
Using Analytic QP and Sparseness to Speed
Training of Support Vector Machines

John C. Platt
Microsoft Research
1 Microsoft Way

Redmond, WA 98052
jplatt@microsoft.com

Abstract

Training a Support Vector Machine (SVM) requires the solution of a very
large quadratic programming (QP) problem. This paper proposes an al-
gorithm for training SVMs:Sequential Minimal Optimization, or SMO.
SMO breaks the large QP problem into a series of smallest possible QP
problems which are analytically solvable. Thus, SMO does not require
a numerical QP library. SMO’s computation time is dominated by eval-
uation of the kernel, hence kernel optimizations substantially quicken
SMO. For the MNIST database, SMO is 1.7 times as fast as PCG chunk-
ing; while for the UCI Adult database and linear SVMs, SMO can be
1500 times faster than the PCG chunking algorithm.

1 INTRODUCTION

In the last few years, there has been a surge of interest in Support Vector Machines
(SVMs) [1]. SVMs have empirically been shown to give good generalization performance
on a wide variety of problems. However, the use of SVMs is still limited to a small group of
researchers. One possible reason is that training algorithms for SVMs are slow, especially
for large problems. Another explanation is that SVM training algorithms are complex,
subtle, and sometimes difficult to implement. This paper describes a new SVM learning
algorithm that is easy to implement, often faster, and has better scaling properties than the
standard SVM training algorithm. The new SVM learning algorithm is called Sequential
Minimal Optimization (or SMO).

0To appear: Advances in Neural Information Processing Systems 11, M. S. Kearns, S. A. Solla,
D. A. Cohn, eds., MIT Press, (1999)

1.1 OVERVIEW OF SUPPORT VECTOR MACHINES

A general non-linear SVM can be expressed as

u =
X

i

�iyiK(~xi; ~x)� b (1)

whereu is the output of the SVM,K is a kernel function which measures the similarity
of a stored training example~xi to the input~x, yi 2 f�1;+1g is the desired output of the
classifier,b is a threshold, and�i are weights which blend the different kernels [1]. For
linear SVMs, the kernel functionK is linear, hence equation (1) can be expressed as

u = ~w � ~x� b (2)

where~w =
P

i �iyi~xi.

Training of an SVM consists of finding the�i. The training is expressed as a minimization
of a dual quadratic form:

min
~�

	(�) = min
~�

1

2

NX

i=1

NX

j=1

yiyjK(~xi; ~xj)�i�j �
NX

i=1

�i; (3)

subject to box constraints,
0 � �i � C; 8i; (4)

and one linear equality constraint

NX

i=1

yi�i = 0: (5)

The�i are Lagrange multipliers of a primal quadratic programming (QP) problem: there
is a one-to-one correspondence between each�i and each training example~xi.

Equations (3–5) form a QP problem that the SMO algorithm will solve. The SMO algo-
rithm will terminate when all of the Karush-Kuhn-Tucker (KKT) optimality conditions of
the QP problem are fulfilled. These KKT conditions are particularly simple:

�i = 0) yiui � 1; 0 < �i < C) yiui = 1; �i = C) yiui � 1; (6)

whereui is the output of the SVM for theith training example.

1.2 PREVIOUS METHODS FOR TRAINING SUPPORT VECTOR MACHINES

Due to its immense size, the QP problem that arises from SVMs cannot be easily solved via
standard QP techniques. The quadratic form in (3) involves a Hessian matrix of dimension
equal to the number of training examples. This matrix cannot be fit into 128 Megabytes if
there are more than 4000 training examples.

Vapnik [9] describes a method to solve the SVM QP, which has since been known as
“chunking.” Chunking relies on the fact that removing training examples with�i = 0
does not change the solution. Chunking thus breaks down the large QP problem into a
series of smaller QP sub-problems, whose object is to identify the training examples with
non-zero�i. Every QP sub-problem updates the subset of the�i that are associated with
the sub-problem, while leaving the rest of the�i unchanged. The QP sub-problem consists
of every non-zero�i from the previous sub-problem combined with theM worst examples
that violate the KKT conditions (6), for someM [1]. At the last step, the entire set of
non-zero�i has been identified, hence the last step solves the entire QP problem.

Chunking reduces the dimension of the matrix from the number of training examples to
approximately the number of non-zero�i. If standard QP techniques are used, chunking

cannot handle large-scale training problems, because even this reduced matrix cannot fit
into memory. Kaufman [3] has described a QP algorithm that does not require the storage
of the entire Hessian.

The decomposition technique [6] is similar to chunking: decomposition breaks the large
QP problem into smaller QP sub-problems. However, Osuna et al. [6] suggest keeping a
fixed size matrix for every sub-problem, deleting some examples and adding others which
violate the KKT conditions. Using a fixed-size matrix allows SVMs to be trained on very
large training sets. Joachims [2] suggests adding and subtracting examples according to
heuristics for rapid convergence. However, until SMO, decomposition required the use of
a numerical QP library, which can be costly or slow.

2 SEQUENTIAL MINIMAL OPTIMIZATION

Sequential Minimal Optimization quickly solves the SVM QP problem without using nu-
merical QP optimization steps at all. SMO decomposes the overall QP problem into fixed-
size QP sub-problems, similar to the decomposition method [7].

Unlike previous methods, however, SMO chooses to solve the smallest possible optimiza-
tion problem at each step. For the standard SVM, the smallest possible optimization prob-
lem involves two elements of~� because the~� must obey one linear equality constraint. At
each step, SMO chooses two�i to jointly optimize, finds the optimal values for these�i,
and updates the SVM to reflect these new values.

The advantage of SMO lies in the fact that solving for two�i can be done analytically.
Thus, numerical QP optimization is avoided entirely. The inner loop of the algorithm can
be expressed in a short amount of C code, rather than invoking an entire QP library routine.

By avoiding numerical QP, the computation time is shifted from QP to kernel evaluation.
Kernel evaluation time can be dramatically reduced in certain common situations, e.g.,
when a linear SVM is used, or when the input data is sparse (mostly zero). The result of
kernel evaluations can also be cached in memory [1].

There are two components to SMO: an analytic method for solving for the two�i, and
a heuristic for choosing which multipliers to optimize. Pseudo-code for the SMO algo-
rithm can be found in [8, 7], along with the relationship to other optimization and machine
learning algorithms.

2.1 SOLVING FOR TWO LAGRANGE MULTIPLIERS

To solve for the two Lagrange multipliers�1 and�2, SMO first computes the constraints on
these multipliers and then solves for the constrained minimum. For convenience, all quan-
tities that refer to the first multiplier will have a subscript 1, while all quantities that refer
to the second multiplier will have a subscript 2. Because there are only two multipliers,
the constraints can easily be displayed in two dimensions (see figure 1). The constrained
minimum of the objective function must lie on a diagonal line segment.

The ends of the diagonal line segment can be expressed quite simply in terms of�2. Let
s = y1y2. The following bounds apply to�2:

L = max(0; �2 + s�1 �
1

2
(s+ 1)C); H = min(C;�2 + s�1 �

1

2
(s� 1)C): (7)

Under normal circumstances, the objective function is positive definite, and there is a min-
imum along the direction of the linear equality constraint. In this case, SMO computes the
minimum along the direction of the linear equality constraint:

�new2 = �2 +
y2(E1 �E2)

K(~x1; ~x1) +K(~x2; ~x2)� 2K(~x1; ~x2)
; (8)

C=1α01 =α

02 =α

C=2α

01 =α C=1α

02 =α

C=2α

kyy =+⇒= 2121 ααkyy =−⇒≠ 2121 αα

Figure 1: The Lagrange multipliers�1 and�2 must fulfill all of the constraints of the full
problem. The inequality constraints cause the Lagrange multipliers to lie in the box. The
linear equality constraint causes them to lie on a diagonal line.

whereEi = ui� yi is the error on theith training example. As a next step, the constrained
minimum is found by clipping�new2 into the interval[L;H]. The value of�1 is then
computed from the new, clipped,�2:

�new1 = �1 + s(�2 � �
new;clipped
2): (9)

For both linear and non-linear SVMs, the thresholdb is re-computed after each step, so that
the KKT conditions are fulfilled for both optimized examples.

2.2 HEURISTICS FOR CHOOSING WHICH MULTIPLIERS TO OPTIMIZE

In order to speed convergence, SMO uses heuristics to choose which two Lagrange multi-
pliers to jointly optimize.

There are two separate choice heuristics: one for�1 and one for�2. The choice of�1
provides the outer loop of the SMO algorithm. If an example is found to violate the KKT
conditions by the outer loop, it is eligible for optimization. The outer loop alternates single
passes through the entire training set with multiple passes through the non-bound�i (�i 6=
f0; Cg). The multiple passes terminate when all of the non-bound examples obey the KKT
conditions within�. The entire SMO algorithm terminates when the entire training set
obeys the KKT conditions within�. Typically,� = 10�3.

The first choice heuristic concentrates the CPU time on the examples that are most likely to
violate the KKT conditions, i.e., the non-bound subset. As the SMO algorithm progresses,
�i that are at the bounds are likely to stay at the bounds, while�i that are not at the bounds
will move as other examples are optimized.

As a further optimization, SMO uses the shrinking heuristic proposed in [2]. After the pass
through the entire training set, shrinking finds examples which fulfill the KKT conditions
more than the worst example failed the KKT conditions. Further passes through the training
set ignore these fulfilled conditions until a final pass at the end of training, which ensures
that every example fulfills its KKT condition.

Once an�1 is chosen, SMO chooses an�2 to maximize the size of the step taken during
joint optimization. SMO approximates the step size by the absolute value of the numerator
in equation (8):jE1�E2j. SMO keeps a cached error valueE for every non-bound example
in the training set and then chooses an error to approximately maximize the step size. If
E1 is positive, SMO chooses an example with minimum errorE2. If E1 is negative, SMO
chooses an example with maximum errorE2.

Experiment Kernel Sparse Kernel Training Number of C %
Inputs Caching Set Support Sparse
Used Used Size Vectors Inputs

AdultLin Linear Y mix 11221 4158 0.05 89
AdultLinD Linear N mix 11221 4158 0.05 0
WebLin Linear Y mix 49749 1723 1 96
WebLinD Linear N mix 49749 1723 1 0
AdultGaussK Gaussian Y Y 11221 4206 1 89
AdultGauss Gaussian Y N 11221 4206 1 89
AdultGaussKD Gaussian N Y 11221 4206 1 0
AdultGaussD Gaussian N N 11221 4206 1 0
WebGaussK Gaussian Y Y 49749 4484 5 96
WebGauss Gaussian Y N 49749 4484 5 96
WebGaussKD Gaussian N Y 49749 4484 5 0
WebGaussD Gaussian N N 49749 4484 5 0
MNIST Polynom. Y N 60000 3450 100 81

Table 1: Parameters for various experiments

2.3 KERNEL OPTIMIZATIONS

Because the computation time for SMO is dominated by kernel evaluations, SMO can be
accelerated by optimizing these kernel evaluations. Utilizing sparse inputs is a generally
applicable kernel optimization. For commonly-used kernels, equations (1) and (2) can be
dramatically sped up by exploiting the sparseness of the input. For example, a Gaussian
kernel can be expressed as an exponential of a linear combination of sparse dot products.
Sparsely storing the training set also achieves substantial reduction in memory consump-
tion.

To compute a linear SVM, only a single weight vector needs to be stored, rather than all of
the training examples that correspond to non-zero�i. If the QP sub-problem succeeds, the
stored weight vector is updated to reflect the new�i values.

3 BENCHMARKING SMO

The SMO algorithm is tested against the standard chunking algorithm and against the de-
composition method on a series of benchmarks. Both SMO and chunking are written in
C++, using Microsoft’s Visual C++ 6.0 compiler. Joachims’ packageSVMlight (version
2.01) with a default working set size of 10 is used to test the decomposition method. The
CPU time of all algorithms are measured on an unloaded 266 MHz Pentium II processor
running Windows NT 4.

The chunking algorithm uses the projected conjugate gradient algorithm as its QP solver,
as suggested by Burges [1]. All algorithms use sparse dot product code and kernel caching,
as appropriate [1, 2]. Both SMO and chunking share folded linear SVM code.

The SMO algorithm is tested on three real-world data sets. The results of the experiments
are shown in Tables 1 and 2. Further tests on artificial data sets can be found in [8, 7].

The first test set is the UCI Adult data set [5]. The SVM is given 14 attributes of a census
form of a household and asked to predict whether that household has an income greater
than $50,000. Out of the 14 attributes, eight are categorical and six are continuous. The six
continuous attributes are discretized into quintiles, yielding a total of 123 binary attributes.

The second test set is text categorization: classifying whether a web page belongs to a

Experiment SMO SVMlight Chunking SMO SVMlight Chunking
Time Time Time Scaling Scaling Scaling
(sec) (sec) (sec) Exponent Exponent Exponent

AdultLin 13.7 217.9 20711.3 1.8 2.1 3.1
AdultLinD 21.9 n/a 21141.1 1.0 n/a 3.0
WebLin 339.9 3980.8 17164.7 1.6 2.2 2.5
WebLinD 4589.1 n/a 17332.8 1.5 n/a 2.5
AdultGaussK 442.4 284.7 11910.6 2.0 2.0 2.9
AdultGauss 523.3 737.5 n/a 2.0 2.0 n/a
AdultGaussKD 1433.0 n/a 14740.4 2.5 n/a 2.8
AdultGaussD 1810.2 n/a n/a 2.0 n/a n/a
WebGaussK 2477.9 2949.5 23877.6 1.6 2.0 2.0
WebGauss 2538.0 6923.5 n/a 1.6 1.8 n/a
WebGaussKD 23365.3 n/a 50371.9 2.6 n/a 2.0
WebGaussD 24758.0 n/a n/a 1.6 n/a n/a
MNIST 19387.9 38452.3 33109.0 n/a n/a n/a

Table 2: Timings of algorithms on various data sets.

category or not. Each web page is represented as 300 sparse binary keywords attributes.

The third test set is the MNIST database of handwritten digits, from AT&T Research
Labs [4]. One classifier of MNIST, class 8, is trained. The inputs are 784-dimensional
non-binary vectors and are stored as sparse vectors. A fifth-order polynomial kernel is
used to match the AT&T accuracy results.

The Adult set and the Web set are trained both with linear SVMs and Gaussian SVMs with
variance of 10. For the Adult and Web data sets, theC parameter is chosen to optimize
accuracy on a validation set. Experiments on the Adult and Web sets are performed with
and without sparse inputs and with and without kernel caching, in order to determine the
effect these kernel optimizations have on computation time. When a kernel cache is used,
the cache size for SMO andSVMlight is 40 megabytes. The chunking algorithm always
uses kernel caching: matrix values from the previous QP step are re-used. For the linear
experiments, SMO does not use kernel caching, whileSVMlight does.

In Table 2, the scaling of each algorithm is measured as a function of the training set size,
which is varied by taking random nested subsets of the full training set. A line is fitted
to the log of the training time versus the log of the set size. The slope of the line is an
empirical scaling exponent.

4 CONCLUSIONS

As can be seen in Table 2, standard PCG chunking is slower than SMO for the data sets
shown, even for dense inputs. Decomposition and SMO have the advantage, over standard
PCG chunking, of ignoring the examples whose Lagrange multipliers are atC. This ad-
vantage is reflected in the scaling exponents for PCG chunking versus SMO andSVMlight .
PCG chunking can be altered to have a similar property [3]. Notice that PCG chunking uses
the same sparse dot product code and linear SVM folding code as SMO. However, these
optimizations do not speed up PCG chunking due to the overhead of numerically solving
large QP sub-problems.

SMO andSVMlight are similar: they decompose the large QP problem into very small QP
sub-problems. SMO decomposes into even smaller sub-problems: it uses analytical solu-

tions of two-dimensional sub-problems, whileSVMlight uses numerical QP to solve 10-
dimensional sub-problems. The difference in timings between the two methods is partly
due to the numerical QP overhead, but mostly due to the difference in heuristics and kernel
optimizations. For example, SMO is faster thanSVMlight by an order of magnitude on
linear problems, due to linear SVM folding. However,SVMlight can also potentially use
linear SVM folding. In these experiments, SMO uses a very simple least-recently-used ker-
nel cache of Hessian rows, whileSVMlight uses a more complex kernel cache and modifies
its heuristics to utilize the kernel effectively [2]. Therefore, SMO does not benefit from the
kernel cache at the largest problem sizes, whileSVMlight speeds up by a factor of 2.5 .

Utilizing sparseness to compute kernels yields a large advantage for SMO due to the lack
of heavy numerical QP overhead. For the sparse data sets shown, SMO can speed up by
a factor of between 3 and 13, while PCG chunking only obtained a maximum speed up of
2.1 times.

The MNIST experiments were performed without a kernel cache, because the MNIST data
set takes up most of the memory of the benchmark machine. Due to sparse inputs, SMO is
a factor of 1.7 faster than PCG chunking, even though none of the Lagrange multipliers are
atC. On a machine with more memory,SVMlight would be as fast or faster than SMO for
MNIST, due to kernel caching.

In summary, SMO is a simple method for training support vector machines which does not
require a numerical QP library. Because its CPU time is dominated by kernel evaluation,
SMO can be dramatically quickened by the use of kernel optimizations, such as linear SVM
folding and sparse dot products. SMO can be anywhere from 1.7 to 1500 times faster than
the standard PCG chunking algorithm, depending on the data set.

Acknowledgements

Thanks to Chris Burges for running data sets through his projected conjugate gradient code
and for various helpful suggestions.

References

[1] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.Data
Mining and Knowledge Discovery, 2(2), 1998.

[2] T. Joachims. Making large-scale SVM learning practical. In B. Sch¨olkopf, C. J. C.
Burges, and A. J. Smola, editors,Advances in Kernel Methods — Support Vector
Learning, pages 169–184. MIT Press, 1998.

[3] L. Kaufman. Solving the quadratic programming problem arising in support vector
classification. In B. Sch¨olkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in
Kernel Methods — Support Vector Learning, pages 147–168. MIT Press, 1998.

[4] Y. LeCun. MNIST handwritten digit database. Available on the web at http://
www.research.att.com/˜ yann/ocr/mnist/.

[5] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
[http://www.ics.uci.edu/�mlearn/MLRepository.html]. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science.

[6] E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for support vector
machines. InProc. IEEE Neural Networks in Signal Processing ’97, 1997.

[7] J. C. Platt. Fast training of SVMs using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Meth-
ods — Support Vector Learning, pages 185–208. MIT Press, 1998.

[8] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vec-
tor machines. Technical Report MSR–TR–98–14, Microsoft Research, 1998. Available
at http://www.research.microsoft.com/˜ jplatt/smo.html.

[9] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
1982.

