Euler's Inequality Revisited

ZHANG YUN

A quadrilateral ABCD is called a double circle quadrilateral if it has a circumcircle and an inscribed circle. In a previous article (see reference 1), we proved Euler's inequality for a double circle quadrilateral, $R \geq r \sqrt{2}$, where R and r denote the radii of the circumcircle and inscribed circle respectively. Here we shall find two expressions, involving the angles of such a quadrilateral, which lie between $r \sqrt{2} / R$ and 1 . We denote the lengths of the sides AB, BC, CD , and DA by a, b, c, and d respectively, put $s=\frac{1}{2}(a+b+c+d)$, and denote the area of ABCD by Δ.

Theorem 1 Let ABCD be a double circle quadrilateral. Then we obtain

$$
\frac{r \sqrt{2}}{R} \leq \frac{1}{2}\left(\sin \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2}+\sin \frac{\mathrm{B}}{2} \cos \frac{\mathrm{C}}{2}+\sin \frac{\mathrm{C}}{2} \cos \frac{\mathrm{D}}{2}+\sin \frac{\mathrm{D}}{2} \cos \frac{\mathrm{~A}}{2}\right) \leq 1
$$

In order to prove Theorem 1, we first prove the following lemma.
Lemma 1 In a double circle quadrilateral ABCD , we have

$$
\sin \mathrm{A} \sin \mathrm{~B}=\frac{r^{2}+r \sqrt{r^{2}+4 R^{2}}}{2 R^{2}}
$$

Proof By reference 1, we have

$$
\begin{gathered}
\sin \mathrm{B}=\frac{2 \Delta}{a b+c d}, \quad \sin \mathrm{~A}=\frac{2 \Delta}{a d+b c}, \quad \Delta=r s, \\
R=\frac{1}{4 \Delta} \sqrt{(a b+c d)(a c+b d)(a d+b c)} .
\end{gathered}
$$

Hence,

$$
\frac{\sqrt{1+\sin \mathrm{A} \sin \mathrm{~B}}}{\sin \mathrm{~A} \sin \mathrm{~B}}=\frac{\sqrt{(a b+c d)(a d+b c)}}{4 \Delta^{2}} \sqrt{4 \Delta^{2}+(a b+c d)(a d+b c)} .
$$

By reference 1, we obtain

$$
a+c=b+d=s, \quad \sqrt{a b c d}=\Delta, \quad R \geq r \sqrt{2},
$$

so that

$$
\begin{aligned}
\sqrt{4 \Delta^{2}+(a b+c d)(a d+b c)} & =\sqrt{4 a b c d+\left(a^{2} b d+c^{2} b d\right)+\left(a c b^{2}+a c d^{2}\right)} \\
& =\sqrt{b d\left(a^{2}+2 a c+c^{2}\right)+a c\left(b^{2}+2 b d+d^{2}\right)} \\
& =\sqrt{s^{2} b d+s^{2} a c} \\
& =s \sqrt{a c+b d}
\end{aligned}
$$

