.

12.2.5 Energy analysis

In the continuum, the Coriolis force does no work on a fluid parcel since it is always directed orthogonal to
the flow direction
v-fZAu=0. (12.45)

This property is respected on the B-grid when we discretize the Coriolis force explicitly in time
v(T)-fZ Au(tr)=0. (12.46)
However, the semi-implicit treatment does not respect this property since in general the product
v(T)-f2 A [(1-p)u(t—AT)+ yu(t +At)] (12.47)

does not vanish unless the flow is in time independent steady state.

12.3 Time stepping for the C-grid version of MOM

As stated in Section 12.1.2, temporal stability is maintained using a forward time step on the C-grid if we
discretize the Coriolis force following the approach used for the advection of momentum (Section 11.2.3),
in which a third order Adams-Bashforth method is used (Durran, 1999). The third order Adams-Bashforth
method requires the Coriolis force at time steps 7, T — 1, and 7 — 2, thus increasing memory requirements.
Spatial discretization is detailed in Section 12.1.2.
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The purpose of this chapter is to detail the method used to time step vertical subgrid scale processes,
including bottom drag, using an implicit time stepping method. The material here is based on Section 9.5
of the MOM4.0 Guide (Griffies et al., 2004). There are some novel features discussed here arising from
the possibility of including bottom drag implicitly in MOM, which is useful when employing large bottom
drag coefficients.

When the MOM namelist aidif is set to unity, vertical mixing of momentum and tracers is time stepped
implicitly. When aidif = 0.0, vertical mixing is time stepped explicitly. Intermediate values give a semi-
implicit treatment, although at present MOM does not support semi-implicit treatments. An implicit treat-
ment of vertical mixing allows unrestrained values of the vertical mixing coefficients. An explicit treat-
ment, especially with fine vertical grid resolution, places an unreasonable limitation on the size of the time
step. The use of fine vertical resolution with sophisticated mixed layer and/or neutral physics schemes has
prompted the near universal implicit treatment of vertical mixing in ocean climate models.

The following MOM modules are directly connected to the material in this chapter:

ocean_param/mixing/ocean_vert_mix.F90
ocean_core/ocean_util.F90

ocean_core/ocean_bbc.F90
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13.1 General form of discrete vertical diffusion
We can write the vertical diffusion equation in the discrete form
I (¢ pda)e =g = J¢), (13.1)

where J{ is the vertical SGS flux entering cell k through the bottom face of the cell, and J{_, is the vertical
SGS flux leaving cell k through its top face. The field ¢ can be either a tracer concentration or a horizontal
velocity component. For an implicit treatment of either vertical diffusion (for tracers) or vertical friction
(for velocity), we have time stepped ¢ using all time explicit pieces, and thus produced a field ¢*(7 + 1),
which is the updated field sans the time implicit contributions. So for the purpose of formulating the
implicit time stepping portion of the vertical physics, we write the time discrete vertical diffusion equation

(¢ pd2)i(t+1) = (pdz )i (T +1) - Araidif (J{_, -J), (13.2)

where we assumed the preferred MOM forward time stepping scheme!, and exposed the dimensionless
time-implicit factor aidif. Again, for implicit time stepping, aidif = 1.0, which is the general case for a
simulation with nontrivial vertical physics. The mass per area of a grid cell is updated prior to the tracer
concentration or velocity components, thus allowing us to divide equation (13.2) by pdz at time 7+ 1,
yielding

Pr(t+1) = Pplt+1) - L U, =T (13.3)
with

aidifAr

k= m (13.4)

13.2 Discretization of vertical fluxes

The vertical flux Jf is located at the bottom of the k" tracer or velocity cell. A positive value for Jf leads
to an increase in ¢ (T +1). Away from surface and bottom boundaries, we assume that this flux takes the
downgradient form

z_ Pr(T+1) =Py (T+1)
Jk = —Po Kk dzwis . (13.5)

The factors of ¢ are evaluated at time 7+1 because of the implicit treatement. The vertical mixing coefficient
k) has a general space-time dependence set by a vertical mixing scheme. As for the flux itself, the diffusivity
K is situated at the bottom of the tracer or velocity cell, depending on whether ¢ is a tracer field or velocity
component. The factor of p, is needed for dimensional consistency, and by our assumption that « is a
kinematic viscosity or diffusivity. The array dzwty represents the vertical distance between tracer points at
time 7. For vertical mixing of velocity, dzwt becomes the distance between velocity points dzwu.
At the ocean surface, the vertical flux is given by the surface boundary condition sflux placed on the
velocity or tracer. For a tracer,
JP_y=—stf, (13.6)

with stf MOM'’s surface tracer flux array with units of velocity times density times tracer concentration.
The minus sign arises from the MOM convention that associates a positive stf with an increase in tracer
within the k = 1 cell. In contrast, the present discussion assumes a convention for the flux J* whereby a
positive J;_, is associated with a decrease in tracer within the k = 1 cell. For velocity,

Jiio = —smf, (13.7)

with smf the surface momentum flux with units of density times squared velocity. At the ocean bottom, a
similar condition leads to
Jfcimt = —DtE (13.8)

IFor the leap-frog scheme, the At factor goes to 2At.
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for bottom tracer fluxes, and
Ii:kmu = —bmf (13.9)

for bottom momentum fluxes. The minus signs again represent a difference in convention between MOM
and the present discussion. In MOM, a negative btf represents the passage of tracer from solid rock into
the ocean domain, as in geothermal heating. For velocity, a positive bmf represents a drag on the ocean
momentum field due to SGS interactions with the solid earth.

13.3 A generic form: Part A

To develop the solution algorithm, it is necessary to put the vertical diffusion equation into a generic form.
For this purpose, let us consider in sequence the equation for surface cells k = 1, interior cells with k > 1,
and bottom cells with k = kmt.

13.3.1 Swurface cells

For surface cells with k = 1 we have

Pt +1) = Ppr(t+ 1)+ Tie(0) U = J§)
= Pi(r+1) = Ii(T) (stf+]F)

=¢r(t+1)-Ii(7)stf + k() po Kk(¢k(T D= (rrl) ), (13.10)
dzwty
which leads to "y .
PL(T+1)+Tk(r)stf :qbk(r+1)(l +%)—¢k+l(r+l)(%). (13.11)
For velocity mixing, stf becomes smf, and dzwt becomes dzwu.
13.3.2 Interior cells
For interior cells,
Pr(t+1) = pr(t+ 1)+ () (T = T§)
_ ) Pro1 (T+1) — et + 1)
~ (e )= Tu(r) o (P
+1)- +1
+ Ti(7) po Kk (‘Pk(T sz‘ﬁk“” )) (13.12)
k
which leads to
. 3 L(7) po k-1 Ti(T) po Kk
Pr(t+1)=Pp(r+1) (1 + Wi + a7ty
~ (1) po k-1 | Tk (7) po Kk
¢k_1(T+1)(W) ¢k+1(T+1)(W . (].3].3)
13.3.3 Bottom cells
Bottom cells with k = kmt(i, j) have
Pr(t+1) = pp(t+ 1)+ L(t) (T, = TF)
= ¢p(t+ 1)+ Tk () (Ji_, +btf)
= el + 1)+ ()bt — Ty(1)py g [ LD =T U (13.14)

dzwty_q
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which leads to

. 3 (1) Po K1 I3 (1) po k-1
¢r(t+1)=Ti(7)btf = Pp(r+1) (1 + “dowty )—¢k,1(r+ 1) (7dzwtk_1 ) (13.15)
13.3.4 Form appropriate for Numerical Recipes
Introducing the notation
) Tk(t)po kg1 /dzwty_y ifk>1
A _{ 0 rol (13.16)
| —Ii(t)po xp/dzwty  if k < kmt
Ck‘{ 0 if k = kmt (13.17)
By=1-A;—-Cy (13.18)
Pi(r+1)+Ti(r)stf ifk=1
D ={ Pi(r+1) if 1 <k < kmt (13.19)
¢ (t+1)=Ti(t)btf if k = kmt
renders
(I)Z = Ak (f)k,l(’l’+ 1)+Bk q’)k(T + 1)+ Ck ¢k+1(T+ 1) (1320)

The solution is arrived at by performing a decomposition and forward substitution. The details are
taken from pages 42 and 43 of Press et al. (1992).

13.4 A generic form with implicit bottom drag

We deviate from the previous approach to present here the formulation assuming the bottom boundary
fluxes are computed implicitly. Such is important for the case of a bottom drag

Vi = —Po Catt \[ures +u2, (13.21)

where a large bottom drag coefficient C;, or large residual velocity u,.; require a time implicit solution
method. For the global one-degree class of models typically run at GFDL, C; > 0.002 generally requires
an implicit treatment of bottom drag. Implicit bottom drag is enabled in MOM by setting the appropriate
namelist logical inside ocean_bbc_nml.

To time step bottom drag implicitly requires a nonlinear solver. Rather than take that route, we take
the simpler approximate approach, also employed when the diffusivity or viscosity is a nonlinear function
of the flow. That is, we time discretize the bottom drag as

Jictmu = —Po Cau(T +1) y/ufes +u(1). (13.22)
Hence, for the purpose of formulating the time implicit algorithm, we write the bottom drag
IIZ<:k|nu = —)/ll(T-i-l), (1323)

where
Y = 0o Cq \|Ufes +u2(7) (13.24)
is a nonlinear function of velocity at time 7. We can now modify the steps detailed in Section 13.3, using the

nonlinear bottom drag (13.23). As this situation arises in practice for the momentum equation, we employ
velocity cell labels where appropriate.
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13.4.1 Swurface cells

For surface cells with k = 1 we have

Pr(t+1) = pp(t+ 1)+ L(t) (T = T§)
= ¢i(t+ 1) =Tie(7) (smf + )

= (T +1) =T (7) smf + T () py Kk(‘l”‘(” D= brn(tt 1)), (13.25)
dzwuy
which leads to
GL(r+1) +Tk(t)smf = y(r+1) (1 + D‘(;Z)im)—¢k+l(r+ 1) (rk(;Z)ij:") (13.26)

13.4.2 Interior cells

For interior cells,
Pr(t+1) = pr(t+ 1)+ L(T) (T = TF)
= ¢r(t+1) =Tk (1) po kg1 (¢k_1(T+ D= gilr+ 1))

dzwuy_q
(¢k(T+1)_¢k+l(T+1)) (1327)
dzwuy

+ Ik (7) po Kk

which leads to

Gr(t+1)=Pp(r+1) (1 + Tk (7) po Kk—1 + I (7) po Kk)

dzwuy_; dzwuy
L (T) po Kk—1 L (7) po Kk
_¢k_1(T+1)(TlU<—1)_¢k+1(T+1)(W . (13.28)

13.4.3 Bottom cells

Bottom cells with k = kmu(i, j) have

Pr(t+1) = Pt + 1)+ Ti(t) (T, = T)
= (]‘[)k(’[-i- 1)+Fk(r) (]If—l + bmf)
(t+1)=Pr(r+1
O L M IEEY
ZWUj_q
which leads to
1) = (e 4 1) 14y Ti(r) ¢ KDkl ) gy (Tl Po ko (13.30)
k k k dzwuj_q k-1 dzwtp_1 | '
13.4.4 Form appropriate for Numerical Recipes
Introducing the notation
Tk po Ki— 1/dzwuk 1 ifk>1
{ 0 ifk=1 (13.31)
P b 15
Ak - Ck if k < kmu
{ 1+ yT(0)-Ap—Cp if k= kmu (13.33)
Pr(t+1) +Fk (r)smf ifk=1
P { $r(r+1) if 1<k <k (13.34)
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renders
q)I: = Ay (i)k_l(’[-l- 1)+Bk¢k(T +1)+Cy ¢k+1(T+ 1). (13.35)

The solution is arrived at by performing a decomposition and forward substitution. The details are
taken from pages 42 and 43 of Press et al. (1992).
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14.9.2 Defining the advective mass transport . . . .. ... ...............
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14.11.1B-grid momentum equation contribution from advection . . .. ... ... ..
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14.11.3Diagnosing the vertical transport for U-cells . . . . . ... .. .. ... .....
14.11.4Discrete integration by parts on horizontal convergence . . . . . ... ... ..
14.11.5Discrete integration by parts on the vertical convergence . .. ... ... ...
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14.12.2Energetic manipulations not generally useful . . . .. ... ... ... .....

The purpose of this chapter is to discuss continuum and discrete mechanical energy balances. Mainte-
nance of such balances on the discrete grid have implications for spatial discretization of advective mass

transport. Both the B-grid and C-grid discretizations are considered.
The following MOM modules are directly connected to the material in this chapter:

ocean_core/ocean_velocity.F90
ocean_core/ocean_advection_velocity.F90
ocean_core/ocean_velocity_advect.F90

ocean_diag/ocean_velocity_diag.F90

14.1 Basic considerations

The following are the assumptions made for manipulations of this chapter.

* Choosing to maintain the integrity of certain energetic balances on the B-grid lattice prescribes the

form of the discrete advection velocity components located on the sides of tracer cells.

¢ Second order finite differenced advective fluxes are used for momentum. Tracer fluxes can remain

arbitrarily discretized.

* We choose a finite difference computation of the pressure gradient force, as described in Sections 3.1,
3.2, and 3.3. The finite volume method for computing the pressure force, as described in Section

2.8.1, does not lend itself to the results of this chapter.
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* Details of the time stepping scheme play a role in determining the form of the energy diagnostics.

* Energy balance diagnostics are important for checking the integrity of certain finite difference al-
gorithms. Consequently, it is useful to provide a careful suite of energy diagnostics for algorithm
development purposes.

14.2 Energetic conversions in the continuum

In the continuum, the horizontal momentum equation for a shallow ocean fluid is given by (see chapter 4
of Griffies, 2004)

(pu);+V-(pvu)+(f + M)(zApu)=-V,p+pF (14.1)
for the non-Boussinesq case, and
() +V-(vu)+(f + M)(2A u) =-V,(p/p,) + F (14.2)

for the Boussinesq case. The evolution of horizontal kinetic energy can be found by taking the scalar
product of horizontal velocity u with the momentum equation. When globally integrating the kinetic
energy evolution, the forcing terms can be transformed into terms that highlight physically interesting
processes. These manipulations identify conversions between one form of energy and another. The form of
these conversions can be deduced from the momentum equations, boundary conditions, mass or volume
conservation, and integration by parts. Maintaining an analog of these energetic conversions on the discrete
lattice has been found to be very useful in the development of ocean model algorithms. The reason is
that these conversions provide the modeler with a powerful set of diagnostics to test the integrity of the
numerics.

There are three forms of energy conversion of interest in MOM. The first involves the pressure gradient
term, the second involves the advection term, and the third involves friction. We address only the inviscid
terms in this chapter. Part 5 of Griffies (2004) describes how friction dissipates kinetic energy in both the
continuous case and for a particular friction algorithm available in MOM.

14.2.1 Pressure work conversions in Boussinesq fluids

Let us first examine how pressure work is converted to other processes in Boussinesq fluids. For this
purpose, consider the following identities found using z for the vertical coordinate

Jqu'VpZJdV(V'VP_wP,Z)
:IdV[V'(VP)—WP,z]
:JdA(ﬁ)p(ﬁ-v)+gjdep

:J‘dA(ﬁ)p(ﬁV)-l-J\de dd/dt

(14.3)

where dV = dxdydz is the volume element and d®/d¢ is the material time derivative of the geopotential
@ = gz. To reach these results required volume conservation for a parcel in the form of the constraint
V-v =0, the hydrostatic relation p , = —p g, and the definitions

gw=gdz/dt

(14.4)
= dd/dt.

Assuming no-normal flow at the solid boundaries leaves only the surface boundary at z = 7 for the surface
integral. The surface kinematic boundary condition, and volume conservation, lead to!

dA(ﬁ)ﬁ-V:—dXdyV‘U, (145)

1See Section 3.4 of Griffies (2004) for derivation.
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and so

Jqu-Vp:—JA dxdypaV-U+jded®/dt. (14.6)
=1

In a rigid lid model, the first term vanishes. For the free surface model it represents the work done by
atmospheric pressure on the depth integrated flow. The second term is the volume integrated work done
by vertical currents against the buoyancy force. In generalized vertical coordinates, the buoyancy term
takes the form

d®/dt = (9, +u-V+w" 9,) @

(14.7)
=(d;+u-V,)® +gw(5),

where equation (6.72) of Griffies (2004) was used to express the material time derivative in general vertical
coordinates. Hence, the pressure conversion becomes

dewVp :—J dxdypV-U+dep[(8t+u-Vs)CD +gw]. (14.8)
2=1]

Buoyancy contributions now comprise three terms instead of the one found with z-coordinates. This result
reflects the non-orthogonal nature of generalized vertical coordinates.

14.2.2 Pressure work conversions in non-Boussinesq fluids

For non-Boussinesq flows, pressure conversion takes the form

Jqu.Vp: Jpﬁ-v+jdV(pdCD/dt—pV-v). (14.9)
z=1]

The p V-v term represents pressure work on the changing volume of fluid parcels found in the compressible
non-Boussinesq fluid. The boundary condition

dA@f-v =dxdy (1, - Qu/p) (14.10)

is discussed in Section 3.4.3 of Griffies (2004). The generalized vertical coordinate form of equation (14.9)
follows similarly to the Boussinesq case, where extra terms arise from expanding the material time deriva-
tive.

14.2.3 Boussinesq kinetic energy advection conversion

Just as for the pressure gradient term, the scalar product of the horizontal velocity and the advection of
momentum can be converted into alternative forms. To see this conversion in the continuum, write the
advection of horizontal velocity in the Boussinesq fluid as

A=-V-(vu)-M2zAv. (14.11)
The scalar product of A with the horizontal currents leads to

u-A=-u-V-(vu)

vk (14.12)

where
K=— (14.13)
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is the horizontal kinetic energy per mass. Integrating over the volume of the domain, and using the surface
and solid wall boundary conditions, leads to

AEJdVU'A

(14.14)
= j dxdyKCV-U.

z=1

Consequently, the global integral of kinetic energy advection reduces to a boundary term, which vanishes
in the rigid lid model but remains nontrivial in a free surface model.

14.2.4 Non-Boussinesq kinetic energy advection conversion

For the non-Boussinesq fluid, we consider
A=-V.-(pvu)-Mz A pv. (14.15)
The scalar product of A with the horizontal currents leads to

u-A=-u-V-(pvu)

14.16
= V- (vK)=KV-(pv), (14.16)
and integrating over the volume of the domain yields
AEJqu-A
=— | dApK ﬁ-v—JdVICV-( V)
j ®)*P P (14.17)

z=n

=— j dxdyK(pn, —Qm)—jdV/CV'(PV),

z=n

where we used the surface boundary condition (14.10) for the last step.

14.3 How we make use of energetic conversions

We offer here some general comments regarding the utility of the energetic methods for deriving numerical
discretizations.

14.3.1 Conservation versus accuracy

Accuracy is often a primary consideration for numerical methods. Additionally, ease of analysis and in-
terpretation are also important. The presence of discrete analogs to continuous conservation properties
assists in the interpretation of the numerical simulation. Unfortunately, conservation and accuracy are
often incompatible.

Traditionally, climate modelers have chosen conservation properties over accuracy. For example, con-
servation of scalar properties are essential to ensure that mass/volume, heat and salt are conserved over
the course of a long climate integration. Another property that certain models claim is conservation of
mechanical energy. This claim, however, is unfounded for the space-time discrete equations in all mod-
els discussed in Griffies et al. (2000a). All ocean climate models break kinetic energy conservation when
discretizing in time. This point is explained below in the discussion of equation (14.18).

ELEMENTS oF MOM October 8, 2012 Page 193



CHAPTER 14. MECHANICAL ENERGY CONVERSIONS AND ADVECTIVE MASS TRANSPORT Section 14.4

14.3.2 Energy conservation, consistency, and conversion

What is often meant by energy conservation statements is the more qualified property whereby certain
spatially discrete terms are discretized so they do not alter global kinetic energy in the absence of boundary
forcing. Deriving energetically consistent numerical schemes requires some care. In particular, ensuring
that pressure work transfers into vertical buoyancy work in the Boussinesq model necessitates a particular
form for the discrete advection velocity. We discuss this point in Sections 14.6 and 14.7.

When considering energetic issues using alternative time stepping schemes, one often encounters the
situation where certain terms, such as advection, the Coriolis force, and pressure gradients, are evaluated
at staggered time steps. Indeed, the preferred method discussed in Chapter 12 of Griffies (2004) and in
Chapter 11 in this document staggers the velocity and tracer one-half time step relative to one another,
and generally uses non-centred in-time methods for the advection and Coriolis force. Hence, pressure
gradients, whose temporal placement is set by density, is off-set in time from momentum advection, the
Coriolis force, and friction. These details are important when interpreting energetic balances of a space-
time discrete model. Often the more sophisticated the time stepping scheme (e.g., the three-time level
Adams-Bashforth method discussed in Chapter 12 of Griffies (2004)), the more difficult it is to maintain
energetic consistency and balances.

Energetic consistency is necessary but not sufficient for ensuring the discrete system conserves me-
chanical energy in the unforced inviscid limit. For example, time stepping according to the leap-frog
method, which possesses useful energy consistency properties, precludes mechanical energy conservation.
The Robert-Asselin time filter breaks energy conservation in a manner analogous to its corruption of global
tracer conservation (see Section 11.2.2 as well as Section 12.5.4 of Griffies (2004)). Furthermore, even
without time filtering, the continuum identity

2u-d;u=0;(u-u) (14.18)

is generally not satisfied by discrete time stepping schemes. As noted on page 158 of Durran (1999), trape-
zoidal time differencing allows for this property. Other schemes commonly used do not. As trapezoidal
time differencing is semi-implicit and not readily implemented for the primitive equations, it is not con-
sidered in the following.

14.3.3 A caveat regarding the tripolar grid in MOM

The tripolar grid (Section 9.3) is routinely used in global simulations with MOM in order to remove the
spherical coordinate singularity from the liquid ocean domain. Unfortunately, due to some limitations of
the energetic diagnostics, the energy conversion diagnostics are not precisely maintained when using the
tripolar grid. The issue is not related to a problem with the prognostic equations that time step the model
fields, but rather related to limitations with the diagnostic code. To resolve the diagnostic code requires
adding processor updates that have not been deemed important enough to warrant the potential model
slowdown.

14.4 Thickness weighted volume and mass budgets

We make use of the thickness weighted volume budgets for the Boussinesq fluid when deriving the discrete
energetic balances. The volume budgets are given by equations (10.82), (10.83), and (10.84). We expose
them here for completeness

(W)sg,_, = 4 (d2) - SV dz+ V- (udz) - Qu/p, (14.19)
(W)g, = 91(dz) =SV dz + V- (udz) + (W) g, | (14.20)
0=0,(dz)-8Vdz+V,-(udz)+ (w") (14.21)

S=Skbot-1"
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We also make use of the thickness weighted mass budgets for the non-Boussinesq case, given by equations
(10.106), (10.107), and (10.108). We expose them here for completeness

(pw! )iy, = 9r(pdz) =™ pdz+ Vs (updz) = O (14.22)
(pw®)os = 9i(pdz) - S™pdz+ V- (wpdz) + (pw®)ey, (14.23)
0:8t(pdz)—8(M)pdz+V5-(updz)+(pw(5)) (14.24)

$=Skbot-1"
As described in Section 10.8.1, depth based vertical coordinates used in MOM (Section 5.1) allow for the
time derivative d; (dz) to be diagnosed from the vertically integrated volume budget. Likewise, the pressure
based vertical coordinates (Section 5.2) allow for the time derivative d; (pdz) to be diagnosed from the
vertically integrated mass budget. These two properties are important to ensure the utility of the Eulerian
algorithms employed by MOM.

14.5 Thickness and mass per area for the momentum

We consider here the specification of various thickness or mass per horizontal area required for the B-grid
and C-grid.

4 4 4 4
I I I I
T(1,1) T(2,1) T(3,1) T(4,1)
O
. 4
l * I 1d2
T(1,2) T(2,2) T(3,2)

w
©)

L
w
<

O

T(1,3) 12,3 T T(4,3)

(1,4 T(2,4 T(,4) T(4,4)

Figure 14.1: Shown here is a 4x4 region of a zonal-vertical domain of tracer cells T(i,k), with ocean cells
(unshaded) and land land cells (shaded). Note the partial bottom cells in cells T(3,3),T(4,3) and T(4,2).
For both the B-grid and C-grids, the advective transport through the zonal tracer cell face is depicted
by horizontal arrows, and vertical advective transport is depicted by vertical arrows. On the C-grid, the
thickness appearing in the discrete expression for the C-grid zontal momentum per area (u p, dz);; is taken
as the minimum thickness p, (dzte); ; = p, min(dzt; ;,dzt;, ;) between the adjacent tracer cells. Likewise,
for a non-Boussinesq fluid, the mass per unit area appearing in the discrete expression for (updz);; is
given by (pdzte); ; = min(pdztilj,pdztiﬂyj). Similar expressions hold for the meridional cell face. The
minimum function ensures mass conservation when moving across cell faces where the adjacent cells have
distinct thicknesses, as when there is partial cell bottom topography or generalized level coordinates. That
is, the minimum function precludes too much mass entering or leaving the thinnest of the adjacent cells.
When considering a B-grid, where horizontal velocity components are co-located, it is the least massive
of the four surrounding tracer cells that provides the velocity cell mass per horizontal area (pdzu); ; =

min[(pdzt); ;, (0 dzt);;1,j, (pdzt); ji1, (pdzt)igy i1 ]-
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14.5.1 B-grid momentum

The B-grid identifies a distinct control volume for the velocity cell and tracer cell (Figure 9.1). The mass
per unit area of the velocity cell is determined by the minimum of the surrounding four tracer cells

(rho-dzu); ; = min[(rho_dzt); j, (tho-dzt);, j, (tho-dzt); j, 1, (rho-dzt);;1 ;41 ], (14.25)

i,j’
with the density factors set to the constant p, when making the Boussinesq approximation. Once the
momentum per horizontal area, urho_dzu, is updated to a new time step, we divide by (rho_dzu); ; to
diagnose the updated B-grid velocity u.

The definition (14.25) follows the partial bottom cell considerations of Pacanowski and Gnanadesikan
(1998). Griffies et al. (2001) then applied this definition to the surface ocean in an explicit free surface
model with a geopotential vertical coordinate, where the top grid cells have a time dependent thickness.
Starting from MOM4p1l, MOM follows that applyies the definition (14.25) throughout the fluid column for
all generalized level coordinates. Further discussion is given in the caption to Figure 14.1.

i,j

14.5.2 C-grid momentum

On the C-grid, there is no velocity control volume. Instead, there is a separate thickness or mass per unit
area associated with each momentum component, which are determined according to

(rho_dzte); ; = min[(rho_dzt); ;, (tho_dzt);, 1 ] (14.26)
(rho_dztn); ; = min[(rho_dzt); ;, (tho_dzt); j,1]. (14.27)

Motivation for these definitions is provided in Figure 14.1.

14.6 B-grid Boussinesq pressure work conversions

We now consider manipulations of the globally integrated discrete B-grid representation of u- V,p for the
Boussinesq case. In this section, discrete grid labels are exposed when needed, with many labels suppressed
to reduce clutter. Also, the horizontal velocity components are co-located on the northeast corners of the
tracer grid, as per the B-grid convention (Figure 9.1). The material in this Section is based on a similar
z-coordinate discussion given in Griffies et al. (2004), but it has been generalized to the arbitrary level
coordinates available in MOM.

Consider the domain integrated scalar product of

u-Vy,p=u-(Vsp+pV; D)

L (14.28)
=u-V(pa+Psur) tu-(Vsp +p Vs D).
To reach this result we use equation (3.18) with s = z* or s = (¥, in which case
Psurf = §Po M when s = z* or s = 0@ (14.29)
is the rapidly fluctuating surface pressure term, and
1
p':gjp’dz when s =z* ors = o(® (14.30)

z

is the slower fluctuating pressure anomaly where p’ = p—pg. When s = z is the vertical coordinate, equation
(3.17) is used, in which case

Psurf = & Psurf 1] when s =z (14.31)
and
0
p':gjp’dz when s = z. (14.32)

z
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To determine the proper discrete form of the pressure conversion, recall from Section 3.3.1 the momen-
tum equations for a Boussinesq fluid on a B-grid with just the impacts from pressure acting

9t (1 po dzu)™* = —dzu (FDXNT(FAY(p, + pyurs + p')) + FAY[8;0 FAX(p'))/dxcu; ) (14.33)
94 (v o dzu)™™ = —dzu (FDY_ET(FAX(p, + purt + p')) + FAX[8;® FAY(p')/dyu, ;). (14.34)

The volume integrated pressure conversion
P:—ju-Vzp av, (14.35)
thus takes on the following discrete form on the B-grid

=- ZdvW) [ FDXNT(FAY(p, + Psurs)) + v FDY_ET(FAX(p, + Pourt)) ]

i,j,k
- Zdv“” [ 1 FDXNT(FAY(p’)) + v FDY_ET(FAX(p"))] (14.36)
ik ’
= YAV [u FAY(FAX(p') 6;0)/dxu + v FAX(FAY(p') 6;)/dyu]
i,j,k
with
dv = dau dzu (14.37)

the U-cell volume. The discrete expressions for the pressure gradient are based on the discussion in Section
3.3.1, where the horizontal pressure gradient body force is written for the B-grid. MOM employs the
following discrete forward derivative operators

A1 —A;

FDX_NT(A) = (14.38)
dXUi,j
A. _A.
FDY_ET(A) = 7L 71 (14.39)
dyu;

where the arguments of the derivatives live on the north and east faces, respectively, of a tracer cell. The
operators 6;A and 6;A compute the forward difference

SiA=Ai —A; (14.40)

§jA= A — A (14.41)

of a discrete field. MOM also employs the following forward averaging operators

Aiy1 +A;
2
A +A;
FAY(A) = %

FAX(A) = (14.42)

(14.43)

The first group of terms in equation (14.36) arises from applied pressure and surface geopotential acting
on the vertically integrated velocity. The second group represents the constant s lateral pressure gradient
taken between cells living on the same discrete k-level. The third group arises from the use of generalized
vertical coordinates, where the depth of a k-level is generally a function of horizontal position.

The goal of the remainder of this section is to rearrange the discrete terms appearing in the pressure con-
version equation (14.36) to reveal an alternative, and physically sensible, form. In effect, we are performing
a discrete integration by parts. The MOM energy conversion diagnostic computes the unmanipulated form
of the pressure conversion to the manipulated form, and compares the result: left hand side = right hand side?
Except for the caveat noted for the tripolar grid (Section 14.3.3), differences between the two calculations
can reveal algorithm mistakes.
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14.6.1 The vertically integrated term P,
The first term in equation (14.36) can be vertically integrated to yield
Pr==) dV" [u FDXNT(FAY(p, + pyuer)) + v FOY ET(FAX(p, + pourt)) ]
ik
=- Zdau [U FDXNT(FAY(p, + psurt)) + V FDY_ET(FAX(pa + Psurt)) ]
ij

(14.44)

where
(U, V)= Zdzu(u,v) (14.45)
k

is the vertically integrated horizontal velocity field. The P, term represents the work of applied pressure
and geopotential moving vertical columns of fluid.

14.6.2 Advection velocity components for tracers

Focus on the zonal piece of the baroclinic pressure term appearing in equation (14.36), in which

Py == ) daudzuu FOXNT(FAY(p))
i,j,k

1 (o)
=-3 Zdyu dzu u 6;(p; + pj.q)

=- ZBAY(dyu dzu u) 5ip]'».

(14.46)

The boundary terms were dropped since they vanish for either periodic or solid wall conditions. We also
introduced the backward meridional average operator

A]'+Aj,1

BAY(4) = ~—

(14.47)

Now define the zonal thickness weighted advective transport velocity on the eastern face of a tracer cell as

BAY(dyu dzu u)

(14.48)
dyte,-lj

uh,eti,]-,k =

where dyte; ; is the meridional width of the tracer cell’s east side (see Figure 14.3 for definitions of grid
distances). Doing so leads to

Py =— Zéip' (dyte uh_et)
= Zp'c‘ii (dyte uh_et) (14.49)
= Zp’ dat BDX_ET(uh_et),
where boundary terms vanish, and

Ai,j dytei,j - Ai—l,j dytei,llj
dat

BDX_ET(A) = (14.50)

ij
is a backwards finite difference operator for fields defined on the east face of tracer cells. Similar manipu-

lations with the meridional term v dyp” leads to

P, = Zp' dat (BDX_ET(uh_et) +BDY_NT(vh_nt)), (14.51)
i,j,k
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with BAX
dxud
Vh,nti]‘k = M (1452)
7 dthi,j
the meridional tracer advective velocity on the north face of the tracer cell, and
A+ A;
BAX(A) = % (14.53)
defining the backward averaging operator. Finally,
A; dxtn; ;i —A;;i_;dxtn;;_
BDY_NT(A) = %1 il 77T (14.54)

dati,]'
is a backwards finite difference operator for fields defined on the north face of tracer cells.

The horizontal thickness weighted advective velocity components uh_et and vh_nt are defined at the
sides of the tracer cells, just like the C-grid velocity components (Figure 9.2 and 9.3)). They are the discrete
representation of the thickness weighted advective velocity components that transport tracer and volume
through the east and north cell faces. When fluid volume converges horizontally to a tracer cell, there is a
corresponding dia-surface velocity component and a generally nonzero time tendency for the cell thickness.
The thickness weighted volume budgets given by equations (14.19), (14.20), and (14.21) describe these
effects.

Given that the advective velocity components uh_et and vh_nt are defined at the sides of the tracer cells,
we are led to define a dia-surface velocity component w_bty at the bottom of the cell. It can generally be
written by the discrete form of equation (14.20)

w_bty =w_bty_; + BDX_ET(uh_ety)+BDYNT(vh_nty)+ 0 (dzt,) - SV dzt,. (14.55)

Again, the time tendency on tracer cell thickness dzty is known in MOM from information about the
vertically integrated volume budget (Section 10.8.1.5). So equation (14.55) is indeed a diagnostic expression
for w_bty, evaluated from the surface down to the bottom. At the ocean surface, the dia-surface velocity
component is determined by the input of water to the system

w_bti—g = —Qun/po- (14.56)

The minus sign is a convention, where positive w > 0 represents upward transport whereas positive Q, > 0
represents downward transport of fresh water through the ocean surface into the ocean domain. Note that
in general, water can enter the ocean domain at any depth through the source term SV). At the ocean
bottom, we are ensured of a proper discretization so long as

wW_bti_kpor = 0 (1457)

is diagnosed to within numerical truncation. This statement is valid on either the B-grid or C-grid, since
the ocean bottom on tracer cells is flat. It is a useful diagnostic for verifying the integrity of volume conser-
vation discretization throughout a vertical column.

14.6.3 Divergence operator for surface height evolution

Integrating the continuity equation (14.55) vertically over an ocean column leads to

nk nk
Z(w,btk —wbtp)= Z(BDX,ET(uh,etk) +BDY_NT(vh_nty) + 9, (dzt,) - S dzt, ). (14.58)
k=1 k=1

The time tendency for the thickness of an ocean column equals to that of the sea surface height, so that

nk
Iy = Zat(dztk). (14.59)
k=1
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Use of the surface and bottom boundary conditions (14.56) and (14.57) thus lead to

nk
911 = Qu/po — Z[BDX ET(uh_ety)+BDY_NT(vh_nty)] ZS dzty. (14.60)
k=1

We are thus led to introduce a finite difference operator for the divergence of the vertically integrated

transport
nk

DIV.UD(U,V) = Z[BDX,ET(uh,etk) +BDY_NT(vh_ntg)]. (14.61)
k=1
Use of the operator definitions (14.47), (14.50), (14.53), and (14.54), as well as the advection velocity com-
ponents (14.48) and (14.52) leads to the form relevant for the B-grid

DIV_UD(U, V) =

[BAY(dyu U)]; ; - [BAY(dyu U)];_y ; ) . ( [BAX(dxu V)]; i = [BAX(dxu V)]; i, (14.62)

dathj datLj

where (U, V) is the vertically integrated horizontal velocity field defined by equation (14.45). Note that
this is the same divergence operator that is used for the bottom pressure evolution when implementing
the non-Boussinesq mass conserving form of MOM on a B-grid. The only difference is that the arguments
become the density-weighted horizontal velocity (see Section 14.8.2).

14.6.4 Completing the manipulations for P,

Substituting expression (14.55) for the vertical advective velocity component into equation (14.51) leads to

P, = Zp;( dat (w,btk —w_bty_; —0ds(dzty) +S(V)dztk). (14.63)
i,j,k

Now move the vertical difference operator from the dia-surface velocity to the hydrostatic pressure via the
following identity

kbot kbot
Zp;c dat (w_bty —w_bty_j)=—-p;,_,wbti_odat— Z datw.bty(p;,, —pi) (14.64)
k=1 k=1

where we used the lower boundary condition p;; .., w-bti = 0 to reach this result. The next step requires
us to specify how the hydrostatic pressure is computed. There are two ways, described in Sections 10.1.1
and 10.1.2.

14.6.4.1 Energetic approach

Section 10.1.1 noted that the older energetically based method specifies the hydrostatic pressure at the
tracer point depth (Figure 14.2) according to

Pioy =8dztupioy prey k=1 (14.65)
Prat =p;<+gdzwtkp_,’<z k>1, (14.66)

where .
5z _ Pt Pt
P = 2

is the algebraically averaged density over the region between two tracer points Ty and Ty, and dzwty is

the vertical distance between the tracer points (Section 10.3). Substituting this result into equation (14.64)

renders

(14.67)

kbot kbot
Zp;( dat (w-bty —w_bty_j)=—p;_, wbty_odat—g Z dat dzwtyw_bty p,’(z. (14.68)
k=1 k=1
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dzwt(k+0) dztup(1)
dzt(k=1)
) °
dztlo(1)
dzwt(k+1)
dztup(2)
[ ] [ ]
dzt(k=2
dztlo(2)
dzwt(k=2)

dztup(k=kbpot)

® dzt(k=kbot) Y

dzwi(kkbot) dztlo(k=kbot)

Figure 14.2: Left panel: schematic of the vertical grid cell arrangement used for computing the hydrostatic
pressure at a depth k + 1 in terms of the pressure at depth k using equations (14.65) and (14.66). The
vertical average of density is meant to account for the part of density within each of the two adjacent cells.
The factor of 1/2 used in the average operator yields an approximate average when vertical cells are non-
uniform. Yet the 1/2 factor is used for all vertical grid spacing since it renders a simple conversion of
discrete pressure work to discrete gravity work. Right panel: grid cell thicknesses used for computing the
finite volume hydrostatic pressure at depth k + 1 (see equations (14.70) and (14.71)). Note that this figure
was also presented in Section 10.1 (see Figure 10.1).

This result then leads to

Py=—g Z dat dzwt, wbty p] - Z dat pl_, wbtp_g— Z dat p; [9(dzt) -SVdzte ] (14.69)
i,j,k i,j i,j,k
14.6.4.2 Finite volume approach

Section 10.1.2 noted that a finite volume based method specifies the hydrostatic pressure at the tracer point
depth according to (see Figure 14.2)

Pi=1 = 8dztupi_; pr, (14.70)
Prs1 = Pr+gdzt1og p +gdztupe,y py - (14.71)
Substituting this result into equation (14.64) renders

kbot kbot
Zp;{ dat (w.bty —w.bty_j)=-p,_, wbty_odat—g Z dat w_bty (dztlog p; +gdztupy,y pr, ). (14.72)
k=1 k=1

This result then leads to
Py =-g¢ Z dat w_bty (dztlog pi+gdztupy,y Py, ) Z datp;_, w,bthO—Z dat p; [Bt (dzty) —S(V)dztk].

i,j,k i,j i,j,k
(14.73)
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14.6.5 The geopotential gradient term P;

Now consider the zonal piece of the geopotential gradient from equation (14.36)

Piy = —deu dyu dzu u FAY(FAX(p') 5;®)/dxu. (14.74)
i,j,k

Transferring the forward average FAY to a backward average BAY leads to
Piy = — ZBAY(dyu dzu u) FAX(p') ;D, (14.75)

where boundary terms vanish. Introducing the zonal thickness weighted advective transport velocity
(14.48) yields

Pay = — Zdyte uh_et FAX(p’) 5;D. (14.76)

Moving the difference operator 6;® = ®; | — ®; from the geopotential to the remaining terms gives

Pay = Zcp 5;(dyte FAX(p’) uh_et)

(14.77)
= qu dat BDX_ET(FAX(p) uh_et),
where boundary terms vanish. Similar manipulations with the meridional piece of P; lead to
P = Zcp dat [BDX_ET(FAX(p’) uh_et) +BDY_NT(FAY(p’) vh_nt)]. (14.78)

14.6.6 Summary for the Boussinesq pressure conversion

In summary, for the energetically based method for computing hydrostatic pressure, the projection of the
horizontal velocity onto the downgradient pressure field is given by

P=- Zdau [U FDXNT(FAY(p, + psur)) + V FDY_ET(FAX(pPa + Psurt)) |
ij

- Z dat p;_, wbty_g
i,j

—,Z
- g Z dat dzwty w_bty pp (14.79)
ik
- Z dat p;, [at(dztk) -8V dztk]
i,j,k
+ Z @ dat [BDX_ET(FAX(p’) uh_et) +BDY_NT(FAY(p’) vh_nt)].
i,j,k

Within the MOM energy analysis diagnostic, the code computes the left hand side of equation (14.79) and
compares to the right hand side. Differences are due to coding errors. This diagnostic is very effective
because it involves advective velocities on the tracer cells, both tracer and velocity cell distances, the cal-
culation of pressure, and details of a partial step representation of the ocean bottom. Each requires precise
discretization to ensure an energy conversion error at the numerical roundoff level. In a similar manner,
for the finite volume approach to computing hydrostatic pressure, we have the projection of the horizontal
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B dxtn(i)
A A
dyt(i,j)
dxt(ij) L T0D dyte(i,j)

Y Y

Figure 14.3: Time independent horizontal grid distances (meters) used for the tracer cell T; ; in MOM. dxt; ;
and dyt; ; are the grid distances of the tracer cell in the generalized zonal and meridional directions, and
dat;; = dxt;; dyt;; is the area of the cell. The grid distance dxtn; ; is the zonal width of the north face
of a tracer cell, and dyte;; is the meridional width of the east face. Note that the tracer point Ti,j is not
generally at the center of the tracer cell. Distances are functions of both i and j due to the use of generalized
orthogonal coordinates.

velocity onto the downgradient pressure field is given by

P=- Zdau [U FDXNT(FAY(p, + psurt)) + V FDY_ET(FAX(pa + Psurt)) |
ij

- Z dat p;_, wbty_g
ij

- g Z dat wbty (dztloy pj +gdztupyst pryy) (14.80)
i,j,k
- Z dat p; [Bt(dztk)—S(V) dztk]
i,j,k
+ Z @ dat [BDX_ET(FAX(p’) uh_et) +BDY_NT(FAY(p’) vh_nt)].
i,j,k

14.7 C-grid Boussinesq pressure work conversions

We now consider pressure work conversions for the C-grid version of MOM. In this section, the horizontal
velocity components (#,v) are located on the zonal and meridional faces of the tracer cell, as per the C-grid
convention (Figure 9.2).

As for the B-grid in Section 14.6, the manipulations here lead to a consistent definition of the