Hyperconjugation

Alan B. Northrup

MacMillan Group Meeting

September 17, 2003

Review of the Basics:

Kirby, A.J. "Stereoelectronic Effects," in Oxford Chemistry Primers, New York, 1996, Vol. 36, pp. 3-33.

A semi-quantitative approach to frontier orbital size and application to pericyclic reactions:

Fleming, I. Frontier Orbitals and Organic Chemical Reactions, Wiley; New York, 1998.

Anomeric Effect in Detail:

Kirby, A.J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer-Verlag; New York, 1983.

Graczyk, P.P.; Mikolajczyk, M. "Anomeric Effect: Origin and Consequences," in *Topics in Stereochemistry*, 1994, Vol. 21, p 159.

What is Hyperconjugation?

ube, T., et al. Angew. Chem. Int. Ed.

Why is Hyperconjugation Stabilizing?

 $\rm H_{1s}$

Conjugation vs. Hyperconjugation

Conjugation and Hyperconjugation are essentialy the same phenomenon

Positive, Neutral and Negative Hyperconjugation

The literature is full of different descriptors for hyperconjugation

"Hyperconjugation" will be used to refer to any of the above

Ranking Electron-Donating Ability

Energies from PES provide a somewhat intuitive order for e- pairs on the same atom:

C-X bonds, where X is electronegative lower both σ and σ^* orbitals, making them worse donors

Lone pair energies follow a similar trend

$$\begin{array}{cccccccc} H & H & H & H & H \\ H & P & S & S & H & N & S & O & H - CI \\ H & H & H & H & H \end{array}$$

Ranking Electron-Accepting Ability

Lower-lying LUMOs are better able to accept electron density

C-X bonds, where X is electronegative lower both σ and σ^* orbitals, making them better acceptors

Conformational Effects of Hyperconjugation: Single Bonds

The Gauche Effect

Example: MOM-CI

Example: H₂O₂

Conformational Preferences of Esters

Oki, M.; Nakanishi, H Bull. Chem. Soc. Jpn. 1970, 43, 2558

Structural Effects of Hyperconjugation: Double Bonds

0

Vankatataman, H; Cha, J.K. Tet. Lett. 1989, 30, 3509

The Anomeric Effect: What is it?

Anomeric Effect refers to the tendency of anomeric substituens to prefer an axial configuration

Electron-Withdrawing Groups Increase the Magnitude of the Anomeric Effect

 $\Delta G = +1.8 \text{ kcal/mol}$ Anomeric Effect $\approx 2.8 \text{ kcal/mol}$

favored for X=F, CI, Br, OAc

Hyperconjugation Explains this Effect:

axial anomer:

1

0

no overlap possible

The Anomeric Effect: Consequences

Spiroketal Conformations are Controled via the Anomeric Effect

Azaspiracid Stereochemistry at all 5 Anomeric Centers is Predicted by the Anomeric Effect

Rate of Acetal Hydrolysis can be Impacted Considerably

The exo-Anomeric Effect

The exo-Anomeric Effect Concerns the Conformation of an *O*-Glycosidic Linkage (*cf.* Gauche Effect)

Gupta, R.C.; Slawin, A.M.Z.; Stoodly, R.J.; Williams, D.J.; J.C.S. Chem. Comm. 1986, 1116.

The Anomeric Effect: It's not just for Oxygen Anymore

Similar Effects are Noticed with Nitrogen

Hyperconjugation has Large effects on Even C-H Bonds

Solution Structure (NMR):

Anderson, J. E.; Roberts, J.D. J. Am. Chem. Soc. 1967, 96, 4186

IR: "Bohlmann Bands"

2700 to 2800 cm⁻¹ for H_4 , H_6 , and H_{10}

Disappear when protonated

Bohlmann, Ber. 1958, 91, 2157

Anomeric Effect in Orthoamides can Cause Strange Reactivity:

¹H NMR: Extra Electron Density Causes Shielding

H₁₀ is furthest upfield

 $\rm H_4$ and $\rm H_6$ upfield by almost 1ppm of remaining protons

Only off by 0.5 ppm when acid is added

Illustrated proton δ = 2.3 ppm

Erhardt, J.M; Wuest, J.D. J. Am. Chem. Soc. 1980, 102, 6363

The Anomeric Effect: It's not just for Oxygen Anymore

no donation possible

The Role of Hyperconjugation in the Transition State: Theory

■ The S_N2 Reaction TS looks like a 3c-4e⁻ Bond:

■ MO Diagram for a 3c-4e⁻ Bond:

Prediction: Substituents with Low-Lying LUMOs will Accelerate the S_n 2 by Stabilizing Electron Density from Nucleophile and Leaving Group through Hyperconjugation

Theoretical Support for the following Arguments: Houk, K. N., et al. Science, 1986, 231, 1109

Transition State Hyperconjugation Explains Substituent Effects in the $S_N 2$ Reaction

Here's the Rate Data on the S_N2 Reaction:

l⁻ +	R - Cl -	Acetone	I—R	
Entry	R	k _{rel}	α-LUMO	
1	<i>n</i> -Bu	1.0	σ* _{C-C} ←	_
2	cylcohexyl	<0.0001	σ* _{C-C} ◀	sterics are still important
3	$PhCO_2CH_2$	59.1	$\sigma^{*}_{\text{C-O}}$	
4	Allyl	79	π^*_{C-C}	
5	Benzyl	195	π^*_{C-C}	
6	NCCH ₂	3,070	π^*_{C-N}	
7	PhCOCH ₂	105,000	π* _{C-O}	

Conant, J.B.; Kinner, W.R.; Hussey, R.E. J. Am. Chem. Soc. 1925, 47, 488

Data fits the Following Model

Hyperconjugation in Carbonyl Addition Reactions

The "Antiperiplanar Effect":Hyperconjugation in Action

Polar Substituents act as R_L in the Felkin-Ahn Model:

Shimagaki Tet. Lett. 1984, 25, 4775

Transition State Hyperconjugation, or How SMe can act Larger than *i*-Pr

Transition State Hyperconjugation in C=O Additions: Cieplak

Cieplak: Transition State is stabilized by an interaction between a filled substrate orbital and TS σ^* orbital

Cieplak, A.S. J. Am. Chem. Soc. 1981, 103, 4540

Cieplak and Felkin-Ahn Both Usually Predict Same Sense of Diastereoselection

A Much Maligned Theory:

"Structures are stabilized by stabilizing their highest energy filled states. This is one of the fundamental assumptions in frontier molecular orbital theory. The Cieplak hypothesis is nonsense."

- Prof. David A. Evans Chem 206 Lecture Notes

Transition State Hyperconjugation in C=O Additions: Cieplak

Examples consistent with Cieplak but not Felkin-Ahn

R=EWG, Shaded bond's σ^* , better acceptor, F-A predicts *anti* R=EWG, Shaded bond's, worse donor, Cieplak predicts *syn*

■ Ie Noble Has Many Examples with 2-Adamantanones:

R	Nu	syn:anti
CO ₂ Me	LAH MeLi	87:13 >90:10
CH ₂ OMe	NaBH₄ MeLi	40:60 34:66
CH ₂ =CH ₂	LAH MeLi	35:65 27:73
Et	NaBH ₄ MeLi	20:80 17:83

Chem. Rev. 1999, 99, 1387-1467

R Nu syn:anti CO₂Me NaBH₄ 57:43 MeLi 55:45 NaBH₄ 62:38 F MeLi 70:30 TMS NaBH₄ 50:50 49:51 MeLi SnMe₃ NaBH₄ 48:52 MeLi 48:52

Same argument as above

Breakdown of the Cieplak Model: Is it Simply Electrostatics?

Critics of Cieplak Cite Role of Electrostatics in pro-Cieplak Examples:

Die-Hard Proponents of Cieplak Have a Hard Time Explaining This Houk Example:

Cieplak Prediction: Equatorial EWG should lower shaded bonds' donor strength, leading to more axial attack for A than B

Diastereomer	EWG	axial:eq.
N.A.	Н	60:40
A	OAc	71:29
B	OAc	83:17
A	CI	71:29
B	CI	88:12

Houk, K.N., et al. J. Am. Chem. Soc. 1991, 113, 5018

Houk Invokes an Electrostatic Argument to Explain B's Enhanced axial selectivity

Axial Approach Trajectory

Nu favorable EWG

The β -Silicon Effect: Hyperconjugation Yet Again

A Silicon β to a Leaving Group Greatly Enhances Ionization

Nucleophillic Olefin Addition Reactions: Homo-Raising Hyperconjugation

Nucleophillic olefins constitute a key class of reagents

Hyperconjugation Raises the π HOMO of the alkene by donation to the π^*

Enamines: A Case Study in Hyperconjugation

Like amides there is restricted rotation about the C-N bond

E-Enamines prefer a near Gauche-Out conformation While *Z*-Enamines prefer Orthogonal In

Consequences of Enamine Conformation on Reactivity

Hyperconjugation not only stabilizes "gauche out" but also makes it more reactive:

Following MO Diagrams Illustrate the Difference

Mechanism of Enamine Hydrolysis: Implications for Aldol Chemistry

Two Competing Ideas for Enamine Hydrolysis

N-protonation

Hyperconjugation makes N protonation difficult

Bathélémy, M.; Bessiere, Y. Tetrahedron 1976, 32, 1665

Enamines in the Aldol Reaction: Computational Considerations

What a Late Transition State Means for the Aldol

TS looks more like this... ... not this!

- Protonation only increases product devel in TS
- Non-basic enamine N in TS (Hyperconjugation)
- C-N Conformation locked in "gauche out"

Proline-Catalyzed Aldol Rection Transition States

The Direct Aldehyde-Aldehyde Aldol Reaction

99% ee (*anti*)

Barbas-List Transition State

- First Model
- Correctly Predicts Stereochemistry
- Bifurcated H-bond
- Rigid 5-6 system
- Intimate Involvement of Chirality

Jorgenson's Transition State

- Second Model
- Correctly Predicts Stereochemistry
- Removes Bifurcated H-bond
- 9-membered Ring (8 planar centers)
- Intimate Involvement of Chirality
- Imporves Hyperconjugation

80% yield

4:1 anti:syn

MacMillan's Transition State

- Third Model
- Correctly Predicts Stereochemistry
- Removes Bifurcated H-bond
- Rigid 6 membered system
- No Intimate Involvement of Chirality
- Disregards Hyperconjugation

Hyperconjugation Conclusions

It's a simple, but powerful theory.

