A Domain-Specific Language for
Computer Games

Master Thesis

PUBLIC VERSION

Jeroen Dobbe

A Domain-Specific Language for
Computer Games

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

SOFTWARE ENGINEERING

by

Jeroen Dobbe
born in Voorburg, the Netherlands

]
TUDelft

Software Engineering Research Group

JJCANNIBAL

GAIME STUDIOS

Department of Software Technology Cannibal Game Studios
Faculty EEMCS, Delft University of Technol- Belvéderebos 85
ogy 2715 VD Zoetermeer
Delft, the Netherlands the Netherlands

www.ewi.tudelft.nl www.cannibalgamestudios.com

(© 2006-2007 Cannibal Game Studios (Jeroen Dobbe). All Rights Reserved

A Domain-Specific Language for
Computer Games

Author: Jeroen Dobbe

Student id: 1149741
Email: j.dobbe@cannibalgamestudios.com

Abstract

The development of computer games is currently done using ad hoc development methods
and middleware and tools that are not particularly well suited for supporting every member of
a game development team in their day to day work. Some members of the development team
have established helpful development tools, while others are lacking any support whatsoever.

This thesis is aimed at finding current bottlenecks and the paradigm (way of thinking) used
when it comes to specifying games and to apply domain-specific languages, where possible,
to further advance the current toolset that is being used in the games industry. This domain-
specific language (DSL) will, of course, be aimed mostly at the part of a game that needs the
most programming: game design (e.g. objects, rules and interaction).

During this master thesis project I have done research in the area of a domain-specific lan-
guage for computer games, defined such a DSL and implemented it using the Cannibal En-
gine as a supporting class library. The domain-specific language contains elements to specify
objects, states, interactions, game-flow, rules and storylines. Based on this domain-specific
language, game studios will (in the future) be able to create games faster, centered around a
well-defined game design.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. E. Visser, Faculty EEMCS, TU Delft

Committee Member: Dr. P. G. Kluit, Faculty EEMCS, TU Delft
Committee Member: Dr. Ir. R. Bidarra, Faculty EEMCS, TU Delft

Preface

After having finished most of my academic programme it was time for me to start my
thesis work. Of course, having started a company in the computer games industry, and
working on it pretty much full-time, did not leave a lot of room to just stop and work
on my thesis for a year. I had to find something that would allow me to combine the
two.

Having discussed this with several people, I decided on the assignment to somehow
combine domain-specific languages with computer games, to allow the games industry
to benefit from the advantages of domain specific languages. This thesis describes the
result of that assignment: the search for the right application of domain-specific lan-
guages, the definition of the language, a description of the IDE, the relevant underlying
support framework, a full working example and an evaluation of the language.

Acknowledgments

First and foremost I would like to thank my colleagues for supporting me and putting
up with me and my ramblings during the course of the past few years. Special thanks
goes to Remco for endless discussions and for always questioning everything I come
up with and to Jerke for constantly keeping me grounded by reminding me that things
have to be practical in the real-world.

I would also like to thank the Software Engineering Research Group group at TU Delft
for allowing me to do this thesis and build my company at the same time. Special
thanks here goes to Leon Moonen for helping me find an interesting thesis subject that
not only helped me complete my academic programme, but also moved the company
forward. Of course I would like to thank Eelco Visser, my supervisor, for providing
me with valuable advice, guidance and insight.

A word of thanks also goes out to the different members of the Benelux Games Ini-
tiative for providing me with valuable insight into the game development community
in the Benelux region and their game development processes.

Two professors in particular have been very valuable throughout my study. Stijn
Oomes; for making me very aware of the user and teaching me a mind-set for us-
ability that will last a lifetime. Rafael Bidarra; for always believing in the Cannibal

iii

Preface

v

initiative and supporting us in everything Cannibal Game Studios has done so far. [had
the pleasure to assist them both in running and building student curriculum projects.

My parents also deserve honorable mentioning, for putting me through university and
always supporting me 100% with all my different endeavours over the past few years.
Especially my father, who has patiently read through this thesis several times.

And last, but certainly not least, my girlfriend Liselotte, for the support and for her
understanding with me working late hours, weekends and sometimes through the night.

Jeroen Dobbe

Delft, the Netherlands
July 25th, 2007

Preface

Contents

Contents

1 Introduction

2 Domain-Specific Languages

3

2.1 Context
2.2 Advantages and Disadvantages
2.3 DevelopmentofaDSL,
24 Domain Analysis L
2.4.1 Feature-Oriented Domain Analysis
2.4.2 Organization Domain Modeling
2.4.3 Domain-Specific Software Architecture
2.4.4 Analyzing the Computer Games Domain
25 Tools.
2.5.1 The ASF+SDF Meta-Environment
252 Stratego/XT oL
2.5.3 Intentional Programming
254 Microsoft DSL Tools
2.5.5 Manual Approach.
Related work
3.1 Unreal
3.1.1 Framework
3.1.2 UnrealScript
3.1.3 UnrealKismet
314 TimSweeney
32 GameMaker

32.1 Thelanguage.

iii

O O O 9 9 O AN Lt AW W

10

CONTENTS

vi

33

34

3.5

3.2.2 An example: Tic-Tac-Toe

VIGL
3.3.1 Design and Considerations
3.3.2 Language Definition
3.3.3 Anexample: TicTacToe
Game XML
34.1 Different Languages
342 ZillionsofGames.
FileFormats
351 Collada
3.5.2 Extensible3D(X3D)

Games and Game Developers

4.1

4.2

4.3

4.4

Different Game Types
4.1.1 MainGame Genres
4.1.2 ElementsofaGame
413 GameDesign
SourceCode
42.1 The Quake Series
4.2.2 TU Delft - Games project
Interviews
4.3.1 Setting up the Interview
4.3.2 All-round Game Studios
4.3.3 All-artist Studios
434 Content Creation Studios
435 Academia
Design Document

Cannibal Game Development Platform

5.1

52

Findings
5.1.1 Model Driven View
5.12 UserCentered.
5.1.3 Elements of a Game Design
Changes
52.1 Overview
522 Events& Actions
5.2.3 Futurechanges

Languages and theory

6.1
6.2

Declarative versus Imperative programming

Reactivity andevents

CONTENTS

6.2.1 Event handlers and Listeners 52

6.2.2 Functional Reactive Programming 53

6.3 Reactivity and concurrency theory 53
6.3.1 Using Concurrency inthe DSL 54

6.3.2 Software Transactional Memory 55

6.3.3 Synchronous Languages 55

6.4 Multi-paradigm 56

7 Requirements and Considerations 57
7.1 Language Elements 57
7.2 FocusingontheUser 58

7.3 Software Engineering oL 59

8 Confidential 63
9 Evaluation 65
9.1 Cognitive Framework, 65

9.2 UserTests o i i i e 68

93 FutureWork L 70

10 Conclusions 73
Bibliography 75
A Glossary 79
B ViGL - Tic Tac Toe 83
C Zillions of Games - Tic Tac Toe 85
D Interview 87
D.1 CompanylInfo 87
D.2 Collaboration 87
D.3 Work Process 88
D4 Engine 88
D5 GameDesign 89
D.6 Worldcreation. 89

vii

Chapter 1

Introduction

Game developers usually work for 2-3 years on one game title. Because of this, there
are big financial risks involved in developing a major game. More and more, game
developers are starting to use middleware gaming engines to reduce the time-to-market
of their games. These engines are aimed at streamlining the development process and
helping the game developers by providing resources for rapid prototyping and rapid
iteration.

Cannibal Game Studios [49] is a company that develops innovating middleware and
tools for the games industry, both for entertainment and serious purposes (e.g. sim-
ulation, training). One of the main products developed at Cannibal Game Studios is
a gaming engine. Strong selling points for this Cannibal Engine are its capability to
allow for rapid and iterative development through an easy to use class library based
on managed code. This class library provides a level of abstraction that reduces the
implementation details when it comes to hardware handling.

Despite the current middleware efforts, the development of a computer game still
takes an enormous amount of time. To support the development of the current 'next-
gen’ games, Cannibal Game Studios feels that it will be important to establish next-gen
game development practices and methodologies. One way to improve the productivity,
the maintainability and the overall quality of game software would be to implement a
domain-specific language for computer games [33, 56].

Unlike general purpose programming languages, domain-specific languages are not
aimed at providing a language general enough to be used across a wide variety of
problem domains. A domain-specific language (DSL) is a programming language
geared towards solving problems in a specific domain. Examples of domain-specific
languages include Fran [15] and Stratego [58].

Currently, conventional object-oriented language are used for the development of
computer games, but these are not particularly suited for the development of games.
They usually contain no support for states and timing and they require the developer to
think about a lot of details concerning, for example, data management, data represen-
tation and rendering. It would be better if we could abstract away from these details
and create a language which does not confront the developers with these details while
programming the game itself. This will allow game developers to concentrate more on

Introduction

the look & feel of the game, instead of hard-to-debug implementation details that slow
down development profoundly.

The goal of this master thesis project is to do research into the area of a domain-specific
language for computer games, define such a DSL and implement it using Cannibal as
a supporting class library.

In this thesis I will present my research into the areas of domain-specific languages
(chapter 2), related work (chapter 3) and games and their developers (chapter 4). I will
disuss the Cannibal Game Development Platform in the context of this project and the
DSL in chapter 5. Several existing languages and their paradigms are discussed in
chapter 6.

The requirements and considerations that go into the design of the DSL are summa-
rized in chapter 7. I will conclude with an evaluation of the designed language (chapter
9) and the conclusions that can be drawn from this thesis project (chapter 10).

Chapter 2

Domain-Specific Languages

According to [57] a domain-specific language (DSL) is a programming language or
executable specification language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a particular problem
domain. In other words: a domain-specific language is a (programming) language de-
signed with a specific purpose in mind. Using such a DSL, applications for a specific
domain may be developed with a better focus on the problem domain. This may lead
to increases in productivity, reliability and maintainability, all of which should have
a positive impact on the quality of the product and the time-to-market. Which the
production-team behind Duke Nukem Forever [1] could probably use.

I start in section 2.1 with a discussion of the software engineering context in which
domain-specific languages are used. In section 2.2 the advantages and disadvantages
of developing and using domain-specific languages are discussed. Section 2.3 dis-
cusses the different methodologies one could follow when developing a DSL, in sec-
tion 2.4 the methodology used for analyzing the computer games domain is discussed.
I conclude in section 2.5 with a short discussion of the different tools available for
developing a domain-specific language.

2.1 Context

Domain-specific languages are usually used in a broader context of software engineer-
ing. In software engineering, model-driven engineering [32] or generative program-
ming [12] are both methodologies in which (part of) the source code for the products
is generated from representations at a higher, domain-specific abstraction level. In
model-driven engineering, models are used to represent the implementation at some
abstraction level. These models are used as an integral part of the software devel-
opment process. Generative programming uses similar techniques in which code is
generated from higher level (code) representations.

According to this way of thinking domain-specific languages can be considered as
a modeling language for defining software at a higher level of abstraction. However,
usually the distinction is made between a model and a language. Where a model is
some graphical representation of the software, for instance a UML class diagram [18],
which is used to specify the structure of the software. A (domain-specific) language

2.2 Advantages and Disadvantages Domain-Specific Languages

is considered as the means to implement the logic of an application, or the 'real’ im-
plementation. Specifying and displaying software in either way can be seen as giving
shape to (or modeling) the software.

Domain-specific languages can be used by developers to specify the software, or
parts of the software, in a more domain related fashion than is normally the case.
Using domain concepts and terminology it is possible to even have domain experts
specify the software, instead of 'real’ programmers. These programmers can design
the DSL and the tools used to make them work. Grammars are used to specify the
language and tools are generated for parsing, transforming and compiling the resulting
software.

Recently the TU Delft started a research project [13] in which the need for evo-
lutions of models and code (and domain-specific languages) is recognized. Since it
will be hard to capture all necessary requirements and details up-front and consider-
ing the rapid changes game development is under, it is important to make sure the
DSL provides a solid basis for game development, while remaining extendible and
customizable where necessary.

2.2 Advantages and Disadvantages

Before we set out and talk about the different aspects of creating a computer games
DSL, we will first stop and consider the advantages and disadvantages that come with
using a DSL in any domain. The developers at Cannibal Game Studios feel that the
advantages outweigh the disadvantages for this project and are therefore optimistic
about the creation of the computer games DSL.

One of the most important reasons for using a DSL in this domain is that the overhead
of having to deal with technical details when implementing the gameplay is minimized
as much as possible by providing a language that allows programmers, or event game
designers, to work at the right abstraction level. Another advantage of working at the
correct abstraction level is that design information is retained and the code is more or
less self-documenting, at least more than code in a general purpose language. Knowl-
edge and terminology of the domain is used to represent the program and this makes it
easier to understand and better suited for reuse.

Working at a higher abstraction level and a better understandable and documented
source code will inevitably lead to better maintainability, higher productivity and better
reliability of the end-products. Besides that, software written using a DSL is usually
more portable to different platforms than software written in a general purpose lan-
guage containing more technical (and platform specific) details.

Of course there are also a number of disadvantages of using a DSL. Designing, im-
plementing and maintaining a DSL is a rather elaborate job and this involves a lot of
costs. Since the DSL is created for the use in a middleware product, this can be seen
as no major disadvantage since the costs may be amortized over many different end-
products. During the development of the middleware some difficult choices have to
be made to make the DSL successful: there should be a balance between the domain-

Domain-Specific Languages 2.3 Development of a DSL

specificity and generality of the language and the language must be properly scoped to
prevent it from being either too small or too large.

Besides the costs and difficulties of the development of a DSL, the users also must
be taught how to work with the DSL, this may also lead to costs. First the users must
be trained to understand the language and know the different concepts and constructs,
then the users will have to start using the language to get experienced and get to the
same, or higher, productivity level.

Using a DSL may lead to a loss in efficiency of the final software, but it may also
lead to an increase. When using a DSL you write code at a higher abstraction level,
translating this code into a general purpose language or some other target language
may lead to inefficiencies in the final product. This can be due to code sections that
are translated one-on-one with function calls on a library. Using hand written code to
represent both can potentially execute faster. However, when you write code at a higher
abstraction level, the intentions of the programmer are more clear. This, combined with
the knowledge of the domain may lead to more efficient compilation, leading to faster
code.

For the computer games DSL efficiency is of great importance; games should run in
real-time. It is important to take the efficiency of the DSL compilation into consider-
ation when developing the DSL. A small loss in efficiency might be allowed to gain a
bigger increase in productivity.

2.3 Development of a DSL

Developing a domain-specific language is an elaborate process, which contains a num-
ber of important steps. [57] gives a number of important steps to be completed, [15]
adds to this by emphasizing the importance of the environment tools for a DSL. Com-
bined they give the following steps:

1. Define the problem domain and gain knowledge about the semantic notions and
commonly used operations.

2. Design the DSL that describes applications in this problem domain.
3. Construct a support library that supports the operations and semantic notions.
4. Implement the domain specific language (e.g. using a compiler).

5. Provide the environment tools needed to develop programs in the DSL (e.g.
debuggers and editors).

6. Provide examples, manuals and rewrite programs using the DSL.

For the purpose of this master project I will mainly be concentrating on steps 1, 2
and 4, 5 and 6. Step 3 has, for the most part, already been taken care of by the Cannibal
Engine. However, during this thesis work some interesting findings let to adaptation
and restructuring of the engine, as to provide support for the DSL. Steps 5 and 6 are

2.4 Domain Analysis Domain-Specific Languages

present as proof-of-concepts, and they should most likely be further developed and
integrated into Cannibal Game Studios’ strategy when using the DSL in conjunction
with their engine.

To perform the domain analysis I will take a look at the different methodologies
available to do domain analysis. In section 2.4 I will give a short overview of different
domain analysis methodologies in use. The different tools supporting steps 4 and 5
are discussed in section 2.5. Relevant details about the underlying support library, the
Cannibal Game Development Platform, are contained in chapter 5.

2.4 Domain Analysis

For the analysis of a problem domain several (slightly) different methods have been
developed. In this section I will take a look at three of these approaches and determine
what must be done in order to analyze the computer games domain. Most of the
information here is taken from [12].

2.4.1 Feature-Oriented Domain Analysis

Feature-Oriented Domain Analysis (FODA) is one of the most mature and best doc-
umented domain analysis methods currently available. It is based on features and
introduces feature models and feature modeling. Features are, in the FODA method,
end-user-visible characteristics of a system.

The process behind FODA consists of the following two phases:

1. Context Analysis: Defining the boundaries and scope of the domain to be ana-
lyzed.

2. Domain Modeling: Producing a domain model and the domain dictionary.

The domain model consists of an information model, which could be represented by
an entity-relationship diagram, semantic network or some object-oriented diagrams.
Another important element is the feature model, which documents the different com-
monalities and differences among related systems within the domain. The operational
model, representing the behavioral relations between the objects in the information
model and the features in the feature model, is also a part of the domain model.

The domain dictionary consists of a list of the terminology used in the domain and
can be used as a reference for finding keywords and constructs for the DSL.

2.4.2 Organization Domain Modeling

Organization Domain Model (ODM) [46] is a second mature and well documented
domain analysis method. The ODM process consists of three steps:

1. Plan Domain: Determine stakeholders and their objectives, scope the domain
and define the domain consisely.

Domain-Specific Languages 2.4 Domain Analysis

2. Model Domain: Acquire domain information, describe the domain and create
the domain model.

3. Engineer Asset Base: Produce the architecture for the systems in the domain,
quite like step 3 described in section 2.3.

These three steps are further subdivided twice to reach a level of workable tasks,
some of these tasks will be used in our method and are described in more detail in
section 2.4.4. Step one and two are typical domain analysis steps, while step three is
more aimed at implementation of some ’solutions’.

ODM contains a number of different aspects that are worth mentioning in relation
to this project:

e Focus on stakeholders and context, this constitutes a user-centered approach,
which is one of the approaches emphasized by Cannibal Game Studios.

e Binding site, which allows for fine-grained classification of the features on the
specific binding times: compile-time, start, runtime, debug-time, etc.

e ODM uses a tailorable process, the domain modeling and methods used to ana-
lyze the domain, this allows for flexibility in the process of retrieving informa-
tion.

2.4.3 Domain-Specific Software Architecture

The Domain-Specific Software Architecture (DSSA) approach was developed with an
emphasis on the central role of the software architecture concept. This approach also
consists of three main steps that lead to three products:

1. Domain model: A model of the domain, more rudimentary than the ones dis-
cussed above.

2. Reference Requirements: These are the features described above, where each
feature is either a functional or a non-functional requirement.

3. Reference Architecture: An architecture for a family of systems within the do-
main, consisting of an architecture model, feature model, design record (descrip-
tion of the components) and constrains and rationale.

The DSSA approach uses Architecture Description Language to formally describe
the architecture and the interrelationships between its components. This shows the em-
phasis put on describing the (reference) software architecture for the specific domain.

2.4.4 Analyzing the Computer Games Domain

To arrive at an overview of the domain the DSL will cover we must take a number of
steps. The method described here will lead us to define the domain more clearly than
has been done in the introduction and will give specific boundaries for the domain. It

2.4 Domain Analysis Domain-Specific Languages

will also provide an overview of domain terminology and the different commonalities
and variations in the computer games domain. The product of the method used will
lead to a mental model of the domain which will be used for designing, specifying and
implementing the DSL.

Most of the methods described in section 2.3 give at least two major results of the
domain analysis:

e Domain definition; A concise definition of the problem domain including the
boundaries and restrictions.

e Domain model; A (feature) model of the domain containing the domain termi-
nology, concepts and relations between concepts.

The details of how to arrive at these two results, and what these results actually
contain are different for each method. During this domain analysis I have chosen to
include a number of steps and a specific view on the end results.

Steps to Take

I must first get acquainted with the domain and see what the status quo is in the field
of DSLs for computer games (see chapter 3). This allows me not only to get some
basis from which we can look further into the specifics of the domain, but it also gives
pointers to best practices and pitfalls that are typical to the computer games domain.

After a check of the status quo it is important to know whether these insights and
products are actually used in practice. Examining current practice also gives insight
into the workings and mindset/paradigm used at game studios. Looking at the com-
monalities and differences in the development process allow us to see what features
are actually of concern to game studios. Not only are domain experts interviewed, but
I also take a look at the games that have been developed and at some aspects of game
source code (see chapter 4).

After having studied the domain we will focus attention on the Cannibal Game De-
velopment Platform: the platform of which the DSL will be an important part (see
chapter 5). This game development platform will allow developers to work at higher
levels of abstraction, while retaining their expressive power at lower levels. Looking at
the technology behind and composition of this development platform will give insight
into the specific requirements and methods used.

The Results

Using the information gained from following the steps above, we will be able to give
the two results discussed above (the domain definition and the domain model). The
domain definition will be given by specifying the focus point of the DSL based on the
needs of game developers, what is learned from related work and what the role of the
DSL will be in the Cannibal Game Development Platform.

The domain model will be given by providing a diagram which contains the most
important concepts of the domain and their relations. This, together with the API of

Domain-Specific Languages 2.5 Tools

the Cannibal Engine [50] will provide a basis for the operations and constructs in the
DSL.

2.5 Tools

Before I start with the second part of the research; a treatment and analysis of the
problem domain, I will first briefly consider the different tools available to a developer
of a domain-specific language. The tool to be used in the implementation phase should,
of course, be particularly suited to this specific project and the choice of the tool is
therefore an important one.

According to [30] the use of a ’Language Prototyping Tool’ (LPT) can greatly im-
prove the reliability, repairability, portability and documentation of a language. Using
a good tool or language for implementing the DSL also proves to be more time and
cost effective. These features come from the fact that a LPT provides better code local-
ity and a better structuring for the language syntax and semantics which also provides
self-documentation.

2.5.1 The ASF+SDF Meta-Environment

The ASF+SDF (Algebraic Specification Formalism + Syntax Definition Formalism)
Meta-Environment is an interactive development environment for the automatic gener-
ation of interactive systems for constructing language definitions and generating tools
for them [55]. The Meta-Environment is meant to support the user (developer of a
DSL) in creating and implementing a domain-specific language. It allows for the cre-
ation of support tools like a parser, pretty-printer, editor, debugger and compiler.

The ASF+SDF Meta-Environment is based on the ASF+SDF formalism, which
allows the developer to specify both the syntactic and the semantic aspects of the
domain-specific language. Based on these definitions the meta-environment can gen-
erate the tools necessary to support development in the new domain-specific language.

2.5.2 Stratego/XT

Stratego/XT [58, 59] is the combination of the Stratego language for strategic pro-
gramming and the XT bundle of transformation tools. The Stratego language allows
for specifying program transformations over ATerms [54] using rewrite rules. It has
many features that are quite interesting, and allow for very flexible and powerful trans-
lations, like generic traversals and dynamic rules.

The XT bundle of transformation tools provides many tools that are needed for build-
ing a program transformation system. With these tools Stratego/XT becomes a com-
plete package that can be used to develop the computer games DSL from start to end.
The programs that are written using Stratego/XT are compiled to C code and can thus
also be compiled to Windows, which is our target platform. The only thing we need to
worry about is the fact that not all Stratego libraries will work with Windows.

Stratego/XT is rather similar to ASF+SDF, but it has some advantages. Most no-
tably the availability of expertise in the form of Martin Bravenboer and Eelco Visser,

2.5 Tools Domain-Specific Languages

10

two developers of Stratego/XT, the large user base and the transformation language
Stratego.

2.5.3 Intentional Programming

Intentional Programming or Intentional Software [45], as it is now called, is a quite
different approach from the two toolsets described above. With Intentional Program-
ming the aim is to capture the intention of the programmer and use this paradigm to
write programs. In practice this comes down to constructing a programming in two
different ways. On the one hand the programmer writes a program, on the other hand
the intentions of the programmer are also created as extensions to the programming
environment and language.

This is done by separating source code from its representations. The source of a pro-
gram is referred to as active source which is basically an (annotated) abstract syntax
tree with a number of methods defined over it for presentation, compilation, debug-
ging, etc. This provides a great deal of flexibility over the language in which programs
are written. The language can be extended by adding new intention which complement
not only the language, but also the editing, presentation, compilation, etc.

Having the source represented directly by abstract syntax tree has some advantages:
it saves parsing, makes reasoning about the source code easier and helps during refac-
toring (references are used to refer to definitions). But it also has a disadvantage:
source is saved in some binary format, which means you require an Intentional Pro-
gramming IDE to work with it.

Extending (or creating) languages with Intentional Programming is relatively easy.
You implement intentions by creating a library interface and then implementing reduc-
tion, rendering, debugging, editor and other methods to extend the IP environment and
the programming language. Some extensions APIs are available to work with reduc-
tion, rendering, etc. Compiling the code is done through reducing the tree(s) to more
simple and lower-level tree(s).

Intentional Programming was developed by Charles Simonyi who used to work at
Microsoft. Charles Simonyi stopped work on IP at Microsoft and is now developing
Intentional Software at his own company [11], while Microsoft is focusing its attention
towards the Microsoft DSL Tools [36]. Currently Intentional Software, is not in a state
in which it can be used, but it might be interesting to start using this when it becomes
available for maintaining and using this DSL. It might even be worthwhile to look at
combining the Stratego program translation language with Intentional Software, as this
might be a very powerful combination.

2.5.4 Microsoft DSL Tools

Microsoft DSL Tools is a suite, nested inside Visual Studio, that allows users to specify
domain specific languages, build a graphical designer and define code generators. This
DSL tools is a important part of the the Software Factories initiative envisioned by
Microsoft [21].

Using Microsoft DSL Tools, users can develop a graphical language inside Visual
Studio which is used to generate code based on templates. This code can then be

Domain-Specific Languages 2.5 Tools

compiled and run like any other application written using a .NET language.

2.5.5 Manual Approach

Besides using an existing tool it is always possible to do things by hand from the start.
This usually provides more flexibility and better control over details, however, it is a
lot more work. One of the reasons one might have for using the manual approach is
the lack of availability of a tool that integrates well with existing technology. Greater
control over exact implementation and workings may also be desired.

11

Chapter 3

Related work

This chapter will give a short overview of the work that has already been done in the
area of domain specific languages for computer games. I start out with an example
of a widely used gaming engine which has a scripting language to program the game
itself in. This Unreal engine is described in section 3.1. Another widely used ’engine’
is Game Maker, software written by Mark Overmars to enable the easy creation of 2d
sprite based games. We will take a look at Game Maker in section 3.2.

In sections 3.3 and 3.4 some examples of domain specific languages for small sub-
sets of the gaming domain are given. Since these languages are used for a smaller
application domain, these languages are most likely of a higher abstraction level than
can be attained for a general game DSL, but they can still prove useful as an example.

In section 3.5 I describe different industry file formats as they may give insight
into different storage formats and the terminology, notation and approaches used for
those formats. They may also prove useful if they provide storage for certain types of
behavior in any form.

3.1 Unreal

The technology behind the Unreal game series is called the Unreal engine. This Unreal
engine is created and maintained by Epic Games. This technology is actually not just
an engine, it also contains many tools and editors that can be used to help the game
developer create the entire game. It also has a workflow associated with it in the form
of a content pipeline.

Since the Unreal Engine is comparable to the Cannibal Game Development Plat-
form (CGDP) when it comes to features and scope, it might be interesting to take a
closer look at the Unreal Engine. For example, the purpose of UnrealScript is to make
programming games easier by creating a language more geared towards game devel-
opment. UnrealKismet is a visual scripting language aimed at level designers. Since
the design goals for these two products are quite similar to those of CGDP, examples
and ideas from these two products can be very useful for this project.

We start in section 3.1.1 by briefly explaining the framework behind the Unreal en-
gine and the process of creating a game with the unreal engine. In section 3.1.2 we will
take a further look at UnrealScript, the scripting language that allows programming

13

3.1 Unreal Related work

14

with the unreal engine. We will also take a look at UnrealKismet, the visual scripting
language, in section 3.1.3. We conclude in section 3.1.4 with some interesting remarks
made by Tim Sweeney about programming games and the future.

3.1.1 Framework

The framework that makes up the Unreal Engine consists not only of the core engine
technology, but it also contains content creation tools for creating levels, particle ef-
fects and animations. It also has a support infrastructure that provides the necessary
support for game developers when they are creating their game.

The main philosophy behind the Unreal Engine is that artists should be able to create
content for the game in a visual environment with as little programmer assistance as
possible. Programmers are given a modular and extensible software library for build-
ing the game.

UnrealEd is the main (and most important) editor that comes with Unreal. The main
goal of UnrealEd is to connect everything together. Programmers write and define
objects and behavior in scripts, artists create the assets that are needed in a level:
sound and graphics. The level editor can, using these assets and scripts, create a world
in which the player will play the game.

3.1.2 UnrealScript

Programming with the Unreal engine is done through a scripting language called Un-
realScript. This UnrealScript is designed to abstract from details like pointers and to
provide a language to express concepts needed for game programming. In this way
UnrealScript can be considered a domain-specific language geared towards the devel-
opment of games. UnrealScript remains, however, at a fairly low programming level,
which raises worries as to the abstraction level that can be attained for a game DSL.

According to [52] UnrealScript had three major design goals:

e To support the major concepts of time, state, properties and networking, which
are lacking from traditional programming languages;

e To provide Java-style programming simplicity, object-orientation and compile-
time error checking;

e To enable rich, high level programming in terms of game objects and interaction.

UnrealScript basically is a general purpose language with added functionality to ac-
complish the goals above. To achieve a java-style (rich and high-level) programming
language in terms of objects and interaction, UnrealScript is made to be object ori-
ented. Besides that, UnrealSript provides easy access to API calls and access to other
objects to define the interaction. By compiling the script to some proprietary format,
error checking can be done during compilation. Objects can expose properties to the
outside world that may be used by level designers or game designers to customize the
objects. These are all things you would expect to see from normal object oriented
languages.

Related work 3.1 Unreal

One of the major additions of UnrealScript to general-purpose programming lan-
guage is the concept of states. Classes may contain definitions of methods, variables
and states. In terms of object orientation, states can be seen as special subclasses,
which define certain specific types of behavior (methods) and variables. States can
add or overwrite variables and methods that are in the 'root’ of the class. States can
even inherit from each other.

// Base Attacking state.

state Attacking

{

// Stick base functions here...

}

// Attacking up-close.

state MeleeAttacking expands Attacking
{

// Stick specialized functions here...

}

// Attacking from a distance.

state RangeAttacking expands Attacking
{

// Stick specialized functions here...

}

Besides states, support for time-based programming is also provided through the
use of latent functions. Latent functions are functions that do not return immediately
after they have executed, but after a certain amount of time, or at a certain moment.
Examples of such functions include:

Sleep(float Seconds) pauses the execution for a certain amount of time. This function
returns after the given amount of seconds.

FinishAnim() pauses execution until the current animation sequence has completed.
The time this function takes depends on the current animation and how long it
needs to finish. This can be used to script based on the timing of animations.

FinishInterpolation() pauses execution until the current interpolation movement has
completed. Again the time it takes depends on the interpolation. This function
can also be used to script based on timing of animations/interpolations.

Using these latent functions it becomes possible for the programmer to base the
execution of certain sections of code on the timing of other game elements. This is an
often needed functionality in game programming and is often done by using standard
trickery. Abstracting away from this trickery will prevent a lot of errors that can be
made when applying the tricks. When many timing issues are combined the code can
become complicated to read and understand, while the concepts underlying the code
are relatively simple.

15

3.1 Unreal Related work

16

While UnrealScript provides support for different game related programming issues,
it is still a low-level, general-purpose language. It just contains a few extra features
that make it more suited for game development. When we take a closer look at Unre-
alKismet we will see that some elements can be abstracted to a higher level, which is
more in the direction of the DSL.

3.1.3 UnrealKismet

In the latest version of the engine, Unreal Engine 3.0, Epic has also included Unre-
alKismet (or VisualKismet), a visual scripting language, which is supposed to be at
a higher abstraction level and suited for use by game and level designers directly. Its
main purpose is to provide the designer with a system to design levels without help
from the programmer. The designer can do this by scheduling game events in a flow-
chart-like format. You can use game events and specific actions and tie this all together
using more general purpose combinatory elements.

The language behind Kismet is an event driven language (see section 6.2), which ba-
sically means that you tell the system what to do in case an event happens (e.g. explode
when you get hit). These actions can be glued together so they happen conditionaly,
delayed, in sequence, etc.

=2 -
$R® T (<&

Figure 3.1: UnrealKismet

Below I will explain the basic elements that make up UnrealKismet, we will first deal
with Events and Actions. After that I discuss Variables followed by some combinatory
operators in the form of gates, conditionals and delays. I will also discuss hierarchical
subdivision which are accomplished using sequences. Connections between all of
these elements can be made by creating connections from outputs of elements to inputs
of other elements. 'Impulse’ travels through these connections to activate elements.
Impulse can be thought of as electrical current travelling through wires.

Related work 3.1 Unreal

Events & Actions

Two of the most elementary elements of UnrealKismet are events and actions. Events
are generate by objects or interactions between objects. For example touching a button
object in the world can generate an event which can be attached to a button effects
action. If you connect this button effects action to a toggle action, which you then
connect to a light, toggling the light on and off, you have effectively created a light
switch. This situation is depicted in figure 3.2.

RDestructible 0 UseH

Iniztjejzriar Li=iznss

Figure 3.2: Connecting events and actions

Variables

Variables, like in any other language, can be used to either store references to objects
dynamically. Meaning they will be assigned based on the events or actions and their
compositions. They can also be used to store references to objects in a static way.
These do not change throughout execution, but can still be used to connect to actions.

Combinations

With UnrealKismet you can also combine the different impulses to do some special
actions. Gates can be used to either allow an impulse to pass or not to pass, depending
on how it is set. It has an ’open’, ’close’ and ’toggle’ input to set whether the gate
allows the impulse to pass. It also has an ’in’ and an “out’” which indicate the input and
output respectively.

A conventional ’if” statement can be created using conditionals; these provide a way
of checking for certain conditions. An example of a conditional is a ’compare objects’,
where two objects are checked to be equals. Using variables you can input the objects
and depending on the outcome you can allow impulse to travel elsewhere.

Delays are quite straightforward: they allow impulse to be delayed for a set amount
of time. This amount of time can be "hardcoded’ by setting it at programming time,
but it can also be retrieved from some variable or object.

17

3.1 Unreal Related work

18

Sequences

Since a visual scripting language runs a reasonable risk of getting into trouble by get-
ting too cluttered, UnrealKismet allows for hierarchically composing the visual script
by using sequences. Sequences are a set of elements connected in some way, which
can then be used as one element for further composition. Sequences can be given their
own inputs and outputs to parameterize these new elements.

3.1.4 Tim Sweeney

Tim Sweeney from Epic Games recently gave a talk [53] about the programming lan-
guage of the future from a game developers perspective. During this talk he spoke
about his vision of a future programming language and the problems with conven-
tional programming languages when creating games. First three kinds of code used in
games are identified:

e Gameplay simulation
e Numeric computation

e Shaders

Four problem areas are then identified which might be improved upon by future lan-
guages to better suit the needs of (game) developers. Here I discuss the four problems
identified and the relation to the game DSL. I will not go into the specific details of
each problem area, but I will sketch the things to take into account when specifying
the language in the next project phase.

Performance

One of the main important things in real-time (interactive) applications is the perfor-
mance. You need to update many objects, while still retaining processing speeds that
allow for 60 frames to be displayed every second. This means that every piece of game
code that runs in real-time should execute as fast as possible. However, productivity
for games is considered to be even more important. Many developers, Epic Games in-
cluded, would be glad to sacrifice a bit of performance for an increase in productivity.

A thing that must be considered when looking at games is that there are no obvious
bottlenecks, everything is interconnected and there are several non-trivial ways of im-
proving performance. Considering the fact that game simulation takes up only about
10% of total CPU time might show that other areas are the first to tackle when trying
to improve performance.

Modularity

One of the most important functionalities when writing any software libraries is mod-
ularity. It must be possible to easily extend, customize and reuse parts of the library
as well as reuse your own add-ons. Consider the following engine setup of actors and
players in games:

Related work 3.1 Unreal

package Engine;

class Actor

{
int Health;

}

class Player extends Actor

{

If we want to extend this for the purpose of one game, adding extra functionality to
the Actor, we can do this. But the Engine.Player does not inherit any information from
the extended actor: GearsOfWar.Actor. We actually would like something where the
Player used by the GearsOfWar package would also contain this functionality. This
makes it a lot more easy and clear how to extend parts of the class library and really
do some effective coding. Below is a code segment illustrating this:

Package GearsOfWar extends Engine;

class Actor extends Engine.Actor

{

// Here we can add new members
// to the base class.
}

class Player extends Engine.Player

{

// Thus virtually inherits from
// GearsOfWar.Actor

}
Reliability

Some things that go wrong with current programming language concerning dynamic
values and using these include:

e Array out-of-bounds errors
e Null pointers
e Integer overflow

e Uninitialized variables

About half of the programming errors come from these problems. It will be impor-
tant to keep these common problems in mind when defining the game DSL to make it
more reliable and less error-prone. Making a lot of mistakes and having a hard time
debugging these mistakes will have a significant impact on the productivity.

19

3.2 Game Maker Related work

20

Concurrency

With the direction hardware is moving in, it might be interesting to look at concur-
rency. Ways of improving the performance of code by executing things in parallel.
Tim Sweeney has some interesting remarks about how to accomplish concurrency for
the three different types of code. The one most applicable to this project will be the
concurrency theories for the gameplay simulation, we come back to this in section 6.3.

3.2 Game Maker

Game Maker [39] is an Integrated Development Environment (IDE) for creating (2d)
computer games. The aim of Game Maker is to provide a completely integrated en-
vironment for construction the game. All elements of a game should come together:
graphics, sound, music, gameplay, etc. It is created to be simple to use, with drag-and-
drop-like features and capabilities. However, considerable power is retained through
the use of a built-in scripting language. Game Maker is used mostly in education [40].

Game Maker is not focused on a particular kind of game, this means in practice
that more work will have to be done to create a game than with software like Zil-
lions Of Games (see section 3.4.2). But it does contain (basic) support for many fea-
tures like sprite-based graphics, sound, music, user interface, configuration, in-game
help, etc.

3.2.1 The Language

A game created with Game Maker consists of three different types of elements. First
there is the game data containing sprites, sounds, backgrounds and fonts. These ele-
ments are also what is referred to by others as assets. The second element of a game is
the control: objects, timelines, scripts and paths (animations). The third element con-
sists of the levels or, as they are called in Game Maker, rooms. They basically define
how the level (initially) looks and what objects and triggers are present.

Game Maker basically uses an event-driven model of programming (this model will
be explained in more details in section 6.2). Objects in the game have a certain repre-
sentation (sprites) and have a certain type of behavior. This behavior is defined using
scripts, these scripts define actions to be taken when certain events happen. Events can
be things like collisions, creations, timers, user input, etc.

Another paradigm used by Game Maker is the paradigm of Object-Orientation. Ev-
ery object (class) in Game Maker can inherit behavior and attributes from parent ob-
jects and instances (object) of these objects represent real game objects. The user can
create objects in a very easy way dragging-and-dropping events and scripts and actions
together to define the behavior. Sprites and sound or music can be imported to repre-
sent the object. Of course all of the attributes can also be changed at run-time by using
scripts.

Related work 3.2 Game Maker

3.2.2 An example: Tic-Tac-Toe

When we want to implement a game like Tic Tac Toe using Game Maker this can be
done in multiple ways. Here we briefly describe how the author of Game Maker has
done it himself in one of his books [41].

The author created one object, which are the entities that are present in your game.
This object is called 0bj_field. Once this object is created, behavior is added by writing
the following scripts:

e scr_field_init: which initializes the playing field by creating a 3x3 matrix used to
store the contents of the 9 squares (empty, X or O);

e scr_field_click: to handle the user clicking on one of the squares, and acting
accordingly.

e scr_field_draw: to draw the playing field and communicate to the user the current
state of the game and board.

Then we have to setup the Create, Mouse Click and Draw events to use these scripts
when they fire. The result of this is shown in figure 3.3

* Game Maker 6.1: <new game >*
Fle Edt add Soipts Run window Help

D3H P> @PEFETZ@0 @E| 5 @
£ Sprites
) Sounds
) Backgrounds
) Paths

= S’i"“ B Object Properties i I[‘E|ﬁ|
B sci_field_init L= =]
E] ser_tield_click Neme: | obi_field Everts: e Guestions
B scr_fisld_draw Creat N
Liicale Spiik y Lieate Execute script ser_field_draw
= Fonts s

) Time Lines <no spiite> =) Left Buttan

= £ Objects
obL_feld
=) Rooms .
[i] Game Infomation i s

4] Global Game Settings Depth: |0

< a Draw
on

[Persistent

Paet [ampman B,
Mask: Jcsame as sprite> |5,

—

[[5o [31958 | joupan o | 1w | swom

Figure 3.3: Game Maker

Now we have a functional playing field, but some game logic still needs to be added
to check whether one of the players has won, or when a draw has happened. For this
we have to add four (!) scripts, which do some checking:

o scr_check_player_win: checks whether the player has won;

e scr_check_computer_win: checks whether the computer or second player has
won;

o scr_check_draw: checks whether there is a draw;

21

3.3 ViGL Related work

22

e scr_check_end: combined the three scripts above and checks whether we are
done playing for this round.

The scr_check_end should be called after every move to ensure that the correct end-
situation is detected and acted upon.

To really finish this game one would have to add graphics (and sound), which can be
done by adding sprites to the game and using the script scr_field_draw to draw these at
the appropriate location depending on the current state of the board.

An important thing to realize here is that by actually implementing all these scripts,
you still work at a very low-level, in a general purpose programming language: Game
Maker Language (GML). This is the language you use to implement all the scripts.
The actions game maker provide that you can use without writing scripts are also
quite low-level, basically wrapping the built-in functions you can call from GML (e.g.
draw _sprite() or play_sound).

So, while Game Maker is quite suited to prototype or build very simple games on
your own, it is not very much suited for larger projects. Using the events and actions
provided by Game Maker will not be enough to implement all the functionality you
need for a bigger game. Even while implementing Tic Tac Toe, you will have to resort
to scripting very early in the development process, and after a while Game Maker
might even hamper development.

3.3 ViGL

ViGL stands for Video Game Language [29]. ViGL is a domain- specific language
which attempts to capture commonality between 2d video games. This allows a game
developer to do rapid prototyping and iterations for simple 2d video games. The code
written in the DSL can be used to generate a codebase for the game.

While this project focuses on a smaller domain than this project, ViGL might still be
a useful example of what can be attained using domain-specific languages in computer
games. Therefore details about ViGL are gathered here and the useful aspects that
might be used are summarized.

3.3.1 Design and Considerations

The ViGL language is chosen to be based on XML since it is very easy to understand,
and the technology was in place to easily parse XML. Later on the authors realized
that using XML was not ideal, they gave reasons like: it misses control-flow features
and has a bloated syntax. This eventually led to a mix between XML (declarative) and
some embedded code (imperative).

The authors of the ViGL language performed a domain analysis for 2d games. They
give an overview of the features and concepts common to general 2d games. This
overview is given in table 3.1.

All of these concepts translate well to a three-dimensional environment. Table 3.1
thus gives a basic overview of elements that are also present in the type of games the

Related work 3.3 ViGL

Features Requirements

Graphics Loading of images, texts, etc.

Sound Load, Play, Pauze and Stop music.

User Input Keyboard and mouse input handling.

Objects The objects of the game (different shapes, sizes and positions).
World The game world and the rules and shape of the world.
Interaction Interaction between objects in the game world.

User Control | The way the user controls the objects in the world.

Table 3.1: Overview of the 2d games domain

DSL should be designed for. Since many of these features can be considered as low-
level details, the concepts here can be separated into two different layers of abstraction.
On the game design level one would like to think in terms of the game world, game
objects, the user, the interaction between objects and the rules of the game. More low-
level are the specific details of graphics, sound, user input handling and other related
details. The specific way in which these details are handled does not influence the
game itself, only the representation of the game. These details are very important for
the game - most of the time they even determine to a large extent the look & feel of the
game - but they do not change the game dynamics and the design of the game.

This point makes it clear that besides the high level game design definitions, low-
level details of graphics, sound, etc. should also be controlled in some way. This
might be done by separating the two rigorously and connecting them through some
mechanism. Another way might be to completely integrate both. As it is important to
prevent unnecessary dependencies between team members, it might be wise to try and
separate the two, so game designers and interaction designers are not troubled with
details that artists and musicians might want to be confronted with.

3.3.2 Language Definition

If we look at the language definition of ViGL, we see that only part of the above
mentioned features and requirements are implemented in the final language definition.
However, there are some key points that we can extract from this language definition
that is not clear from the description of ViGL. One of the main things that the language
contains is the paradigm shift from thinking in classes and methods (standard OOP) to
thinking in game objects, rules and a world, and most importantly, events and actions
in that world that define behavior of items. This is a very useful concept which we will
build upon in chapter 5.

At the moment the language definition of ViGL allows us to define some general
game settings (such as resolution and full screen). It allows some basic code insertions
at some points to allow for better extensibility, but this is not very flexible. Code is
inserted as ’native’ code: Ruby. This is the target language for the ViGL compiler.
This does not separate the DSL from the target language, which means that it loses
some of the advantages of DSLs (see section 2.2).

Apart from that, the language defines objects and possible events and ties these to a
world with concrete instantiations of these objects, which might trigger these events.

23

3.3 ViGL Related work

24

Behavior of these objects is then defined by handlers of the triggered events. For the
objects to have a graphical representation, the language also allows for specifying this
on an object-to-object basis.

The things that are still missing from the language, which the authors admit to, are
the actual game play aspects. Many low-level detail implementations were included,
but due to time pressure, the game play aspects were not implemented. Things like
player types, game types, world types, views and mechanisms for scoring and levels
are all missing. These are typically things at a higher abstraction level and these should
be aimed for in the game DSL.

3.3.3 An example: Tic Tac Toe

For a better understanding of ViGL it might be interesting to see an example of ViGL
in action. Here we explain how a game like Tic Tac Toe would be implemented using
ViGL. The complete source code for this example can be found in appendix B.

We start out with the ViGL tag, which indicates the start (and end) of the game.
We can define resolution and full screen settings here. We choose only to define the
resolution here, the default full screen setting (false) is fine for this purpose. The main
things to implement here are the squares, which should react to a mouse click from
the user. When the user clicks on the squares, they should become a specific color (or
depict a cross or circle) to mark the square as belonging to one of the players. We
therefore create an object definition (objectdef) which defines the default look for the
square and a method for handling a mouse click event.

Handling the mouse click event involves checking whether the mouse is inside the
square, the mouse down event is generated for every object. Checking whether the
mouse is inside the square must be done using special code inserted using one of the
code insertion points. When the mouse is indeed inside the square we change the color
depending on which player’s turn it is.

Now all that is left is defining the world, which is simply adding the nine squares to
the world in a grid-like fashion. We use objects based on the object definition above.
Here we overwrite part of the shape definition of the parent, by giving the location the
shape should be at. The size of the shape and the methods are inherited from the object
definition. This allows the squares in the world to be defined with only minimal code
per square. This inheritance is a typical object-oriented feature. Object definitions can
also inherit from each other, creating an arbitrary tree-structure containing all objects
and object definitions.

Implementing the check for the win condition is a little involved, and not shown in
the source code. You would have to create a win-event and let the squares in the world
trigger these by checking whether the color change to that square makes up a row of
three consecutive colors. Then some objects can be created that somehow show that
the user has won. These should react to the generated event.

Related work 3.4 Game XML

3.4 Game XML
Taken from [10]:

”GameXML is a collection of XML specifications which describe and script com-
puter simulation engines. Developed by the XML Game Consortium (XGC), it is an
on-going project to create a reusable, standards-based architecture that can be applied
toward computer games and simulations.”

At the moment the XGC maintains two game languages. One language is aimed at
simple board games (GameXML/ABG), while the other is aimed at the more elabo-
rate domain of role-playing strategy games (GameXML/RPS). Both examples might
prove useful as they contain different aspects of gameplay and game programming that
might be needed for a general computer game DSL. Unfortunately, GameXML/RPS is
a language still under development and not a lot is known about this project. In section
3.4.1 we take a look at the different languages that are part of GameXML and their in-
terrelations. Section 3.4.2 gives information on the language on which the board game
language is based: the Zillions Of Games format.

3.4.1 Different Languages

GameXML uses a model-driven engineering approach to the domain of 2d computer
games. They start out with the MORPH meta language [51], which allows for the
specification of (domain-specific) languages in XML, several languages are then de-
fined using MORPH. A level lower in the hierarchy are the domain-specific languages
that are intended to *implement’ game domains (e.g. board games, real-time strategy).
The next level contains the game system, which is a system in which the final game
can be created (e.g. chess system). The last level is the level at which the actual game
is defined (e.g. chess). This is depicted in figure 3.4.

GameXML gives a couple of languages that can be used as a support language for
both the process and the domain languages. These are:

XRealm : a language for describing storage of digital assets
XTheme : for the definition of the digital assets used in the game.
XScene : allows for describing 2d interactive multimedia interfaces

XLobby : a language which allows for describing communication in a collaborative
environment

Using the GameXML approach two languages are being created, one of these lan-
guages is aimed at describing board games, while the other aims to describe role-
playing strategy games (a mix between strategy and role-playing games). The lan-
guage for board games is based upon work done by the Zillions of Games application,
which we describe next.

25

3.4 Game XML Related work

26

GameXML

Meta-Level
(MORFH)

Game Domain
(BoardGame)

Game System
(Chess Systerm)

Figure 3.4: GameXML overview

3.4.2 Zillions of Games

Zillions of games is a game package with a ’universal gaming engine’ for board games.
This allows players to play nearly any abstract (2d) board game or puzzle. This engine
takes as an input games written in a specific language for board games. Since this is
a prime example of a domain-specific language I will give an overview of the most
important language features.

The language

A game defined using the Zillions of Games language format (ZRF) consists of four
basic parts. Each of these parts will be discussed in turn. The first part is the game
description, which contains the title of the game, a description of the game, some
history, and some strategy information. This is interesting meta-information, but can
be considered as not important for this study.

The second part of the ZRF file contains a definition of the objects in the world: the
pieces and the players. Multiple pieces can be defined, including their look for each
player, some meta-information, and the moves allowed for that piece. The pieces must
then be places on the board, which is the third part of the ZRF file. The board is given
a shape, dimensions and a look. The initial layout is specified using the pieces defined
before. The last part of the ZRF file is used to determine the win-or-lose condition,
this is a rule defining when a certain player has won or lost the game.

Zillions of Games recognized the need for a different language to define Al modules
in. Conventional programming language are better suited for this purpose than the

Related work 3.5 File Formats

Zillions of Games language. Therefore a plugin framework has been created in which
authors of a game can provide a special AI module to perform the Al for their specific
game, while allowing the game to be specified in the Zillions of Games format.

The language also has support for macros that ease development. Shortcuts can be
defined up-front to prevent repetitive typing when using the same concept, in effect
you can extend the existing language with more specific purpose constructs. Rather
than being imperative in nature, the language is declarative in nature, this helps using
the new constructs in an effective way.

Tic Tac Toe

Applying this to the Tic-Tac-Toe example will mean that we have to define the dif-
ferent pieces and players, in this case two players and only one piece (behavior is the
same). Next we need to define the board, which is basically a square with a 3x3 grid
superimposed. The win and draw conditions are defined by specifying the board con-
figurations which produce that situation. The keyword ’stalemated’ indicates that no
more legal moves can be made by either party.

Appendix C contains the complete source code for the Tic Tac Toe example. For
extra help when trying to understand this code I refer to the Zillions of Games language
reference [38].

3.5 File Formats

Looking at different file formats that are being used in the games industry and sup-
ported by the games industry might uncover interesting details about the current way
of thinking (paradigm) of game developers. Since we want the DSL to conform to the
game developers, and not the other way around, taking this into account for defining
what the DSL should cover and what parts can be distinguished is very important.

Two file formats that are currently being supported by the industry are Collada [22]
and X3D [8]. The first of the two is actively being developed by the Khronos Group
[23] and is the primary file format for the Playstation 3 [48]. Collada is promoted as
an open standard which allows for the exchange of digital content between software
packages. X3D is rather similar except that it is aimed at providing interactive digital
content through the web and for more ’serious’ applications. In the following two
sections we will describe these file formats in more detail.

3.5.1 Collada

Collada is a collaborative design activity to establish an open standard for sharing dig-
ital assets between interactive 3d applications. Collada was adopted by The Khronos
Group when version 1.4.0 was released [24]. The high-profile members of the Khronos
Group promote Collada as the main standard for digital assets sharing through tool-
chains in the industry of 3d interactive applications.

The Collada schema supports the major features that all modern 3d applications
share, among which game engines for games. A Collada file is made up out of several

27

3.5 File Formats Related work

libraries of different types of assets. These assets can then be used to build up a library
of different scenes. One scene can then be selected as the active scene. Collada is also
separated into three different parts: the core, a physics part and the FX part (containing
special effects).

Core

The Collada core contains most standard visual assets. It has a geometry library for
storing the different geometry available in most 3d applications today. It also allows
for the specification of lights and cameras, which can later be used together with the
geometry to create a scene. Images are also included to allow for complete scene
information to be stored.

Combining geometry, lights, cameras and images allows for the building of scenes
using the scenegraph principle. Parts of the scenegraph can be stored in a library and
used to prevent code duplication. The scene can be build using information from the
libraries or by using newly created elements. It is also possible to store animations,
controllers and other data related to animating the scene or specific objects in the scene.

Physics

To provide physics support there is a second part of Collada specifically created for
this purpose. This part allows support for defining rigid bodies, physics materials and
special physics scenes which define the world based on physics object. These physics
objects can then be used to control different objects in the visual scene constructed in
the core part based on some physics simulation.

FX

The FX part of collada allows for defining complicated shader effects to be build inside
collada. These effects can then be applied to objects by defining different materials
using the effects. Materials can differ in the details of the parameters or the textures
used to render the objects using the effect.

3.5.2 Extensible 3D (X3D)

Extensible 3D (X3D) [8] is the successor to Virtual Reality Modeling Language (VRML).
Unlike VRML, X3D is based on XML [9], which makes it easy to read and understand.

It basically uses the same approach as Collada: provide a common profile with the ba-
sic functionality and allow extensions. Unlike Collada, the language is not only aimed
at providing a file format for storing assets, but it also allows for specifying run-time
descriptions, such as interaction with the user. To allow run-time descriptions X3D
has an event model and a scripting API.

User interaction is done through the use of events. Objects can have sensors attached
to them that give an event when something specific happens. For example when the
user "touches’ the object with a pointing device. The event then fires and some simple
behavior can be created. Using scripts more elaborate behavior can be defined. The

28

Related work 3.5 File Formats

obvious advantage here is that the behavior of objects is defined in the same file. How-
ever, considering the need for a scripting field containing regular code, the file format
is not particularly suited for this.

X3D is mainly aimed at providing a format for web-based content for a variety of
hardware devices. It is not particularly suited for computer games, besides needing
some viewer application for the game defined in the X3D format, one would also need
to do a lot of extra scripting using the API to accomplish anything useful. This means
most of the work still has to be done yourself, X3D does not provide an advantage for
this. A scripted part is just a piece of code inserted into the XML file, requiring an
external application to be started to execute the script.

29

Chapter 4

Games and Game Developers

This chapter presents the results of investigating games and game development in prac-
tice. It is important to know whether the current state of work process improvements
and game development insights are being used, at least to some extent, in current game
development. Examining current practice in game development also provides insight
into the workings of game studios and allows us to look for commonalities between
games and between game studios. These commonalities and work process details can
then help to further improve upon the elements of the DSL that will be developed.

In section 4.1 we will start by examining games, the basic types and the common-
alities between them. We verify this by looking at their source code and the way this
evolves over time in section 4.2. Section 4.3 will give the results of interviews I held
at a tour along game studios. A tool used by most game developers is the game design
document, this document will be discussed in section 4.4.

4.1 Different Game Types

Before looking at how games are developed and what tools are used, it is important to
know which types of games are available and what their characteristics are and what
assets and elements go into creating a game. Looking at these different games will
give insight into the scope of the domain and the different elements that need to be
part of the DSL.

4.1.1 Main Game Genres

Before we start looking at the different games and their respective source code it is
important to first consider the different types of games that are being produced. Game
types are usually given by the game genre, which distinguish the type of gameplay
from the other. Genres are mainly focused around the style of interaction [60] and thus
provide a good basis to find out whether the interaction type influences the general
structure of a game. In this section we will give an overview of the most important
game genres and compare these to find common elements and differences.

Here we present a high-level overview of the different games genres [43]. The most
important game genres are summarized in table 4.1. When looking at this table their

31

4.1 Different Game Types

Games and Game Developers

32

is a surprisingly little number of really different game genres and most of the games
encountered will fit into one of these genres (sometimes a combination).

Genre

Perspective

Objectives

Action and Ad-
venture

Strategy

Role-playing
(RPG)

Real-world sim-
ulations

Construction
and manage-
ment games

Puzzle games

Usually from the charac-
ter

God-like, controlling

From the protagonists

Usually first person, but
depends on simulation

God-like, controlling

Overview of puzzle

Overcome physical challenges, puz-
zles, races, and a variety of conflict
challenges. First-person shooters are
example of action games

Tend to include strategic (naturally),
tactical, and logistical challenges, in
addition to the occasional economic
ones. You usually have to mobilize re-
sources to organize something (army,
economy, etc).

Usually involve collecting loot and
trading it in for better weapons and
equipment. The main objective is to
work through a story and upgrade your
characters.

Include sports games and vehicle sim-
ulations, including military vehicles.
They involve mostly physical and tac-
tical challenges.

These games are primarily focused on
developing businesses and organiza-
tions. This genre is rather similar to
strategy.

Tend to be variations on a theme of
some kind. Sokoban is about mov-
ing blocks around in a restricted space;
The challenges are almost entirely log-
ical, although occasionally there’s time
pressure or an action element.

Table 4.1: The main game genres

When we look at the differences between these genres, the most obvious difference
is the way the view is constructed, in some genres the perspective is first/third person,
close to a player and linked to a player. These perspective also imply that the player
exerts control on the world through this character. A second type of game gives a view
from the top or some other overview perspective. In these type of games it is usually

Games and Game Developers 4.1 Different Game Types

implied that the interaction with the world is through some god-like possibilities of
control (i.e. units or buildings are magically instructed to start doing something).

Considering these differences it is important to realize that these are only differences
in the view of the world and the specific way of interacting with the world. In its purest
form all the game genres described above feature some kind of world, objects and
characters in this world with different kind of properties and behaviors and the rules
that make up the game. Since these are typically elements that occur in every game
genres, we would not have to worry too much about the game genres for defining the
general structure of the DSL. Considering the game genres when it comes to specific
ways of defining interaction, behavior and properties of objects it might be necessary
to provide some specific features to support all game genres.

4.1.2 Elements of a Game

According to an overview presentation of XNA [31], containing the results of detailed
research in the game industry conducted by Microsoft, there are several important
elements when it comes to game design. The team behind XNA has separated the
elements into three pillars: process, game technology and design/content creation, we
will focus here on the latter.

When we look at this last pillar, it is interesting to see that the gameplay itself is com-
pletely omitted. XNA focuses mainly on the different assets that can be created, with-
out considering gameplay and game design as assets. The elements they do present
are:

e Meshes and Materials

Audio

Cinematics

e Animation

User Interface (not really aimed at interaction)

Worlds / Levels

4.1.3 Game Design

Besides the 'visible’ game aspects discussed above, there are also some "hidden’ ele-
ments when it comes to implementing the game using code. We will now focus further
on the different elements that go into designing a game. If we take a close look at
the current insights in game design [43], we can distinguish four elements that are of
importance to the game design and the implementation:

The interaction with the player determining how to control the game and what feed-
back is provided. (This is given shape by the visual assets discussed above).

The objects that make up the game world, with specific behavior and properties.

33

4.2 Source Code Games and Game Developers

34

The rules that govern the core mechanics of the game and determine what the player
can and cannot do.

A storyline is not present in all games, but in some genres it takes a prominent place
(action & adventure, RPG).

4.2 Source Code

Now that we have an overview of the different games around and the elements that
make up those games, I will check for the presence of these elements by looking at
the source code of games. Game source code could prove another valuable source of
domain knowledge [46].

Section 4.2.1 discusses the Quake game series, an influential series of games which
has had its source code released to the public. In section 4.2.2 I will take a look look at
game source code of student games while the game is being constructed. The changes
in the source code are discussed and the most important components are summarized.

4.2.1 The Quake Series

The Quake series are developed by id Software and is considered to be ground break-
ing by many people. id Software pioneered many of the common modern game-play
elements. id Software was (one of) the first to come up with a 3D-ish game *'Doom’
[34], which changed the look & feel of games forever. Besides viewing the world in
3D it also provided a whole new way of navigating and controlling the world which
remains practically the same to this day. They effectively invented 3D gaming and a
whole new genre: First-Person Shooters (FPS).

Quake is a game which looks a lot like Doom in the respect that it has the same genre
(FPS). Up until now the source code of the first three Quake games have been released
to the general public. This allows for extracting common constructs and semantic
notions from this source code to arrive at the important components of a professional
game series.

The source code of Quake III Arena can be broken down into three distinct parts:

e The game, which really governs the game (on the server),
o A client portion of the game which handles part of the interaction with the user,

o A user interface part which governs the remaining interaction.

These parts correspond quite well to the elements of a game recognized in section
4.1.2. However, the rules and object code managed at the server still contains a lot
of technical details which makes it harder to understand and maintain the code and to
predict what the potential impact of a change might be.

The code is also rather unstructured in this sense, making it hard in general to change
specific elements in the game. Since the game design, rules and interaction are so
intertwined in the game it is hard to concentrate on one of these aspects when making

Games and Game Developers 4.2 Source Code

a change. It almost always will affect one of the other elements as well, making it
harder to maintain the code base.

4.2.2 TU Delft - Games project

The bachelor curriculum of ’Media- & Kennistechnologie’ (Media and Knowledge
Engineering) at the TU Delft contains a project which is aimed at developing a com-
puter game in a very short amount of time (7 weeks, 8 hours a week). The Cannibal
Engine has already been used twice as the supporting middleware for this project and
will be used again in the 2006/2007 version of the project.

The games created during this project are, of course, very basic and only contain the
bare minimum elements of game play and graphics. By investigating the source code
of these games we will be able to concentrate further on the different base components
of a game. Since the games industry is quite secretive, these games are also the only
opportunity for me to get hold of source control repositories to analyze changes over
time. Since these are small games, the use of such an analysis is quite limited, but
some information might be gained as to what parts are most difficult to implement.

Looking at changes over time for these projects provides insight into the different el-
ements that get changes throughout the projects and the different elements that require
a lot of programming work without directly being useful. By looking at the different
changes we can therefore draw conclusions as to what elements of the DSL should be
implemented very explicit and flexible and what elements the DSL can abstract from.

Red Ribbon Rabbit

Red Ribbon Rabbit is a game that would fit into the adventure genre. The player is
represented by a rabbit. The object of the game is to gather carrots, evade the wolf and
solve some simple puzzles. One of the major accomplishments of the group developing
Red Ribbon Rabbit was that they had a very basic working prototype pretty early in the
development process, which allowed them to focus more attention to designing new
game design elements which improved the game and made it more fun to play. Due to
this accomplishment, the version control repository should reflect this focus by giving
an overview of changing game design elements through time.

When looking at the changes over time for the source of Red Ribbon Rabbit it be-
comes quite clear that a solid design led to a very early first playable, which allowed
them to start working more on changing elements of the game design. Unfortunately,
changes to the game design were not that easy to implement. Having a solid design
helped, but still code had to be changed in several places and most of the code dealt
with technical issues. Trying to avoid these technical issues would not completely be
possible, since they are usually quite specific, however gameplay code is intermixed
with technical issues and mathematical formulas, making the code harder to read and
understand.

Even with a solid design is was necessary to adapt the code many times to fix errors
and to implement the changes in the game design. Doing this, the quality of the code
rapidly became worse, cleanliness of design and clearness of code was often traded

35

4.3 Interviews Games and Game Developers

36

against speed and features of the game. The more features and decoration was added
to the game, the worse the architecture became.

A language which would give more structure to the game design aspects and a solid
way of connecting this to the implementation of the representation and interaction of
the user would have kept the code more clear. This is an area where a DSL can most
certainly help.

Lightmare

Lightmare is a game that would also fit quite well into the adventure genre. The player
is represented by a walking lightbulb with two batteries attached. The object of the
game is to find the correct power socket, which provides power to the light. This has
to be done while evading malicious hammers and various electrical devices stealing
power. Unlink Red Ribbon Rabbit, Lightmare was defined quite well to start with and
all features were implemented all at once leading to the fact that the game was only
starting to work in the last week. This is a different way of development and it might
be interesting to see how this manifests itself in the source code changes over time.

When looking at the source code of Lightmare we can see that it has a design which
reflects the game design aspects quite well. However, the team behind Lightmare
did not manage very well to tie this to a working implementation. They got caught
up in (technical) details which led to a first playable very late in the development
process. Game design aspects could hardly be paid attention to, while these are usually
considered the most important aspects.

A special language which would have provided support to take the step from defining
the game objects to defining the interaction with the user, could have helped this team
to resolve these issues. The rules of the game are also scattered throughout the code.
Capturing these together and having them clearly defined, without technical details,
would help to keep more structured code.

4.3 Interviews

In this section the results of the interview tour are presented. In the following sections
the results for the most important studio types is discussed. Before the results are
discussed, it is important to explain the reasons for the interview and the way the
questions were devised.

For the purpose of designing a DSL that closely resembles the way of thinking em-
ployed by game developers, it is important to get to know the mindset of game develop-
ers and the way in which they work together at game studios. This ’tacit’ knowledge
[19] is hard to find by looking at the results that game developers produce: assets,
source code and the final game.

Extracting the way of thinking from these results is difficult, there is not necessarily
a direct link between the results and the way of thinking. The way of working is even
more difficult to extract from the results, even if the way of thinking can be found, the
way of working cannot necessarily be extracted from that. To do get this information
it might prove useful to look at game source code while it evolves: version control

Games and Game Developers 4.3 Interviews

repositories that show changes over time allow for more insight. But, since game
studios are quite secretive about what they are up to, they are very reluctant to releasing
this kind of information.

Besides looking at source code, which on its own may lead to false conclusion or a
lack of conclusions, it is a lot more direct to interview game developers and to figure
out their way of thinking and working by listening to there reactions. The interview is
constructed using techniques from qualitative research methods [44]. The interview is
focused mainly on the different persons in a game studios, what their job is and how
they cooperate. Another important element of the interview is projective techniques,
where the respondent is challenged to reveal underlying motivations, beliefs, attitudes,
or feelings towards the interview subjects. Because of secrecy reasons it is not pos-
sible to give the answers to the questions directly, and I cannot disclose the interview
partners. The results are therefore anonymous and aggregated.

4.3.1 Setting up the Interview

The interview is set up to be part of a bigger interview in which game developers
are interviewed on a variety of subjects, ranging from composition and size of the
game studio to the work process used and the individual tasks and way of thinking
of employees. This larger interview is used to gain a more complete picture and to
support multiple research projects currently active at Cannibal Game Studios.

The results of these interview sessions may not be generalized to all game devel-
opers and game studios, so it would be useful for future work to do a more elaborate
interview tour, including game studios from the USA, UK and Japan. However, since
the results of the interview are quite in line with other movements in the game indus-
try: middleware discussions, file formats and the related work presented in chapter 3,
it seems quite reasonable to accept the results as general conclusions.

The interview contains some general questions aimed at retrieving information about
the company (its size and composition), the way in which collaboration is handled with
the company (e.g. version control and project management) and the general work pro-
cess within the company (e.g. content pipeline and bottlenecks). Besides these more
general questions there are some in depth questions concerning current middleware
and engines used, the advantages and disadvantages of these tools and what game
studios expect from middleware.

The part of the interview that is most interesting to consider in light of the DSL to
be developed are the questions about game design. The questions start out by asking
the game designer to specify a game. This not only provides insight in how the game
designer thinks, but also to what he considers to be part of a game design. Then
some questions are asked to compare the current methods used by game designers
with the way he thinks and reasons about games. A third set of questions is aimed
at the workflow, communication and collaboration within the domain of game design.
This allows for a more detailed overview of these types of considerations for the design
of the DSL.

37

4.3 Interviews Games and Game Developers

38

4.3.2 All-round Game Studios

All-round game studios are game studios that have the entire game production in-
house, not only the game design and the content for the game is created, but the code
is also written by developers at the studio. This not only enables better control, but it
also means that the team members can work more closely together, which introduces
special demands on the middleware used.

Typical game teams in this category range from 10 - 150 members, depending on
the quality and size of the title produced. Depending on the type of project and the
available middleware the ratio of artists to programmers range from 70/30 to 50/50.
Communication is usually done through experienced leads that divide the work and
create a project planning.

Collaboration between programmers, artists and game designs is roughly as follows:
first the game design is created and captured in design documents. These design doc-
uments reflect how the game should look and work. The programmers and artists then
start creating assets and source code, these should be combined into the final product
by using middleware products. In most middleware products this is done by creating
models and animations in some third party modeling package, importing these in some
level editor and then packaging this into the final game. Using the level editor and im-
porting objects (both the graphics and behavior) is usually done by level designers,
who design the game on a lower-level than the lead game designer.

4.3.3 All-artist Studios

All-artist studios are game studios led by visual and gameplay specialists without any
technical knowledge. These studios sometimes makes extensive use of freelancers
which do small parts of the content creation or design work. Technical implementation
of the game is usually handled by separate technical companies. At any one time there
are a lot of different people doing active content creation or design work. In a sense
these studios are unexperienced when it comes to technology, which provides them
with a unique unbiased perspective.

Collaboration with the different freelancers is usually done by the use of off-the-
shelf forums and wiki. These slowly get adapted until the tools have become an in-
tranet collaboration tool in which users can login and manage their own tasks and
contributions to the game. It is most important that everybody knows what they are
working on and what others are working on, especially when teaming up with technical
companies that are supposed to implement the game.

Most of the all-artist studios feel that the programmer is the one that finally brings
together the game design with the content created. It is the programmer who integrates
the two and who might make it possible to add content to the game without program-
mer intervention by creating restricted frameworks and tools. Game design elements
are still to be implemented by a skilled programmer who has read and interpreted the
design documents.

Games and Game Developers 4.3 Interviews

4.3.4 Content Creation Studios

Content Creation studios are a lot like the all-artists studios described above, with
the difference that they also have, at least some, technical knowledge. These studios
create content for other games, by applying their artist expertise with their technical
knowledge. They normally do not create games from beginning to end, but small parts
of it: levels, type of asset (trees or buildings), etc. Some all-artists studios use content
creation studios to create some assets for the game, and the other way around. Because
more knowledge is bundled in these studios, they are usually a bit larger than all-artists
studios.

Since content creation studios usually work closely together with multiple other
companies it is important that they can collaborate well. Therefore these type of stu-
dios usually have a lot of knowledge when it comes to collaboration. However, while
some work together in novel ways, the technology they use does not reflect this. Tools
are not integrated well and many different systems are used to manage projects. Inte-
gration of different content pipelines is even a bigger issue. The collaboration, from
a technology viewpoint, is not very much different than the studios discussed above.
These studios usually use the same methods when it comes to specifying the game
design, either no real method or just using a design document.

4.3.5 Academia

The Netherlands has some research and educational activities when it comes to com-
puter games. The most noteable are perhaps UPGEAR [3], a collaboration between
Utrecht University (UU), Utrecht School of the Arts (HKU) and Hogeschool Utrecht,
and the Center for Advanced Gaming and Simulation, a collaboration between UU,
HKU and TNO. These collaborations are to give a boost to education and research
in the area of games and simulation. An example of a focus point for these groups
would be combining motion planning with procedural animation of natural moving
characters.

It seems most academia have a rather classical view of the game industry, which
lacks a bit behind the actual developments. An interesting thing to consider is the use
of the game design document: academia see this as the bible of a game. First the
game design document should be setup, using prototyping where it is possible to test
concepts and balance the game. If changes need to be made they will first have to be
considered against the game design and then implementation should be judged.

An interesting thing that academia seems to focus more on than the studios itself
is the change of emphasis for games. The emphasis has been on the looks of the
game; the graphics should be cutting-edge. However, as the graphics become more
and more realistic, other aspects of the game are becoming more important. These
are especially the game design aspects (e.g. gameplay, Al). Problems are anticipated
though, since there are no real standards (yet) for specifying and implementing these
aspects. Creating this DSL might help in this aspect.

39

4.4 Design Document Games and Game Developers

40

4.4 Design Document

One tool that all game developers use when communicating information about the
game to all different disciplines involved is the design document, or a set of design
documents. I will discuss the design document here along with the way it is used
across different studios. Most types of design documents contain a couple of elements
that are always present. These elements are interesting to discuss, as they are the core
elements of what a game represents for game studios.

An important part of any design document is a one-pager, describing the game in one
page. This page should include all the elements of the game in a quick overview style.
It should contain the setting and basic story of the game, the important game mechanics
and some basic objects (e.g. weapons) and characters. Mostly this one-pager is used
to get outsiders up to speed on the project and to try and get them enthusiastic. The
one-pager is therefore also considered as a separate document.

Traditionally the game design document is a long document containing full details of
all aspects of the game and designers had a big task keeping all details corresponding to
the actual implementation of the game. The game design documents are now becoming
more like Wiki [35] pages, a set of web documents which anyone can easily edit and
change.

Not all game studios use the design document in the same way. Some studios have
one or two game designers who are responsible for sculpting the entire game design.
This requires them to create a highly detailed description of every part of the game to
have everybody share the same ideas. Some studios choose to only sketch out the main
features and the setting of the game, allowing everybody to add to the game by coming
up with new ideas and filling in the blanks with their own creativity. Usually this
collaborative process is guided by an experienced game designer who holds meetings
often to synchronize ideas and make decisions.

In either way mistakes and omissions will happen when creating the game design
document. This means that the design document is constantly changing, explaining the
use of and need for dynamic systems like Wiki. It is important to know which aspects
there are to a game design document to determine the elements that can get changed
throughout the game development process.

One of the most important parts of any design document is the part about the game
mechanics. This part explains the most important game play elements of the game.
It describes the features of the game play (e.g. jumping from platform to platform,
shooting enemies), the flow of the game (i.e. similar to use cases), some information
on characters (e.g. special abilities), physics and ai, statistics (e.g. score) and other
aspects of the gameplay that are important to the users experience.

A second aspect of gameplay that is included is detailed information on every char-
acter, enemy, weapon and other object in the game. All of these require descriptions
that allow other members of the team to work on them while all know what its purpose
is within the game.

Games and Game Developers 4.4 Design Document

Besides the gameplay elements, most games have a storyline or different levels through-
out the game. A second section of the game design document gives details on the story
of the game, the levels the user has to go through and sometimes explanations for the
gameplay elements. For example, if characters in the game can jump incredibly high
this could be explained through some story in which the gravity of earth is distorted
by some event.

The story not only guides the player and motivates him or her, but it also provides
a setting for the game. Using the same gameplay mechanics one can create a game
in which the player shoots at invading aliens with a lightning gun [17], or a comical
game in which you have to throw snowballs at mutated turkeys [28]. Both can contain
exactly the same gameplay.

The setting of the game is also supported by the art work, the video and the sound
effects and music used throughout the game. All game design documents contain
some details on how the game should feel, what the overall mood is and at least some
impression sketches or concepts art of the game. Using these, guidelines are created
to which the artwork and sound should adhere.

Besides defining the game mechanics, the story and setting, it is also important to
think about the interaction with the user, most notably controlling the game. For some
games this might be by controlling one character directly, but others have a more god-
like control in which the players control an entire organization or country. How the
user controls the game world is an important aspects of interaction.

Another important aspect of the interactions are the heads-up-displays or other GUI
elements within the game, like menus and help screens. These mostly define how the
user controls the system surrounding the game: saving, loading, (re)starting the game,
changing some settings, etc. These are usually described using classical storyboard
techniques: creating flowcharts, creating screen mockups and defining functional re-
quirements.

Some game design documents also contain details about the technical details: the
engine used, what Al system, what lighting models, etc. However these are again
implementation details that the game designer should not have to think too much about.
Of course they are important to keep in mind, however a lot of time is lost thinking
about these details.

41

Chapter 5

Cannibal Game Development
Platform

As mentioned in section 2.3, an important step in developing a Domain Specific Lan-
guage is constructing a support library for the different operations and semantic no-
tions of the DSL. The DSL to be developed during this master thesis was meant as
an extension or add-on for the Cannibal Engine. However, during this research some
interesting facts and ideas came about that dramatically altered the Cannibal Engine.
These changes led to redefining the Cannibal Engine as the Cannibal Game Develop-
ment Platform and making some changes and additions to the existing code.

In section 5.1 an overview will be given of the findings that led to the changes
to CGDP, the changes itself will be presented in section 5.2. The findings can be
considered as a short summary of the important points from the previous chapters
relating to the platform, while the changes can be considered as an overview of the
features implemented early-on to prepare the platform for usage with the DSL and to
supports its main paradigms. It is important to note that the changes described here
are only the changes that are made to the core engine framework, not additions to the
platform in the form of a run-time system for the DSL.

5.1 Findings

This section gives an overview of some general findings that were encountered during
the research into a DSL for computer games. These findings have led to some (radi-
cal) changes to the Cannibal Engine, which has since been called the Cannibal Game
Development Platform.

In section 5.1.1 I discuss the implications of applying the model driven view in-
troduced in section 2.1 to computer games. A more user-centered approach, highly
recommended and hinted upon by the game studios in section 4.3, is discussed in sec-
tion 5.1.2. When looking at related work and existing tools discussed in chapter 3
it becomes clear that some elements are important candidates for implementing in a
DSL. The elements are discussed in section 5.1.3.

43

5.1 Findings Cannibal Game Development Platform

44

5.1.1 Model Driven View

If we look at a computer game as a model [32], we can distinguish a very diverse num-
ber of components that need specifications. The rules of the game, special graphical
effects, the look of the game, the interaction and other details need to be specified. If
we take a broader look at these different components of a game we need to realize that
not all of these components can be specified in one language. Even if we could do this,
it would not be the desired approach as will be explained further in section 5.1.2.

If we look at sections 4.1.2 and 4.1.3 we can distinguish very different elements of a
game that determine the look and feel of the game. These different elements all have
an important role in the overall design of the game, but they are usually constructed
and created by different people and in a different way.

Game Development

Meshes, Animations

Models, S“?,qu':ijcs’
Materials

Cinematics Levels,
Worlds

Interaction
(GUI, Input)

Storyline

Rules, Objects
Behavior

Figure 5.1: Overview of game development

Taking into account the diverse nature of these components and the solutions that
already exist for some of these components, the remaining part of this master thesis
will mainly be focused on the objects in the world, their properties and behavior, the
rules of the game in a DSL and the interaction with the user. These are elements that
are the primary concern of the game developers along with game-play designers and
programmers. There are already existing tools for specifying the composition of the
world (locations of objects) and for the look of objects (3d models, textures and shader
effects).

5.1.2 User Centered

During my research into the specific needs and way of working of game studios it be-
came apparent that the available middleware that is being used in the gaming industry
is not always geared to the people working with it, or in other words: not user-centered
[37]. A lot of game studio team members are still being confronted with details they

Cannibal Game Development Platform

5.1 Findings

should not be confronted with: a game designer will only want to be working on and
thinking about the rules of the game and wants to express these ideas directly into the
game.

Right now the game designer will have to express its ideas in some format that
programmers hope to understand (the game design document). These programmers
will than have to interpret those ideas and try to express them into some programmer
environment, usually not particularly suited to expressing these ideas, being bothered
will all kinds of implementation details at the same time. Given the number of steps
involved a lot of errors can be introduced, and this is not a desired situation. In the
ideal situation a game designer can express his ideas directly to the game development
environment in a language close to the designers mental language.

The same logic applies to other responsibilities and team members. For example in
some studios it is still the case that the artist must work in close collaboration with
a programmer to create shaders to attain certain graphical effects and looks. This
obviously leads to another set of steps of interpreting and re-expressing the original
idea in other languages, while having to account for details that should not matter to
the artist.

Game Development

Sound designers

Programmers

Meshes, Animations
Modsls, Soungls.

Materials LIS
Cinematics Levels,
Worlds
q Interaction
Storyline (GUI, Input)

Rules, Objects
Behavior

Game designers

Level and
interaction designers

Figure 5.2: Overview of game development - continued

In figure 5.2 we can see that the different usergroups have been added that are re-

45

5.1 Findings Cannibal Game Development Platform

46

sponsible for creating the specific assets (see section 4.3). The usergroups are very
aggregated and normally they consist of a team of people in which different responsi-
bilities are divided and some hierarchy is present.

The tools available for the four content items at the top-left are already well estab-
lished and used throughout the industry. These tools are really specific to their purpose
and work well for the person that actually uses them. Levels and worlds usually have
an editor which is given by the developers of the engine (e.g. UnrealEd), these edi-
tors somehow allow for importing the other assets, objects and behavior to assemble
the levels. For the four bottom assets there are really no specific tools available for
creating them. These four assets are currently implemented using some game-specific
framework based on general-purpose languages (GPLs) or by using GPLs directly.

Besides being created in tools that are not particularly suited for that purpose, the
four bottom assets are also created and heavily influenced by two completely different
user-groups. Of course, game designers have to design the game play and core me-
chanics, but the programmers, will have to implement their ideas and make it reality.
This leads to a rather entangled situation where the different assets are controlled by
two parties at the same time. It would be highly desirable to better separate the aspects
of programming and game design to provide both user-groups with more freedom and
flexibility in their work.

Of course it is important to realize that all the assets depicted are interrelated in
some way. The objects defined by the game designer somehow have a representation
with graphics and sound defined by the artists. The storyline has a strong tie with
the cinematics and animations and the rules partly determine the type of interaction.
Levels bring all of these elements together by modeling the actual world that the game
will take place in.

5.1.3 Elements of a Game Design

When looking at the game discussed and the work that has already been done in the
area of a computer game DSL, we can conclude that there are some rudimentary el-
ements that are always present in any game design in general. These are also the
elements that are supported most poorly by available tools, if there are even any.

The elements that will be the focus point of the game DSL are highlighted below for
clarity:

Objects need to be defined in some way: their properties and behavior should be
specified. An object-oriented style for doing this is most likely the best solution.

Rules need to be defined to determine the boundaries for the game and the actions
that specific actors in the game are allowed to undertake.

Interaction with the user should be specified in some way, this can likely be done
most naturally with event-driven techniques.

The Storyline should be defined for games that have a storyline, a linear storyline or
tree-like structure can be used best.

Cannibal Game Development Platform 5.2 Changes

Of course it is important that it is clear how these elements are interconnected and
attention must be paid to make sure they can be connected in an intuitive way. As
mentioned before, interconnection with other assets is also important to assure that
everybody can work together effectively while focusing on their own expertise.

5.2 Changes

The findings above led to a couple of dramatic changes to the Cannibal Engine. Can-
nibal Game Studios decided, based on the findings, to redefine the Cannibal Engine
as the Cannibal Game Development Platform. This section will explain what the dif-
ference between these two names means in practice and what changes the DSL has
instilled upon the core engine framework. Some features will be left as part of the
language run-time, while other are changed natively in the engine.

Until recently, Cannibal Game Studios was building an engine with some surround-
ing tools to help developers write their games and help them by providing solutions
to common problems and by abstracting away from low-level system calls and from
hardware details. The different findings led to a shift in focus for the Cannibal team:
the focus is now more on eliminating tasks the user (the developer) does not want to
be confronted with and enabling them to do the work they want to do. For example: an
artists will only want to be working on the look of a certain 3d model and it’s material.
He does not want to deal with all types of different hardware details and limitations of
shaders. A game designer on the other hand will only want to think about the structure
of the game and how the different elements together form the game-play, not about
specific implementation or on how to convey his ideas to other team members.

5.2.1 Overview

The shift in focus has led to a number of radical changes to the development of the
engine. First the paradigm (or way of thinking) has been developed in collaboration
with different game studios in the Benelux region. This means that the responsibilities
and mindset of every function within game studios have been mapped. These respon-
sibilities and mindset are then used to determine the general paradigm for developing
games. This paradigm includes the personal way of thinking of team members and a
total process that can be used to develop games with the Cannibal Game Development
Platform.

This paradigm is used to derive the tools and languages (DSL) that are needed to
enable developers to work in an efficient manner and to not be bothered by details
that do not or should not concern them. The DSL will be used along with the tools
to develop games; both are of equal importance. This implies that it is not needed to
have the computer game DSL support all aspects of game creation. Some aspects can
be represented better by different tools or other means of development. For instance
the writing of a plugin for a certain graphical effect can best be done using conven-
tional methods (shaders), which are specifically developed for this purpose and used
throughout the industry. Specifying the look of models can best be done using con-
ventional DCC tools artists are comfortable with and maybe some support tools to link
the graphical effects to the 3d models.

47

5.2 Changes Cannibal Game Development Platform

48

Cannibal Game Development Platform
Collaboration Platform
Paradigm
Tools - > DSL
Plugin 1 Plugin 2
Engine

Figure 5.3: Cannibal Game Development Platform Overview

As already anticipated in section 2.1, a DSL for games should be highly extendible;
this also goes for the entire platform. Many game developers have different needs and
requirements, it would not be feasible trying to provide every single piece of func-
tionality to clients up-front. Rather it should be easy to extend the platform where
necessary by providing plugins. This is depicted in figure 5.3. To serve this purpose,
a special support framework has already been implemented through which any plugin
can provide the platform with necessary extensions.

5.2.2 Events & Actions

Another important realization is the fact that game development tools are moving more
towards an event-driven, action-based programming model (see sections 3.1.3 and 3.2).
In other interactive application areas, like simple graphical user interface systems, this
paradigm has been used much more explicitly for quite some time [42]. Since Cannibal
Game Studios also believes that this paradigm is more suited for real-time interactive
applications, like computer games, the necessary support for working with events has
been implemented even more clearly in CGDP.

A framework for working with events and actions has been implemented directly
in the engine early-on to see how developers use this concept and to allow them to
work using an event-driven programming model. The framework allows for events

Cannibal Game Development Platform 5.2 Changes

and (re)actions to be connected in an easy to use fashion. Further composition of
events and actions using operators and other trickery is also supported natively.

Many of the key functionalities of the engine have already been exposed to this
event-framework. Core engine events are exposed through this interface, but also the
user input has been exposed. Any input device can expose any number of events it
wants based on the input generated by the user. All components and plugins of the
engine are supposed to expose events that may be useful to the developer.

5.2.3 Future changes

In the future some others changes might be made to CGDP which will facilitate other
elements of the DSL natively. Elements that are already recognized as important parts
of a game design, and therefore important parts of the DSL, which are not facilitated,
are the rules and the storyline. The object definitions are supported by the object-
oriented language Cannibal is written in and the interaction is supported by the events
and actions framework. Some parts of the rules are also supported by this framework,
some rules might need special facilities though.

Creating a story is a task which involves setting up a storyline with different impor-
tant events that tell the story. This storyline is sometimes also depicted with a tree, or
even a graph, allowing for multiple versions and even non-linearity. A storyline frame-
work might be created to facilitate easier implementation of DSL specific constructs.
However, this may also be left as part of the DSL run-time.

Some tools will also need to be developed to assist the game developer in defining
these game elements. These tools present just another interface to the DSL than using
the model framework directly (see section 2.5.3). However, since we want to involve
the game designers along with the programmers, they might pose an easier interface
to programming with the DSL to the game designers. For example, this allows for
viewing the storyline not only as code (or plain text), but also as a timeline, tree or
graph.

49

Chapter 6

Languages and theory

Before starting with the design, specification and implementation of the DSL for com-
puter games, it is wise to first consider the work that has already been done regarding
languages related to the DSL for computer games. In this chapter some similar or
related languages will be discussed along with their strong and weak points, this can
then be used when designing and specifying the language to improve upon the com-
puter games DSL.

Since most of the games involve interaction and simulation, and software that relies
on interaction and simulation usually work with events, we will take a look at reac-
tive or event-driven programming in section 6.2. In section 6.3 we will take a look
at existing languages aimed at providing support for multi-threading and look into
concurrency theory. We conclude in section 6.4 with a discussion of multi-paradigm
programming languages. But first, since the way of thinking is important for the DSL,
we should answer the question of whether to use a declarative or imperative style of
programming the game. This will be looked at in section 6.1.

6.1 Declarative versus Imperative programming
In programming languages paradigms there are roughly two types of languages:

e Imperative

e Declarative

Imperative languages are the more classical programming languages in which the
programmer specifies which steps to execute and in what order. Using control con-
structs and simple statements the programmer specifies the exact steps the computer
must take. On the other hand, declarative languages focus more on what must happen,
rather than sow. Imperative languages require the developer to explicitly specify an
algorithm to achieve a goal, while declarative programs require the developer to ex-
plicitly specify the goal and leave the choice and implementation of algorithms to the
compiler or interpreter.

When applying this to the DSL, declarative languages seem to fit better with the
goal of abstracting further away from implementation deals. Focusing on the what

51

6.2 Reactivity and events Languages and theory

52

is at a much higher abstraction level than specifying how (which is usually the case
right now). However, it is also important to consider whether this corresponds with the
thought patterns of game designers and developers. During the interviews I posed sev-
eral questions in which the game designers had to explain games and game concepts,
as well as answer how rules and gameplay concepts are currently expressed. It appears
most of the game developers think and specify both in a declarative style. When asked
to specify the game Pacman, most responded with some of the following statements:

e “The player is a yellow circular disk with a pizza slice missing”
e “The goal is to eat all the dots”
e “When the ghosts eat you, you die”

e “When you eat all the dots, you advance to the next level”

In that respect, declarative languages can be considered to be more reflective of
the thinking patterns of game designers and developers and might therefore be more
natural to them than imperative languages. Besides being declarative in nature, the
statements above are also event-based: “when this or that happens, do this or that”.

6.2 Reactivity and events

Most, if not all, computer games involve interaction and simulation. Software that
relies on interaction and simulation usually work with some way of event handling.
For example, in Windows actions from the user (e.g. mouse clicks and key presses)
are passed to applications as messages. In traditional (imperative) handling of these
actions the developer creates a loop in which the next message from the queue is
retrieved and appropriate action is taken, depending on the type and the parameters
of the message [42].

In the following two sections we discuss different approaches to programming based
on the reactive or event-driven paradigm. In section 6.2.1 we will take a look at how
modern object-oriented programming languages deal with events and event handling.
Section 6.2.2 gives an overview of using events in functional (declarative) program-
ming languages.

6.2.1 Event handlers and Listeners

An object-oriented model of event-driven programming is implemented in the various
classes of the Java 1.1 AWT package [27]. In this event model, events are generated
by event sources. These sources indicate when the event should be generated and, if
applicable, with what arguments/parameters. Listeners can then register to these events
to be notified when a source generates one of these events. This model is sometimes
also called delegation. The classes of the AWT package let you both generate and
handle AWT events.

The C# language has some similar constructs, but it allows for explicit definition of
delegates (method signatures) and events. Events are defined to be of a certain delegate

Languages and theory 6.3 Reactivity and concurrency theory

type, that is: they require such a delegate method to handle them. Listeners can then
quite easily register to an event by appointing one of its methods as being the required
delegate.

For most simple interactive applications this approach works fine. However, some
applications, mostly games, require more complex interactivity and require new events
to consists of multiple subevents or parts of other events. Trying to create this using
the delegation model will lead to a mixture of event definitions and regular code. This
makes the final code more complicated to understand and maintain, since the opera-
tions related to events are "hidden’.

6.2.2 Functional Reactive Programming

Elliott proposes a specific solution to declarative event-oriented programming [16].
This approach uses a functional language (Haskell) to support the implementation of
operators for events. This allows for simple events to be build up into more complex
events, which leads to better modularity and reuse. As an example of the possibility of
implementing games using a functional or declarative approach you can take a look at
Frag [2, 7].

In Elliott’s approach every event has a certain value type associated with it. So each
event can carry some specific information with it. We will refer to this information as
the parameters of the event. Considering this you can view each event as a continuous
stream of value and time pairs. For instance user input could be modelled using an
event which provides a value containing all potential user input. This event could then
produce a value each time the user provides some input to the system.

The operators Elliott discussed include transforming an event’s parameters, taking
the union of two events and filtering events for some special occurrences. Other op-
erators can also be used to create sequential chains of events or do some other trans-
formations on events. When we look back at UnrealKismet (section 3.1.3), this is a
surprisingly similar concept. UnrealKismet allows for the use of gates, conditionals,
delays and sequences to do such transformations on events. Elliott adds to this by
giving events a certain type of value, instead of just “impulse’.

6.3 Reactivity and concurrency theory

Currently computer hardware is moving more towards using multiple processors to
accomplish different tasks in parallel. Games are using this specific concurrency ap-
proach to do more work in the same short amount of time. Next to the central pro-
cessing unit (CPU) of a computer, for years most people have used graphics extension
cards to improve performance. These graphics extension cards contain a graphics pro-
cessing unit (GPU), which is geared towards graphics calculations (e.g. vector and
matrix multiplications). Many of these GPUs now can run the same calculations in
parallel on different sets of data (vector processing). Next to the CPU and GPU a
physics extension card is now available with a physics processing unit (PPU), which
is geared at calculating physics simulations.

Using all of these processors in parallel might speed up execution time of games

53

6.3 Reactivity and concurrency theory Languages and theory

54

considerably. Rendering and physics simulation are both time-consuming processes,
executing them in parallel will have a significant effect on the performance of games.
However executing them in parallel will also have a negative effect on the performance
of games. When executing several steps in parallel, in a cascading setup (see figure
6.1) the latency of the game’s response to user input would increase. It would take
more time for the processing of the input to reach the final output than before.

Cascading
Display - Frame 1
Rendering - Frame 1 Frame 2
ST":E;\SaitEiSH - Frame 1 Frame 2 Frame 3
CPU C:Jasnigg%%tai Frame 1 Frame 2 Frame 3 Frame 4

Figure 6.1: Cascading / Pipelining

The technique of cascading is a form of pipelining, where each task that is executed
in order on data is still done sequentially, but each task works on a different data
part. Another form of concurrency is data-parallelism, where the same task is applied
to a large number of data items at once. This is what is being used by the modern
GPUs. This is a parallelism that does not affect the latency, but might still speed up
calculations. This might for example be applied to collision detection or updating
unrelated objects.

6.3.1 Using Concurrency in the DSL

Since concurrency theory and multi-threading is hard to program and considering the
fact that we want to make life easier for the game developers, it is an important consid-
eration to leave out concurrency support in the DSL. This will make programs harder
to debug and eliminate some of the advantages of using a DSL.

A manual approach to doing concurrency might be supported by a language which
provides adequate support for concurrency at the language level by allowing the devel-
oper to specify processes and operations on inputs and outputs of these processes. This
approach is taken by the ’Communicating Sequential Processes’ language [26] and
several others [4]. These languages also provide support for communication, which
might also be useful for programming reactive systems; events can be considered as
messages.

According to Tim Sweeney [53] only 10% of CPU utilization is spent on game
simulation or game code, 90% of the utilization is spend on numerical computation.

Languages and theory 6.3 Reactivity and concurrency theory

Usually these computations are induced by game simulation code, which makes it hard
to estimate the real amount of code that is executed because of game design issues.

Since the DSL for games will be developed on top of the engine, and all numerical
computation is already performed by the engine at engine level, the code that is exe-
cuted written in the DSL will only amount to about 10%. Therefore it is important to
tackle concurrency at least at the engine level. However, it might also be interesting to
see what techniques are available, as we may want to provide something in the DSL
compiler to allow concurrency to be handled automatically for the game logic.

6.3.2 Software Transactional Memory

Gameplay simulation typically involves many different objects that want to modify a
shared state. Each object must update 30-60 times per second to gain satisfactory frame
rates. On average each update touches about 5-10 other objects [53]. It is hard to try
and avoid collisions and incorrect behavior by using manual concurrency management
techniques. Therefore the approach of composable memory transactions [25] can be
used, this works on the following basic principles.

First we execute all updates concurrently, all updates are represented by a transac-
tion: a sequence of statements that will be executed as one (i.e. no other statements
can come in between). With a lot of updates and a small amount of objects touched per
update, collisions - transactions trying to use the same data simultaneously - between
transactions are likely to be low. When a collision occurs some of the transactions
will need to be re-executed. Of course this method introduces some computational
overhead, but if this method allows many threads to run in parallel, this is acceptable.

6.3.3 Synchronous Languages

Depending on the context in which concurrency is used, another problem that pops
up when speaking about concurrency is non-determinism: the output is not uniquely
determined by the inputs. When programming processes that will run in parallel, it is
not always clear which process executes statements first, and this might influence the
output of the code. One thing we would like to have is code to be deterministic, this
makes it a lot easier to write the code and to debug it in case of problems.

Synchronous languages provide support for this by using an approach which fo-
cuses on concurrent deterministic subsystems that cooperate in a deterministic way
[6]. Conventional methods for concurrency programming base their implementation
on an asynchronous model of concurrency. In this model processes still compete for
resources in a non-deterministic way. This effectively means that you have determin-
istic subsystems, which cooperate in a non-deterministic way. Non-determinism in
cooperation can lead to many problems among which state problems when it comes to
processes interrupting each other, views of the state for each process are not necessar-
ily the same, etc.

The determinism in cooperations comes from adopting the rule that all reactions (se-
quence of statements that react to an event) are executed instantaneous: immediately
(taking no time) and atomic (as one, as a transaction). Several languages adopt this
approach, among which the imperative Esterel [5] and the data-flow based LUSTRE

55

6.4 Multi-paradigm Languages and theory

56

[25]. Esterel allows for compiling the concurrent source to one fully sequential pro-
cess, performing scheduling at compile-time. It can also do this for part of the source
code, or for no source code at all, which means it can be very flexible as to the target
platform.

6.4 Multi-paradigm

Multi-paradigm programming languages are languages that unify the concepts of dif-
ferent programming paradigms and create one complete language containing all these
concepts. Oz [47] is an example of such a programming language. Multi-paradigm
languages have the advantages of allowing developers to specify certain aspects of
their program in programming paradigms more suited to this purpose than others. Care
must be taken however that the different paradigms are complementary to eachother
in a sensible way, and not provide more restrictions and problems. These paradigms
should fit together in a way natural to the user, to prevent confusion.

Since we already recongized the need for several programming styles when it comes
to defining game design aspects, it might be wise to considered a mix of paradigms to
facilitate each part aspects in the best possible way. Somehow the aspects should
be integrated, whether this is accomplished using multi-paradigm techniques or some
special-purpose solutions with near separate languages should be decided upon when
defining the language.

Chapter 7

Requirements and Considerations

Before we set out to design and implement the language and associated IDE, it is useful
to summarize the requirements and give the considerations that go into the design
of the DSL. The impact these have on the work that has to be done should also be
considered, as this will provide us with a direction and a scope for the tasks at hand.

7.1 Language Elements

In the research part of this thesis I found that there are several different elements to
game development. Particularly those related to game design are poorly supported
by existing tools. Providing support for these aspects can be considered as the main
functional requirements for the DSL and the definition of the domain for the DSL.
These aspects are explained in more detail (by giving a more concise definition) in the
corresponding chapters. The following aspects should be part of the DSL:

o The objects that make up the game world, with specific behavior and properties);

o The interaction with the player, determining how he controls the game and what
is given back to the user as feedback;

o The rules that govern the core mechanics of the game and determine what the
player can and cannot do;

e A storyline is not present in all games, but in some genres and games it takes a
prominent place.

All of these aspects can be specified most effectively by some specific paradigm.
This paradigm should be as close to the way of thinking of game designers as possible,
to make specifying the game as natural as possible. This user-centered approach is
discussed in section 5.1.2.

Of course the specification should be done at a high level of abstraction, getting rid
of all unnecessary details. If the level of abstraction is too low we will pollute the
model with complications and make it harder to bring structure to the game design.

The requirements given above indicate that the DSL to be developed consists of
several parts, one for each functional requirement specified above. However, these

57

7.2 Focusing on the User Requirements and Considerations

58

different parts will have to interact in some way, which may lead to one multi-paradigm
language or several interacting DSLs. From now on I will refer to this set of parts
simply as ’the DSL’.

7.2 Focusing on the User

One thing to keep in mind during this project is that we want to make life easier for
game developers and designers. Therefore the DSL should be a language that is close
to their conceptual world and allows them to express their ideas without the need to
translate these ideas into a general programming language.

Thus the design of the DSL should be ’user-centered’ [37] (focused on the needs
and expectations of the user). By its very nature, a DSL is already centered around the
problem domain, but this does not automatically imply that it will be centered around
the user’s expectations and specific needs. One of the consequences of ’user-centered’
design choice is that the language is designed not by focusing on what makes sense
from a technology point of view, but by focusing on the user. How does the user
express himself and how can we abstract from this and create a language that is both
easy to use and understandable, but also provides structure?

To guide and evaluate the DSL design based on the user, I used a ’cognitive dimen-
sions’ framework [20], which gives a number of dimensions on which psychological
and HCI aspects can be measured and evaluated. I will relate the different design deci-
sions to this framework and use this to guide the tradeoffs made. An overview of this
framework is presented in table 7.1.

As game designers should be able to read, and potentially, write games using the
language it is very important that it is rather intuitive. Most game-designers do not
consider themselves programmers, so they shy away from anything that looks like
programming, however, they do feel they can use some simple visual environment or
language to facilitate their needs.

Therefore the DSL should be rather visual in nature, or simple to encapsulate in an
easy to use editor. Another thing that is important is to be as close to the users way
of thinking as possible (’closeness of mapping’), the language should thus be rather
declarative in nature.

The approach I took to developing the language was based upon the user interface that
was presented to the user and how he would like to model game design aspects (top-
down). This led to a number of iterations on the user interface and consequently the
underlying language that supported the interface.

The top-down approach is complemented by taking a bottom-up approach where
I take a look at the available technology to see what is possible. The technological
possibilities provide a frame-of-reference and constraints for the DSL development.
However, development was not led by available technology, but by user needs.

As discussed in section 5.1.1 there are many different components and component
types that make up a game. Game design aspects are all components that have to

Requirements and Considerations 7.3 Software Engineering

deal with all the other components. Game play elements need to be specified and
programmed, 3d models should be incorporated in the game, sound should be added,
etc. Because of this tight integration it is important to look at how the DSL will work
together with all these other disciplines. Since all of these components have these
relations to the game-design, it would be nice if the DSL could somehow provide a
common ground for the disciplines to base their work on.

7.3 Software Engineering

To promote good software engineer practices, reusability of code should be stimulated
to allow developers to gain more in productivity. For this to happen, we would like to
help programmers create reusable component, so that they can be used, preferably by a
game-designer, to try and refine the game-design as soon as possible. Saving precious
development time in the process.

To accomplish this, the focus of developers should be on providing reusable compo-
nents that can be combined in different ways and build upon to create games. Attaining
this focus is one of the goals of the DSL, and it should concentrate on facilitating pro-
grammers to implement these reusable components, instead of ad-hoc code which is
often hard to reuse in a (slightly) different situation.

In section 5.2.1 I discussed the need for an extendible language, which allows the users
of the language to add new concepts in a controlled way. An important requirement
for the DSL is that it not only provides a language, but also a framework for extending
that language to fit the particular needs of the user.

As the language will need to work based on existing technology (Cannibal Engine),
the concepts it uses will have to be in-line with the concepts of this technology, the
language should therefore fit the technology or lead to changes to the technology that
make sense when considered in isolation. However, when the needs of a user and the
constraints of the technology are in conflict, the needs of the user should get priority.

This requirement is strengthened by the fact that developers should still be able to
use the core technology (Cannibal Engine) without the need for the DSL. The DSL
should be an addition to the engine, not the only way to use it: developers should feel
free to adopt the DSL (or not). Therefore, components that are created by programmers
should be created the way they are used to, giving them full freedom and development
power.

The components that are created by programmers should also be picked up by the
DSL automatically, even if the programmers are not aware of the DSL. The framework
provided by the underlying technology should thus allow programmers to work with it
normally. The DSL should then base its language elements on whatever is created by
programmers based on that technology.

A consequence of having to deal with existing technology, and the need to integrate
with that technology, is that existing language prototyping tools (section 2.5) do not
support the needs of this DSL project. For one the system should be visual, which elim-

59

7.3 Software Engineering Requirements and Considerations

60

inates a lot of the tools for textual DSL development. And second the system should
fit into existing and future editing technology of the Cannibal Game Development
Platform, which has strict technical requirements, which eliminate visual language
prototyping tools like Microsoft DSL Tools. Because of this I chose to implement the
language using the manual approach, which gives a lot more flexibility and control,
but also means a lot more work.

Requirements and Considerations

7.3 Software Engineering

Cognitive Dimensions

Explanation

Abstraction Gradient

Closeness of mapping

Consistency

Diffuseness

Error-proneness

Hard mental operations

Hidden dependencies

Premature commitment

Progressive evaluation

Role-expressiveness

Secondary notation

Viscosity

Visibility

What are the minimum and maximum levels of abstrac-
tion? Can fragments be encapsulated?

What programming games need to be learned?

When some of the language has been learnt, how much
of the rest can be inferred?

How many symbols or graphic entities are required to
express a meaning?

Does the design of the notation induce careless mis-
takes?

Are there places where the user needs to resort to fingers
or pencilled annotation to keep track of whats happen-
ing?

Is every dependency overtly indicated in both direc-
tions? Is the indication perceptual or only symbolic?

Do programmers have to make decisions before they
have the information they need?

Can a partially-complete program be executed to obtain
feedback on How am I doing?

Can the reader see how each component of a program
relates to the whole?

Can programmers use layout, colour, or other cues to
convey extra meaning, above and beyond the official
semantics of the language?

How much effort is required to perform a single
change?

Is every part of the code simultaneously visible (assum-
ing a large enough display), or is it at least possible to
juxtapose any two parts side-by-side at will? If the code
is dispersed, is it at least possible to know in what order
to read it?

Table 7.1: The ’cognitive dimensions’ framework, taken directly from [20]

61

Chapter 8

Confidential

Large parts of the original content have been removed because of intellectual property
protection.

Inquiries about this content can be directed at Cannibal Game Studios:

Cannibal Game Studios
Belveédérebos 85
2725 AB Zoetermeer
The Netherlands

info@cannibalgamestudios.com

63

Chapter 9

Evaluation

Now that we have defined a DSL to model the four main aspects of game design, it is
time to evaluate the DSL. Within the context of the DSL the different disciplines will
be able to work together towards a complete game, while being able to reference to the
same concepts and discuss the game using common terminology.

Programmers are steered towards providing reusable components that extend the
language and allow game designers to define game flow. This not only allows game
designers to express themselves directly into the final product, it also helps program-
mers create small, self-sustaining components that can be reused in different contexts.

9.1 Cognitive Framework

Here we will review the language based on the different dimensions given by the ’cog-
nitive dimensions’ framework discussed in section 7.2. Thinking about the language
in terms of these dimensions allows me to evaluate how well the language is designed
and identify possible areas of improvement. I will go through each of the dimensions
defined in table 7.1 and evaluate the language based on each individual dimension.

Abstraction Gradient

Some elements of the DSL allow for more abstraction than others. For example, the
object definitions provide abstraction by allowing new game objects to be constructed
from previously defined game objects. Through this mechanism, DSL code can be
reused in different contexts as encapsulated by the user.

For states, abstraction has been provided in the form of super-states and sub-states.
Specifying game-flow itself has no real abstraction mechanism, since the language
uses only very small graphs, although it might be interesting to see whether abstraction
mechanisms might add value. Before I can decide on this, it will first be necessary to
gain more detailed user feedback.

65

9.1 Cognitive Framework Evaluation

66

Closeness of mapping

It is difficult to establish whether the visual languages presented here are actually a lot
closer to the mental models of game designers than traditional approaches. However,
we can safely claim that a lot less *programming games’ [20] have to be learned when it
comes to specifying game-flow and objects. There is no textual programming language
to learn or specific implementation patterns that need to be utilized for working with
these concepts.

Since most of the language elements are modeled according to the way of thinking
of game designers, the closeness of mapping is quite well. Gameflow can be specified
just the way game designers think.

Programmers may have to start using a slightly different approach than they are used
to, to accomplish their code to work optimally with the DSL. We will take a look at
how programmers received an early implementation of some DSL concepts in section
9.2.

Consistency

Consistency is hard to quantify, but I can make several claims as to the consistency of
language in general. In my case different paradigms are implemented, which does not
improve the consistency or *smallness’ of the DSL. However, most concepts are based
on the same graph drawing system. This graph drawing system only has three basic
elements that the user must get familiar with. Many elements also re-occur in different
areas for specifying slightly different things.

To provide users with an identifier for the different language elements, all language
elements have a certain specific icon within the IDE and visual language. By using
this icon (with some overlays to indicate actions) throughout the interface the recog-
nizability and consistency of the language is improved.

Diffuseness

Many of the elements of the DSL may be specified using small, self-contained graphs,
but some graphs may get large, which could potentially crowd the user with informa-
tion. Abstraction mechanisms have been implemented in the areas where this is most
likely.

Per paradigm or concept there are only a very small number of different entities that
can be drawn, which provides the user with a small terminology, allowing the different
elements to be learned quickly.

Error-proneness

Because the model underlying the DSL does not allow for any syntactical errors to oc-
cur, it will not even be possible to create syntactical errors; these errors can simply not
be constructed. However, like in any other language, two different semantic problems
can still occur. The user might just forget to do something he meant to, for example
forget to connect an event to an action or operator. These problems can usually be
fixed quite easily by inspecting the corresponding graph(s).

Evaluation 9.1 Cognitive Framework

Another error that can occur presents a bigger problem: when the user meant to do
one thing and fails to specify it correctly, or when the meaning of the user is wrong.
These are the common programming mistakes made that can be resolved by debugging
the code. In the case of the IDE several simple debugging tools have been provided to
help remedy these issues.

Hard mental operations

Since the language elements work together in such small combinations it will not occur
very often that the user has to perform hard mental operations to understand anything
written in the DSL. Sometimes graphs may get bigger, so that better ’secondary nota-
tion” may help to improve the understandability.

To further help the user avoid hard mental operations, several contextual hints are
provided to help the user build and understand the graphs. In general the hard mental
operations are also avoided by the relatively good ’closeness of mapping’.

Hidden dependencies

The DSL does a good job at specifying dependencies explicitly, most dependencies
between the different elements are drawn as arrows to represent connectivity or data
flow. However, some dependencies between elements belonging to different paradigms
or different parts of the DSL are not always visuzlized very clearly. This may be
improved upon in the future by improving the IDE, so that the browsing of software
written in the DSL may indicate these dependencies by providing the proper context.

Premature commitment

Most of the elements in the DSL can just be used without the need to specify anything
beforehand. However, certain kinds of elements may require some arguments that
needs to be specified before creating it. For example, some extensions written by pro-
grammers may request certain parameter before allowing anything to be constructed.

I do feel this is not such a big issue as the values requested are usually very limited
in number and really make sense for the designer to specify at that point.

Progressive evaluation

During development with the DSL, the user can constantly review the effects of his
actions. There is virtually no state the model can be in, in which the user cannot
execute the current active game object. Several game objects can also be combined
into several testing objects to test how they interoperate.

It is ensured that every element in the model is valid in order for it to be present.
Some combinations of elements just do not work or do not do anything when they are
not well specified, however, this is not harmful to the execution of the model. As it can
still be executed, ignoring these problems.

Most of the elements of a language can even be executed in real-time while editing.
For example adding and removing behavior while the object is active. A game object

67

9.2 User Tests Evaluation

68

can be told to react to certain events while instances are present, changing behavior of
the object while it is being executed.

Role-expressiveness

Since many of the applications of the DSL are represnted using rather small graphs,
the roles that the elements of those graphs play is rather clear. This, combined with the
low count of different element types, makes sure that the role of language elements is
clear.

The correlation between the different languages and language elements might not
always be clear to the user. This may be due to poor user interface design on behalf
of the author and some improvements could potentially be made to the IDE or the

language to strengthen the relation between the different elements and paradigms of
the DSL.

Secondary notation

Although the IDE does not support secondary notation at this moment, the language
has virtually no restrictions on layout of different elements or their specific color.
These could be used to provide further grouping of the different elements to improve
upon crowded graphs. Notes or comments may also be attached to different elements
by providing meta-data fields that contain this information.

Viscosity

Several improvements can be made when it comes to the viscosity of the language.
Some things are a rather large amount of work to change by hand. For instance when
a certain element has to be replaced by another, it first has to be removed (and its
connections get lost in the process), the new element has to be inserted, and then all
connections have to be redrawn. For elements with a lot of connections this is rather
tedious.

Visibility

Also in the area of visibility some things can be improved, while two different game
objects may be compared side-by-side, it is currently not possible to see the same
object in different configurations or compare certain specific parts of a game object
with another.

9.2 User Tests

Two main paradigms of the DSL have already been incorporated in the Cannibal En-
gine prior to it being released for the Games Project at TU Delft (see sections 4.2.2
and 5.2). This allows me to already provide a short evaluation of how these elements
were used by programmers without being explicitly attended to it. Because the pro-

Evaluation 9.2 User Tests

grammers were not attended to the systems in an explicit way the natural tendency to
start using such an approach can be evaluated.

Events

As explained in section 5.2.2 an event system has been implemented quite early in
the thesis project. The system available for the games project allowed for events and
operators to be implemented and used. Tying them together and to actions requires a
more manual approach than drawing graphs, where programmers have to specify event
handlers and call actions, etc.

Several groups of the Games Project have implemented their own events and oper-
ations, but only on a very small scale. However, the system was used throughout the
code for handling events by tying them to different actions. Operators were used as
well, but usually only the ones that were provided and were quite obvious to use.

Whenever programmers asked how to accomplish certain things that could best be
modeled using the event system, the system was briefly explained to them. It is quite
interesting to see that the two groups to which we explained the system the most also
started to find applications of the system on their own. They implemented more oper-
ators and started to use them more frequently, some of these operators are now even
part of the core package provided by the engine.

So in general, groups that got to know the system a little bit better started making
more use of it. This makes me believe the system in essence is very powerful, but not
that obvious to programmers at first. This might be due to the fact that they are not
used to write code in a declarative and event-oriented fashion.

Objects and Attachables

The second element that was already present in the Cannibal Engine was a predessecor
of the DSL object specification paradigm. The scenegraph implemented for the Games
Project consists out of general nodes that only designate a location and orientation in
the 3d world and several attachables adding semantic value to that node. The func-
tionality provided by the Cannibal Engine has already been implemented using that
approach and users were forced to use the approach when they required that function-
ality. But did they use such an approach themselves?

As can be seen from the source trees of the different groups, almost all groups used
the system consistently to define their own game objects and shared functionality be-
tween them. A difference to the paradigm of the DSL is that whenever a certain func-
tionality was only applicable to one group of game objects, classic object-oriented
inheritance would be used to share the functionality.

In some cases, where functionality was to be shared between very different types of
game objects, the attachables were used to provide this behavior. This is more inline
with the approach implemented in the DSL. These attachables were mainly created for
very common tasks like collision detection and automatic camera/object controlling,
etc. These were also programmed so that they could be reused in many situations and
different games. From these results, it seems that the approach of attachables, and

69

9.3 Future Work Evaluation

70

most likely the object specification paradigm in general, can easily be adopted by the
programmers on the team.

During the development of the DSL the several languages and the IDE have been
shown to several artists. Artists are not necessarily game designers, but they do have a
liking for games and no real technical background. Using their comments the user in-
terface has been changed several times and has become what it currently is. In general
most artists understood the system pretty well after a brief explanation and they were
able to create small examples with it.

However, no real formal usability testing has been performed on the actual target
groups: game designers and game play programmers. The feedback that was received
was all gathered during very informal talks where early prototypes of the system were
demonstrated and shown.

9.3 Future Work

Work in the area of the DSL is not complete, so there are several things that are left to
future work that did not fit into the scope of this project.

The current IDE is not a polished tool like users would expect and it has not been
integrated with existing toolsets and the collaboration platform. Integrating and im-
proving the IDE to allow for a better editing experience is one of the essential things
that must be done before the DSL can be used as part of a product like the Cannibal
Game Development Platform.

The system has been tested using small scale tests only. Testing the language in a
real-life setting, not in student projects and proof-of-concepts, might prove useful to
uncover potential problem areas or areas of improvement. Results of this tests may be
used to either decide to research and implement potential language extensions. These
can then be fed back to the users to test whether they indeed provide an improvement.

Since performance is always an issue when it comes to game development, it might be
wise to research what the performance penalty is for using the language. Throughout
the language and the support framework care has been taken to not adversely effect
performance, however, in some areas performance improvements might still be gained.

One thing that might significantly improve performance is compiling the DSL model
to an implementation in C# or general .NET code (MSIL) [14], which can then be used
without requiring the DSL model to be running as well.

Many examples used to test and base the language on where extracted from real-life
code, where people have programmed game design aspects in a GPL (using the event
language as a library). These were translated into the DSL to see whether it would be
able to recreate that particular game design aspect and to learn from missing aspects
to the language.

Evaluation 9.3 Future Work

For the future it would be interesting to see whether automatic extraction of a DSL
representation from the code would be possible, to be able to extract pieces of code
that were initially written by a programmer and present these to the game designer.

71

Chapter 10

Conclusions

Developing a domain-specific language for computer games is quite an open assign-
ment. In this thesis I argued (in section 5.1.1) that some parts of creating a game are
already supported by great tools, while the game design aspect is not supported at all,
or quite poorly. The game design aspect is currently implemented using conventional
(general purpose) programming languages, not geared towards solving specific prob-
lems. Game developers are confronted with a lot of technical details when it comes to
programming the game design elements. It is in this area the DSL can help by moving
this work to a higher abstraction level.

There are several aspects to implementing a game design, which are all of great
importance (see section 5.1.3). Providing support for these aspects can be considered
as the main functional requirements for the DSL and the definition of the domain for
the DSL. These aspects are:

o The objects that make up the game world, with specific behavior and properties.

o The interaction with the player, determining how he controls the game and what
is given back to the user as feedback.

o The rules that govern the core mechanics of the game and determine what the
player can and cannot do.

e A storyline is not present in all games, but in some genres and games it takes a
prominent place.

To provide supports for these aspects a DSL has been designed and formally defined.
This DSL consists of several different elements to help specify the different game
design aspects. It thus contains elements for specifying structure of game objects,
rules, interaction, and states of objects. Each of these elements work within a paradigm
specifically suited for their application area.

Since the DSL is mostly visual, an IDE has been designed and implemented to allow
developers to work with the language. However, users of the language are not forced
to use that specific IDE or visual representation. The DSL has been implemented in
such a way that the actual game model has been separated from the concrete syntax of
the language, allowing different representation of the same model. In fact, when the
game is executing, no other representation than the executed game is present.

73

Conclusions

74

To facilitate the implementation of the DSL, several aspects of the Cannibal Engine
have been changed to provide a relevant underlying support framework. Through this
framework programmers can extend the DSL to fit the particular needs of the game
studio and the game under development. Extensions are created in such a way that
they can easily be reused for other projects or in different contexts.

During the development of the DSL for the computer games domain it has become
clear that using a DSL not only brings advantages, but also disadvantages. It takes a
lot of time for a DSL to be developed and to keep every potential issue in mind (e.g.
performance and usability). However, I do feel that the advantages the DSL can bring
are worth the troubles of designing and implementing it.

Although the DSL here is not ready to be shipped as a final product yet, it provides a
proof of concept and the groundworks for a new and interesting tool specifically for
game designers. The DSL helps game designers express themselves more directly into
the final product and provides a common language for different disciplines to discuss
the game.

Before the DSL can actually be used as a product, several things will have to be
researched or improved. First and foremost, the IDE will have to be improved and
integrated with the existing toolset and the collaboration platform.

Of course potential language extensions should be considered and researched. Big-
ger scale, real-life tests can prove valuable in gaining knowledge about these exten-
sions and the workings of the DSL. The tests can also provide valuable information
as to the performance of the framework. Where needed this performance should be
improved to allow high-performance (or triple-A) games to be created.

For the future it would be interesting to see whether it would be possible to auto-
matically extract existing game code and provide a matching DSL model for this. This
would lower the barrier for game developers to start using the DSL and may prove
useful in reusing already existing solutions at game studios.

My recommendation to Cannibal Game Studios as a first step is to turn this work into
a practical tool, integrated with the existing toolset, to allow users to experiment with
the DSL and use it in real-life settings. This will not only provide the game industry
with this tool in a relatively short amount of time, it will also provide valuable user
feedback that can be used to further improve the DSL.

Bibliography

[1] Multiple Anonymous authors. Duke nukem forever.
http://en.wikipedia.org/wiki/Duke_Nukem_Forever.

[2] Multiple Anonymous Authors. Frag website. http://haskell.org/haskellwiki/Frag.
[3] Multiple Anonymous Authors. Upgear website. http://www.upgear.nl/.

[4] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer Sci-
ence, 335(2-3):131-146, 2005.

[5S] G. Berry. The esterel v5 language primer - version 5.10, release 2.0.

[6] G. Berry and G. Gonthier. The esterel synchronous programming language: de-
sign, semantics, implementation. Sci. Comput. Program., 19(2):87-152, 1992.

[7] M. H. Cheong. Functional programming and 3d games. Master’s thesis, The
university of New South Wales, 2005.

[8] Web3D Consortium. X3d website. http://www.web3d.org/.

[9] Web3D Consortium. Extensible 3d (x3d). Technical report, Web3D Consortium,
2004.

[10] XML Game Consortium. Gamexml website. http://www.gamexml.org/.

[11] Intentional Software Corporation. Intentional software website.
http://intentsoft.com/.

[12] K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools,
and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[13] A. Van Deursen and E. Visser. Model-driven software evolution, interaction and
co-evolution of models and code, 2006.

[14] ECMA, December 2001. Standard ECMA-335: Common Language Infrastruc-
ture (CLI).

75

BIBLIOGRAPHY

76

[15] C. Elliott. Modeling interactive 3d and multimedia animation with an embed-
ded language. In Proceedings of the Conference on Domain-Specific Languages,
pages 285-296, 1997.

[16] C. Elliott. Declarative event-oriented programming. In PPDP ’00: Proceedings
of the 2nd ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 56—67, New York, NY, USA, 2000. ACM Press.

[17] Digital Extremes Epic Games. Unreal, 1998. Computer Game.

[18] UML Revision Task Force. Unified modeling language: Super-
structure. Technical report, Object Management Group, 2004.
http://http://www.omg.org/docs/formal/05-07-04.pdf.

[19] S. Gourlay. Tacit knowledge, tacit knowing or behaving? In OKLC 2002: Pro-
ceedings of the 3th European conference on Organizational Knowledge, Learn-
ing and Capabilities, pages 269-287. -, 2002.

[20] T.R. G. Green and M. Petre. Usability analysis of visual programming environ-
ments: A ’cognitive dimensions’ framework. Journal of Visual Languages and
Computing, 7(2):131-174, 1996.

[21] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. John
Wiley & Sons, 2004.

[22] The Khronos Group. Collada website. http://www.khronos.org/collada/.
[23] The Khronos Group. The khronos group website. http://www.khronos.org/.

[24] The Khronos Group. Collada digital asset schema release 1.4.1, specification.
Technical report, The Khronos Group, 2006.

[25] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory
transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 48-60, New York,
NY, USA, 2005. ACM Press.

[26] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, 1978.

[27] C. S. Horstmann and G. Cornell. Core Java 2: Volume I, Fundamentals, Sixth
Edition, chapter 8, pages 277-334. Pearson Education, 2002.

[28] Appaloosa Interactive. South park, 1999. Computer Game.

[29] A.B. SutmanJ. M. Schementi. Video game language. Master’s thesis, Worcester
Polytechnic Institute, 2005.

[30] R. M. Herndon Jr. and V. A. Berzins. The realizable benefits of a language pro-
totyping language. IEEE Transactions on Software Engineering, 14(6):803—809,
1988.

BIBLIOGRAPHY

[31] B. Keller. Xna studio: Introduction to xna, 2006.

[32] S. Kent. Model driven engineering. In IFM ’02: Proceedings of the Third In-
ternational Conference on Integrated Formal Methods, pages 286-298, London,
UK, 2002. Springer-Verlag.

[33] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P.
Oliva, T. Sheard, I. Smith, and L. Walton. A software engineering experiment
in software component generation. In ICSE '96: Proceedings of the 18th inter-
national conference on Software engineering, pages 542-552, Washington, DC,
USA, 1996. IEEE Computer Society.

[34] D. Kushner. Masters of Doom: How Two Guys Created an Empire and Trans-
formed Pop Culture. Random House Trade Paperbacks, 2004.

[35] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley Professional, April 2001.

[36] Microsoft. Microsoft domain-specific language tools.
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx.

[37] D. A.Norman and S. W. Draper. User Centered System Design; New Perspectives
on Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Mahwah,
NIJ, USA, 1986.

[38] Zillions of Games. Zillions language reference - version 2. Technical report,
Zillions of Games, 2003.

[39] M. Overmars. Game maker website. http://www.gamemaker.nl/.

[40] M. Overmars. Game design in education. Technical Report UU-CS-2004-056,
Institute of Information and Computing Sciences, Utrecht University, 2004.

[41] M. Overmars and J. Habgood. The game maker’s apprentice: game development
for beginners. Berkeley, CA: Apress, 2006.

[42] B. Rector and J. Newcomer. Win32 Programming, chapter 1 and 2, pages 1-102.
Addison-Wesley, 1997.

[43] A.Rollings and E. Adams. On Game Design. New Riders, 2003.

[44] W. C. Savenye and R. S. Robinson. Qualitative research issues and methods: an
introduction for educational technologists, pages 1045-1072. Lawrence Erlbaum
Associates, 2004.

[45] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In OOP-
SLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming languages, systems, and applications, pages 451-464,
New York, NY, USA, 2006. ACM Press.

[46] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang. Organization do-
main modeling (odm) guidebook version 2.0. Technical report, Synquiry Tech-
nologies, Inc, 1996.

77

BIBLIOGRAPHY

78

[47] G. Smolka. An Oz primer. Technical report, German Research Center for Artifi-
cial Intelligence (DFKI), 1995.

[48] Sony. Playstation 3 website. http://www.khronos.org/.

[49] Cannibal Game Studios. Cannibal website.
http://www.cannibalgamestudios.com/.

[50] Cannibal Game Studios. Cannibal game development platform api, 2004-2007.
Internal Document.

[51] D. Suttles, R. Chen, M. Paugh, and A. Mandic. Metanode organized prototype hi-
erarchy specification (morph) - version 0.9b. Technical report, Magnetar Games,
2006. http://www.gamexml.org/Specs/MORPHY/.

[52] T. Sweeney. Unrealscript language reference.
http://unreal.epicgames.com/UnrealScript.htm.

[53] T. Sweeney. The next mainstream programming language: A game developers
perspective, 2006.

[54] M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient
annotated terms. Softw. Pract. Exper., 30(3):259-291, 2000.

[55] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The asf+sdf meta-environment: A component-based language de-
velopment environment. In CC ’01: Proceedings of the 10th International Con-
ference on Compiler Construction, pages 365-370, London, UK, 2001. Springer-
Verlag.

[56] A. van Deursen and P. Klint. Little languages: little maintenance. Journal of
Software Maintenance, 10(2):75-92, 1998.

[57] A.van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Not., 35(6):26-36, 2000.

[58] E. Visser. Stratego/xt. http://www.program-
transformation.org/Stratego/WebHome.

[59] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
216-238. Spinger-Verlag, June 2004.

[60] Z. Ye. Genres as a tool for understanding and analyzing user experience in games.
In CHI ’04: CHI ’04 extended abstracts on Human factors in computing systems,
pages 773-774, New York, NY, USA, 2004. ACM Press.

Appendix A

Glossary

Abstract Syntax Tree The term abstract syntax tree refers to a tree, where the internal
nodes represented operators and the leaf node represent operands. They are
used to represent computer software in an abstract way (non-language and non-
platform specific).

Assets Game assets are the ”things” that go into a game. Some examples of assets
are artwork (including textures and 3D models), sound effects and music, text,
dialogue and anything else that is presented to the user. Sometimes the terms
content or objects are used interchangeably with the term assets.

Content pipeline The content pipeline is the steps that needs to be taken to get assets
into the game. The supporting tools for these steps are usually included as being
part of the content pipeline.

DCC Tools Digital Content Creation tools: tools used to create different types of dig-
ital assets used in computer games.

Declarative Programming A programming paradigm in which the developer focuses
more on 'what’ should be done, than on "how’ it should be done (sequence
of commands and state changes). (This is often contrasted against imperative
programming.)

Domain Specific Language (DSL) A language that is geared towards solving a prob-
lems in a specific domain, or sometimes specific problems in a domain.

Event-Driven Programming Event-driven programming is a programming paradigm
in which the developer can structure the program by specifying the reaction of
the program to external events or actions.

First playable A very early prototype of the game that contains the most important
gameplay elements. This allows developers to test concepts and provides a basis
to build upon.

Framerate / FPS The number of updates/draws per second that the game is perform-
ing. FPS is an abbreviation for *frames per second’.

79

Glossary

80

Game Design The complete package which determine the game. This contains game
rules, object definitions, interaction specification, etc.

Game Designer The member of the game development team who designs the rules
of the game, game play aspects, characters, story, etc.

General Purpose Language (GPL) A language created to solve problems in many
different domains.

Imperative Programming A programming paradigm in which the developer gives a
sequence of commands to be executed, changing the state of the system. (This
is often contrasted against declarative programming.)

Leads The more experienced members of a game development team are often called
leads. For example, the Lead Artists is usually the most experienced artist in the
studio (apart maybe from the Art or Creative Director).

Level designer Very much like a Game Designer, only this member of the develop-
ment team designs specific levels and interactions within that level.

Look & Feel The way something looks and is experienced by the user, for example:
the look & feel of Windows XP is different than that of many Linux environ-
ments.

Material The material of an object determines the way the object looks by defining a
texture, reaction to lights and other special properties.

Next-gen The next generation of, in this case, computer games and computer game
technology. This is a typical term used for very new hardware, software and
consumer demands.

Paradigm A way of looking at the world; a particular view of the world in refer-
ence to a particular discipline. It refers to a number of tacit assumptions and
believes shared by certain members of that discipline. It is the conceptual model
underlying the theories and practice of a scientific subject.

Particle effects Special effects used to simulate things that consists of many small
particles, like smoke, fire, snow and explosions.

Physics Simulation of physical laws and constraints, usually, but not necessarily,
based on the real laws of physics.

Protagonists The most important characters in a story. This terms is used more
widely in movies.

Rigid bodies Non-deformable bodies that are used to simulate the physical behavior
of objects in games.

Scenegraph A scenegraph is the dominant data-structure for storing the logical com-
position of 3d scenes. Objects are represented by nodes in the scenegraph. Usu-
ally the scenegraph is actually a tree, where you start at the root, and children
are connected. Children are affected by transformations on the parent nodes.

Glossary

Shader A piece of software that runs on the grapical processing unit in stead of the
central processing unit of the pc.

Tacit Knowledge Something that is understood or implied without being able to ex-
plicitly state it.

Texture An image that is projected onto an object to provide it with patterns and
colors.

81

Appendix B

ViGL - Tic Tac Toe

<vigl resolution="300x300">

<code location="begin">
STURN = true
class GameObject
def inside? (mouseState)
if (mouseState.button==Mouse: :BUTTON_LEFT and
mouseState.x >= (@renderable_object.rectangle_shape.point.x
and
mouseState.y >= @renderable_object.rectangle_shape.point.y
and
mouseState.x < @renderable_object.rectangle_shape.point.x +
@renderable_object.rectangle_shape.dimensions.width
and
mouseState.y < @renderable_object.rectangle_shape.point.y +
@renderable_object.rectangle_shape.dimensions.height

true
else
false
end
end
end
</code>

<objectdef name="Square">
<shape><square length="100" />
<graphics border="#000000" color="#ffffff"/>
</shape>
<actions>
<method action="onMouseDown (state)"><code>
if (inside? state

83

VIiGL - Tic Tac Toe

84

and
@renderable_object.renderable_properties.fill ==
Color::WHITE

@renderable_object.renderable_properties.fill =

if STURN
Color::RED
else
Color: :BLUE
end
STURN = !STURN
end
</code></method>
</actions>
</objectdef>

<world>
<object parent="Square"><shape><square point="0,0" /></shape></object>
<object parent="Square"><shape><square point="100,0" /></shape></object>
<object parent="Square"><shape><square point="200,0" /></shape></object>
<object parent="Square"><shape><square point="0,100" /></shape></object>

<object
<object
<object
<object
<object
</world>

</vigl>

parent="Square"><shape><square
parent="Square"><shape><square
parent="Square"><shape><square
parent="Square"><shape><square
parent="Square"><shape><square

point="100,100" /></shape></object>
point="200,100" /></shape></object>
point="0,200" /></shape></object>

point="100,200" /></shape></object>
point="200,200" /></shape></object>

Appendix C

Zillions of Games - Tic Tac Toe

(game
(title "Tic-Tac-Toe")
(description "One side takes X’s and the other side takes 0O's.
Players alternate placing their marks on open spots.
The object is to get three of your marks in a row horizontally,
vertically, or diagonally. If neither side accomplishes this,
it’s a cat’s game (a draw).")
(history "Tic-Tac-Toe was an old adaptation of Three Men’s Morris
situations where there were no available pieces. You can draw or
carve marks and they are never moved. It is played all over the
world under various names, such as ’Noughts and Crosses’ in
England.")
(strategy "With perfect play, Tic-Tac-Toe is a draw. Against less
than perfect opponents it’s an advantage to go first, as having an
extra mark on the board never hurts your position. The center is
the key square as 4 possible wins go through it. The corners are
next best as 3 wins go through each of them. The remaining
squares are least valuable, as only 2 wins go through them.
Try to get in positions where you can ‘trap' your opponent by
threatening two 3-in-a-rows simultaneously with a single move. To
be a good player, you must not only know how to draw as the second
player, you must also be able to takes advantage of bad play.")

(players X 0)
(turn-order X 0)
(board
(image "images\TicTacToe\TTTbrd.bmp")
(grid
(start-rectangle 16 16 112 112) ; top-left position
(dimensions ;3x3
("top-/middle-/bottom-" (0 112)) ; rows
("left/middle/right"™ (112 0))) ; columns
(directions (n -1 0) (e 0 1) (nw -1 -1) (ne -1 1))

to

85

Zillions of Games - Tic Tac Toe

86

)

(piece

(name man)
(help "Man: drops on any empty square")
(image X "images\TicTacToe\TTTX.bmp"

0 "images\TicTacToe\TTTO.bmp")

(drops

)

(board-

setup

(X (man off 5))
(O (man off 5))

(draw-condition (X 0O)
(win-condition (X O)

(or (

(
(
(

relative-config
relative-config
relative-config
relative-config

((verify empty?) add))

stalemated)

man
man
man
man

n man n man)
e man e man)
ne man ne man)
nw man nw man)

Appendix D

Interview

D.1 Company Info
1. What is the current total number of employees of the company?
2. Team structure:

a) What are the functions in the company?
b) What do they do exactly and why?
¢) How do these functions relate to each other?

d) Per function how many employees have that function?
3. Activities:

a) In what type of activities is the company engaged and what is the core
activity of the company.

b) How many activities are done simultaniously.

¢) What products have been produced in the past.

D.2 Collaboration

1. What collaboration tools are used in the company and do they meet the de-
mands?
a) Communication systems like email and Wiki.
b) Version control system like svn and cvs.
¢) Project-management systems.

2. Are there any points to be improved regarding the collaboration / communica-
tion.

87

D.3 Work Process Interview

D.3 Work Process

1. Disciplines:

a) What are the specific disciplines in the development team? (engine, Al,
graphics, art, gameplay, etc)

b) What type of assets are needed and created by these people? (models,
textures, concept art, etc)

2. How well can groups from different disciplines work independently? Which
tasks require a joint effort of different groups.

3. What steps do you follow during development of a game (ideas and require-
ments, design, implementation, publishing).

4. How do these steps relate to each other concerning time spend.

a) What takes up the most time?

b) Where do you feel time is "lost’?
5. How does content get into the game?

a) Who does it?

b) How is this done? (custom editors, etc)

6. What are the bottlenecks during the development? What would be possible so-
lutions?

7. Software and tools:

a) What tools and software packages are used by the groups (version control,
communication, project management, bug/task tracking)?

b) How do these tools work together?
¢) Why do you use these tools?

d) What are the advantages and disadvantages of these tools?

8. Is there anything you want to add concerning the work process of your company?

D.4 Engine

Ask these questions to every individual/function.

1. What engines do you have experience with?

a) Pro’s of the engine.

b) Con’s of the engine.

2. From your point of view:

88

Interview D.5 Game Design

D.5

1.

D.6

a) What would be the ideal way of working with an engine.

b) What are important features of an engine? (multi-platform, cool graphical
features, good workflow)

¢) What do you need the engine to do for you?
d) What do you want to do yourself?

e) What parts of the engine would you like to be able to customize or add
functionality to?

f) How would you like to have support? (e-mail, phone, representative, on-
line (wiki/forum))

Game Design

Could you give me a complete specification of the game pacman/tic-tac-toe (in
game design terms)?

How do you specify the rules of a game and the game design?

. How does a game idea end up in the final game, what are the steps involved?

How do you determine and communicate the look & feel of the game? (some-
how formalized or informal documents)?

. Cooperation on game design:

a) Who decides what?

b) How would you work with others on the design?
What are common things you change to the game/design?

Do you take into account the technical limitations and implications when you
design the game? To what extent?

World creation

. How would you describe the creation of the game world.

Cooperation

a) What is the function name of the person who creates the game world?

b) Is creating the game world a single person task or do people work together?

. Process

a) What steps are involved in creating the game world?

b) How much time does each step take?

Which tools are used in creating the game world?

89

D.6 World creation Interview

a) Pro’s of the tools.

b) Con’s of the tools.

90

