
Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 1

GDF - A GENERAL DATAFORMAT FOR BIOSIGNALS

VERSION 1.25

Alois Schlögl1, Oliver Filz2, Herbert Ramoser1, Gert Pfurtscheller1, 3

(1998-1999)

1Institute of Biomedical Engineering, University of Technology Graz

2Institut für Informationsverarbeitung, Österreichische Akademie der Wissenschaften

3Ludwig Boltzmann Institute for Medical Informatics and Neuroinformatics, Graz

Keyword(s): biomedical data format, ISO 9000, quality management, general public license

GPL, Matlab,

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 2

Last modification:

April 15th, 2004: Alois Schlögl, Inclusion of event table

April 29th, 2004: Alois Schlögl, typos in table 2 fixed

May 06th, 2004: Alois Schlögl, update online links to the EDF sites.

Aug 12th, 2004: Alois Schlögl, include table of event codes

Dez 7th, 2004: Alois Schlögl, Samplerate associated with Events saved in Eventtable

Mar 29th, 2005: AS, typos fixed

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 3

ABSTRACT

Interdisciplinary and/or multi-centre research projects require a common format for data

exchange. The European data format for bio-signals (EDF) is a widely accepted standard.

This paper proposes modifications to overcome some limitations of EDF. In addition to 16-bit

integer numbers, various other data types including floating point numbers and strings are

supported. Moreover, the Y2K problem is addressed and an automatic overflow detection of

the data is incorporated. Data can be stored in time-based as well as in channel-based order.

Some preparatory measures for a quality management system in recording scientific data in

the clinical routine are implemented, e.g. fields for the identification of the equipment

provider, serial number, lab, and technician included. Since the modifications are not possible

within the present definition of EDF, the proposed format is named "A General Data format

for Biosignals" (GDF).

1. INTRODUCTION

Biosignals are currently stored in a wide variety of mostly proprietary data-formats. It is,

therefore, difficult for research groups to exchange data. Presently, the European Data Format

(EDF, Kemp et al. 1992) is the most widely used format, which overcomes this problem.

Software1 for displaying EDF data is available. It is also used for interdisciplinary research

projects like SIESTA (Dorffner 1998) where it is used to exchange data between "engineers"

and "clinicians". This works well for raw data (e.g. digitized biosignals) whereas the transfer

1 http://www.hsr.nl/edf/edf_sftw.htm

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 4

of pre-processed data (e.g. Fourier coefficients) is hampered by the fact that EDF supports

only one data type, namely, 2 byte signed integer. Pre-processed data, however, is usually

available in floating point numbers. The restriction to 2 byte integers requires the conversion

of the floating point numbers which introduces problems including the need for a proper

mapping of the floating point numbers to integer (linear, logarithmic) and the definition of

scaling coefficients for physical and digital minimum and maximum.

Kemp et al. (1998) proposes a method to store floating-point numbers in the EDF in int16

format. The drawback of this solution is that important information might be lost due to the

conversion. Other limitations of EDF are that the year information is stored only in 2 digits

(Y2K problem) and that no automatic overflow detection is possible (Schloegl et al. 1999).

Furthermore, in multi-centre studies the information about the recording devices used is not

available because it is not supported by the data format. This information is also required for

quality management and should, therefore, be incorporated into the data format specification.

The Info2000 server2 gives a good survey of available data exchange standards. Alternatives

to EDF are EBS3 and the "File Exchange Format for vital signs"4 from CEN/TC251 or some

scientific data formats like HDF5, netCDF6 and CDF7. Recently, a new document format

2 http://www2.echo.lu/oii/en/science.html

3 http://www.ipb.uni-erlangen.de/biokybernetik/ebsspec.html

4 ftp://sigftp.cs.tut.fi/pub/eeg-data/standards/cenf060.zip

5 http://hdf.ncsa.uiuc.edu/

6 http://www.unidata.ucar.edu/packages/netcdf/

7 http://nssdc.gsfc.nasa.gov/cdf/

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 5

(XML)8 has been discussed. Medical data are also considered by the ACR-NEMA/DICOM9

standard.

The EBS is a standard for biosignals, which is quite different to EDF. EBS uses ASCII for

storing floating point numbers and allows only one sampling rate for all channels. CEN

(1995) is designed to provide a normative standard for the exchange of physiological

measurement date between computer systems. Although, currently there is only a draft

version (V0.60) from CEN/TC251 available, it can be expected that the specification of CEN

will be vast. CEN addresses the presentation and application of vital signs (layer 6 and 7 in

the ISO/OSI reference model). The draft of 1997 considers also the data representation on

lower levels, but uses e.g. ASCII for storing floating point numbers. The features offered by

this standard will be beyond the needs for the exchange of biosignal data. XML is a document

description language, which does not support numeric data types. Hence, it is not appropriate

for storing biosignal data. Scientific data formats, such as HDF, netCDF and CDF support all

common data types, but they are mainly used in the fields of meteorology, geography and

climate research. Currently, there is no convention that defines the use of biosignals within

those formats. DICOM is a standard for medical images and does not consider one-

dimensional data like biosignals.

Many of these formats are promising alternatives. However, it requires a lot of development

to adapt one of these formats for the purpose of an interdisciplinary, multi-centre research

8 http://www.mcis.duke.edu/standards/HL7/sigs/sgml/index.html

9 http://www.xray.hmc.psu.edu/dicom/dicom_home.html

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 6

project. For such research projects, a format definition for transporting measurement data

from one lab to another is sufficient (transport-layer4 in the ISO/OSI reference model). A

modification of the "simple" EDF format seems to be a comparatively simple solution. The

most important drawbacks of EDF are (i) all data must be stored in integer16 format, (ii) dates

use a two-digit year, and (iii) overflow detection can not be automated.

From a discussion with Bob Kemp and Peter Jacobi on the - recently founded - independent

EDF mailinglist10, it can be concluded that there is no possibility to overcome these

limitations by introducing a revised EDF specification. In this paper we propose GDF, an

extension to EDF, which overcomes most of the limitations of EDF.

2. METHOD AND DATA

The following limitations of EDF were identified and are addressed in the proposed

modifications:

1) The scaling coefficients, e.g. the physical minimum and maximum are stored in 8*ASCII

fields. This can lead to a rounding error or resolution up to 9%, e.g. the difference

between -1.0e-09 and -1.1e-09 is 1e-10 that is 9-10% of the actual value. Again for raw

data this is not a real problem because the dimension can be stored in the "units" field of

the EDF header. But in case of pre-processed data, when these scaling coefficients are

generated automatically, this may cause problems.

10 Topic: "Limitations of EDF and suggestions for improving EDF." http://groups.yahoo.com/group/EDF, Digest

[4]-[9], Nov 7th-18th, 1998

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 7

2) EDF uses only one data type (integer with 16bit) but today, already 22bit Analogue-

Digital Converters (ADC) are available. Besides, pre-processed data - usually floating

point numbers - can not be stored without loss of accuracy.

3) Some extensions to EDF have already been published, e.g. for storing floating point

numbers (Kemp et al. 1998) and annotations (Velde 1998) but have not been incorporated

in the specification.

4) Automatic overflow detection is not possible with the current standard because the digital

minimum and maximum “should correspond to these digital extremes", but there is no

"must" for doing it. Without standardising it is impossible to perform automatic overflow

detection.

5) Year2000 - problem (Y2K)

The header information uses only two digits for storing the year information. Today, more

and more institutions, like hospitals and companies, are concerned about the millenium

problem and a new data format should provide a solution for this problem.

6) The blocksize is limited to 61,440 bytes (31,220 samples) and some minor inconsistencies

in the specification exist. E.g. the specification states "the duration of one data record …

is recommended not to exceed 61,440 bytes". In the EDF FAQ 11Q11 the excess of this

size is classified as an "error" in EDF files. It is not clear whether a "recommendation" is a

weak or a strict criterion.

7) EDF provides no support for quality management of recorded data.

8) Event information can not be stored in EDF. A modification of EDF (EDF+) supports the

use of event information, but the decoding of the event information requires to read the

whole data file. In many cases, this is not practical.

11 http://www.medfac.leidenuniv.nl/neurology/knf/kemp/edf/edf_faq.htm

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 8

The specification is shown below. One goal of the specification was to keep it as similar as

possible to the EDF specification. According to the specification of GDF, we adapted the

"EDF toolbox for Matlab" and the "EDF Viewer for Matlab"12 in order to show the feasibility

of its implementation.

3. RESULTS

Specification

1. Data is stored in little endian format.

2. The number of data records is of type int64 (8byte); the duration of data records in

seconds is a rational number consisting of the numerator (uint32) and a denominator

(uint32) (together 8byte). The number of signals is of type uint32 (4byte) and the size and

position of the variables has not changed, only its type definition has changed.

3. The "number of samples per record" field is changed from type 8*ASCII*NS to uint32

(4bytes)*NS. The other 4*NS bytes are used for storing the type information (see next

point).

4. Various data types are defined (see Table 1). The type information is stored in the variable

header as uint32 * NS (NS = number of channels) after "number of samples per record".

Each channel in each record is filled up to a full number of bytes. E.g. one channel of type

"bit1" with 9 samples per record gives 9bits=1.125bytes per record which requires 2

bytes. Two such channels need 4 bytes.

12 http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/eeg/edf.html

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 9

[Table 1 around here]

5. Physical minimum and maximum are stored as IEEE floating point numbers with double

precision (8bytes) instead of char[8] (=8*ASCII).

6. Digital minimum and maximum are of type int64.

7. Furthermore, for all integer types (1-7) the value of digital minimum and maximum must

indicate the overflow (saturation) value. In case of floating point numbers, an overflow

and underflow is indicated by the value "Infinity" and "-Infinity", respectively. For the

character data type (0) no overflow is defined.

8. The recording date and time is changed for Y2K compliance. The format

"YYYYMMDDhhmmsscc" will be used. This format needs 16 bytes as in EDF and is at

the same position (bytes 169-184). All digits must be numbers ranging from '0' to '9'

(ASCII(48) to ASCII(57)). Separating characters are must not be used. YYYY is the

4digit year, MM is the two digit month from 01 to 12, DD is the day from 01 to 31, hh

hours from 00 to 23, mm minutes 00 to 59, ss are seconds from 00 to 59, and cc are 0.01s

from 00 to 99. If cc is unspecified two blanks (ASCII 32) must be used.

9. The Version field is of type char[8] and is at the beginning of the file. The first three

letters are always 'GDF'. During the testing period of GDF writing functions, 'GDF 0.11'

should be used. It is planned that later when routines are generating valid GDF the field

will contain "GDF 1.00"

10. The length of the header is defined in the field "number of bytes in header record". The

number of bytes must be at least 256*(1+NS).

11. The table of events is stored after the data section. The starting position of the event table

(event table position ETP) can be calculated in the following way.

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 10

 ETP = Length_of_header + number_of_blocks * bytes_per_block. (1)

In case ETP is the filesize or large, no eventtable is included. The specification for the

event table is shown in Table 2. The value of the first byte (mode of event table) can be

“1” or “3”. A value of “1” indicates that the event table contains event-type and position,

only. A value of “3” indicates that the position, type, associated channel and the duration

of the event is stored. The next three bytes are 24bit-integer value indicating the sampling

rate associated with the event position and duration. Dividing the event position (and

duration) by this value yields the position (duration) in seconds. The next 4 bytes store the

number of events in a 32-bit integer number. Then the position of all events is saved in

32bit integers, followed by the event type as 16-bit integers. If the mode of the event-table

has value 3, it follows the channel number associated with each event (a value of 0

indicates the event refers to all channels) and the duration of each event.

[Table 2 around here]

The encoding of the various event types is defined in Table 3.

[Table 3 around here]

Recommendation and Remarks:

It is recommended to have only one data type (e.g. int16, or float) in one GDF file. Current

software implementation does support only GDF files with one data format.

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 11

The physical and digital minimum and maximum values are usually not used for the type 0

(char), 16 (float32) and 17 (float64). "Infinity" and "-infinity" can indicate the overflow and

underflow of floating point numbers, respectively in the data section. In char-type channels no

overflow detection is possible. The difference between char and int8 is that char is interpreted

as character while int8 is assumed to contain numbers. If no scaling is needed, the maxima

and minima can be set to 1 and 0, respectively.

The "equipment provider identification" (EP-key), "laboratory identification" (Lab-key) and

the "technician identification" (T-key) fields might be useful for a posterior quality control.

The default values are always 0x2020202020202020 (i.e. blank characters). It is planned that

providers of recording equipment can get a unique EP-key and laboratories (e.g. for sleep) a

unique Lab-key. The technician identification should indicate the responsible technician that

performed the recording. It can be defined by each laboratory and must be unique. In case an

EP-key is used, the first 12 bytes of the "reserved" field can be used to store the serial number

of the equipment. These features can be used to certify the data generation according to the

quality management standard ISO 9000.

Programming languages without support for 8 byte integer (int64 and uint64) should read and

write two numbers of type int32. The first one (int32L) contains the actual number the second

one (int32H) is usually (int32) 0 = 0x00000000, in case of a negative number it is (int32) (-1)

= 0xFFFFFFFF.

The format definition of GDF is nearly as simple as the definition of EDF, as can be seen in

Table 2. The numeric data in the header is stored using a numeric data format instead of

ASCII. Various data types are possible in the data section. The big advantage of GDF is that

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 12

pre-processed data - usually in float format - can be stored without loss of accuracy and it is

not necessary to consider proper formatting of the scaling coefficient (and the loss of

accuracy due to rounding effects at data conversion). The same precision that is used

internally in computers can be used in GDF.

The proposed format specification was successfully implemented in Matlab®. The software

implementation required only minor changes to upgrade from EDF to GDF. Several

conversions from strings to numbers were replaced by using the appropriate type within the

"fread"-function. The major change was considering the size of the different data types. The

software is available "online" (see "EDF/GDF toolbox for Matlab" and "EDF/GDF Viewer

for Matlab"13) and is "free" under the terms of the "Free Software Foundation"14. Hence, it is

published under the term of the "General Public License" (GPL).

The event table is defined only, if the number of records is known. Consequently, no

eventtable can be stored in an ongoing recording, because the number of records is usually

not known (NRec == -1). The eventtable can be only written to the GDF file, once the

recording length (i.e. data size, number of blocks) is known.

4. DISCUSSION AND CONCLUSION

The present definition of GDF allows up to 2^32 (ca. 4e+9) channels, up to 2^63 (ca. 9e+18)

data records, and up to 2^32 (ca. 4e+9) samples per channel and per record. This makes it

possible to store the data in an arbitrary order. It is possible to use either one record, where

13 http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/eeg/gdf/

14 http://www.fsf.org/

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 13

the data are stored in channel-based order, or to define one block as one sample. In latter case

the data is stored in time-based order. This is possible because the length of one record is

defined as a rational number, so the duration can be one over the sampling rate (1/Fs). But

also the EDF recommendation can be used where "the duration is a whole number of

seconds" and the number of samples of one record "… must not exceed 61440 bytes".

GDF overcomes many limitations of the EDF format and includes several new features. The

Y2K problem is solved using a 4-digit number for the year. The rounding errors in the header

information as well as in the data section do not matter anymore, due to the use of

ASCII/integer have been removed. Various data types are supported and automatic overflow

detection is possible, because of the strict definition of the digital minimum and maximum

values. Moreover, the support of event information is included.

Several measures for the implementation of a quality management system are included in this

definition. The patient identification and the recording time were already defined in EDF. In

GDF it is possible to store identification and serial number of the equipment, the laboratory

and the responsible technician. Possible overflow and saturation effects of the amplifier and

the ADC are described by the extreme values. Parameters that influence the data quality can

be documented, which is a prerequisite for a quality management system of scientific data

recorded within the clinical routine.

All features of EDF are implemented in GDF. It can be said that GDF is (upwards)

compatible to EDF in the sense that every EDF file can be converted to GDF without loss of

any information. Overall, the changes to the EDF format are relatively small. Routines for

reading and writing of GDF files in Octave and Matlab are implemented in the open source

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 14

package BIOSIG (Schlögl, 2003-2004). It can be assumed, implementing these routines in

other programming languages is not too difficult.

5. ACKNOWLEDGMENT

The SIESTA project Biomed-2 BMH4-CT97-2040 was funded by the European Commission,

DG XII and by the Austrian Ministry for Science and Technology (BMWF) GZ 650 133/2-

VIII/6/97. We thank Peter Jacobi for their contribution to the discussion and Sabine Ferstl for

the proofreading.

6. REFERENCES

[1] CEN (1995) Vital signs Information Representation Version 1.2, Interim Report -

CEN/TC251/WG5/N95-3, European Committee for Standardisation, Brussels.

[2] Dorffner G. (1998): Towards a new standard of modeling sleep based on polysomnograms

- the SIESTA project. Proc. ECCN 98, Ljubljana, Electroenceph. clin. Neurophysiol.

106(Suppl. 1001): 28

[3] B. Kemp, A. Värri, A.C. Rosa, K.D. Nielsen and J. Gade (1992): A simple format for

exchange of digitized polygraphic recordings. Electroenceph. clin. Neurophysiol., 82: 391-

393.

[4] Kemp B, Penzel T, Värri AO, Sykacek P, Roberts SJ, Nielsen KD. (1998): EDF: a simple

format for graphical analysis results from polygraphic SIESTA recordings. J Sleep Research

7, suppl. 2, 132.

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 15

[5] A. Schlögl, B. Kemp, T. Penzel, D. Kunz, S.-L. Himanen, A. Värri, G. Dorffner, G.

Pfurtscheller (1998): Quality Control of polysomnographic Sleep Data by Histogram and

Entropy Analysis. Electroenceph. clin. Neurophysiol. submitted.

[6] van de Velde M, van den Berg-Lenssen MM, van Boxtel GJ, Cluitmans PJ, Kemp B,

Gade J, Thomsen CE, Varri A. (1998): Digital archival and exchange of events in a simple

format for polygraphic recordings with application in event related potential studies.

Electroencephalogr Clin Neurophysiol. 106(6):547-51.

[7] A.Schlögl, The BIOSIG project. 2003-2004. online available at: http://biosig.sf.net/.

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 16

Table 1: Data types, memory requirement, coding scheme.

channel
type

size per sample
[bytes]

code

char 1 0
int8 1 1
uint8 1 2
int16 2 3
uint16 2 4
int32 4 5
uint32 4 6
int64 8 7

float32 4 16
float64 8 17

bitN N/8 255+N
ubitN N/8 511+N
examples:

Boolean
0=false,
1=true

1/8 256

ubit1 1/8 512
bit12 3/2 267
bit24 3 279

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 17

Table 2: Overview of the header definition

FIXED HEADER remark Position
Start:End

[bytes]

Bytes Type

Version identification (GDF 0.12) 0 8 char[8]
Patient identification (P-id) 8 80 char[80]
Recording identification (R-id) 88 80 char[80]
Startdate and -time of recording
(YYYYMMDDhhmmsscc)

 168 16 char[16]

number of bytes in header record 184 8 int64
Equipment Provider identification (EP-id) NEW 192 8 uint64
Laboratory Identification (Lab id) NEW 200 8 uint64
Technician Identification (T-id) NEW 208 8 uint64
reserved / serial number 216 20 char
number of data records (-1 if unknown) 236 8 int64
Duration of a data record, as a rational
number in seconds (first the numerator,
secondly the denominator.

 244 8 uint32[2]

NS: number of signals (channels) 252 4 uint32

VARIABLE HEADER 256
Label 256 NS*16 char[16]*NS
Transducer type 256+16*NS NS*80 char[80]*NS
Physical dimension 256+96*NS NS*8 char[8]*NS
Physical minimum 256+104*NS NS*8 float64*NS
Physical maximum " NS*8 float64*NS
digital minimum " NS*8 int64
digital maximum " NS*8 int64
Pre-filtering " NS*80 char[80]*NS
nr: number of samples in each record size only

4*NS
" NS*4 uint32*NS

Channel TYPE NEW " NS*4 uint32*NS
reserved " NS*32 char[32]*NS

DATA RECORD 256*(NS+1)
nr samples from channel [1] of TYPE[1] Type[1]
nr samples from channel [2] of TYPE[2] Type[2]
nr samples from channel [3] of TYPE[3] Type[3]

nr samples from channel [NS] of
TYPE[NS]

 Type[NS]

EVENT TABLE NEW ETP
mode of event table
can be 1 or 3.

 ETP + 0 1 uint8

Samplerate associated with Event
positions.

 ETP + 1 3 uint8[3]

Number of events N ETP + 4 4 uint32
Position [in samples] ETP + 8 N*4 uint32
Type ETP + 8+N*4 N*2 uint16
Channel [optional] Only if

mode is 3
ETP + 8+N*6 N*2 uint16

Duration [in samples, optional] Only if
mode is 3

ETP + 8+N*8 N*4 uint32

Technical Report GDF V1.25

29-Mar-05 Schlögl et al. 18

Table 3: Table of event codes. The most recent version of this table will be available from

biosig/t200/eventcodes.txt [7].

Table of event codes.
This file is part of the biosig project http://biosig.sf.net/
Copyright (C) 2004 Alois Schloegl <a.schloegl@ieee.org>
$Revision: 1.3 $
$Id: eventcodes.txt,v 1.3 2004/06/17 17:08:54 schloegl Exp $

table of event codes: lines starting with # are omitted
add 0x8000 to indicate end of event

0x010_ EEG artifacts
0x0101 artifact:EOG
0x0102 artifact:ECG
0x0103 artifact:EMG/Muscle
0x0104 artifact:Movement
0x0105 artifact:Failing Electrode
0x0106 artifact:Sweat
0x0107 artifact:50/60 Hz mains interference
0x0108 artifact:breathing
0x0109 artifact:pulse
0x011_ EEG patterns
0x0111 eeg:Sleep spindles
0x0112 eeg:K-complexes
0x0113 eeg:Saw-tooth waves
0x03__ Trigger, cues, classlabels,
0x0300 Trigger, start of Trial (unspecific)
0x0301 Left - cue onset (BCI experiment)
0x0302 Right - cue onset (BCI experiment)
0x0303 Foot - cue onset (BCI experiment)
0x0304 Tongue - cue onset (BCI experiment)
0x0306 Down - cue onset (BCI experiment)
0x030C Up - cue onset (BCI experiment)
0x030D Feedback (continuous) - onset (BCI experiment)
0x030E Feedback (discrete) - onset (BCI experiment)
0x0311 Beep (accustic stimulus, BCI experiment)
0x0312 Cross on screen (BCI experiment)
0x03ff Rejection of whole trial
0x040_ Sleep-related Respiratory Events
0x0401 Obstructive Apnea/Hypopnea Event (OAHE)
0x0402 Respiratory Effort Related Arousal (RERA)
0x0403 Central Apnea/Hypopnea Event (CAHE)
0x0404 Cheyne-Stokes Breathing (CSB)
0x0405 Sleep Hypoventilation
0x041_ Sleep stages according to Rechtschaffen&Kales
0x0410 Wake
0x0411 Stage 1
0x0412 Stage 2
0x0413 Stage 3
0x0414 Stage 4
0x0415 REM
0x050_ ECG events
0x0501 ecg:Fiducial point of QRS complex
0x0502 ecg:P-wave
0x0503 ecg:Q-point
0x0504 ecg:R-point
0x0505 ecg:S-point
0x0506 ecg:T-point
0x0507 ecg:U-wave
0x____ OTHER
0x0000 No event

