SUNet the Stanford University Network

A Presentation for Networkers '99 on the Development of Stanford's Backbone Network

Ron Roberts <rgr@stanford.edu> Wayne Sung <wsung@stanford.edu>

Session 901

1116_06F9_c1

A Brief Overview of SUNet

- Originally a research project
 - Begun by EE, CS and Medical grad students
- Networking staff assembled in 1983
 - As a unit of Center for Information Technology
- Centrally funded since 1984
 - Board of Trustees made original funding grant
- Cable plant project in 1985
- NS responsible for operations since 1986

Backbone Technology

- 3Mb Ethernet from Xerox PARC, 1979
- Large bridged Ethernet—DEC bridges, 1986
- Campus-wide FDDI ring, 1990
- Multiple FDDI rings from Cisco 7513, 1995
- The "cube" backbone —6 7513 routers, 1998
 - 24 switched 100Fx router interconnects
 - Dual OC3 POS to border GSR router
 - OC12 POS to CalREN-2
- Initial fiber install in 1985—12 MM
- Latest fiber trunks: 96 MM/48 SM

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c1

Cable Types

- Underground coax (1/2 inch "hardline")
 - 3-Mb Ethernet used 75-ohm (CATV) cable
 - 50-ohm cable with custom built N-connectors
- Fiber optic cables
 - First cross-campus fiber, 1985, was 12 MM
 - Interhub went to 36 MM, buildings 12 MM
 - Now most buildings get 24MM/12 SM
 - Interhub runs get 48/24 or even 96/48

In-Building Wiring

- Complete spectrum down to 3-pair RJ-11
- · New buildings have wiring closets
 - At least 2 Cat-5 network jacks + 2 phone jacks
 - Plan to experiment with fiber to the desktop
- Centrally funded wiring improvement
 - Incremental project approved in 1997
 - Requires matching local funds for activation
- Still lots of 10Base5 and 10Base2

1116_06F9_c1

Routers aka Gateways

- First "gateway" was PDP-11 based
 - Had homebrew 3Mb Ethernet interfaces
- CS had multibus-based 68000 SUN-1 CPU
 - Installed in "the blue box" multibus chassis
 - Linear power supply made it quite heavy!
 - 3-Mb multibus Ethernet boards from PARC
 - Later 10-Mb boards commercially available
 - Typical router had 4 or 5 interfaces

Internet Access

- Stanford was a node on original ARPAnet
 - Computer Science had IMP-connected hosts
- Stanford hosted BARRNet regional network
 - NSFNET node for Northern California
 - BARRNet bought by BBN in 1994
 - Continued as main commodity connection
- Stanford is charter member of CalREN-2
 - Part of main 4-node Bay Area SONET ring

Research Era Topology (Pre-SUNet)

- Gateways were used between segments
 - A gateway crash would segment the network
 - No bridges, few repeaters
 - But 3-Mb segments could be quite long
- Used the PUP protocol from PARC
 - Routing with GWINFO
 - CS designed MEIS for TOPS-20 Ethernet
 - Access over Ethernet to ARPAnet hosts

1116_06F9_c1

Research Era Access (Pre-SUNet)

- Multibus Serial I/O cards designed in CS
 - Built TIPs with same CPU board as gateways
 - Allowed terminals to access hosts over the net
- LOTS (Low Overhead TimeSharing)
 - Several TOPS-20 systems on Ethernet
 - Multiple terminal clusters with TIPs on net
 - Provided ubiquitous student computer access

Router Development

- CS/EE joint project to route TCP/IP
 - Goal to connect Stanford net to ARPAnet
 - 68000 code rewritten
- PUP network numbers mapped into 36/8
 - Second octet was subnet
 - Subnet mask became 255.255.0.0
- Decided they had a good product
 - Left to build a company called Cisco Systems

1116_06F9_c1

The SUNet Project

- Board of Trustees approved in 1984
 - To Center for Information Technology (CIT)
 - The Interbuilding Signal System—cable TV
- Prototype (proof of concept)
 - Spiralnet 1/2-inch 75-ohm cable around campus
 - Spare cables were quickly claimed by EE/CS researchers for 3-Mb Ethernet

SUNet Design Parameters

- TCP/IP only supported backbone protocol
- Networking supports to building entrance
 - Local Network Administrators in buildings
 - Network consultants assist LANs
- Other protocols running but unsupporte
 - AppleTalk tunneled over IP (K-box, Fastpaths)
 - Medical Center routes IPX/AppleTalk
 - DECNET (user-supported) almost gone

1116 06F9 c1

SUNet Addressing and DNS

- NS to manage IP addresses, names centrally
- NetDB to assign addresses, generate DNS
 - Stanford.edu is flat domain, no sub-domains
 - Distributed access to NetDB for LANs
- Transition from 36/8 to 171.64/14
 - A CIDR developer, Vince Fuller, at BARRNet
 - Before variable subnets, needed more addresses
 - Will return 36/8 to ARIN by July 2000

SUNet Cable Project 1985

- Original design: two-way cable TV system
 - To provide service to all campus buildings
 - Campus computer center wanted remote terminal access from across campus
- 50-ohm underground cables
 - Added by NS just before bid (after design)
 - Two cables paralleling most cable-TV trunks

1116_06F9_c1

50-ohm Underground Cables

Networking Systems, CNS, ITSS, Stanford University

Bridged Ethernet Backbone

- After cable project completed in 1985
 - Began using the new DEC LanBridge 100
- Multiple loops—relied on spanning tree
- Provided single backbone for all routers
 - But latency from multiple bridge hops
 - Originally called LinkNet, later the EtherSpine
- Continued to use 68000 multibus routers
 - Stanford hardware with software from Cisco

1116_06F9_c1

9

EtherSpine Enhancement

- Equipment donation from Digital (DEC)
 - FDDI Concentrators
 - Including single-mode DAS backbone modules
 - FDDI—Ethernet bridges
 - Single port and three-port models
- Overlayed bridged Ethernet with FDDI ring
 - Increased speed/capacity
 - Decreased hop count

Router Consolidation

- Move to FDDI backbone—early 1990s
 - Built with AGS+ routers
 - Etherspine continued as backup "safety net"
 - More subnets from each router
 - Fiber feed using 10FL to building bridge
 - Network nodes with better power and access
- Could invest in UPS and air conditioning
- Ever-increasing need for fiber plant

1116_06F9_c1

Multiple FDDI Rings

- Ring load monitoring showed peaks >60%
- Considered/tested DEC giga-switch
 - Worked well, but concern over multicast limits
- Decided on routed solution
 - Using 7513 with multiple FIPs
 - Backed up by AGS+ routers with dual FDDIs
 - Ethernet back-up net partitioned as well

IGP Transition

- Began using IGRP as IGP in late 1980s
 - GWINFO kept breaking in each Cisco IOS release
- OSPF was deployed by BARRNet
 - After initial debugging, seemed to work well
- Wanted quick failover and variable subnets
 - Computer Science moving into Gates building
 - To move out of 36/8, wanted efficient subnets
 - Problems with failover to Etherspine

1116_06F9_c1

Conversion to OSPF as IGP

- Done during Christmas break in 1995
- Accomplished in stages
 - Single ring change during maintenance window
 - Would run OSPF and IGRP simultaneously
 - Then change the "distance" so OSPF preferred
 - If problems could back out in reverse
 - Some strangenesses since IGRP using route table
- Worked well to survive FDDI problems
 - Transition to Etherspine usually transparent

Networking Systems, CNS, ITSS, Stanford University

Network Components in 1997

- 49 routers from Cisco
 - **3 7513, 2 7507, 6 7000, 4 7206, 5 4700**
 - **7 2501, 1 2514, 1 3000**
 - And still 9 AGS+, 10 AGS, 1 CGS
- FDDI concentrators from DEC
- FastEthernet switches: Catalyst® 5000/5500
- ATM switches: LS1010

1116 06F9 c1

SUNet Statistics 970914

- From NetDB, the network database
 - Generates DNS and BootP tables
- 442 subnets defined, 342 active
- 327 physical subnets
- 240 main campus, 87 Medical Center
- 33866 hosts, 35445 addresses
- 24749 campus hosts, 9117 Medical Center

SUNet Statistics

- From NetDB on 1-Jun-99
 - 520 subnets defined, 420 active
 - 48712 hosts, 50323 addresses
- Statistics on 981117
 - 508 subnets defined, 378 active
 - 981117 was: 44034 hosts, 45331 addresses
 - 970914 was: 33866 hosts, 35445 addresses

AGS+ Routers in the FDDI/Ethernet Era

Networking Systems, CNS, ITSS, Stanford University

1116_06F9_c1

Next Generation Driving Factors

- Migration from Mainframe to distributed computing model for Admin systems
- High-speed (fast Ethernet) user networks
- Higher bandwidth for image transfer, etc.
- Increased reliability as well as capacity
- Old technology no longer supported (AGS)
- Internet-2 and CalREN-2; NSF grant

Next Generation Choices

- ATM seemed likely as late as 1996
- New routers were being ordered with ATM
- New Computer Science building provided early implementation experience for both LANE and FastEthernet VLAN trunking
- Sought advice from Cisco Consulting Engineers as part of partnership

Concerns with ATM Design

- Redundancy vs. Interface expense
 - ATM interfaces more expensive, less dense
- Configuration complexity
 - Need to build VCs as well as IP nets
- Total throughput
 - Trunks between switches limit total bandwidth
- Staff education on a new technology
 - Many staff years of Ethernet experience

1116_06F9_c1

N-Dimensional Mesh Network

- Proposed by Cisco's Roger Beeman
- Designed to have well defined expansion
- Multiple paths provide aggregate capacity
- Significant redundancy
 - Makes individual components less critical
- Networks on corners

N-Dimensional Mesh Routers

- Smaller dimensions can be visualized
 - Cube (3D) and hyper-cube (4D)
- Multiple ways to configure routers
 - 2-way connected routers on edges
 - 4-way connected routers on faces
 - 8-way connected routers in cubes

1116 06F9 c1

Router Connections

- 4-way connected routers on faces
 - 3-D (cube): 8 networks, 6 routers
 - 4-D (hyper-cube): 16 networks, 24 routers
 - 5-D: 32 networks, 80 routers
- 8-way connected routers in cubes
 - 4-D (hyper-cube): 16 networks, 8 routers

The SUNet Choice: A Cube

- Attracted by the combination of redundancy and expandable capacity
- Purchased 6 7513s
 - 4-VIP2s with 100FX port adapter each
 - Added 5-port 10FL port adapters on 2 VIPs
 - For legacy Ethernet and services
 - Additional VIPs for FE hotspot connections

1116 06F9 c1

SUNet Cube Facilities

- Chose to locate in four facilities
 - Sweet, Press, Forsythe and Pine
 - Spaces under organizational control, 7x24 access
 - · Already fiber capacity, UPS and air conditioning
 - Expectation of generator power backup
 - Exists in Press and Forsythe
 - · Project to install for Pine by late 1999
 - Sweet's external connection capability installed
 - Generator itself in approval process
 - Mainly aesthetic concerns from University Architect

SUNet Cube Corners

- Using Catalyst 5000 for the corners
- First purchased 4 Catalyst 5000s
 - With two 12 port 100FX boards each
 - Each was two corners (using VLANs)
 - One VLAN per 100Fx board
- now using 8 Catalyst 5505s
 - Each with one 100Fx blade
 - Some with 10FL for management net

1116_06F9_c1

SUNet Phase 4 Deployment

- Core1...Core6 installed Fall 1997
- Moved student residence network and "hotspots" during Christmas quarter break
- First deployed Jenkins, MedECH, Pine and Sweet-RSM (RTF delayed by construction)
- Completion target was end of Summer 1998
- Actually complete in November 1998

Connections to the Cube

- User routers connected to at least two corner networks, usually opposite corners
- Server nets directly connected to two backbone routers using HSRP <or>
- Server router directly connected to two opposite face backbone routers
- Three "hotspots"—ACE servers, Admin servers and Off-campus/Internet

User Router Choices

- Planned to serve multiple networks per router interface using VLANs and Catalysts
- Instead using new router module (RSM) in Catalyst 5500, feeding Catalyst 5000s
- All networks moved off of AGS+ routers
- Limited use of Catalyst 3200
 - Replaces AGS "departmental routers"

1116_06F9_c1

Catalyst 5500 w/RSM

- Dual power supplies and switch controllers
- 9 slots for 12x100Fx <or> 12x10FL <or> 24x10/100Tx
- New subnets easy using VLANs
- VLAN trunks used to remote switches
- Multiple RSMs can be installed
 - For reliability or load sharing reasons

5500 w/RSM as a User Router

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c1

Dual User Routers

- Some organizations want more reliability
 - Graduate School of Business (GSB)
 - University Libraries (SUL)
- Dual Catalyst/RSM configurations
 - Using HSRP for every network
 - Each has one corner connect plus interconnect
- They bought their own hardware
 - To be installed and configured by Networking

Networking Systems, CNS, ITSS, Stanford University

Routing Configuration

- Using OSPF
 - Most routers in area 0, limited other areas
 - · Only a handful of off-campus connections
 - Still a small number of 25xx routers in use
 - 171.64.0.0/21 reserved for backbone use
- BGP with CalREN-2 and GTEI
 - Soon SLAC and PAIX as well
- OSPF-OSPF redistribute in Med-gw
 - Between 171.65 and 171.64

1116_06F9_c1

OSPF on User Routers

- Set high OSPF cost on corner connections
 - To keep core from routing across
- Currently doing "redistribute connected"
 - For convenience
 - Plus no other random peers
 - May want to transition to "authentication"
 - No address summarization on type External routes
 - · Addresses had been too random until renumbering

Networking Systems, CNS, ITSS, Stanford University

OSPF-OSPF Boundary

- Actually doing OSPF-OSPF redistribution
 - 171.65 addresses in Med Center
 - But still some legacy 36/8 addresses in use
 - In Med-gateway, on border with Med Center
 - Hospital networking is separate group
 - But Medical School is supported by SUNet
 - Former MedNet group—now Med School only
 - Share configuration of Med School equipment

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c1

A Variety of Legacy Technologies in Pine Hall

Networking Systems, CNS, ITSS, Stanford University

DEC **FDDI** Concentrators (Still in Use!)

Router

Med-Gateway 7206

> Pine Hall **Evolution**

Early Multicast

- Computer Science
 - Championed by grad student, Steve Deering
 - Grad students set up MBone DVMRP routers
- Later one added one in his dorm room
- Decided we should have one SUNet tunnel
 - Requested BARRNet to install in their core
 - NS ran SUNet end of tunnel
 - mrouted/DVMRP tunnels for MBONE on campus

Multicast

- Originally activated used PIM dense mode
 - Worked in 11.0 AGS routers (if no loops)
 - Not configured in the cube backbone; Instead deployed a dedicated multicast network connected to each user router (5500 w/RSM)
- Expected multicast users
 - SCPD (SITN) Engineering class broadcast
 - Library—supplement class videotape checkout
 - Conferencing with remote sites

Multicast '99

- Transitioned to multicast from CalREN-2
- 7507 as dedicated multicast router
 - Via OC-3 POS from border GSR (I2-gw)
- Still separate 10-Mb multicast backbone
 - Still using static Mroutes, PIM Sparse-Dense
- Border GSR doing MBGP/MSDP (12.0S)
- Traffic from both vBNS and Abilene
 - vBNS is main feed to AS10888 (old Mbone)

116 06E9 c1

Transition to 12

- Added Mcast-gw (7507) direct POS to GSR
- Moved 192.168.224.1 address
 - From mb-tunnel-gw (AGS) to mcast-gw (7507)
 - Still a 10-Mb Ethernet
- Turned off mrouted tunnel to GTEI

Network Monitoring

- Stanford Networking's kiss of death:
 - DEC MSU/Remedy Health Profiler
 - Kaspia/IBM Netview 6000??
- NAT/Tech Elite: Ethermeters/RMON
- HOWIS, a Perl script, is still main tool
- And What's Up
- Recent Distributed Systems Monitoring project now provides a WWW view

1116_06F9_c1

Traffic/Usage Data

- Have been trying Cisco's Netflow Export
 - Netflow Collector looks very promising
 - Immense amounts of data!!
 - Installing collector server(s) per site
 - Approx. 2 days of uncompressed 5-min. data files
 - Archive data w/tar and gzip to central system
- Other products being examined
 - Other vendors' Netflow analysis software
 - Other data gathering hardware

Networking Systems, CNS, ITSS, Stanford University

The Perils of SNMP

- Traffic analysis showed >30% was SNMP
- Have installed a separate management net
 - Using RFC1918 ("private") addressing
- Trying some alternate tools
 - Expect script for ARP collection
- Would like "SNMP proxy" system
 - Collect once
 - Other tools then pointed at proxy

1116_06F9_c1

AppleTalk Migration

- Shiva no longer supporting Fastpath
 - Hardware is aging as well
- Recycled AGS+ routers as AppleTalk net connected via additional 5500 10Mb ports
- Now two 75xx routers w/100Fx ISL trunks
- Not planning to migrate easy NetDB support for new zones—hand configuration
- Policy is "no new zones"

So, What's Next?

- Gigabit Ethernet was due in '98, now '99
 - Expected to be mainly a backbone technology
 - Still, some users will demand it...
- Projects to enhance building wiring ongoing
- Fast Ethernet to the desktop
 - Now very cost effective—departments buying
 - Switches now the cost of repeaters just 18 months ago

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c

More Next...

- More bandwidth to off-campus sites
 - Hopkins Marine Station in Pacific Grove
 - Overseas Studies centers
 - Europe, Japan, Central America
 - Connect through local Internet-2 affiliates
- QoS testbed with CalREN-2, Internet2
- More diverse routing to commodity internet
 - Connection at PAIX makes peering possible

Organization

- ITSS (Information Technology Systems and Services)
 - CNS—Communication and Network Services
 - Communication Services—fee for service
 - University telephone and cable TV systems
 - · Networking Systems—centrally funded
 - SUNet Operations
 - SUNet Systems
 - Monitoring and Management
 - Network Consultants
 - LAN Operations

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c1

Operations' Responsibilities

- Backbone routers
- End-to-end TCP/IP protocol
- Network to the building entrance
- Support network consultants/LANs

Support Profile

- Onsite staff—7am-11pm, Monday-Friday
- Weekends—8 hours/day
- On-call support 7 by 24
- Off-hour trouble calls taken by Computer Operations staff who page on-call person

Networking Systems, CNS, ITSS, Stanford University

1116 06F9 c1

Staffing Level

- Operations has 5 Network Specialists
- Systems has 3 programmers, 2 SysAdmins
- One network specialist/one sysadmin work the late shift (3pm-11pm)

