Latency-Rate Servers: A General Model for Analysis
of Traffic Scheduling Algorithms

Dimitrios Stiliadis and Anujan Varma
Computer Engineering Department
University of California
Santa Cruz, CA 95064

Abstract

In this paper, we develop a general model, called Latency-
Rate servers (LR-servers), for the analysis of traffic schedul-
ing algorithms in broadband packet networks. The behav-
ior of an LR scheduler is determined by two parameters
— the latency and the allocated rate. We show that sev-
eral well-known scheduling algorithms, such as Weighted
Fair Queueing, VirtualClock, Self-Clocked Fair Queueing,
Weighted Round Robin, and Deficit Round Robin, belong
to the class of LR-servers. We derive tight upper bounds on
the end-to-end delay, internal burstiness, and buffer require-
ments of individual sessions in an arbitrary network of LR-
servers in terms of the latencies of the individual schedulers
in the network, when the session traffic is shaped by a leaky
bucket. Thus, the theory of LR-servers enables computa-
tion of tight upper-bounds on end-to-end delay and buffer
requirements in a network of servers in which the servers on
a path may not all use the same scheduling algorithm. We
also define a self-contained approach to evaluate the fair-
ness of LR-servers and use it to compare the fairness of
many well-known scheduling algorithms.

[. INTRODUCTION

Broadband packet networks are currently enabling the
integration of traffic with a wide range of characteristics
within a single communication network. Different types of
traffic have significantly different quality-of-service (QoS) re-
quirements [1]. Providing QoS guarantees in a packet net-
work requires the use of traffic scheduling algorithms in the
switches (or routers). The function of a scheduling algo-
rithm is to select, for each outgoing link of the switch, the
packet to be transmitted in the next cycle from the available
packets belonging to the flows sharing the output link.

Several service disciplines are known in the literature
for providing bandwidth guarantees to individual sessions
in output-buffered switches [2], [3], [4], [5], [6], [7], [8], [9]-
Many of these algorithms are also capable of providing deter-
ministic delay guarantees when the burstiness of the session
traffic is bounded (for example, shaped by a leaky bucket).

While there is a significant volume of work on the anal-
ysis of various traffic scheduling algorithms, most of these
studies apply only to a particular scheduling algorithm. Lit-
tle work has been reported on analyzing the characteristics
of the service offered to individual sessions in a network of
servers where the schedulers on the path of the session may
use different scheduling algorithms. Since future networks

This research is supported by the NSF Young Investigator Award
No. MIP-9257103.

are unlikely to be homogeneous in the type of scheduling
algorithms employed by the individual switches (routers), a
general model for the analysis of scheduling algorithms will
be a valuable tool in the design and analysis of such net-
works. Our basic objective in this paper is to develop such
a general model to study the worst-case behavior of individ-
ual sessions in a network of schedulers where the schedulers
in the network may employ a broad range of scheduling al-
gorithms. Such an approach will enable us to calculate tight
bounds on the end-to-end delay of individual sessions and
the buffer sizes needed to support them in an arbitrary net-
work of schedulers.

Our basic approach consists in defining a general class
of schedulers, called Latency-Rate servers, or simply LR-
servers. The theory of LR servers provides a means to de-
scribe the worst-case behavior of a broad range of scheduling
algorithms in a simple and elegant manner. For a schedul-
ing algorithm to belong to this class, it is only required that
the average rate of service offered by the scheduler to a busy
session, over every interval starting at time © from the be-
ginning of the busy period, is at least equal to its reserved
rate. The parameter © is called the latency of the scheduler.
All the work-conserving schedulers known to us, including
Weighed Fair Queueing (or PGPS), VirtualClock, SCFQ,
Weighted Round Robin, and Deficit Round Robin, exhibit
this property and can therefore be modeled as LR-servers.

The behavior of an LR scheduler is determined by two
parameters — the latency and the allocated rate. The la-
tency of an LR-server is the worst-case delay seen by the
first packet of the busy period of a session, that is, a packet
arriving when the session’s queue is empty. The latency of
a particular scheduling algorithm may depend on its inter-
nal parameters, its transmission rate on the outgoing link,
and the allocated rates of various sessions. However, we
show that the maximum end-to-end delay experienced by
a packet in a network of schedulers can be calculated from
only the latencies of the individual schedulers on the path
of the session, and the traffic parameters of the session that
generated the packet. Since the maximum delay in a sched-
uler increases directly in proportion to its latency, the model
brings out the significance of using low-latency schedulers to
achieve low end-to-end delays. Likewise, upper bounds on
the queue size and burstiness of individual sessions at any
point within the network can be obtained directly from the
latencies of the schedulers. We also show how the latency
parameter can be computed for a given scheduling algorithm
by deriving the latencies of several well-known schedulers.

Our approach in modeling the worst-case behavior of
scheduling algorithms with respect to an end-to-end ses-

sion is related to the work of Cruz [10], [11], Zhang [12],
and Parekh and Gallager [4], [13]. Cruz [10], [11] analyzed
the end-to-end delay, buffer requirements, and internal net-
work burstiness of sessions in an arbitrary topology network
where all sources are leaky-bucket controlled. While the ob-
jectives of our analysis are similar, there are three major
differences between the approaches taken: First, the class
of scheduling algorithms we study are capable of providing
bandwidth guarantees to individual sessions. Therefore, we
can derive deterministic end-to-end delay guarantees that
are independent of the behavior of other sessions. Second,
we do not study individual schedulers in isolation and ac-
cumulate the session delays as in Cruz’s work , but instead
model the behavior of the chain of schedulers on the path of
the connection as a whole. Third, we estimate the latency
parameters for the individual schedulers tightly, taking into
account their internal structure. Thus, our approach, in
general, provides much tighter end-to-end delay bounds for
individual sessions.

Another model for delay-analysis based on a class of
guaranteed-rate servers was presented in [14]. The main
problem of this model, however, is that it is closely cou-
pled with time-stamp based algorithms; the analysis of
scheduling algorithms based on a different architecture is
not straightforward. The £R-class provides a more natural
approach for analyzing the worst-case behavior of traffic-
scheduling algorithms, independent of the scheduler archi-
tecture. Finally, Golestani recently presented a delay anal-
ysis of a class of fair-queueing algorithms including Self-
Clocked Fair Queueing [15]. However, this analysis does
not apply to unfair algorithms like VirtualClock.

In addition to the delay analysis, we also study the fair-
ness characteristics of LR-schedulers. The fairness anal-
ysis was motivated by Golestani’s work [5], where a self-
contained approach for fairness was defined. This approach
is based on comparing the normalized service offered to any
two connections that are continuously backlogged over an in-
terval of time. We will analyze many well-known scheduling
algorithms belonging to the LR class using this approach.

II. A CoMmMON FRAMEWORK

Scheduling algorithms for output-buffered switches have
been classified based on two criteria: work-conservation and
internal architecture. Neither of these classifications pro-
vides us with a common framework that will allow evalua-
tion of their relative performance in real networks. In this
section we discuss the three important attributes of schedul-
ing algorithms that are most important in their application
in real networks. These are (i) delay behavior, (ii) fair-
ness, and (iili) implementation complexity. We will, there-
fore, compare schedulers along these three dimensions.

A. End-to-FEnd Delay Guarantees

The algorithm must provide end-to-end delay guarantees
for individual sessions, without severely under-utilizing the
network resources. In order to provide a deterministic delay
bound, it is necessary to bound the burstiness of the session
at the input of the network. The most common approach
for bounding the burstiness of input traffic is by shaping

through a leaky bucket. Several previous studies have used
this traffic model [4], [10], [11], [13]. We use the same traffic
model in our derivations of end-to-end session delays and as-
sume that the traffic of session 1 is smoothed through a leaky
bucket with parameters (o;, p;), where o; is the maximum
burstiness and p; is the average arrival rate. In deriving the
end-to-end delay bound for a particular session, however, we
do not make any assumptions about the traffic from the rest
of the sessions sharing the same links of the network.

In addition to minimizing the end-to-end delay in a net-
work of servers, the delay behavior of an ideal algorithm
includes the following attributes:

1. Insensitivity to traffic patterns of other sessions: Ide-
ally, the end-to-end delay guarantees for a session
should not depend on the behavior of other sessions.
This is a measure of the level of isolation provided by
the scheduler to individual sessions.

2. Delay bounds that are independent of the number of
sessions sharing the outgoing link:

3. Ability to control the delay bound of a session by con-
trolling only its bandwidth reservation:

Note that the three attributes are related. We will show later
that the worst-case delay behavior of a session can differ
greatly in two different schedulers with identical bandwidth
reservations.

B. Fairness

Significant discrepancies may exist in the service provided
to different sessions over the short term among scheduling
algorithms. Some schedulers may penalize sessions for ser-
vice received in excess of their reservations at an earlier time.
Thus, a backlogged session may be starved until others re-
ceive an equivalent amount of normalized service, leading to
short-term unfairness. Therefore, two scheduling algorithms
capable of providing the same delay guarantee to a session
may exhibit vastly different fairness behaviors.

While there is no common accepted method for estimat-
ing the fairness of a scheduling algorithm, it is easy to de-
fine fairness in an informal manner. In general, we would
like the system to always serve connections proportional to
their reservations and distribute the unused bandwidth left
behind by idle sessions equally among the active ones. In
addition, sessions should not be penalized for excess band-
width they received while other sessions were idle. Follow-
ing Golestani’s work [5], we define the fairness parameter
of a scheduling algorithm as the maximum difference be-
tween the normalized service received by two backlogged
connections over an interval in which both are continuously
backlogged.

C. Implementation Complexity

Finally, schedulers differ greatly in their implementation
complexity. The scheduling algorithm may need to be imple-
mented in hardware in a high-speed network. In addition, it
is desirable to have the time-complexity of the algorithm not
depend on the number of active connections in the scheduler.

If V is the maximum number of connections that may
share an output link, the implementation of a scheduler

based on the sorted-priority architecture involves three main
steps for processing each cell [16]:

1. Calculation of the timestamp: The PGPS scheduler
has the highest complexity in this respect with a worst-
case processing overhead of O(V') per packet transmis-
sion [4].

2. Insertion in a sorted priority list: The first cell of each
session’s queue must be stored in a sorted priority list.
When a cell arrives into an empty queue, its insertion
into the priority list requires O(log V') steps.

3. Selection of the cell with the minimum timestamp for
transmission: Since the cells are stored in a sorted-
priority structure, the cell with the highest priority may
be retrieved in O(log V') time.

The last two operations are identical for any sorted-priority
architecture.

Frame-based algorithms such as Weighted Round Robin
and Deficit Round Robin can be implemented in O(1) time,
without any timestamp calculations. Unfortunately, these
algorithms yield delay bounds that may grow linearly with
the number of sessions sharing the outgoing link. Thus, in
practice, the scheduling algorithm must trade off the com-
plexity of implementation with the other desirable proper-
ties of low delay and bounded short-term unfairness.

III. £LR-SERVERS

In this section we introduce L£LR-servers and derive some
key results on their delay behavior. This model will allow
us to derive deterministic bounds on end-to-end delays in
an arbitrary topology network. In addition, it will help us
define the necessary properties of a scheduling algorithm to
utilize the network resources efficiently.

We assume a packet switch where a set of V' connections
share a common output link. The terms connection, flow,
and session will be used synonymously. We denote with p;
the rate allocated to connection 1.

We assume that the servers are non-cut-through devices.
Let Ai(T, t) denote the arrivals from session ¢ during the in-
terval (7,t] and W;(r,t) the amount of service received by
session ¢ during the same interval. In a system based on the
fluid model, W;(r, t) is a continuous function of ¢. However,
in the packet-by-packet model, we assume that A;(r,t) in-
creases only when the last bit of a packet is received by the
server; likewise, Wj(,t) is increased only when the last bit
of the packet in service leaves the server. Thus, the fluid
model may be viewed as a special case of the packet-by-
packet model with infinitesimally small packets.

Definition 1: A system busy period is a maximal in-
terval of time during which the server is never idle.

During a system busy period the server is always transmit-
ting packets.

Definition 2: A backlogged period for session i is
any period of time during which packets belonging to that
session are continuously queued in the system.

Let Q;(t) represent the amount of session i traffic queued in
the server at time ¢, that is,

Qi(t) = A:i(0,t) — W;(0,¢t).

A connection is backlogged at time ¢ if Q;(¢t) > 0.

~<
_-7NP
- __l__
—=T 1
P
~ | \ \
_
- \ \ \
- \ \ \
NP \ \ \
~) \ \
tl t2 t3 t4

Fig. 1. Intervals(t1,t2] and (¢3,t4] are two different busy periods.

Definition 3: A session i busy period is a maximal
interval of time (71, 72] such that for any time ¢t € (71, 2],
packets of session ¢ arrive with rate greater than or equal to
P, OT,

Ai(r, t) > pi(t — 7).

A session busy period is the maximal interval of time
during which if the session were serviced with exactly the
guaranteed rate, it would be remain continuously backlogged
(Figure 1). Multiple session-¢ busy periods may appear dur-
ing a system busy period.

The session busy period is defined only in terms of the
arrival function and the allocated rate. It is important to
realize the basic distinction between a session backlogged
period and a session busy period. The latter is defined with
respect to a hypothetical system where a backlogged connec-
tion ¢ is serviced at a constant rate p;, while the former is
based on the actual system where the instantaneous service
rate varies according to the number of active connections
and their service rates. Thus, a busy period may contain in-
tervals during which the actual backlog of session 1 traffic in
the system is zero; this occurs when the session receives an
instantaneous service rate of more than p; during the busy
period.

Note that, when the same traffic distribution is applied
to two different schedulers with identical reservations, the
resulting backlogged periods can be quite different. This
makes it difficult to use the session-backlogged period for
analyzing a broad class of schedulers. The session busy pe-
riod, on the other hand, depends only on the arrival pattern
of the session and its allocated rate, and can therefore be
used as an invariant in the analysis of different schedulers.
This is the fundamental reason why the following definition
of an LR-server is based on the service received by a session
over a busy period. Since we are interested in a worst-case
analysis of the system, the session busy period provides us
a convenient means to bound the delay within the system.

We can now define the general class of Latency-Rate (LR)
servers. A server in this class is characterized by two param-
eters: latency ©; and allocated rate p;. Let us assume that
the jth busy period of session ¢ starts at time 7. We denote
by VV{?] (7, t) the total service provided to the packets of the
session that arrived after time 7 and until time ¢ by server
S. Notice that the total service offered to session ¢ in this in-
terval (7,t] may actually be more than VV[?] (7, t) since some

Offered
Service

A(T.t)

T) Time

Fig. 2. An example of the behavior of an LR scheduler.

packets from a previous busy period, that are still queued
in the system, may be serviced as well.

Definition 4: A server S belongs in the class LR if and
only if for all times ¢ after time 7 that the jth busy period
started and until the packets that arrived during this period
are serviced,

W (7,8) > max(0, pi(t — 7 — ©7)).

©7 is the minimum non-negative number that satisfies the
above inequality.

The definition of LR servers involves only the two pa-
rameters, latency and rate. The right-hand side of the above
equation defines an envelope to bound the minimum service
offered to session i during a busy period (Figure 2). It is
easy to observe that the latency ©F represents the worst-
case delay seen by the first packet of a busy period of session
1. Notice that the restriction imposed is that the service pro-
vided to a session from the beginning of its busy period is
lower-bounded. Thus, for a scheduling algorithm to belong
to this class, it is only required that the average rate of ser-
vice offered by the scheduler to a busy session, over every
interval starting at time ©F from the beginning of the busy
period, is at least equal to its reserved rate. This is much
less restrictive than GPS multiplexing, where the instan-
taneous bandwidth offered to a session is bounded. That
is, the lower bound on the service rate of GPS multiplex-
ing holds for any interval (7, t] that a session is backlogged,
whereas in LR-servers the restriction holds only for inter-
vals starting at the beginning of the busy period. Therefore,
GPS multiplexing is only one member of the LR class.

The latency parameter depends on the scheduling algo-
rithm used as well as the allocated rate and traffic parame-
ters of the session being analyzed. For a particular schedul-
ing algorithm, several parameters such as its transmission
rate on the outgoing link, number of sessions sharing the
link, and their allocated rates, may influence the latency.

In our definition of LR servers, we made no assumptions
on whether the server is based on a fluid model or a packet-
by-packet model. The only requirement that we impose,
however, is that a packet is not considered as departing the
server until its last bit has departed. Therefore, packet de-
partures must be considered as impulses. This assumption is
needed to bound the arrivals into the next switch in a chain
of schedulers. We will remove this assumption later from
the last server of a chain to provide a slightly tighter bound
on the end-to-end session delay in a network of schedulers.
In a fluid system, we require that all schedulers operate on a
fluid basis and the maximum packet size to be infinitesimally
small.

We will now derive delay bounds for LR schedulers. We
will first consider the behavior of a session in a single node,
and subsequently extend the analysis to networks of LR
servers. In both cases, we will assume that the input traffic
of the session we analyze is leaky-bucket smoothed and the
allocated rate is at least equal to the average arrival rate.
That is, if ¢ is the session under observation, its arrivals at
the input of the network during the interval (7, t] satisfy the
inequality

Ai(r,t) < oi + pi(t — 1),

where o; and p; denote its burstiness and average rate, re-
spectively. However, we make no assumptions about the
input traffic of other sessions.

(3.1)

A. Analysis of a Single LR Server

Assume a set of V sessions sharing the same output link
of an LR server.

The following theorem bounds the queueing delays within
the server, as well as the buffer requirements, for session 1.

Theorem 1: If § is an LR-server, then the following
bounds must hold:

1. If Q7 (t) is the backlog of session i at time ¢, then

Q7 (t) < oi + pi©7 . (3.2)

2. If D? is the delay of any packet of session 7 in server
S7
Df < Z 1 ef.
pi
3. The output traffic conforms to the leaky bucket model
with parameters (o; + ©F p;, p;).

A proof for the above theorem can be found in [17]. No-
tice that both the output burstiness of the traffic as well
as the delay bound depend strongly on the latency of the
As we show in the next section, this dependency
becomes stronger in a network of £LR-servers.

(3.3)

server.

B. Analysis of a Network of LR Servers

The only restrictions that we impose in the network is
that all the servers belong to the LR class and that the
traffic of session z under observation is shaped at the source
with a leaky bucket (oi, pi). We will also assume that the
bandwidth reservation of the session at every node in its
path is at least p;.

We first prove the following lemma:

Lemma 1: The traffic process after the kth node in a
chain of LR servers is a leaky bucket process with parame-
ters

k
o + pi Z 6551)7 and Pi,
J=1

where @Esj) is the latency of the jth scheduler on the path
of the session.

We already proved in Theorem 1, that the output traffic
of an LR server conforms to the leaky bucket model with
parameters (o; 4+ p;Of, p;). But this means that the input
traffic in the next node conforms to the same model. The
proof of the lemma is straightforward [17].

This is an important result that allows us to bound the
burstiness of session-¢ traffic at each point in the network.
Notice that the increase in burstiness that a session may see
in the network is proportional to the sum of the latencies of
the servers it has traversed. Therefore, even a session with
no burstiness at the input of the network may accumulate
a significant amount of burstiness in the network because of
the latency of the servers.

Using Theorem 1 and Lemma 1 it is easy to prove the
following lemma that will bound the backlog of session 7 in
each node of the network [17].

Lemma 2: The maximum backlog Qgsk
node of a session is bounded as

k
QESk)(t) <o+ Z @ESJ)
J=1

J(t) in the kth

To derive tighter bounds for session delay in a network
of LR servers, we first show that the maximum end-to-end
delay in a network of two LR-servers in series is the same as
that in a single LR server whose latency is the sum of the
latencies of the two servers it replaces. This result allows an
arbitrary number of LR servers in the path of a session to
be modeled by combining their individual latencies.

Analyzing two LR servers in series introduces a difficulty:
If the first server has non-zero latency, the busy period of
a session in the second server may not coincide with the
corresponding busy period in the first server. That is, a
packet that started a busy period in the first server may
not start a busy period in the second, but instead might
arrive while a busy period is in progress at the second server.
Also, since the actual service rate seen by session ¢ in the
first server can be more than p;, a single busy period in
the first server may result in multiple busy periods in the
second server. This is illustrated in Figure 3. We will take
these effects into account in our analysis of a network of LR
servers.

In the following, we will use the term network busy pe-
riod to mean a busy period of the session being analyzed
in the first server on its path. Similarly, when we refer to
service offered by the network to session ¢ during an interval
of time, we mean the amount of session-z traffic transmitted
by the last server on the path during the interval under con-
sideration. We will use W; ;(7,t) to denote the amount of
service offered by the network to session ¢ during an interval
(7, t] within its jth network busy period. Also, we will use
W,'IJ (71, t1) to denote the amount of service offered by the
first server during an interval ('1'17 tl) within its local busy
period, and Wﬁj(Tg, t2) the same parameter for the second
server during an interval (72,¢z) within its busy period.

We first prove the following lemma to bound the ser-
vice provided by the network to a session during an interval
within a network busy period.

Lemma 3: Consider a network of two LR-servers S; and
S2 in series, with latencies @ESI) and (9552), respectively. If
pi 1s the rate allocated to session ¢ in the network, the service
offered by the network to the packets of the jth network
busy period of that session during an interval (r,¢] within

Busy period on node 1
Busy periods on node 2

Fig. 3. Illustration of busy periods of a session in two servers
in series. The network busy period for session ¢ in this case
is split into multiple busy periods in the second server. The
busy period in the first serveris (a1, 31]. The packets arriving
at the second server from this busy period form multiple busy
periods (s1, f1], (s2, f2], (s3, f3] in the second server. The line
with slope p; that starts at 911 bounds all these busy periods.

the busy period is bounded as

Wi ;(7,t) > max <07 pi(t—1— ((9(.51) + @ESQ)))) .

2

The proof is omitted due to lack of space. The interested
reader is referred to [17] for more details. Lemma 3 asserts
that the service offered to a session in a network of two LR
servers in series is no less in the worst case than the service
offered to the session by a single LR server whose latency
is equal to the sum of the latencies of the two servers it
replaces. Since we make no assumptions on the maximum
service offered by the servers to a session, we can merge an
arbitrary number of servers connected in series to estimate
the service offered after the kth node.
state the following corollary.

Corollary 1: Let T be the start of the jth network busy
period of session ¢ in a network of LR servers. If p; is the
minimum bandwidth allocated to session ¢ in the network,
the service offered to packets of the jth network busy period
after the kth node in the network is given by

We can therefore

VVS"(Tt)>max Opzt—T—ZG ,

where @Esj) is the latency of the jth server in the network
for session 1.

Using the above corollary we can bound the end-to-end
delays of session 1 if the input traffic is leaky-bucket shaped
and the average arrival rate is less than p;. In [17] we prove
the following theorem:

Theorem 2: The maximum delay D;
network of LR servers, consisting of k servers in series, is

bounded as
D; < Z + Z 0!

of a session 1 in a

(3.4)

where @Esj) is the latency of the jth server in the network
for session 1.

This maximum delay is independent of the topology of
the network. The bound is also much tighter than what
could be obtained by analyzing each server in isolation. Note
that the end-to-end delay bound is a function of only two pa-
rameters: the burstiness of the session traffic at the source
and the latencies of the individual servers on the path of
the session. Since we assumed only that each of the servers
in the network belongs to the LR class, these results are
more general than the delay bounds due to Parekh and Gal-
lager [13]. In the next section, we will show that all well-
known work-conserving schedulers are in fact LR servers.
Thus, our delay bound applies to almost any network of
schedulers.

The delay bound in Eq. (3.4) shows that there are two
ways to minimize delays and buffer requirements in a net-
work of LR servers: i) allocate more bandwidth to a session,
thus reducing the term ai/pi, or ii) use LR servers with low
latencies. Since the latency is accumulated through multiple
nodes, the second approach is preferred in a large network.
The first approach reduces the utilization of the network,
thus allowing only a smaller number of simultaneous ses-
sions to be supported than would be possible with minimum-
latency servers. Minimizing the latency also minimizes the
buffer requirements of the session at the individual servers
in the network.

Proposition 1: The end-to-end delay and increase in
burstiness of a session in a network of LR servers is propor-
tional to the latency ©F of the servers. We can minimize
both of these parameters by designing servers with minimum
latency.

Note that the latency of a server depends, in general, on
its internal parameters and the bandwidth allocation of the
session under consideration. In addition, the latency may
also vary with the number of active sessions and their al-
locations. Such a dependence of the latency of one session
on other sessions indicates the poor isolation properties of
the scheduler. Likewise, in some schedulers the latency may
depend heavily on its internal parameters, and less on the
bandwidth allocation of the session under observation. Such
schedulers do not allow us to control the latency of a session
by controlling its bandwidth allocation. On the other hand,
the latency of a PGPS server depends heavily on the allo-
cated bandwidth of the session under consideration. This
flexibility is greatly desirable.

Since the definition of an LR server is not based on any
assumptions on the input traffic, it is easy to derive delay
bounds for traffic distributions other than the (o, p) model.
For example, when the peak rate of the source is known, a
modified upper bound on the delay of an LR server can be
obtained. Let us denote with g; the service rate allocated
to connection ¢, and let p; and P; respectively denote the
average and peak rate at the source of connection i. The
arrivals at the input of the server during the interval (7, ¢]
now satisfy the inequality

Ai(r,t) < min(o; + pi(t — 1), Pi(t — 7)) . (3.5)

In [17] we prove the following lemma:

Lemma 4: The maximum delay D; of a session 1 in a net-
work of LR servers, consisting of k servers in series, where
the peak rate of the source is known, is bounded as

k
s P —g o (5;)
D; S(. P +> e,

J=1

(3.6)

where ©°7 is the latency of the jth server in the network

7

for session 1.

IV. ScHEDULERS IN THE CLASs LR

In this section we will show that several well-known work-
conserving schedulers belong to the class LR and determine
their latencies. Recall that our definition of LR servers in
the previous section is based on session-busy periods. In
practice, however, it is easier to analyze scheduling algo-
rithms based on session backlogged periods. The following
lemma enables the latency of an LR server to be estimated
based on its behavior in the session backlogged periods. We
will use this as a tool in our analysis of several schedulers in
this section.

Lemma 5: Let (s;,t;] indicate an interval of time in
which session ¢ is continuously backlogged in server §. If
the service offered to the packets that arrived in the interval
(85, t;] can be bounded at every instant ¢, s; < t < t; as

Wi(sj,t) > max(0, pi(t — s; — ©)),

then & is an LR server with a latency less than or equal to
;.

A formal proof of the Lemma is presented [17]. This
lemma will allow us to estimate the latency of an £LR-server.
However, it does not necessarily provide us a tight bound
for the parameter ©;.

A main contribution of the theory of LR-servers is the
notion of the busy period. The bound on the service offered
by an LR-server is based on the busy period. This is a more
general approach than bounding the service offered by the
server based on the concept of the backlogged period. An ap-
proach based on the latter was proposed in [18] for providing
QoS guarantees. The model bounds the service offered to
a connection during one or more backlogged periods, thus
providing a means to design a class of scheduling algorithms
that can provide specific end-to-end delay guarantees. Us-
ing the concept of busy period instead of backlogged period
in this model will likely result in tighter end-to-end delay
bounds and a larger class of schedulers that can provide
these delay bounds.

In Lemma 5 we proved that, if we use the backlogged pe-
riod to bound the service offered by a server &, then server
Sis an LR server and its latency can not be larger than that
found for the backlogged period. However, we must empha-
size the fact that the opposite is not true. Consider the
example of Figure 4. Le us assume an LR-server with rate
p and latency ©. Referring to Figure 4, time-intervals (0, ¢1]
and (tz,ts] form two busy periods. However, the server re-
mains backlogged during the whole interval (¢1,¢3]. If the
backlogged period was used to bound the service offered by

ty 9p

Fig. 4. Difference in bounding the service based on the back-
logged or busy periods.

the server, a latency ©; > © would result. By repeating the
above example over multiple busy periods, it is easy to verify
that ©4 can not be bounded. This shows that if backlogged
period was used instead of busy period in the definition of
the LR server model, the end-to-end delays of the server
would not be bounded.

By using Lemma 5 as our tool, we analyzed several work
conserving servers and proved that they belong in the class
LR. A summary of our results is presented in Table 1. It
is easy to see that PGPS and VirtualClock have the lowest
latency among all the servers. In addition, their latency
does not depend on the number of connections sharing the
same outgoing link. As we will show in Section VI, however,
VirtualClock is not a fair algorithm.

In self-clocked fair queueing, the latency is a linear func-
tion of the maximum number of connections sharing the out-
going link. In Deficit Round Robin [8], the latency depends
on the frame size F'. By the definition of the algorithm, the
frame size, in turn, is determined by the granularity of the
bandwidth allocation and the maximum packet size of its

session. That is,
v
Srn
i=1

where L; is the maximum packet-size of session 1. Thus, the
latency in Deficit Round Robin is also a function of the num-
ber of connections that share the outgoing link. Weighted
Round Robin can be thought of as a special case of Deficit
Round Robin and its latency is again a function of the max-
imum number of connections sharing the outgoing link.

V. AN IMPROVED DELAY BOUND

The latencies of LR servers computed in the last section
are based on the assumption that a packet is considered
serviced only when its last bit has left the server. Thus, the
latency ©F was computed such that the service performed
during a session busy period at time ¢, W; ;(7,t), is always
greater than or equal to p;(t — 7 —©7). Since the maximum
difference between W; ;(7,t) and p;(t —) occurs just before
a session-i packet departs the system, the latency ©F is
calculated at such points. This is necessary to be able to
bound the arrivals to the next server in a chain of servers;
since our servers are not cut-through devices, a packet can be
serviced only after its last bit has arrived. Our assumption

— — _ _ Latency for delay
Latency for traffic

Ait) \ |

r p|

Fig. 5. Illustration of the two envelopes used to bound the service
received by session ¢ in a session-busy period. Each step in the
arrival function indicates a new packet. The lower envelope
is a valid lower-bound for the service at any point in the busy
period, while the upper one is valid only at the points when
a packet leaves the system.

that the packet leaves as an impulse from the server allows
us to model the arrival of the packet in the next server as
an impulse as well.

When we compute the end-to-end delay of a session, how-
ever, we are only interested in finding the time at which the
last bit of a packet leaves the last server. Thus, for the last
server in a chain, we can determine the latency ©F based
only on the instants of time just after a packet was serviced
from the session. This results in a lower value of latency
and, consequently, a tighter bound on the end-to-delay in a
network of servers than that given by eq. (3.4).

To apply this idea, the analysis of the network is sepa-
rated into two steps. If the session passes through k hops,
we bound the service offered to the session in the first £ — 1
servers considering arbitrary instants during session-busy
periods. On the last node, however, we calculate the la-
tency based only on the points just after a packet completes
service.

This idea is best illustrated by an example in the case
of the PGPS server. Assume that a busy period starts at
time 7, and that a packet leaves the PGPS server at time
tr. Then, on the corresponding GPS server, this packet left
at time tp — me/r or later. Therefore, if we consider only
such points tg, we can write

Lmam
Wi te) > Wf}(r,tk—T)

Lmam

> pilts—7—
r

This results in a latency of me/r as compared to (Li/pi +
Lynaz /1) presented in Table 1.

Figure 5 shows the two envelopes based on bounding the
service received by the session in the two different ways.
The lower envelope applies to arbitrary points in the session-
busy period, while the upper envelope is valid only at points
when a packet leaves the system. For computing end-to-
end delay bounds in a network of servers, we can use the
upper envelope in the last server. In all the work-conserving
schedulers we have studied, the two envelopes are apart by
L;/p;i, where L; is the maximum packet-size for session 1.

Therefore, for these LR servers, we can obtain an improved
bound for the end-to-end delay in a network by subtracting
L;/p;i from eq. (3.4). Therefore,

k
; N L
Di<Z 4N el _ 2 (5.1)
P J=1 pi

If we substitute the latency obtained for PGPS from Ta-
ble I, that 1is, G(Sj) = Li/pg + me/r, we get

E+k@7 (5.2)
; r

Di <%t (k1)
pPi P

which agrees with the bound obtained by Parekh and Gal-
lager [13] for a network of PGPS servers. Since the latencies
of PGPS and VirtualClock are identical, the bound of (5.2)
applies to VirtualClock as well; this is also in agreement
with the results of Lam and Xie [19].

While we have verified that this improvement of L;/p; in
the delay bound is valid for all the LR servers analyzed in
this paper, whether this is true for all LR servers remains
an open question. We have not yet found a formal proof on
its validity for arbitrary LR servers.

VI. FAIRNESS OF LR SERVERS

In Section III, we showed that the worst-case delay be-
havior of individual sessions in a network of LR servers can
be analyzed knowing only their latencies. However, the la-
tency of an LR server, by itself, provides no indication of
its fairness. For example, VirtualClock and PGPS are two
different LR servers with the same latency, but with sub-
stantially different fairness characteristics. In this section
we analyze the fairness characteristics of several well-known
LR servers and compare them.

The fairness parameter that we use is based on the defi-
nition presented by Golestani [5] for analysis of self-clocked
fair queueing. Let us assume that VV,;S(T7 t) is the service
offered to connection 7 in the interval (7,t] by server S. If
pi 1s the bandwidth allocated to connection 2z, we will call
the fraction W;°(7,t)/p; the normalized service offered to
connection i in the interval (7,t]. A scheduler is perfectly
fair if the difference in normalized service offered to any two
connections that are continuously backlogged in the system
in the interval (7, t] is zero. That is,

Wi (r,t) WZ2(r,t)
pi pj

GPS multiplexing is proven to have this property. However,
this condition cannot be met by any packet-by-packet algo-
rithm since packets must be serviced exclusively. Therefore,
in a packet by packet server, we can only require that the
difference in normalized service received by the connections
be bounded by a constant.

Golestani suggested use of the difference in normalized
service offered to any two connections as the measure of
fairness for the algorithm [5]. More precisely, an algorithm
is considered close to fair if, for any two connections 1, j that

are continuously backlogged in an interval of time (¢1, ¢2],

Wis(tl y tg) _ W]S(th t2)
pi Py

< Fo,

where F° is a constant. Let us call F° as the fairness of
server §. A difficulty arises, however, in the use of the above
definition in comparing the fairness of different schedulers.
For the same pattern of session arrivals, the backlogged peri-
ods of the session can vary across schedulers; a comparison
of fairness of different scheduling algorithms can therefore
vield misleading results if the arrival pattern is not chosen
so as to produce the same backlogged periods in all the
schedulers. Hence, we modify Golestani’s definition slightly.
We consider a time 7 at which the connections ¢ and 7 be-
ing compared have an infinite supply of packets. This forces
them to be continuously backlogged in the servers, regard-
less of the scheduling algorithm used. We use as a measure
of fairness the difference in normalized service offered to the
two connections for any time interval (tl7 t2] after time 7.
A typical example of unfairness occurs in the VirtualClock
algorithm, as presented in [4].

We evaluated the fairness of a number of servers. We use
L; to denote the maximum packet-size for session ¢ and Laz
the maximum packet-size over all sessions. A summary of
our results is presented in Table I. Detailed proofs for these
results are presented in [17], [20].

We note that all the algorithms studied, except Virtual-
Clock, can be considered as fair based on our definition of
fairness. However, it is interesting to note that self-clocked
fair queueing (SCFQ) has the best fairness among all the
packet-by-packet schedulers, even better than that of PGPS
in some cases. On the other hand, the latency of an SCFQ
server can be much higher than that of a PGPS server; this
is because SCFQ may delay service to connections when
they become backlogged after an idle period, while PGPS
penalizes the connections that have already received their
allocated bandwidth to serve newly backlogged connections.

VII. CONCLUSIONS

In Table I, we have summarized the characteristics of sev-
eral scheduling algorithms belonging to the LR class based
on the three parameters discussed in Section 2. Based on
this summary, it is easy to see that the PGPS scheduler has
the best performance both in terms of latency and fairness
properties. However, it also has the highest implementation
complexity. VirtualClock has latency identical to that of
PGPS, but is not a fair algorithm.

All the other algorithms studied have bounded unfair-
ness, but also have much higher latencies than PGPS. From
our analysis of networks of LR servers, it becomes clear how
this increased latency leads to high end-to-end delay bounds,
large buffer requirements in the switch nodes, and increased
traffic burstiness inside the network. Even with constant-
bit-rate traffic at the source, sessions may accumulate con-
siderable burstiness after many hops through the network if
the the servers have high latencies. Thus, the use of servers
with minimum latency is extremely important in a broad-
band packet network. In both the SCFQ server and the

|| Server | Latency | Fairness | Complexity ||
T
) ; max(CJ—}-L’;%—}-p—;,Ci—l—Lg‘%—l—%),where
PGPS o fmas Ci = min((V — 1) kmas | max (Z2)), o)
P T 1<n<V " pp
Y Li | Lmaz Li 4 Li

SCFQ ol (V-1) -+ p—; O(log V)
VirtualClock 24 Lmas oo O(log V)
Deficit Round Robin (8F—24:) aF o(1)
Weighted Round Robin (Foditle) £ o(1)
Frame-Based Fair Li | Limas oF L; Lj

Queueing (FFQ) [20] TN S max(z, P_j) O(log V)

TABLE I. Latency, fairness and implementation complexity of several work-conserving servers. L; is the maximum packet size of
session ¢ and Ly,q; the maximum packet size among all the sessions. C; is the maximum normalized service that a session
may receive in a PGPS server in excess of that in the GPS server. In weighted round-robin and deficit round-robin, F' is the
frame size and ¢; is the amount of traffic in the frame allocated to session . L is the size of the fixed packet (cell) in weighted

round-robin.

round-robin schedulers, the latency and fairness are greatly
affected by the number of connections sharing a common
outgoing link. This property makes it difficult to control
end-to-end session delays in networks where a large number
of flows may share the links.

Our comparison of schedulers along the three dimensions
leaves open the question whether a scheduling algorithm can
be designed that has the same low latency as that of PGPS,
bounded unfairness, and an efficient implementation. In
[20], we extend this work by presenting such a scheduling
discipline that we call Frame-based Fair Queueing (FFQ).
FFQ is a sorted-priority algorithm in which the calculation
of timestamps can be performed in O(1) time. The latency
of frame-based fair queueing is identical to that of a PGPS
server, yvet the algorithm can be shown to be fair based on
the criterion we used in this paper to evaluate fairness.

REFERENCES

[1] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time
applications in an integrated services packet network: Architec-
ture and mechanism,” in Proc. ACM SIGCOMM 92, pp. 14-26,
August 1992.

[2] L. Zhang, “VirtualClock: a new traffic control algorithm for
packet switching networks,” ACM Transactions on Computer
Systems, vol. 9, pp. 101-124, May 1991.

[3] A.Demers, S. Keshav, and S. Shenker, “Analysis and simulation
of a fair queueing algorithm,” Internetworking: Research and
Ezxperience, vol. 1, no. 1, pp. 3-26, 1990.

[4] A.K. Parekh and R. G. Gallager, “A generalized processor shar-
ing approach to flow control - the single node case,” in Proc.
INFOCOM 92, vol. 2, pp. 915-924, May 1992.

[5] S. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” in Proc. INFOCOM ’94, pp. 636-646, IEEE,
April 1994.

[6] D. Ferrari and D. Verma, “A scheme for real-time channel es-
tablishment in wide-area networks,” IEEE Journal on Selected
Areas in Communications, vol. 8 pp. 368-379, April 1990.

»

(7]

8]
(9]

[10]

M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted
round-robin cell multiplexing in a general-purpose ATM switch
chip,” IEEE Journal on Selected Areas in Communications,
vol. 9, pp. 1265-79, October 1991.

M. Shreedhar and G. Varghese, “Efficient Fair Queueing using
Deficit Round Robin,” in Proc. SIGCOMM’95, September 1995.
C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled
servers for very high-speed networks,” in IEEE Global Telecom-
munications Conference, pp. 300.3.1-300.3.9, December 1990.
R. Cruz, “A calculus for network delay. I. Network elements in
isolation.,” IEEE Transactions on Information Theory, vol. 37,
pp. 114-131, January 1991.

R. Cruz, “A calculus for network delay. II. Network elements in
isolation.,” IEEE Transactions on Information Theory, vol. 37,
pp. 132-141, January 1991.

H. Zhang, Service Disciplines for Packet-Switching Integrated-
Services Networks. PhD thesis, U.C. Berkeley, 1992.

A. K. Parekh and R. G. Gallager, “A generalized processor shar-
ing approach to flow control in integrated services networks: the
multiple node case,” in Proc. INFOCOM ’93, vol. 2, pp. 521—
530, March 1993.

P. Goyal, S. Lam, and H. Vin, “Determining end-to-end delay
bounds in heterogeneous networks,” in Proc. 5th International
Workshop on Network and Operating System Support for Dig-
ital Audio and Video, pp. 287-298, April 1995.

S. Golestani, “Network delay analysis of a class of fair queueing
algorithms,” IEEE Journal on Selected Areas in Communica-
tions, vol. 13, pp. 1057-70, August 1995.

H. Zhang and S. Keshav, “Comparison of rate based service dis-
ciplines,” in Proc. ACM SIGCOMM ’91, pp. 113-122, 1991.
D. Stiliadis and A. Varma, “Latency-rate servers: A gen-
eral model for analysis of traffic scheduling algorithms,”
Tech. Rep. UCSC-CRL-95-38, U.C. Santa Cruz, July 1995,
http://www.cse.ucsc.edu/research/hsnlab/publications/.

R. Cruz, “Quality of service guarantees in virtual circuit
switched networks,” IEEE Journal on Selected Areas In Com-
munications, vol. 13, pp. 1048-1056, August 1995.

S. Lam and G. Xie, “Burst scheduling: Architecture and algo-
rithm for switching packet video,” in INFOCOM’95, April 1995.
D. Stiliadis and A. Varma, “Frame-based fair queueing: A
new traffic scheduling algorithm for packet-switched networks,”
Tech. Rep. UCSC-CRL-95-39, U.C. Santa Cruz, July 1995,
http://www.cse.ucsc.edu/research/hsnlab/publications/.

