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At this point, there are more additions than errors to report...

1.1. Pythagoras’ Constant. A geometric irrationality proof of
√
2 appears in

[1]; the transcendence of the numbers

√
2

√
2

√
2

 


 


would follow from a proof of Schanuel’s conjecture [2]. A curious recursion in [3, 4]

gives the th digit in the binary expansion of
√
2. Catalan [5] proved the Wallis-like

infinite product for 1
√
2. More references on radical denestings include [6, 7, 8, 9].

1.2. The Golden Mean. The cubic irrational  = 13247179572 is connected

to a sequence

1 = 1  =
3
p
1 + −1 for  ≥ 2

which experimentally gives rise to [10]

lim
→∞

( − )
³
3(1 + 1


)
´
= 18168834242

The cubic irrational  = 18392867552 is mentioned elsewhere in the literature with

regard to iterative functions [11, 12, 13] (the four-numbers game is a special case of

what are known as Ducci sequences), geometric constructions [14, 15] and numerical

analysis [16]. Infinite radical expressions are further covered in [17, 18, 19]; more gen-

eralized continued fractions appear in [20, 21]. See [22] for an interesting optimality

property of the logarithmic spiral. A mean-value analog  of Viswanath’s constant

113198824 (the latter applies for almost every random Fibonacci sequence) was dis-

covered by Rittaud [23]:  = 12055694304 has minimal polynomial 3+2−−2.
The Fibonacci factorial constant  arises in [24] with regard to the asymptotics

− 



∞X
=1

1

 
∼ 1

ln()2
+
1

24

µ
6 ln(5)− 2 ln()− 3 ln(5)

2

ln()

¶
+ ln()

∼ 1

ln()2
+ ln(08992126807)

0Copyright c° 2016 by Steven R. Finch. All rights reserved.

1



Errata and Addenda to Mathematical Constants 2

as → 0, which gives meaning to the “regularized product” of all Fibonacci numbers.

1.3. The Natural Logarithmic Base. More on the matching problem appears

in [25]. Let  denote the number of independent Uniform [0 1] observations 

necessary until
P

≤  first exceeds 1. The fact that E() =  goes back to at

least Laplace [26]; see also [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Imagine guests

arriving one-by-one at an infinitely long dinner table, finding a seat at random, and

choosing a napkin (at the left or at the right) at random. If there is only one napkin

available, then the guest chooses it. The mean fraction of guests without a napkin

is (2 − √)2 = 01233967456 and the associated variance is (3 − )(2 − √)2 =
00347631055 [37, 38, 39, 40]. See pages 280—281 for the discrete parking problem

and [41] for related annihilation processes.

Proofs of the two infinite products for  are given in [5, 42]; Hurwitzian continued

fractions for 1 and 2 appear in [43, 44, 45, 46]. The probability that a random

permutation on  symbols is simple is asymptotically 12, where

(2647513) is non-simple (since the interval 25 is mapped onto 47),

(2314) is non-simple (since the interval 12 is mapped onto 23),

but (51742683) and (2413) are simple, for example. Only intervals of length , where

1    , are considered, since the lengths  = 1 and  =  are trivial [47, 48].

Define the following set of integer -tuples

 =

(
(1 2     ) :

X
=1

1


= 1 and 1 ≤ 1  2      

)


Martin [49] proved that

min
(12)∈

 ∼ 

− 1

as  →∞, but it remains open whether

max
(12)∈

1 ∼ 1

− 1

Croot [50] made some progress on the latter: He proved that 1 ≥ (1+ (1))(−1)
for infinitely many values of , and this bound is best possible.

Holcombe [51] evaluated the infinite products

∞Y
=2

µ
1− 1

2

¶2

 =


32
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∞Y
=1

µ
1 +

1

2

¶2
1


=
exp

£
1
2
+ 2

3
− 1

22
(3) + 1

22
Li3 (

−2) + 1

Li2 (

−2)
¤

2 sinh()

and similar products appear in [52, 53]. Also, define 0() =  and, for each   0,

() = (1 + −1()− −1(0))
1
 .

This imitates the definition of , in the sense that the exponent → ∞ and the base

→ 1 as → 0. We have 1(0) =  = 2718,

2(0) = exp
¡− 

2

¢
= 0257 3(0) = exp

¡
11−3
24

exp
¡
1− 

2

¢¢
= 1086

and 4(0) = 0921 (too complicated an expression to include here). Does a pattern

develop here?

1.4. Archimedes’ Constant. Viète’s product
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has the following close cousin:

2


=

r
1

2
·
vuut1

2
+

1
2q
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·
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+

1
2r

1
2
+

1
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· · ·

where  is the lemniscate constant (pages 420—423). Levin [54, 55] developed analogs

of sine and cosine for the curve 4+ 4 = 1 to prove the latter formula; he also noted

that the area enclosed by 4 + 4 = 1 is
√
2 and that

2
√
3


=

Ã
1

2
+

r
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!
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− 1
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r
1

2

⎞⎟⎠ · · · 
Can the half-circumference of 4 + 4 = 1 be written in terms of  as well? This

question makes sense both in the usual 2-norm and in the 4-norm; call the half-

circumference 4 for the latter. More generally, define  to be the half-circumference

of the unit -circle || + || = 1, where lengths are measured via the -norm and

1 ≤   ∞. It turns out [56] that  = 2 is the minimum value of . Additional

infinite radical expressions for  appear in [57, 58]; more on the Matiyasevich-Guy

formula is covered in [59, 60, 61, 62, 63]; see [64] for a revised spigot algorithm for

computing decimal digits of  and [65, 66] for more on BBP-type formulas.
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1.5. Euler-Mascheroni Constant. An impressive survey appears in [67]. De la

Vallée Poussin’s theorem was, in fact, anticipated by Dirichlet [68, 69]; it is a corollary

of the formula for the limiting mean value of () [70]. Vacca’s series was anticipated

by Nielsen [71] and Jacobsthal [72, 73]. An extension was found by Koecher [74]:

 =  − 1
2

∞X
=2

(−1)
( − 1)( + 1)

¹
ln()

ln(2)

º
where  = (1 + )4 = 06516737881 and  =

P∞
=1 1(2

 − 1) = 16066951524
is one of the digital search tree constants. Glaisher [75] discovered a similar formula:

 =

∞X
=1

1

3 − 1 − 2
∞X
=1

1

(3 − 1)(3)(3 + 1)
¹
ln(3)

ln(3)

º
nearly eighty years earlier. The following series [76, 77, 78] suggest that ln(4) is an

“alternating Euler constant”:

 =

∞X
=1

µ
1


− ln

µ
1 +

1



¶¶
= −

1Z
0

1Z
0

1− 

(1− ) ln()
 

ln

µ
4



¶
=

∞X
=1

(−1)−1
µ
1


− ln

µ
1 +

1



¶¶
= −

1Z
0

1Z
0

1− 

(1 + ) ln()
 

(see section 1.7 later for more). Evaluation of the definite integral involving
P∞

=1 
2

was first done by Catalan [5].

Sample criteria for the irrationality of  appear in Sondow [79, 80, 81, 82, 83].

Long ago, Mahler attempted to prove that  is transcendental; the closest he came

to this was to prove the transcendentality of the constant [84, 85]

0(2)

20(2)
− 

where 0() and 0() are the zeroth Bessel functions of the first and second kinds.

(Unfortunately the conclusion cannot be applied to the terms separately!) From

Nesterenko’s work, Γ(16) is transcendental; from Grinspan’s work [86], at least two

of the three numbers , Γ(15), Γ(25) are algebraically independent. See [87, 88, 89]

for more such results.

Diamond [90, 91] proved that, if

() =
X 1

ln(1) ln(2) · · · ln()
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where the (finite) sum is over all integer multiplicative compositions  = 12 · · · 
and each  ≥ 2, then

lim
→∞

1



Ã
1 +

X
=2

∞X
=1

()

!

!
= exp(0 −  − ln(ln(2)) = 12429194164

where 0 = 04281657248 is the analog of Euler’s constant when 1 is replaced

by 1( ln()) (see Table 1.1). The analog when 1 is replaced by 1
√
 is called

Ioachimescu’s constant [92]. See [93] for a different generalization of . Also, related

limiting formulas include [94]

lim
→∞

Ã
X

=1

arctan

µ
1



¶
− ln()

!
= − arg (Γ(1 + )) 

lim
→∞

Ã
X

=2

arctanh

µ
1



¶
− ln()

!
= −1

2
ln(2)

1.6. Apéry’s Constant. The famous alternating central binomial series for (3)

dates back at least as far as 1890, appearing as a special case of a formula due to

Markov [95, 96, 97]:

∞X
=0

1

(+ )3
=
1

4

∞X
=0

(−1)(!)6
(2+ 1)!

2(− 1)2 + 6(+ 1)(− 1) + 5(+ 1)2
[(+ 1) · · · (+ )]

4


Ramanujan [98, 99] discovered the series for (3) attributed to Grosswald. Plouffe

[100] uncovered remarkable formulas for 2+1 and (2 + 1), including

 = 72

∞X
=1

1

( − 1) − 96
∞X
=1

1

(2 − 1) + 24
∞X
=1

1

(4 − 1) 

3 = 720

∞X
=1

1

3( − 1) − 900
∞X
=1

1

3(2 − 1) + 180
∞X
=1

1

3(4 − 1) 

5 = 7056

∞X
=1

1

5( − 1) − 6993
∞X
=1

1

5(2 − 1) + 63
∞X
=1

1

5(4 − 1) 

(3) = 28

∞X
=1

1

3( − 1) − 37
∞X
=1

1

3(2 − 1) + 7
∞X
=1

1

3(4 − 1) 

(5) = 24

∞X
=1

1

5( − 1) −
259

10

∞X
=1

1

5(2 − 1) −
1

10

∞X
=1

1

5(4 − 1) 
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(7) =
304

13

∞X
=1

1

7( − 1) −
103

4

∞X
=1

1

7(2 − 1) +
19

52

∞X
=1

1

7(4 − 1) 

A claimed proof that (5) is irrational awaits confirmation [101]. Volchkov’s formula

(which is equivalent to the Riemann hypothesis) was revisited in [102]; a new criterion

[103] has the advantage that it involves only integrals of () taken exclusively along

the real axis. We mention a certain alternating double sum [104, 105]

∞X
=2

−1X
=1

(−1)+
3

=
4

180
+

2

12
ln(2)2 − 1

12
ln(2)4 − 2Li4

µ
1

2

¶
= −01178759996

and wonder about possible generalizations.

1.7. Catalan’s Constant. Rivoal & Zudilin [106] proved that there exist in-

finitely many integers  for which (2) is irrational, and that at least one of the

numbers (2), (4), (6), (8), (10), (12), (14) is irrational. More double inte-

grals (see section 1.5 earlier) include [107, 108, 109, 110]

(3) = −1
2

1Z
0

1Z
0

ln()  

1− 
  =

1

8

1Z
0

1Z
0

 

(1− )
p
(1− )



Zudilin [109] also found the continued fraction expansion

13

2
= 7 +

1040|
|10699 +

42322176|
|434871 +

15215850000|
|4090123 + · · · 

where the partial numerators and partial denominators are generated according to

the polynomials (2 − 1)4(2)4(202 − 48 + 29)(202 + 32 + 13) and 35206 +
56325 + 20644 − 3843 − 1562 + 16+ 7.
1.8. Khintchine-Lévy Constants. Let ( ) denote the number of partial

denominators of  correctly predicted by the first  decimal digits of . Lochs’ result

is usually stated as [111]

lim
→∞

( )


=

6 ln(2) ln(10)

2
= 09702701143

= (10306408341)−1 = [(2)(05153204170)]−1

for almost all . In words, an extra 3% in decimal digits delivers the required partial

denominators. The constant 051532 appears in [112] and our entry [2.17]. A

corresponding Central Limit Theorem is stated in [114, 115].
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If  is a quadratic irrational, then its continued fraction expansion is periodic;

hence lim→∞( ) is easily found and is algebraic. For example, lim→∞( ) =

1, where  is the Golden mean. We study the set Σ of values lim→∞ ln() taken

over all quadratic irrationals  in [116]. Additional references include [117, 118, 119].

1.9. Feigenbaum-Coullet-Tresser Constants. Consider the unique solution

of () = 2[]() as pictured in Figure 1.6:

() = 1− (15276329970)2 + (01048151947)4
+(00267056705)6 − (00035274096)8 +− · · ·

The Hausdorff dimension  of the Cantor set {}∞=1 ⊆ [−1 1], defined by 1 = 1

and +1 = (), is known to satisfy 053763    053854. This set may be

regarded as the simplest of all strange attractors [120, 121, 122].

In two dimensions, Kuznetsov & Sataev [123] computed parameters  = 2502907875,

 = 1505318159,  = 4669201609 for the mapµ
+1
+1

¶
=

µ
1−  2

1−  2 −  2

¶
;

 = 190007167,  = 400815785,  = 632631925 for the mapµ
+1
+1

¶
=

µ
1−  2 +  
1−  

¶
;

and  = 6565350,  = 22120227,  = 92431263 for the mapµ
+1
+1

¶
=

µ
− 2 +  
  − 2

¶


“Certainly, this is only a little part of some great entire pattern”, they wrote.

Let us return to the familiar one-dimensional map  7→  (1−), but focus instead
on the region   ∞ = 35699456718 = 4(08924864179) We are interested in

bifurcation of cycles whose periods are odd multiples of two:

() =
the smallest value of  for which a cycle of

period (2+ 1)2 first appears.

For any fixed  ≥ 0,

lim
→∞

()− (− 1)
(+ 1)− ()

=  = 46692
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which is perhaps unsurprising. A new constant emerges if we reverse the roles of 

and :

lim
→∞

lim
→∞

()− (− 1 )
(+ 1 )− ()| {z }



=  = 29480

due to Geisel & Nierwetberg [124] and Kolyada & Sivak [125]. High-precision values

of 0, 1, 2,    would be good to see. A proof of the existence of  is in [126], but

apart from mention in [127], this constant has been unjustly neglected.

1.10. Madelung’s Constant. The following “near miss” exact expression [128]:

3 = −1
8
+

1

2
√
2
− 4
3
− ln(2)

4
+

Γ(18)Γ(38)

32
√
2

−2
∞X

=−∞

0 (−1)++p
2 + 2 + 2

³
8
√

2+2+2 − 1
´

is noteworthy because the series portion is rapidly convergent. See also [129, 130, 131].

Related to our function () is the limit

X
=−

0 1

2 + 2
− 2 ln()→ [4 ln(2) + 3 ln() + 2 − 4 ln (Γ(14))] − 4

as  →∞, where  is Euler’s constant and  is Catalan’s constant [132]. Another

series ∞X
=−∞

(−1)+
2 + (3 + 1)2

=
2

9
ln
h
2
³√
3− 1

´i
is only the first of many evaluations appearing in [133, 134]. Likewise

−
X

=−

0 ln
¡
2 + 2

¢
+

+ 1
2Z

=−−1
2

ln
¡
2 + 2

¢
  → ln

µ
2



¶
− 2 ln

µ
Γ(14)

Γ(34)

¶
+



6


∞X
=1

(−1)+1 ln(2 + 1)
2 + 1

=


4

½
 + ln(2)− 2 ln

µ
Γ(14)

Γ(34)

¶¾


∞X
=0

½
ln(3 + 1)

3 + 1
− ln(3 + 2)

3 + 2

¾
=

√
3

½
ln

µ
Γ(13)

Γ(23)

¶
− 1
3
( + ln(2))

¾


∞X
=0

(−1)
½
ln(4 + 1)

4 + 1
+
ln(4 + 3)

4 + 3

¾
=



2
√
2

½
ln

µ
Γ(18)Γ(38)

Γ(58)Γ(78)

¶
− ( + ln(2))

¾
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are just starting points for research reported in [135, 136, 137].

1.11. Chaitin’s Constant. Ord & Kieu [138] gave a different Diophantine

representation for Ω; apparently Chaitin’s equation can be reduced to 2—3 pages in

length [139]. A rough sense of the type of equations involved can be gained from

[140]. Calude & Stay [141] suggested that the uncomputability of bits of Ω can be

recast as an uncertainty principle.

2.1. Hardy-Littlewood Constants. In a breakthrough, Zhang [142, 143, 144,

145] proved that the sequence of gaps between consecutive primes has a finite lim-

inf (an impressive step toward confirming the Twin Prime Conjecture). In another

breakthrough, Green & Tao [146] proved that there are arbitrarily long arithmetic

progressions of primes. In particular, the number of prime triples 1  2  3 ≤ 

in arithmetic progression is

∼ twin

2

2

ln()3
= (03300809079)

2

ln()3

as →∞, and the number of prime quadruples 1  2  3  4 ≤  in arithmetic

progression is likewise

∼ 

6

2

ln()4
= (04763747659)

2

ln()4


Here is a different extension twin =  0
2:

( + 2) ∼ 2twin
Y
|
2

− 1
− 2| {z }

02



ln()2


and  0
2 has mean value one in the sense that

P

=1
0
2 ∼  as  → ∞. Further

generalization is possible [147, 148].

Fix   0. Let ( ) denote the number of positive integers  ≤  with

Ω() = , where  is allowed to grow with . Nicolas [149] proved that

lim
→∞

( )

(2) ln(2)
=

1

4twin
=
1

4

Y
2

µ
1 +

1

(− 2)
¶
= 03786950320

under the assumption that (2+ ) ln(ln()) ≤  ≤ ln() ln(2). More relevant results
appear in [150]; see also the next entry.

Let () denote the number of positive odd integers  ≤  that can be expressed in

the form 2+, where  is a positive integer and  is a prime. Then 009368 ≤ () 
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049095 for all sufficiently large . The lower bound can be improved to 02893 if

the Hardy-Littlewood conjectures in sieve theory are true [151, 152, 153, 154, 155].

Let() denote the number of integers≤ with prime factorizations 11 22 · · · 
satisfying 1 ≥ 2 ≥    ≥ . Extending results of Hardy & Ramanujan [156], Rich-

mond [157] deduced that

ln(()) ∼ 2√
3

³
ln()

ln(ln())

´12 ³
1− 2 ln()+122−2

2 ln(ln())
− ln(3)−ln(ln(ln()))

2 ln(ln())

´
where

 = −
∞Z
0

ln(1− −) ln()  =  0(2)− 2

6


The Bateman-Horn conjecture arises unexpectedly in [158]. The ternary Goldbach

conjecture (0), finally, is proved [159].
2.2. Meissel-Mertens Constants. See [160] for more occurrences of the

constants  and  0, and [161] for a historical treatment. Higher-order asymp-

totic series for E(), Var(), E(Ω) and Var(Ω) are given in [162]. The values

13 = −03568904795 and23 = 02850543590 are calculated in [163]; of course,

13+23+13 = . While
P

 1 is divergent, the following prime series is con-

vergent [164]:X


µ
1

2
+
1

3
+
1

4
+ · · ·

¶
=
X


1

(− 1) = 07731566690

The same is true if we replace primes by semiprimes [165]:

X


∞X
=2

1

()
=
X


1

( − 1) = 01710518929

Also, the reciprocal sum of semiprimes satisfies [166, 167]

lim
→∞

ÃX
≤

1


− ln(ln())2 − 2 ln(ln())

!
=

2

6
+2

and the corresponding analog of Mertens’ product formula is

lim
→∞

(ln())
ln(ln())+2

Y
≤

µ
1− 1



¶
= −

26−2−Λ



Errata and Addenda to Mathematical Constants 11

where [165]

Λ =
X


∞X
=2

1

 ()
= −

X


µ
ln

µ
1− 1



¶
+
1



¶
= 00798480403

We can think of 26 +2+Λ as another two-dimensional generalization of Euler’s

constant .

The second moment of Im(ln((12+  ))) over an interval [0  ] involves asymp-

totically a constant [168, 169]

∞X
=2

X


µ
1


− 1

2

¶
1


= −

X


µ
ln

µ
1− 1



¶
+ Li2

µ
1



¶¶
= 01762478124

as  →∞. This assumes, however, that a certain random matrix model is applicable
(asymptotics for the pair correlation of zeros).

If  denotes the set of positive integers  for which Ω()−() = , then1 = ̃

and the asymptotic density  satisfies [170, 171, 172]

lim
→∞

2 =
1

4twin
= 03786950320;

the expression 4twin also appears on pages 86 and 133—134, as well as in the preceding

entry.

Given a positive integer , let () =
Q

|  denote the square-free kernel of 
and  = (). We say that  is flat if the ratio  = 1. Define  to be the

set of  such that  itself is flat and () = . We have 1 = ̃ and asymptotic

densities for 2, 3 equal to [173]

6

2

X


1

(+ 1)( + 1)
= 00221245744

6

2

X


1

(+ 1)( + 1)( + 1)
= 00010728279

Averaging  over all  ≥ 1 remains unsolved [174].
Define () = #{ : |} and () = #{+ : +| and  ≥ 0}; hence

1() = () and 1() = Ω(). It is known that, for  ≥ 2,X
≤

() ∼ 
X


1




X
≤

() ∼ 
X


1

−1(− 1)
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as  → ∞. Also define () = #{ : | and  - } and () = #{ : |,
 -  and  ≥ 1}. Then, for  ≥ 2,

X
≤

() ∼ 

Ã
ln(ln()) + −

X


1



!


X
≤

() ∼ 

Ã
ln(ln()) + +

X


−1 − +  − 1
(− 1)

!
as  → ∞. Other variations on -full and -free prime factors appear in [175]; the

growth rate of
P

≤ 1() and
P

≤ 1Ω() is covered in [176] as well.
2.3. Landau-Ramanujan Constant. It is not hard to show that 2 =

06093010224 [177]. The second-order constant corresponding to non-hypotenuse

numbers should be

̃ =  +
1

2
ln

µ
2

22

¶
= 07047534517

(numerically unchanged, but  is replaced by 2). Moree [178] expressed such con-

stants somewhat differently:

1− 2 = −01638973186 1− 2̃ = −04095069034

calling these Euler-Kronecker constants. His terminology is unfortunately inconsis-

tent with ours [179, 180].

Define 3() to be the number of positive integers ≤ , all of whose prime factors

are ≡ mod 3, where  = 1 or 2. We have [181, 182, 183]

lim
→∞

p
ln()


31() =

√
3

93

= 03012165544

lim
→∞

p
ln()


32() =

2
√
33


= 07044984335

An analog of Mertens’ theorem for primes≡ mod3 unsurprisingly involves3 as well

[163]. Here is a more complicated example (which arises in the theory of partitions).

Let

 () = #
©
 ≤  :  = 211 

2
2 · · ·    ≥ 1  ≥ 1  ≡ 3 5 6mod 7 for all 

ª
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then the Selberg-Delange method gives [184, 185]

lim
→∞

ln()34


 () =

1

Γ(14)

µ
6√
7

¶14 Y
≡356
mod 7

µ
1 +

1

2(− 1)
¶µ

1− 1


¶14µ
1 +

1



¶−14

=
1

Γ(14)

µ
6√
7

¶14
(10751753443) = 02733451113

=
7

24
(09371832387)

Other examples appear in [185] as well.

Define 3() to be the number of positive integers  ≤  for which () ≡
mod3, where  is Euler’s totient and  = 1 or 2. We have [186, 187]

lim
→∞

p
ln()


3() =

p
2
√
3

3

2 + (−1)+1
12

=

½
06109136202 if  = 1

03284176245 if  = 2

where

 =
Y

≡2mod 3

µ
1 +

1

2 − 1
¶
= 14140643909

 =
Y

≡2mod 3

µ
1− 1

(+ 1)2

¶
= 08505360177

Analogous results for 4() with  = 1 or 3 are open, as far as is known.

Estermann [188, 189, 190] first examined the asymptotics

̂() =
X

1≤≤

¡
2 + 1

¢2 ∼ ̂  = (08948412245)

as →∞, where  is the Möbius mu function. One possible generalization is [191]X
1≤≤


¡
2 + 2 + 1

¢2 ∼ ̂ 2

and a numerical value for ̂ evidently remains open. See [192] for another occurrence

of ̂.

Fix  ≥ 2. Define () to be the number of positive integers not exceeding

 that can be expressed as a sum of two nonnegative integer th powers. Clearly

2() = (). Hooley [193, 194] proved that

lim
→∞

−2() =
1

4

Γ(1)2

Γ(2)
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when  is an odd prime, and Greaves [195] proved likewise when  is the smallest

composite 4. It is possible that such asymptotics are true for larger composites, for

example,  = 6.

While 2() also counts  ≤  that can be expressed as a sum of two rational

squares, it is not true that 3() does likewise for sums of two rational cubes. See

[196] for analysis of a related family of elliptic curves (cubic twists of the Fermat

equation 3 + 3 = 1) and [197] for an unexpected appearance of the constant .

The issue regarding counts of  of the form 3 + 2 3 is addressed in [198]. We

mention that products like [199]Y
≡3mod 4

µ
1− 2

(2 + 1)(− 1)
¶
= 06436506796

Y
≡2mod3

µ
1− 2

(2 + 1)(− 1)
¶
= 01739771224

are evaluated to high precision in [200, 201] via special values of Dirichlet L-series.

2.4. Artin’s Constant. Other representations include [202]

lim
→∞

ln()



X
≤

(− 1)
− 1 = Artin = lim

→∞

X
≤

(− 1)X
≤

(− 1)


Stephens’ constant 05759 and Matthews’ constant 01473 actually first appeared

in [203]. Let () = 1 if  is square-free and () = 0 otherwise. Then [204, 205, 206,

207, 208, 209, 210]

lim
→∞

1



X
=1

()(+ 1) =
Y


µ
1− 2

2

¶
= 03226340989 = −1 + 2(06613170494)

=
6

2

Y


µ
1− 1

2 − 1
¶
=
6

2
(05307118205)

that is, the Feller-Tornier constant arises with regard to consecutive square-free num-

bers and to other problems. Also, consider the cardinality () of nontrivial primi-

tive integer vectors (0 1 2 3) that fall on Cayley’s cubic surface

012 + 013 + 023 + 123 = 0

and satisfy || ≤  for 0 ≤  ≤ 3. It is known that () ∼ (ln())6 for some

constant   0 [211, 212]; finding  remains an open problem.
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2.5. Hafner-Sarnak-McCurley Constant. In the “Added In Press” section

(pages 601—602), the asymptotics of coprimality and of square-freeness are discussed

for the Gaussian integers and for the Eisenstein-Jacobi integers. Generalizations

appear in [213, 214]. Cai & Bach [215] and Tóth [216] independently proved that the

probability that  positive integers are pairwise coprime is [217, 218]

Y


µ
1− 1



¶−1µ
1 +

 − 1


¶
= lim

→∞
( − 1)!

 ln()−1

X
=1

()

Freiberg [219, 220, 221], building on Moree’s work [222], determined the probability

that three positive integers are pairwise not coprime to be 1 − 182 + 3 −  =

01742197830 The constant  also appears in [223, 224, 225]. More about sums

involving 2() and 2−() appears in [226]. The asymptotics of
P

=1 3
Ω(), due to

Tenenbaum, are mentioned in [162]. Also, we have [227]X
≤

() ∼ 1

+ 1

(2+ 2)

(2)
 +1

X
≤

() ∼ 1

+ 1

(+ 1)

(2)

Y


µ
1− 1

(+ 1)

¶
· +1

as  → ∞, for any positive integer . In the latter formula, the product for  = 1
and  = 2 appears in [226] with regard to the number/sum of unitary square-free

divisors; the product for  = 2 further is connected with class number theory [116].

2.6. Niven’s Constant. The quantity  appears unexpectedly in [228]. If we

instead examine the mean of the exponents:

() =

⎧⎪⎨⎪⎩
1 if  = 1

1



X
=1

 if   1

then [229, 230]X
≤

() = + 1


ln(ln())
+ 2



ln(ln())2
+

µ


ln(ln())3

¶
as →∞, where [164]

1 =
X


1

(− 1) = 0 − = 07731566690
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2 =
X


1

2(− 1) − 1 = 1(1−)− = 01187309349

using notation defined on pages 94—95. The constant 1 also appears in our ear-

lier entry [2.2]. A general formula for coefficients  was found by Sinha [231] and

gives two additional terms (involving 16 and 17) in the asymptotic estimate ofP

=1 ().

Let ̃2() denote the number of positive integer primitive triples (  ) with

+  =  ≤  and    square-full. It is conjectured that [232]

̃2() = ̃ 12 (1 + (1))

as →∞, where ̃ = 2677539267 has a complicated expression. Supporting evi-
dence includes the inequality ̃2() ≥ ̃ 12 (1 + (1)) and ̃2() = 

¡
35 ln()12

¢
.

2.7. Euler Totient Constants. Let us clarify the third sentence: () is the

number of generators in Z, the additive group of integers modulo . It is also the

number of elements in Z∗, the multiplicative group of invertible integers modulo .
Define () = ()−1 −  ln(ln()). Nicolas [233] proved that ()  0 for

infinitely many integers  by the following reasoning. Let  denote the product of

the first  prime numbers. If the Riemann hypothesis is true, then ()  0 for

all . If the Riemann hypothesis is false, then ()  0 for infinitely many  and

() ≤ 0 for infinitely many .
Let () denote the set of values ≤  taken by  and () denote its cardinality;

for example [234], (15) = {1 2 4 6 8 10 12} and (15) = 7. Let ln2() = ln(ln())

and ln() = ln(ln−1()) for convenience. Ford [235] proved that

() = 
ln()

exp
©
[ln3()− ln4()]2 + ln3()− [ + 1

2
− 2] ln4() +(1)

ª
as →∞, where

 = − 1
2 ln()

= 08178146464

 = 2 (1 + ln( 0())− ln(2))− 3
2
= 21769687435

 () =

∞X
=1

(( + 1) ln( + 1)−  ln()− 1)

and  = 05425985860 is the unique solution on [0 1) of the equation  () = 1.

Also,

lim
→∞

1

() ln2()

X
∈()

() =
1

1− 
= 21862634648

which contrasts with a related result of Erdős & Pomerance [236]:

lim
→∞

1

 ln2()2

X
=1

(()) =
1

2
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These two latter formulas hold as well if  is replaced by Ω. See [237] for more on

Euler’s totient.

Define the reduced totient or Carmichael function () to be the size of the largest

cyclic subgroup of Z∗. We have [238]

1



X
≤

() =


ln()
exp

∙
 ln2()

ln3()
(1 + (1))

¸
as  →∞, where

 = −
Y


µ
1− 1

(− 1)2(+ 1)
¶
= 03453720641

(note the similarity to a constant in [239].) There is a set  of positive integers of

asymptotic density 1 such that, for  ∈ ,

()−1 = (ln())ln3()++(1)

and

 = −1 +
X


ln()

(− 1)2 = 02269688056;

it is not known whether  = Z+ is possible.
Let denote the gcd of two integers chosen independently fromUniform {1 2     }

and  denote the lcm. Diaconis & Erdős [240] proved that

E() =
6

2
ln() + +

µ
ln()√



¶
 E() =

3(3)

22
2 + ( ln())

as →∞, where

 =

∞X
=1

1
2(+1)2

(
P

=1

() + 2

Ã
− 3

2
2 +

P
=1

()

!
 − 6

2
(2 + 1)

)
+ 12

2

¡
 + 1

2

¢− 1
2

but a vastly simpler expression

 =
6

2

µ
2 − 1

2
− 2

12
− 6

2
 0(2)

¶
was found earlier by Cohen [241, 242]; a reconcilation is needed.

2.8. Pell-Stevenhagen Constants. The constant  is transcendental via a

general theorem on values of modular forms due to Nesterenko [243, 244]. Here is a
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constant similar to  : The number of positive integers  ≤  , for which 2 − 1 is
not divisible by 2 − 1 for any prime , is ∼  , where

 =
Y


µ
1− 1

2 − 1
¶
= 05483008312

A ring-theoretic analog of this statement, plus generalizations, appear in [245].

2.9. Alladi-Grinstead Constant. In the final paragraph, it should be noted

that the first product 17587436279 is 2. See [114] for another occurrence of .

It is a multiplicative analog of Euler’s constant  in the sense that [246]

 =

∞Z
1

µ
1

bc −
1



¶
  =

∞Z
1

µ
1

bc
1



¶


2.10. Sierpinski’s Constant. Sierpinski’s formulas for ̂ and ̃ contained a few

errors: they should be [247, 248, 249, 250, 251, 252]

̂ =  +  − 12
2

 0(2) +
ln(2)

3
− 1 = 17710119609 = 

4
(22549224628)

̃ = 2 − 12
2

 0(2) +
ln(2)

3
− 1 = 20166215457 = 1

4
(80664861829)

In the summation formula at the top of page 125,  should be . Also, the divisor

analog of Sierpinski’s second series is [253]

X
=1

(2) =

µ
3

2
ln()2 +

µ
18 − 6

2
− 72

4
 0(2)

¶
ln() + 

¶
+

¡
12+

¢
as →∞, where the expression for  is complicated. It is easily shown that (2) is
the number of ordered pairs of positive integers ( ) satisfying lcm( ) = .

The best known result for () is currently [254]

X
=1

() =  +
³

131
416 ln()

18627
8320

´


Define () to be the number of representations of  as a sum of three squares,

counting order and sign. Then

X
=1

() =
4

3
32 +

¡
34+

¢
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for all   0 and [255]

X
=1

()2 =
84

21(3)
2 +

¡
149

¢


The former is the same as the number of integer ordered triples falling within the ball

of radius
√
 centered at the origin; an extension of the latter to sums of  squares,

when   3, is also known [255].

A claimed proof thatX
≤

() =  ln() + (2 − 1)+
¡
14+

¢
as →∞ awaits confirmation [256]. Let () denote the number of square divisors

of , that is, all positive integers  for which 2|. It is known that [257]X
≤

() ∼ (2)+ (12)12

as →∞. Analogous to various error-term formulas in [258], we have

Z
1

ÃX
≤

()− (2) − (12)12

!2
 ∼  

43

where

 =
213

82

∞X
=1

⎛⎝X
2|



56

⎞⎠2



This supports a conjecture that the error in approximating
P

≤ () is (
16+).

2.11. Abundant Numbers Density Constant. An odd perfect number can-

not be less than 101500 [259]. The definition of () should be replaced by

() = lim
→∞

|{ ≤  : () ≥  }|




Kobayashi [260] proved that 024761  (2)  024765; see also [261, 262, 263, 264].

If () is the number of all positive integers  that satisfy () ≤ , then [265]

lim
→∞

()


=

Y


µ
1− 1



¶⎛⎝1 + ∞X
=1

Ã
1 +

X
=1



!−1⎞⎠
=

Y


µ
1− 1



¶Ã
1 + (− 1)

∞X
=1

1

+1 − 1

!
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2.12. Linnik’s Constant. In the definition of , “lim” should be replaced by

“limsup”. Clearly  exists; the fact that  ∞ was Linnik’s important contribution.

Xylouris [266] recently proved that  ≤ 518; an unpublished proof that  ≤ 5 needs
to be verified [267].

2.13. Mills’ Constant. Caldwell & Cheng [268] computed  to high precision.

The question, “Does there exist ̃  1 for which
j
̃
k
is always prime?”, remains

open [269]. Let 1  2       denote the consecutive prime factors of an integer

  1. Define

 () =

−1X
=1

µ
1− 

+1

¶
= ()− 1−

−1X
=1



+1

if   1 and  () = 0 if  = 1. Erdős & Nicolas [270] demonstrated that there exists

a constant  0 = 170654185 such that, as  → ∞,  () ≤
p
ln() −  0 + (1),

with equality holding for infinitely many . Further,  0 =  00 + ln(2) + 12, where
[270, 271]

 00 =
∞X
=1

½
ln

µ
+1



¶
−
µ
1− 

+1

¶¾
= 051339467

∞X
=1

µ
+1


− 1
¶2
= 165310351

and 1 = 2, 2 = 3, 3 = 5, ... is the sequence of all primes.

It now seems that liminf→∞(+1− ) ln() = 0 is a theorem [272, 273], clari-

fying the uncertainty raised in “Added In Press” (pages 601—602). More about small

prime gaps will surely appear soon; research concerning large prime gaps continues

as well [274, 275].

2.14. Brun’s Constant. Wolf [276] computed that ̃4 = 11970449 and a

high-precision calculation of this value would be appreciated.

2.15. Glaisher-Kinkelin Constant. A certain infinite product [277]

∞Y
=1

µ
!√

2()

¶(−1)−1
=

3

271214

features the ratio of ! to its Stirling approximation. In the second display for (),

exp(−2) should be replaced by exp(2). Another proof of the formula for (1) is
given in [78]; another special case is [52, 53, 278]

(12) =
216
√
3

Γ(14)


The two quantities

2

¡
1
2

¢
= 06032442812 2

¡
3
2

¢
=
√
2

¡
1
2

¢
= 10692226492
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play a role in a discussion of the limiting behavior of Toeplitz determinants and the

Fisher-Hartwig conjecture [279, 280]. Krasovsky [281] and Ehrhardt [282] proved

Dyson’s conjecture regarding the asymptotic expansion of () as  → ∞; a third
proof is given in [283]. Also, the quantities

2

¡
1
2

¢−1
= 16577032408 = 2−124−31614(31953114860)38

3

¡
3
2

¢−1
= 2

¡
1
2

¢
3

¡
1
2

¢−1
= 09560900097 = −12(33388512141)716

appear in [284]. In the last paragraph on page 141, the polynomial () should be

assumed to have degree . See [285, 286] for more on the GUE hypothesis.

Here is a sample result involving not random real polynomials, but a random

complex exponential. Let ,  denote independent complex Gaussian coefficients.

The expected number of zeroes of +  exp() satisfying ||  1 is [287]

1



Z Z
2+21

exp(2)

(1 + exp(2))
2
  = 02029189212

and higher-degree results are also known.

2.16. Stolarsky-Harboth Constant. The “typical growth” of 2() is ≈ 12

while the “average growth” of 2() is ≈ ln(32) ln(2); more examples are found in

[288]. The “typical dispersion” of 2() is ≈ ln(2)4 while the “average dispersion”

of 2() is ≈ ln(52) ln(2); more examples are found in [289]. Coquet’s 1983 result is

discussed in [290] and a misprint is corrected. The sequence {0}∪{()}∞=0 is called
Stern’s diatomic sequence [291] and our final question is answered in [292]:

limsup
→∞

()

ln() ln(2)
=

√
5

µ
3

2

¶ln() ln(2)
=

ln(3) ln(2)√
5

= 09588541908

Given a positive integer , define 21 to be the largest square not exceeding .

Then define 22 to be the largest square not exceeding  − 21, and so forth. Hence

 =
P

=1 
2
 for some . We say that  is a greedy sum of distinct squares if 1  2 

    . Let () be the number of such integers    , plus one. Montgomery

& Vorhauer [293] proved that () does not tend to a constant, but instead that

there is a continuous function () of period 1 for which

lim
→∞

(4 exp(2+))

4 exp(2+)
= () min

0≤≤1
() = 050307  max

0≤≤1
() = 050964

where  takes on only integer values. This is reminiscent of the behavior discussed

for digital sums.
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Two simple examples, due to Hardy [294, 295] and Elkies [296], involve the series

() =

∞X
=0

2


 () =

∞X
=0

(−1)2 

As  → 1−, the asymptotics of () and () are complicated by oscillating errors

with amplitude

sup
→1−

¯̄̄̄
() +

ln(− ln()) + 

ln(2)
− 3
2
+ 

¯̄̄̄
= (157)× 10−6

sup
→1−

¯̄̄̄
()− 1

6
− 1
3


¯̄̄̄
= (275)× 10−3

The function () also appears in what is known as Catalan’s integral (section 1.5.2)

for Euler’s constant . See [297, 298] as well.

2.17. Gauss-Kuzmin-Wirsing Constant. If  is a random variable following

the Gauss-Kuzmin distribution, then its mean value is

E() =
1

ln(2)

1Z
0



1 + 
 =

1

ln(2)
− 1 = 04426950408

=
1

ln(2)

1Z
0

{1}
1 + 

 = E

½
1



¾


Further,

E (log10 ()) =
1

ln(2)

1Z
0

log10()

1 + 
 = − 2

12 ln(2) ln(10)
= −05153204170

=
1

ln(2)

1Z
0

log10{1}
1 + 

 = E

µ
log10

½
1



¾¶


a constant that appears in [112] and our earlier entry [1.8]. The ratio conjecture

involving eigenvalues of 2 is now known to be true [113]; moreover, the first two

terms in the asymptotic series for eigenvalues (involving  and (32)) are available.

An attempt to express 001(2)− 01(2)
2 in elementary terms appears in [114].

The preprint math.NT/9908043 was withdrawn by the author without comment;

additional references on the Hausdorff dimension 05312805062 of real numbers with

partial denominators in {1 2} include [299, 300, 301, 302].
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2.18. Porter-Hensley Constants. The formula for  is wrong (by a factor of

6) and should be replaced by

 = −
00
1(2)− 01(2)

2

01(2)3
= 05160624088 = (07183748387)2

Lhote [301, 302] developed rigorous techniques for computing  and other constants

to high precision. Ustinov [303, 304] expressed Hensley’s constant using some singular

series:

 =
288 ln(2)2

4

µ
 −  0(2)

(2)
− ln(2)

2
− 1
¶
+
24

2

µ
 +

3 ln(2)

2

¶
where

 = ln

µ
4

3

¶
− 2 ln(2)2 +

∞X
=2

⎛⎝ X
=1

(+ 1)

1Z
0



( + )
£¡

1

(+ 1) +

¢
 + ( + )

¤ +
X

=1

(− 1)
1Z
0



( + )
£¡
1

(− 1) +

¢
 + ( + )

¤ − 2 ln(2)2()
2

⎞⎠
and () = 1 if  ≡ 0mod, () = 0 otherwise.
With regard to the binary GCD algorithm, Maze [305] and Morris [306] confirmed

Brent’s functional equation for a certain limiting distribution [307]

() =
X
≥1

2−
µ


µ
1

1 + 2

¶
− 

µ
1

1 + 2

¶¶
 0 ≤  ≤ 1

as well as important regularity properties including the formula

2 +
1

ln(2)

1Z
0

()

1− 
 =

2

 ln(2)
= 28329765709 =

2(03979226811)

2 ln(2)


2.19. Vallée’s Constant. The th circular continuant polynomial is the sum

of monomials obtained from 12 · · · by crossing out in all possible ways pairs of
adjacent variables +1, where 1 is now regarded as adjacent. For example [308],

12 + 2 123 + 1 + 3 + 2 1234 + 12 + 41 + 34 + 23 + 2

are the cases for  = 2 3 4.
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2.20. Erdős’ Reciprocal Sum Constants. Improved bounds on the reciprocal

sums of Mian-Chowla and of Zhang were calculated in [309]; the best lower estimate

of (2), however, still appears to be 216086 [310]. A sequence of positive integers

1  2       is a -sequence if all -fold sums 1 + 2 + · · · + , 1 ≤ 2 ≤
   ≤ , are distinct. Given , choose a -sequence {} so that  ≤  and  is

maximal; let () be this value of . It is known that  = limsup→∞ −1()

is finite; we further have [311, 312, 313, 314, 315, 316]

2 = 1 1 ≤ 3 ≤ (72)13 1 ≤ 4 ≤ 714

More generally, a sequence of positive integers 1  2       is a -sequence

if, for every positive integer , the equation 1+2+ · · ·+ = , 1 ≤ 2 ≤    ≤ ,

has at most  solutions with  =  for all . Defining () and  analogously,

we have [316, 317, 318, 319, 320, 321, 322, 323]

4√
7
≤ 22 ≤

√
21

2
 11509 ≤ lim

→∞
2

12
=

r
2


≤ 12525

where the “self-convolution constant”  appears in [324] and satisfies 12748 ≤  ≤
15098.

Here is a similar problem: for  ≥ 1, let 2() be the largest positive integer  for
which there exists a set  containing exactly  nonnegative integers with

{0 1 2     − 1} ⊆ {+  :  ∈   ∈ }

It is known that [325, 326, 327, 328, 329, 330, 331]

028571 ≤ liminf
→∞

2()

2
≤ limsup

→∞

2()

2
≤ 046972

and likewise for () for  ≥ 3. See also [332].
2.21. Stieltjes Constants. The number of recent articles is staggering (see a

list of references in [333]), more than we can summarize here. If () denotes the

number of sequences 1, 2, ...,  of positive integers such that  = 12 · · ·, then
[334, 335, 336]

X
=1

2() ∼  ln() + (20 − 1) (2 is the divisor function),

X
=1

3() ∼ 1
2
 ln()2 + (30 − 1) ln() + (−31 + 320 − 30 + 1)
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X
=1

4() ∼ 1

6
 ln()3 +

40 − 1
2

 ln()2 + (−41 + 620 − 40 + 1) ln()

+(22 − 1210 + 41 + 430 − 620 + 40 − 1)

as  →∞. More generally,P

=1 () can be asymptotically expressed as  times

a polynomial of degree − 1 in ln(), which in turn can be described as the residue
at  = 1 of −1(). See [162] for an application of {}∞=0 to asymptotic series
for E() and E(Ω), [337] for a generalization, and [338, 339, 340, 341, 342, 343] for

connections to the Riemann hypothesis.

2.22. Liouville-Roth Constants. Zudilin [344] revisited the Rhin-Viola esti-

mate for the irrationality exponent for (3).

2.23. Diophantine Approximation Constants. Which planar, symmetric,

bounded convex set  has the worst packing density? If  is a disk, the packing

density is 
√
12 = 09068996821, which surprisingly is better than if  is the

smoothed octagon:

8− 4√2− ln(2)
2
√
2− 1 =

1

4
(36096567319) = 09024141829

Do worse examples exist? The answer is only conjectured to be yes [345].

2.24. Self-Numbers Density Constant. Choose  to be any -digit integer

expressed in base 10 with not all digits equal. Let 0 be the integer formed by
arranging the digits of  in descending order, and 00 be likewise with the digits in
ascending order. Define  () = 0 − 00. When  = 3, iterates of  converge to the

Kaprekar fixed point 495; when  = 4, iterates of  converge to the Kaprekar fixed

point 6174. For all other  ≥ 2, the situation is more complicated [346, 347, 348].
When  = 2, iterates of  converge to the cycle (09 81 63 27 45); when  = 5,

iterates of  converge to one of the following three cycles:

(74943 62964 71973 83952) (63954 61974 82962 75933) (53955 59994)

We mention this phenomenon merely because it involves digit subtraction, while self-

numbers involved digit addition.

2.25. Cameron’s Sum-Free Set Constants. Erdős [349] and Alon &Kleitman

[350] showed that any finite set  of positive integers must contain a sum-free subset

 such that ||  1
3
||. See also [351, 352, 353]. The largest constant  such

that ||  || must satisfy 13 ≤   1229, but its exact value is unknown. Using

harmonic analysis, Bourgain [354] improved the original inequality to ||  1
3
(||+2).

Green [355, 356] demonstrated that  = (22), but the values  = 68 and

 = 60 await more precise computation.
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Further evidence for the existence of complete aperiodic sum-free sets is given in

[357].

2.26. Triple-Free Set Constants. The names for  ≈ 0800 and  ≈ 0613
should be prepended by “weakly” and “strongly”, respectively. See [358] for detailed

supporting material. In defining , the largest set  such that ∀ { 2 3} 6⊆ 

plays a role. The complement of  in {1 2  } is thus the smallest set  such

that ∀  ∩ { 2 3} 6= ∅. Clearly  has size  − () and 1 −  ≈ 0199 is the
asymptotic “hitting” density.

2.27. Erdős-Lebensold Constant. A claim that Erdős’ conjecture for primitive

sequences is false [359] itself seems in doubt — nothing of this is mentioned in a recent

work [360] — the Erdős-Zhang conjecture for quasi-primitive sequences also requires

attention. Bounds on ( ) for large  and  ≥ 3 are given in [361, 362]. A
more precise estimate

P
1( ln()) = 20066664528 is now known [363], making

use of logarithmic integrals in [164].

2.28. Erdős’ Sum-Distinct Set Constant. Aliev [364] proved that

 ≥
r

3

2
;

Elkies & Gleason’s best lower bound (unpublished) is reported in [364] to be
p
2()

rather than
p
1. Define integer point sets  and  in R by

 = {(1     } :  = 0 or ± 1 for each } 

 = {(1     } :  = 0 or ± 1 or ± 2 for each }
and let  be a hyperplane in R such that  ∩  consists only of the origin 0.

Hence the normal vector (1     ) to , if each  ∈ Z+, has the property that
{1     } is sum-distinct. It is conjectured that [365]

max

| ∩  | ∼  · 

for some   0 as  → ∞, where  = 25386157635 is the largest real zero of

4 − 23 − 22 + 2− 1. See also [366, 367].
Fix a positive integer . A sequence of nonnegative integers 1  2      

is a difference basis with respect to  if every integer 0   ≤  has a representation

 − ; let () be the minimum such . The set is a restricted difference basis if,

further, 1 = 0 and  = ; let () be the minimum such  under these tighter

constraints. We have [368, 369, 370, 371, 372]

24344 ≤ lim
→∞

()2


≤ 26571 24344 ≤ lim

→∞
()2


≤ 3;
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the latter may alternatively be recorded as [373, 374]

(+ (1))
√
 ≤ () ≤

³√
3 + (1)

´√


where  = 15602779420 =
p
2(1− sin() and  is the smallest positive zero of

tan()− . Golay [372] wrote that the limiting ratio “as →∞ will, undoubtedly,

never be expressed in closed form”.

2.29. Fast Matrix Multiplication Constants. Efforts continue [375, 376] to

reduce the upper bound on  to 2.

2.30. Pisot-Vijayaraghavan-Salem Constants. The definition of Mahler’s

measure() is unclear: It should be the product of max{1 ||} over all 1 ≤  ≤ .

Breusch [377] gave a lower bound  1 for () of non-reciprocal algebraic integers

, anticipating Smyth’s stronger result by twenty years.

The sequence
©
12

ª
is uniformly distributed in [0 1]; a fascinating side topic

involves the gaps between adjacent points. A random such gap is not exponentially

distributed but possesses a more complicated density function. Elkies & McMullen

[378] determined this density explicitly, which is piecewise analytic with phase tran-

sistions at 12 and 2, and which has a heavy tail (implying that large gaps are more

likely than if the points were both uniform and independent).

Zudilin [379] improved Habsieger’s lower bound on (32)mod1, progressing from

0577 to 05803, and similarly obtained estimates for (43)mod 1 when  is suitably

large. Concerning the latter, Pupyrev [380, 381] obtained (49) for every  ≥ 2, an
important achievement. Concerning the former, our desired bound (34) for every

 ≥ 8 seems out-of-reach.
Compare the sequence {(32)}, for which little is known, with the recursion

0 = 0,  = {−1 + ln(32) ln(2)}, for which a musical interpretation exists. If
a guitar player touches a vibrating string at a point two-thirds from the end of the

string, its fundamental frequency is dampened and a higher overtone is heard instead.

This new pitch is a perfect fifth above the original note. It is well-known that the

“circle of fifths” never closes, in the sense that 2 is never an integer for   0.

Further, the “circle of fifths”, in the limit as  → ∞, fills the continuum of pitches

spanning the octave [382, 383].

The Collatz function  : Z+ → Z+ is defined by

() =

½
3+ 1 if  is odd

2 if  is even


Let  denote the th iterate of  . The 3 + 1 conjecture asserts that, given any

positive integer , there exists  such that () = 1. Let () be the first  such

that ()  , called the stopping time of . If we could demonstrate that every
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positive integer  has a finite stopping time, then the 3 + 1 conjecture would be

proved. Heuristic reasoning [384, 385, 386] provides that the average stopping time

over all odd integers 1 ≤  ≤  is asymptotically

lim
→∞Eodd

(()) =

∞X
=1

j
1 +

³
1 +

ln(3)

ln(2)

´

k
2

−b ln(3)ln(2)
c = 94779555565

where  is the number of admissible sequences of order . Such a sequence {}=1
satisfies  = 32 exactly  times,  = 12 exactly  −  times,

Q

=1   1 butQ

=1   1 for all 1 ≤    [387]. In contrast, the total stopping time ∞() of ,
the first  such that () = 1, appears to obey

lim
→∞E

µ
∞()
ln()

¶
∼ 2

2 ln(2)− ln(3) = 69521189935 =
2

ln(10)
(80039227796)

2.31. Freiman’s Constant. New proofs of the Markov unicity conjecture for

prime powers  appear in [388, 389, 390, 391]. See [392] for asymptotics for the

number of admissible triples of Diophantine equations such as

2 + 2 + 22 = 4

2 + 22 + 32 = 6

2 + 2 + 52 = 5

and [393] for mention of the constant 329304.

2.32. De Bruijn-Newman Constant. Ki, Kim & Lee [394] improved the

inequality Λ ≤ 12 to Λ  12; it is known that Λ  −114541×10−11 [395, 396, 397].
The constant 2Φ(0) = 28066794017 appears in [398], in connection with a study

of zeroes of the integral of ().

Further work regarding Li’s criterion, which is equivalent to Riemann’s hypothesis

and which involves the Stieltjes constants, appears in [338, 339]. A different criterion

is due to Matiyasevich [340, 341]; the constant − ln(4) +  + 2 = 00461914179 =

2(00230957089) comes out as a special case. See also [342, 343]. As another aside,

we mention the unboundedness of (12+  ) for  ∈ (0∞), but that a precise order
of growth remains open [399, 400, 401, 402]. In contrast, there is a conjecture that

[403, 404, 405]

max
∈[2 ]

|(1 +  )| =  (ln(ln( )) + ln(ln(ln( ))) +  + (1)) 

max
∈[2 ]

1

|(1 +  )| =
6

2
(ln(ln( )) + ln(ln(ln( ))) +  + (1))
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as  →∞, where

 = 1− ln(2) +
2Z
0

ln(0())

2
+

∞Z
2

ln(0())− 

2
 = −00893

and 0() is the zeroth modified Bessel function. These formulas have implications

for |( )| and 1|( )| as well by the analytic continuation formula.
Looking at the sign of Re((1 +  )) for 0 ≤  ≤ 105 might lead one to conjecture

that this quantity is always positive. In fact,  ≈ 68211292 corresponds to a negative
value (the first?) The problem can be generalized to Re((+  )) for arbitrary fixed

 ≥ 1. Van de Lune [406, 407] computed that

 = sup { ≥ 1 : Re((+  ))  0 for some  ≥ 0} = 11923473371

is the unique solution of the equationX


arcsin (−) = 2   1

where the summation is over all prime numbers . Also [408],

 = sup { real  : (+  ) = 1 for some real } = 19401016837

is the unique solution   1 of the equation () = (2 + 1)(2 − 1) and

 = sup { real  :  0(+  ) = 0 for some real } = 28130140202

is the unique solution   1 of the equation  0()() = −2+1 ln(2)(4 − 1).
2.33. Hall-Montgomery Constant. Let  be the unique solution on (0 ) of

the equation sin() −  cos() = 2 and define  = − cos() = 03286741629

Consider any real multiplicative function  whose values are constrained to [−1 1].
Hall & Tenenbaum [409] proved that, for some constant   0,

X
=1

() ≤  exp

(
−

X
≤

1− ()



)
for sufficiently large 

and that, moreover, the constant  is sharp. (The latter summation is over all prime

numbers .) This interesting result is a lemma used in [410]. A table of values of sharp

constants  is also given in [409] for the generalized scenario where  is complex,

| | ≤ 1 and, for all primes , () is constrained to certain elliptical regions in C.
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A fascinating coincidence involving 0 is as follows. The limiting probability that

a random -permutation has exactly  cycles of length exceeding  is [411]

0() =

½
1− 2

12
+ ln() + 1

2
ln()2 + Li2() if 1

3
≤   1

2


1 + ln() if 1
2
≤   1

1() =

½
2

6
− ln()− ln()2 − 2Li2() if 1

3
≤   1

2


− ln() if 1
2
≤   1

2() =

½
−2

12
+ 1

2
ln()2 + Li2() if 1

3
≤   1

2


0 if 1
2
≤   1

as →∞, where  = 0 1 2. The value of  that maximizes 1() is  = 1 (1 +
√
) =

03775406687; we have

1() = 1− 0 = 08284995068

0() = 00987117544, 2() = 00727887386 (which are non-Poissonian). In

particular, most -permutations have exactly one cycle longer than  .

3.1. Shapiro-Drinfeld Constant. A construction involving the smallest con-

cave down function ≥ prescribed data appears in [412].
3.2. Carlson-Levin Constants. Various generalizations appear in [413, 414,

415]; analogous sharp constants for finite series remain open, as for integrals over

bounded regions.

3.3. Landau-Kolmogorov Constants. For 2(0∞), Bradley & Everitt [416]
were the first to determine that (4 2) = 29796339059 =

√
88782182137; see

also [417, 418, 419]. Ditzian [420] proved that the constants for 1(−∞∞) are
the same as those for ∞(−∞∞) Phóng [418] obtained the following best possible
inequality in 2(0 1):

1Z
0

| 0()|2  ≤ (64595240299)
⎛⎝ 1Z
0

|()|2 +
1Z
0

| 00()|2 
⎞⎠

where the constant is given by sec(2)2 and  is the unique zero satisfying 0   

4 of

sin()4
¡
2 sin() − 1¢2 (−2 sin() − 1)2 + cos()4[2− 2 cos(2 cos())]2

− cos(2)4[1 + 4 sin() − 22 sin() cos(2 cos())][1 + −4 sin() − 2−2 sin() cos(2 cos())]
−2 cos()2 sin()2[2− 2 cos(2 cos())](1− −2 sin())

¡
2 sin() − 1¢ 

We wonder about other such additive analogs of Landau-Kolmogorov inequalities.
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3.4. Hilbert’s Constants. Borwein [421] mentioned the case  =  = 43 and

 = 12, which evidently remains open. Peachey & Enticott [422] performed relevant

numerical experiments.

3.5. Copson-de Bruijn Constant. An English translation of Stečkin’s paper

is available [423]. Ackermans [424] studied the recurrence {} in greater detail. Let
Ω be a domain in R and let   1. A multidimensional version of Hardy’s inequality

is [425] Z
Ω

|∇()|  ≥
¯̄̄̄
− 



¯̄̄̄ Z
Ω

|()|
|| 

and the constant is sharp. Let () denote the (shortest) distance between  and the

boundary Ω of Ω. A variation of Hardy’s inequality isZ
Ω

|∇()|  ≥
µ
− 1


¶ Z
Ω

|()|
()



assuming Ω is a convex domain with smooth boundary. Again, the constant is sharp.

With regard to the latter inequality, let  = 2,  = 2 and Ω = Ω be the nonconvex

plane sector of angle :

Ω =
©
   : 0    1 and 0    

ª


Davies [426] demonstrated that the reciprocal of the best constant is⎧⎨⎩ 4 if 0    4856

 4 if 4856    2

4869 if  = 2

and Tidblom [427] found that the threshold angle is exactly

 =  + 4arctan

µ
4
Γ(34)2

Γ(14)2

¶
=  + 4arctan

µ
1

2

32 − 1
32

52

52 − 1
72 − 1
72

· · · ·
¶
= 48560553209

A similar expression for 4869 remains open.

3.6. Sobolev Isoperimetric Constants. In section 3.6.1,
√
 = 1 represents

the principal frequency of the sound we hear when a string is plucked; in section

3.6.3,
√
 =  represents likewise when a kettledrum is struck. (The square root was

missing in both.) The units of frequency, however, are not compatible between these

two examples.
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The “rod ”constant 5005639017404 = (47300407448)4 appears in [428, 429,

430]. It is the second term in a sequence 1, 2, 3, ... for which 1 = 2 = 9869 (in

connection with the “string” inequality) and 3 = (2)
6 = 61528908; the constant

4 is the smallest eigenvalue of ODE

 ()() =  () 0 ≤  ≤ 1

(0) =  0(0) =  00(0) =  000(0) = 0 (1) =  0(1) =  00(1) =  000(1) = 0

and was computed by Abbott [431] to be (78187073432)8 = (13966245157)×107.
Allied subjects include positive definite Toeplitz matrices and conditioning of certain

least squares problems.

Here is a concrete example [432, 433]: the best constant  for the inequality

Z
0

()20()2 ≤
³
2

´2


Z
0

0()4 (0) = () = 0

is  = 2(+ 1)2 = 03461189656, where

 =

1Z
0

1

1− 2
3
2
 =

r
3

2
arctanh

Ãr
2

3

!
= 14038219651

More relevant material is found in [434, 435, 436]. See [437] for a variation involving

the norm of a product  , bounded by the product of the norms of  and .

3.7. Korn Constants. A closed-form expression for even the smallest Laplacian

eigenvalue 71553391339 [438] over a regular hexagon is unavailable.

3.8. Whitney-Mikhlin Extension Constants. For completeness’ sake, we

mention that

2 =
q

1
1(1)0(1)

 4 =
q

1
(0(1)−21(1))1(1)

 6 =
q

1
(91(1)−40(1))(21(1)+0(1))

via recursions for modified Bessel functions.

3.9. Zolotarev-Schur Constant. Here is a different problem involving approx-

imation over an ellipse . We assume that  possesses foci ±1 and sum of semi-axes
equal to 1, where 0    1. Let () be analytic in the interior of , real-valued

along the major axis of , and bounded in the sense that |Re(())| ≤ 1 in the

interior of . Then the best approximation of () on [−1 1] by a polynomial of
degree − 1 has error at most

8



∞X
=0

(−1)
2 + 1

(2+1)

1 + 2(2+1)
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Further, there exists an () for which equality is attained, that is, the Favard-like

constant (in ) is sharp [439, 440, 441].

3.10. Kneser-Mahler Constants. The constants ln() and ln() appear in

[442]. Conjectured L-series expressions for 
³
1 +

P

=1 

´
, due to Rodriguez-

Villegas, are exhibited for  = 4, 5 in [258].

3.11. Grothendieck’s Constants. It is now known [443, 444] that  


¡
2 ln(1 +

√
2)
¢ −  for some explicit   0; a similar result for  remains open.

See [445, 446] for connections with theoretical computer science and quantum physics.

3.12. Du Bois Reymond’s Constants. The smallest positive solution 44934094579

of the equation tan() =  appears in [369]; it is also the smallest positive local min-

imum of sin(). The constant ()2 is equal to the largest eigenvalue of the

infinite symmetric matrix ()≥1≥1 with elements  = −1−1 + −2,

where  = 1 if  =  and  = 0. Boersma [447] employed this fact to give an

alternative proof of Szegö’s theorem. Let 0 be the positive solution of tanh(1) = 

and 1, 2, 3, ... be all positive solutions of tan(1) = −. We have [448]

40 +

∞X
=1

4 =
1

2
 60 −

∞X
=1

6 =
1

3

and much more.

3.13. Steinitz constants. We hope to report on [449, 450] later.

3.14. Young-Fejér-Jackson Constants. The quantity 03084437795, called

Zygmund’s constant, would be better named after Littlewood-Salem-Izumi [451, 452,

453, 454, 455].

3.15. Van der Corput’s Constant. We examined only the case in which  is

a real twice-continuously differentiable function on the interval [ ]; a generalization

to the case where  is  times differentiable,  ≥ 2, is discussed in [456, 457] with
some experimental numerical results for  = 3.

3.16. Turán’s Power Sum Constants. Recent work appears in [458, 459, 460,

461, 462, 463, 464, 465], to be reported on later.

4.1. Gibbs-Wilbraham Constant. On the one hand, Gibbs’ constant for a

jump discontinuity for Fourier-Bessel partial sums seems to be numerically equal to

that for ordinary Fourier partial sums (a proof is not given in [467]). On the other

hand, the analog of (2) corresponding to de la Vallée Poussin sums is

23Z
0

cos()− cos(2)
2

 = 11427281269

which is slightly less than 11789797444[468]. It is possible to generalize the classical

case to piecewise smooth functions  for which the jump discontinuity occurs not for  ,
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but rather for its derivative. The lowest undershooting corresponding to such ‘kinks’

is cos() = −03482010120 where  = 19264476603 is the smallest positive root
of



∞Z


cos()

2
 = cos()

This phenomenon, although more subtle than the usual scenario, deserves to be better

known [468].

4.2. Lebesgue Constants. Asymptotic expansions (in terms of negative integer

powers of + 1) for  and 2 appear in [469, 470, 471].

4.3. Achieser-Krein-Favard Constants. An English translation of Nikolsky’s

work is available [472]. While on the subject of trigonometric polynomials, we mention

Littlewood’s conjecture [466]. Let 1  2       be integers and let , 1 ≤  ≤
, be complex numbers with || ≥ 1. Konyagin [473] and McGehee, Pigno & Smith
[474] proved that there exists   0 so that the inequality

1Z
0

¯̄̄̄
¯

X
=1


2

¯̄̄̄
¯  ≥  ln()

always holds. It is known that the smallest such constant  satisfies  ≤ 42; Stege-
man [475] demonstrated that  ≥ 01293 and Yabuta [476] improved this slightly to
 ≥ 0129590. What is the true value of ?
4.4. Bernstein’s Constant. Consider more generally the case () = ||

and () = lim→∞ () for   0, where the error is quantified in ∞[−1 1].
Although we know (1) to high precision, no explicit expression for it (or for ()

when  6= 1) is known. In contrast, the 1 and 2 analogs of () are [477, 478, 479,
480]

(8)| sin(2)|Γ(+ 1)(+ 2) (2
√
) | sin(2)|Γ(+ 1)

p
1(2+ 1)

respectively, where () is Dirichlet’s beta function. Also [481]

lim
→∞


√
() = 4

1+2| sin(2)|

which reduces to 8 in special circumstance  = 1.

4.5. The “One-Ninth” Constant. Zudilin [482] deduced that Λ is transcen-

dental by use of Theorem 4 in [483]. See also [484, 485].

4.6. Fransén-Robinson Constant. For thoroughness’ sake, we give moments

1



∞Z
0



Γ()
 = 19345670421

1



∞Z
0

2

Γ()
 = 48364859746
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of the reciprocal gamma distribution (not to be confused with the inverse gamma

distribution).

4.7. Berry-Esseen Constant. The upper bound for  can be improved to

04785 when 1, 2,   ,  are identically distributed [486, 487] and to 05600 when

non-identically distributed [488]. A different form of the inequality is found in [489].

4.8. Laplace Limit Constant. The quantity  = 06627434193 appears in

[490] with regard to Plateau’s problem for two circular rings dipped in soap solution;

 =
p
2 + 1 appears in [491] with regard to solving an exponential equation. Definite

integral expressions include [492, 493]

 = 1 +

R 2
0

2 
coth( +1)− −1R 2

0
 

coth( +1)− −1
=

vuut1− 1
2

R 1
−1

2
(−arctanh())2+24

1− 1
2

R 1
−1


(−arctanh())2+24



Also, sinh() = 15088795615 occurs in asymptotic combinatorics and as an extreme

result in complex analysis [494, 495, 496, 497]; sinh() = 12577364561 occurs

when minimizing the maximum tension of a heavy cable spanning two points of equal

height [498].

Let   0. The boundary value problem

00() +  () = 0 (0) = (1) = 0

has zero, one or two solutions when   ,  =  and   , respectively; the critical

threshold

 = 82 = 35138307191 = 4(08784576797)

was found by Bratu [499, 500] and Frank-Kamenetskii [501, 502]. Another way of

expressing this is that the largest   0 for which

00() + () = 0 (0) = () = 0

possesses a solution is  =
√
8 = 18745214640 Under the latter circumstance, it

follows that

0(0) =
√
2 sinh() = 21338779399 =

p
2( − 1)

where  = cosh()2 = 32767175312. These differential equations are useful in

modeling thermal ignition and combustion [503, 504, 505, 506]; see [507] for similar

equations arising in astrophysics.

4.9. Integer Chebyshev Constant. The bounds 04213  (0 1)  0422685

are currently best known [508, 509, 510, 511]. Other values of ( ) and various

techniques are studied in [512]. If the integer polynomials are constrained to be monic,

then a different line of research emerges [513, 514, 515]. Consider instead the class
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 of all integer polynomials of the exact degree  and all  zeroes both in [−1 1]
and simple. Let

X
=0


 ∈   6= 0  = 1 2 3   

be an arbitrary sequence  of polynomials. Building on work of Schur [516], Pritsker

[517] demonstrated that

15381 
1p

(0 1)
≤ inf


liminf
→∞

||1  15417

(his actual lower bound 15377 used (0 1)  042291334 from [510]; we use the

refined estimate from [511]). A follow-up essay on real transfinite diameter is [518].

5.1. Abelian Group Enumeration Constants. Asymptotic expansions forP
≤ () are possible for any integer  ≥ 2 [519, 520]. For a finite abelian group

, let () denote the minimum number of generators of  and let () denote the

expected number of random elements from , drawn independently and uniformly,

to generate . Define () = ()− (), the excess of . Then [228]

 = sup {() : () = } = 1 +
∞X
=1

Ã
1−

Y
=1

( + )−1
!
;

in particular, 1 = 17052111401 (Niven’s constant) for the cyclic case and

 = lim
→∞

 = 1 +

∞X
=2

Ã
1−

∞Y
=

()−1
!
= 2118456563

in general. It is remarkable that this limit is finite! Let also

 =

∞X
=1

Ã
1− ¡1− 2−¢ ∞Y

=+1

()−1
!
= 1742652311

then for the multiplicative group Z∗ of integers relatively prime to ,

sup {() :  = Z∗ and 2   ≡ mod 8} =

⎧⎪⎪⎨⎪⎪⎩
 if  = 1 3 5 or 7

 − 1 if  = 2 or 6

 if  = 4

 + 1 if  = 0

We emphasize that , not , is fixed in the supremum (as according to the right-hand

side). The constant −11 = 04357570767 makes a small appearence (as a certain

“best probability” corresponding to finite nilpotent groups).
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Let Z denote the additive group of integer -vectors (free abelian group of rank
) and (Z) denote the ring of integer  ×  matrices. From a different point of

view, we have [521]

P { random -vectors generate Z} =
½

0 if  = 
1

(−+1)
1

(−+2) · · · 1
()

if   

P { random 2× 2 matrices generate 2(Z)} =
½

0 if  = 2
1

(−1)() if   2

P {2 random 3× 3 matrices generate 3(Z)} = 1
(2)2(3)



P {3 random 3× 3 matrices generate 3(Z)} = 1
(2)(3)(4)

Y


³
1 + 1

2
+ 1

3
− 1

5

´


It is surprising that two 2× 2 matrices differ from two 3× 3 matrices in this regard
(the former probability is zero but the latter is positive!) See [522, 523] for more on

nonabelian group enumeration.

5.2. Pythagorean Triple Constants. Improvements in estimates for () and

() are found in [524, 525]. Let () denote the number of primitive Pythagorean

triangles under the constraint that the two legs are both ≤ ; then [526]

() =
4

2
ln
³
1 +
√
2
´
+

¡√

¢

as →∞. The quantity() should be defined as the number of primitive Heronian

triangles under the constraint that all three sides are ≤ . A better starting point

for studying  0
() might be [527, 528, 529, 530].

5.3. Rényi’s Parking Constant. Expressions similar to those for(),  and

 appear in the analysis of a certain stochastic fragmentation process [531]. More

constants appear in the jamming limit of arbitrary graphs; for example, 03641323

and 03791394 correspond respectively to the square and hexagonal lattices [532].

Consider monomers on 1 ×∞ that exclude  neighbors on both right and left

sides. The expected density of cars parked on the lattice is [533, 534, 535, 536]

1−(2)
2

= 1−−2
2

= 1
1−(3)
3

= 02745509877
1−(4)
4

= 02009733699

for  = 1, 2, 3. On the one hand, the expected density 2 = (2− −1)4 for 2×∞
and  = 1 is verified in [535]. On the other hand, the expected density for 3 ×∞
is reported as ≈ 03915 (via Monte Carlo simulation), inconsistent with 3 = 13.

This issue awaits resolution. An interesting asymptotics problem appears in [537],

as well as a constant
P∞

=0 2
−(+1)2 = 16416325606
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Call an -bit binary word legal if every 1 has an adjacent 0. For example, if

 = 6, the only legal words with maximal set of 1s are

010101 010110 011001 011010 100110 101010 101101

Imagine cars (1s) parking one-by-one at random on 000000, satisfying legality at all

times and stopping precisely when maximality is fulfilled. This process endows the

seven words with probabilities

5
48
 7

60
 5

48
 7

60
 5

48
 5

48
 7

20

respectively (by tree analysis) and the mean density of cars is

1
6

£
3
¡
4 · 5

48
+ 2 · 7

60

¢
+ 4

¡
7
20

¢¤
= 67

120


In the limit as →∞, the mean density→ 0598 via simulation [538]. Conceivably

this constant is exactly 35, but a proof may be difficult. Several variations on a

discrete parking theme appear in [538, 539].

5.4. Golomb-Dickman Constant. Let +() denote the largest prime factor

of  and −() denote the smallest prime factor of . We mentioned that

X
=2

ln(+()) ∼  ln()− (1− )

X
=2

ln(−()) ∼ − ln(ln()) + 

as  →∞, but did not give an expression for the constant . Tenenbaum [540] found
that

 = −(1 + ) +

∞Z
1

()− −


+

X


(
− ln

µ
1− 1



¶
+
ln()

− 1
Y
≤

µ
1− 1



¶)


where the sum over  and product over  are restricted to primes. A numerical

evaluation is still open. Another integral [541]

∞Z
1

()


 = (1916045)−1

deserves closer attention (when the denominator is replaced by 2, 1− emerges). A
variation of permutation, called cyclation, appears in [542]. Similar constants arise

in the distribution of cycle lengths, given a random -cyclation:

expected

longest cycle
∼
⎛⎝ ∞Z
0

−+Ei(−)2 

⎞⎠ = (07578230112)
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expected

shortest cycle
∼
⎛⎝√
2

∞Z
0

−−Ei(−)2 

⎞⎠ = (14572708792)
√


as  → ∞. The former coefficient is the Flajolet-Odlyzko constant; the analogous
growth rate of the latter for permutations is only ln().

The longest tail (), given a random mapping  : {1 2     }→ {1 2     },
is called the height of  in [543, 544, 545] and satisfies

lim
→∞P

µ
()√


≤ 

¶
=

∞X
=−∞

(−1) exp
µ
−

22

2

¶
for fixed   0. For example,

lim
→∞

Var

µ
()√



¶
=

2

3
− 2 ln(2)2

The longest rho-path () is called the diameter of  in [546] and has moments

lim
→∞E

"µ
()√



¶
#
=

√


22Γ(( + 1)2)

∞Z
0

−1(1− Ei(−)−()) 

for fixed   0. Complicated formulas for the distribution of the largest tree  ()

also exist [544, 545, 547].

A permutation  ∈  is an involution if 
2 = 1 in . Equivalently,  does not

contain any cycles of length 2: it consists entirely of fixed points and transpositions.

Let  denote the number of involutions on . Then  = −1 + ( − 1)−2 and
[548, 549]

 ∼ 1

21214

³


´2

√


as →∞. The equation  = 1 for  ≥ 3 has also been studied [550].
A permutation  ∈  is a square if  = 2 for some  ∈ ; it is a cube if  = 3

for some  ∈ . For convenience, let  = (−1 + 
√
3)2 and

Ψ() =
1

3

³
exp() + 2 exp(−2) cos(

√
32)

´


The probability that a random -permutation is a square is [551, 552, 553, 554, 555]

∼ 212

Γ(12)

1

12

Y
1≤≡0mod 2

1 + −1

2
=

r
2

 

∞Y
=1

cosh

µ
1

2

¶

=

r
2

 
(12217795151) = (09748390118)−12
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as →∞; the probability that it is a cube is [554, 555]

∼ 313

Γ(23)

1

13

Y
1≤≡0mod 3

1 +  + 
2

3

=
356Γ(13)

2 13

∞Y
=1

Ψ

µ
1

3

¶
= (10729979443)−13

Two permutations   ∈  are of the same cycle type if their cycle decompositions

are identical (in the sense that they possess the same number of cycles of length ,

for each  ≥ 1). The probability that two independent, random -permutations have

the same cycle type is [555]

∼ 1

2

∞Y
=1

0

µ
2



¶
= (42634035141)−2

as →∞, where 0 is the zeroth modified Bessel function.
A mapping  on {1 2     } has period  if  is the least positive integer for

which iterates + =  for all sufficiently large . It is known that [556]

ln(E(())) =  3

r


ln()2
(1 + (1))

as →∞, where  = (32)(3 )23 = 33607131721. A typical mapping  satisfies

ln(()) ∼ 1
8
ln()2. When restricting the average to permutations  only, we have

ln(E(())) = 

r


ln()
(1 + (1)) 

where  = 2
√
2 = 29904703993 (this corrects the error term on p. 287). See

[557, 558] for additional appearances of . More on the Erdős-Turán constant is

found in [559, 560].

Let  () denote the number of factorizations of an -permutation  into two

-involutions. For example, if  is an -cycle, then  () = :

(1 2 3 4) = (1 2)(3 4) ◦ (1)(2 4)(3)
= (1 3)(2)(4) ◦ (1 2)(3 4)
= (1 4)(2 3) ◦ (1 3)(2)(4)
= (1)(2 4)(3) ◦ (1 4)(2 3)

If  is chosen uniformly at random, then it is known that [561]

E ( ()) ∼ 1√
8

2
√


√
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as →∞, and conjectured that

lim
→∞P

µ
ln( ())− 1

2
ln()2

 ln()3
≤ 

¶
=

1√
2

Z
−∞

exp

µ
−

2

2

¶


where  ≈ 016 is a constant.
5.5. Kalmár’s Composition Constant. See [562] for precise inequalities

involving () and  = 17286472389 The number of factors in a random or-

dered factorization of  ≤  into 2 3 4 5 6    is asymptotically normal with mean

[563, 564, 565]

∼ −1
 0()

ln() = (05500100054) ln()

and variance

∼ −1
 0()

µ
 00()
 0()2

− 1
¶
ln() = (03084034446) ln()

as  →∞. In contrast, the number of distinct factors in the same has mean

∼ −1

Γ

µ−1


¶µ −1
 0()

¶1
ln()1 = (14879159716) ln()1

hence on average there are many small factors occurring with high frequencies. Also,

the number of factors in a random ordered factorization of  ≤  into 2 3 5 7 11   

is asymptotically normal with mean 05776486251 and variance 04843965045

(with  = 13994333287 and
P

 
− playing the roles of  and ()− 1).

A Carlitz composition of size  is an additive composition  = 1 + 2 + · · ·+ 
such that  6= +1 for any 1 ≤   . We call  the number of parts and

 = 1 +

X
=2

½
1 if  6=  for all 1 ≤   

0 otherwise

the number of distinct part sizes. The number c() of Carlitz compositions is [566,

567, 568, 569]

c() ∼ 1

  0()

µ
1



¶

= (04563634740)(17502412917)

where  = 05713497931 is the unique solution of the equation

 () =

∞X
=1

(−1)−1 

1− 
= 1 0 ≤  ≤ 1
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The expected number of parts is asymptotically

()

  0()
 ∼ (0350571) where () =

∞X
=1

(−1)−1  

1− 

(by contrast, an unrestricted composition has ( + 1)2 parts on average). The

expected size of the largest part is

− ln()
ln()

+

µ
ln( 0()) + ln(1− )− 

ln()
+
1

2

¶
+() = (1786500) ln()+0643117+()

where  is Euler’s constant and () is a small-amplitude zero-mean periodic function.

The expected number of distinct part sizes is [570]

− ln()
ln()

+

µ
ln( 0()) + 

ln()
+
1

2

¶
+ () = (1786500) ln()− 2932545+ ()

where () is likewise negligible. (By contrast, an unrestricted composition has

a largest part of size roughly ln() ln(2) + 0332746 and roughly ln() ln(2) −
0667253 distinct part sizes on average: see [571, 572, 573], as well as the bottom

of page 340.) We wonder about the multiplicative analog of these results. See also

[574].

Another equation involving the Riemann zeta function: [575]

(− 2)− 2(− 1) = 0

arises in random graph theory and its solution  = 34787507857 serves to separate

one kind of qualitative behavior (the existence of a giant component) from another.

5.6. Otter’s Tree Enumeration Constants. Higher-order asymptotic series

for ,  and  are given in [162]. Analysis of series-parallel posets [576] is similar

to that of trees. By Stirling’s formula, another way of writing the asymptotics for

labeled mobiles is [569]

̂

!
∼ ̂√

2

³
 ̂
´

−32 ∼ (01857629435) (31461932206) −32

as  →∞. See [577, 578] for more about -gonal 2-trees, as well as a new formula
for  in terms of rational expressions involving .

The generating function () of leftist trees satisfies a simpler functional equation

than previously thought:

() = +  (())
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which involves an unusual nested construction. The radius of convergence  =

03637040915 = (27494879027)−1 of () satisfies

0 (()) = 1

and the coefficient of −−32 in the asymptotic expression for  iss
1

22
+ ()

00 (())
= 02503634293 = (06883712204)

The average height of -leaf leftist trees is asymptotically (181349371)
√
 and the

average depth of vertices belonging to such trees is asymptotically (090674685)
√
.

Nogueira [579] conjectured that the ratio of the two coefficients is exactly 2, but his

only evidence is numerical (to over 1000 decimal digits). Let the -number of an

ordered binary tree  be

() =

½
1 if  = ∅ or  = ∅
1 +min(() ()) otherwise.

Such a tree is leftist if and only if for every subtree  of  with  6= ∅ and  6= ∅,
the inequality ()  () holds. Another relevant constant, 06216070079, is

involved in a distribution law for leftist trees in terms of their -number [579].

For the following, we consider only unordered forests whose connected components

are (strongly) ordered binary trees. Let  denote the number of such forests with

2− 1 vertices; then the generating function

Φ() = 1 +

∞X
=1


 = 1 + + 22 + 43 + 104 + 265 + 776 + · · ·

satisfies

Φ() = exp

Ã ∞X
=1

1−√1− 4
2

!
=

∞Y
=1

(1− )
− 1


¡
2−2
−1

¢


It can be shown that [555]

 ∼ Φ(14)√


4−1

32
=
17160305349

4
√


4

32

as  → ∞. The constant 1716 also plays a role in the asymptotic analysis of the
probability that a random forest has no two components of the same size.

A phylogenetic tree of size  is a strongly binary tree whose  leaves are labeled.

The number of such trees is 1 · 3 · · · (2 − 3) and two such trees are isomorphic if
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removing their labels will associate them to the same unlabeled tree. The probability

that two uniformly-selected phylogenetic trees are isomorphic is asymptotically [580]

(317508)(235967)−32

as  → ∞, where the growth rate is 4 and  = 05899182714 is the radius of

convergence of a certain radical expansion

1−

vuut3

2
− 2 − 1

2

s
15

8
− 22 − 7

8

r
255

128
− 24 − 127

128

√
  

An arithmetic formula is an expression involving only the number 1 and operations

+ and ·, with multiplication by 1 disallowed. For example, 4 has exactly six arithmetic
formulas:

1 + (1 + (1 + 1)) 1 + ((1 + 1) + 1) (1 + (1 + 1)) + 1

((1 + 1) + 1) + 1 (1 + 1) + (1 + 1) (1 + 1) · (1 + 1)
Let () denote the number of arithmetic formulas for  and  () =

P∞
=1 ()

,

then define  to be the smallest positive solution of the equation

1

4
= +

∞X
=2

()
¡

¡

¢− 

¢
and  = 1 to be the growth rate. A binary tree-like argument yields that () is

asymptotically [581, 582]

(01456918546)(40765617852)−32

as  → ∞. Suppose moreover that exponentiation is included but that 1 again is

disallowed; thus (1 + 1)(1+1) also counts. An analog holds for counting arithmetic

exponential formulas but with a larger  = 41307352951.

5.7. Lengyel’s Constant. Constants of the form
P∞

=−∞ 2
−2 and

P∞
=−∞ 2

−(−12)2

appear in [583, 584]. We discussed the refinement of  given by , which counts

partitions of {1 2     } possessing exactly  blocks. Another refinement of  is

based jointly on the maximal  such that a partition has an -crossing and the maximal

 such that the partition has a -nesting [585]. The cardinality of partitions avoiding

2-crossings is the th Catalan number; see [586] for partitions avoiding 3-crossings

and [587] for what are called 3-noncrossing braids.

5.8. Takeuchi-Prellberg Constant. Knuth’s recursive formula should be re-

placed by

+1 =

−1X
=0

£
2
¡
+



¢− ¡++1


¢¤
− +

+1X
=1

¡
2



¢ 1

 + 1
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5.9. Pólya’s Random Walk Constants. Properties of the gamma function

lead to a further simplification [588]:

3 =
1

323

³√
3− 1

´ ∙
Γ

µ
1

24

¶
Γ

µ
11

24

¶¸2
Consider a variation in which the drunkard performs a random walk starting from

the origin with 2 equally probable steps, each of the form (±1±1    ±1). The
number of walks that end at the origin after 2 steps is

̃02 =

µ
2



¶

and the number of such walks for which 2 is the time of first return to the origin is

̃02, where [589]

2−̃102 =
1

22−1

µ
2− 2
− 1

¶
∼ 1

2
√
32



2−2̃202 =


(ln())2
− 2  + 

(ln())3
+

µ
1

(ln())4

¶


2−3̃302 =
1

32232
+

µ
1

2

¶
as →∞, where

 = 1 +

∞X
=1

"
2−4

µ
2



¶2
− 1



#
=
4 ln(2)


= 08825424006

 =

∞X
=0

2−6
µ
2



¶3
=

1

43
Γ

µ
1

4

¶4
= 13932039296

The quantity  is often called the average range of the random walk (equal to

E(max −min) when  = 1). The corresponding variance is

∼ 4
µ
ln(2)− 2



¶
 = (02261096327)

if  = 1 [590] and is

∼ 82
µ
3

2
−3(2) +

1

2
− 2

12

¶
2

ln()4
= 82 (08494865859)

2

ln()4
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if  = 2 [591]. Various representations include

3

2
−3(2) = 11719536193 = −

1Z
0

ln()

1− + 2
 =

2√
3
(10149416064)

the latter being Lobachevsky’s constant (p. 233). Exact formulas for the correspond-

ing distribution, for any , are available when  = 1 [592].

More on the constant  appears in [593, 594]. It turns out that the constant ,

given by an infinite series, has a more compact integral expression [595, 596]:

 =
1



∞Z
0

1

2
ln

∙
6

2

µ
1− sin()



¶¸
 = −02979521902 = −05160683318√

3

and surprisingly appears in both 3D statistical mechanics [597] and 1D probabilistic

algorithmics [598].

Here is a problem about stopping times for certain one-dimensional walks. Fix a

large integer . At time 0, start with a total of  + 1 particles, one at each integer

site in [0 ]. At each positive integer time, randomly choose one of the particles

remaining in [1 ] and move it 1 step to the left, coalescing with any particle that

might already occupy the site. Let  denote the time at which only one particle is

left (at 0). An exact expression for the mean of  is known [599]:

E() =
2(2+ 1)

3

µ
2



¶
1

22
∼ 4

3
√

32 = (07522527780)32

and the variance is conjectured to satisfy

Var() ∼  52 0   ≤ 8

15
√

 0301

Simulation suggests that  ∼ 0026 and that a Central Limit Theorem holds [600].

5.10. Self-AvoidingWalk Constants. A conjecture due to Jensen &Guttmann

[601]

 =

s
7 +
√
30261

26

for the square lattice seems completely unmotivated yet numerically reasonable; in

contrast, a proposal

 =

q
2 +
√
2
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for the hexgonal lattice is now a theorem [602, 603]. If we examine SAPs rather

than SAWs, it seems that  = −32 and  = 056230129[604, 605]. Fascinating

complications arise if such are restricted to be prudent, that is, never take a step

towards an already occupied vertex [606].

Hueter [607, 608] claimed a proof that 2 = 34 and that 712 ≤ 3 ≤ 23,

12 ≤ 4 ≤ 58 (if the mean square end-to-end distance exponents 3, 4 exist;

otherwise the bounds apply for

 = liminf
→∞

ln()

2 ln()
  = limsup

→∞

ln()

2 ln()

when  = 3 4). She confirmed that the same exponents apply for the mean square

radius of gyration  for  = 2 3 4; the results carry over to self-avoiding trails as

well. Burkhardt & Guim [609] adjusted the estimate for lim→∞ 
12

 to 1743; this

has now further been improved to 174455 [610].

5.11. Feller’s Coin Tossing Constants. The cubic irrational 17548776662

turns out to be the square of the Plastic constant  and has infinite radical expression

2 = 1 +
1r

1 + 1
1+ 1√

1+···

= 1 +
1|√
1
+
1|√
1
+
1|√
1
+ · · · 

an observation due to Knuth [611]. Additional references on oscillatory phenomena

in probability theory include [612, 613, 614]; see also our earlier entry [5.5]. Consider

 independent non-homogeneous Bernoulli random variables  with P( = 1) =

 = P(heads) and P( = 0) = 1 −  = P(tails). If all probabilities  are equal,

then s
P

=1

(1− ) P(1 +2 + · · ·+ = ) ≤ 1√
2
= 04288819424

for all integers  and the bound is sharp. If there exist at least two distinct values

, , then [615]s
P

=1

(1− ) P(1 +2 + · · ·+ = ) ≤ = 04688223554

for all integers  and the bound is sharp, where

 = max
≥0

√
2−2

∞X
=0

µ


!

¶2
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and the maximizing argument is  = 03949889297.

5.12. Hard Square Entropy Constant. McKay [616] observed the following

asymptotic behavior:

 () ∼ (106608266)(10693545387)2(15030480824)2

based on an analysis of the terms  () up to  = 19. He emphasized that the form of

right hand side is conjectural, even though the data showed quite strong convergence

to this form. Counting maximal independent vertex subsets of the ×  grid graph

is more difficult [617]: we have 1, 2, 10, 42, 358 for 1 ≤  ≤ 5 but nothing yet for
 ≥ 6. By “maximal”, we mean with respect to set-inclusion. There is a natural

connection with discrete parking (see section 5.3.1). Asymptotics remain open here.

To calculate entropy constants of more complicated planar examples, such as the 4-

8-8 and triangular Kagomé lattices, requires more intricate analysis. The former has

numerical value 154956010 = (576545652)14; the latter evidently still remains

open [618]. A nonplanar example is the square lattice with crossed diagonal bonds,

which has entropy constant between 134254 and 134265.

Let () denote the number of legal positions on an× Go board (a popular
game). Then [619]

lim
→∞

(1 )1 = 1 +
1

3

µ³
27 + 3

√
57
´13

+
³
27− 3

√
57
´13¶

= 27692923542

lim
→∞

( )1
2

= 29757341920

and, subject to a plausible conjecture,

() ∼ (08506399258)(096553505933)+(29757341920)

as min{}→∞.
5.13. Binary Search Tree Constants. The random permutation model for

generating weakly binary trees (given an -vector of distinct integers, construct 

via insertions) does not provide equal weighting on the
¡
2



¢
( + 1) possible trees.

For example, when  = 3, the permutations (2 1 3) and (2 3 1) both give rise to

the same tree , which hence has probability () = 13 whereas ( ) = 16 for

the other four trees. Fill [589, 620, 621] asked how the numbers ( ) themselves are

distributed, for fixed . If the trees are endowed with the uniform distribution, then

−E [ln(( ))]


→
∞X
=1

ln()

( + 1)4

µ
2



¶

= − −
1Z
0

ln(ln(1))√
1− 

¡
1 +
√
1− 

¢2 = 20254384677
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as →∞. If, instead, the trees follow the distribution , then

−E [ln(( ))]


→ 2

∞X
=1

ln()

( + 1)( + 2)

= − − 2
1Z
0

((− 2) ln(1− )− 2) ln(ln(1))
3

 = 12035649167

The maximum value of − ln(( )) is ∼  ln() and the minimum value is ∼  ,

where

 = ln(4) +

∞X
=1

2− ln(1− 2−) = 09457553021

See also [622, 623] for more on random sequential bisections.

5.14. Digital Search Tree Constants. Erdős’ 1948 irrationality proof is

discussed in [624]. The constant  is transcendental via a general theorem on values

of modular forms due to Nesterenko [243, 244]. A correct formula for  is

 =

∞X
=1

2(−1)2

1 · 3 · 7 · · · (2 − 1)
X

=1

1

2 − 1 = 77431319855

(the exponent ( − 1)2 was mistakenly given as  + 1 in [625], but the numerical
value is correct). The constants ,  and −1 appear in [626]. Also,  appears in

[627], −1 in [584] and

∞Y
=1

µ
1− 1

22

¶
= 00375130167

in [628, 629, 630]. The value 2 should be 3 +
√
5; the subseries of Fibonacci terms

with odd subscripts

∞X
=0

1

2+1
=

√
5

4

Ã ∞X
=−∞

1

(+12)
2

!2
= 18245151574

involves a Jacobi theta function 2() squared, where  = 1. It turns out that 

and  are linked via  − 1 = ; we have [631, 632, 633]

∞X
=1

(−1)−1
 (2 − 1) =

∞X
=1

ln
¡
1 + 2−

¢
= 08688766526 =

72271128245

12 ln(2)
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Finally, a random variable  with density −(− − 1 + )(1 − −)2,  ≥ 0, has
mean E() = 26 and mean fractional part [633]

E ( − bc) = 11

24
+

∞X
=1

2

sinh(22)2
=
11

24
+ (2825535)× 10−16

The distribution of  is connected with the random assignment problem [634, 635].

5.15. Optimal Stopping Constants. When discussing the expected rank ,

we assumed that no applicant would ever refuse a job offer! If each applicant only

accepts an offer with known probability , then [636]

lim
→∞

 =

∞Y
=1

µ
1 +

2



1 + 

2− + 

¶ 1
1+

which is 62101994550 in the event that  = 12. The same expression in an integer

parameter  ≥ 2 arises if instead we interview  independent streams of applicants;

lim→∞ = 26003019563 is found for the bivariate case [637, 638].

When discussing the full-information problem for Uniform [0 1] variables, we as-

sumed that the number of applicants is known. If instead this itself is a uniformly

distributed variable on {1 2     }, then for the “nothing but the best objective”,
the asymptotic probability of success is [639, 640]

(1− ) Ei(−)− (− + Ei(−))( + ln()− Ei()) = 04351708055

where  = 21198244098 is the unique positive solution of the equation

(1−  − ln() + Ei(−))− ( + ln()− Ei()) = 1

It is remarkable that these constants occur in other, seemingly unrelated versions of

the secretary problem [641, 642, 643, 644]. Another relevant probabililty is [644]

− − ¡ − − 1¢Ei(−) = 04492472188
where  = 13450166170 is the unique positive solution of the equation

Ei(−)−  − ln() = −1

The corresponding full-information expected rank problem is called Robbins’ problem

[645, 646].

Suppose that you view successively terms of a sequence 1, 2, 3, ... of inde-

pendent random variables with a common distribution function  . You know the
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function  , and as  is being viewed, you must either stop the process or con-

tinue. If you stop at time , you receive a payoff (1)
P

=1. Your objective is

to maximize the expected payoff. An optimal strategy is to stop at the first  for

which
P

=1 ≥ , where 1, 2, 3, ... are certain values depending on  . Shepp

[647, 648] proved that lim→∞ 
√
 exists and is independent of  as long as  has

zero mean and unit variance; further,

lim
→∞

√

=  = 08399236756 = 2(04199618378)

is the unique zero of 2 − √2 (1− 2) exp (22)
¡
1 + erf(

√
2)
¢
. We wonder if

Shepp’s constant can be employed to give a high-precision estimate of the Chow-

Robbins constant 2(07929535064)−1 = 05859070128 [649, 650], the value of the
expected payoff for  (−1) =  (1) = 12

Consider a random binary string 123     with P( = 1) = 1 − P( = 0)
independent of  and  independent of the other  s. Let  denote the pattern

consisting of the digits
10000| {z }



or 01111| {z }


and assume that its probability of occurrence for each  is

P (+1+2+3    + = ) =
1



µ
1− 1



¶−1
∼ 1


=
03678794411




You observe sequentially the digits 1, 2, 3, ... one at a time. You know the values

 and , and as  is being observed, you must either stop the process or continue.

Your objective is to stop at the final appearance of  up to . Bruss & Louchard

[651] determined a strategy that maximizes the probability of meeting this goal. For

 ≥ , this success probability is

2

135
−

¡
4− 452 + 453¢ = 06192522709

as →∞, where  = 34049534663 is the largest zero of the cubic 453 − 1802 +
90 + 4. Further, the interval [0367 0619] constitutes “typical” asymptotic

bounds on success probabilities associated with a wide variety of optimal stopping

problems in strings.

Suppose finally that you view a sequence 1, 2, ...,  of independent Uniform

[0 1] variables and that you wish to stop at a value of  as large as possible. If

you are a prophet (meaning that you have complete foresight), then you know ∗ =
max{1     } beforehand and clearly E(∗) ∼ 1 − 1 as  → ∞. If you are a
1-mortal (meaning that you have 1 opportunity to choose a  via stopping rules) and
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if you proceed optimally, then the value ∗1 obtained satisfies E(
∗
1) ∼ 1 − 2. If

you are a 2-mortal (meaning that you have 2 opportunities to choose s and then

take the maximum of these) and if you proceed optimally, then the value ∗2 obtained
satisfies E(∗2) ∼ 1− , where [652]

 =
2

 + 2
= 11656232877

and  = 27939976526 is the unique positive solution of the equationµ
2


+ 1

¶
ln

µ


2
+ 1

¶
=
3

2


The performance improvement in having two choices over just one is impressive:  is

much closer to 1 than 2! See also [653, 654, 655, 656].

5.16. Extreme Value Constants. The median of the Gumbel distribution is

− ln(ln(2)) = 03665129205.
5.17. Pattern-FreeWord Constants. We now have improved bounds 130173 

  130178858 and 1457567    145757921 [657, 658, 659, 660, 661, 662] and

precise estimates

 =
1

11

ln ((10))

ln(2)
= 1273553265  =

1

2

ln (())

ln(2)
= 1332240491

where ,  are known 20 × 20 integer matrices and  denotes spectral radius [663,

664, 665]. The set of quaternary words avoiding abelian squares grows exponentially

(although ()1 is not well understood as length →∞); the set of binary words
avoiding abelian fourth powers likewise is known to grow exponentially [666].

5.18. Percolation Cluster Density Constants. Approximating  for site

percolation on the square lattice continues to draw attention [667, 668, 669, 670, 671,

672]; for the hexagonal lattice,  = 0697043 improves upon the estimate given on

p. 373. More about mean cluster densities can be found in [673, 674]. An integral

similar to that for () on the triangular lattice appears in [675].

Hall’s bounds for  on p. 375 can be written as 1642  4   10588 and

the best available estimate is 4  = 451223 [676, 677]. Older references on

2D and 3D continuum percolation include [678, 679, 680, 681, 682, 683]. See also

[684, 685, 686, 687, 688].

Two infinite 0-1 sequences ,  are called compatible if 0s can be deleted from 

and/or from  in such a way that the resulting 0-1 sequences  0,  0 never have a 1
in the same position. For example, the sequences  = 000110    and  = 110101   

are not compatible. Assume that  and  are randomly generated with each , 
independent and P( = 1) = P( = 1) = . Intuition suggests that  and  are
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compatible with positive probability if and only if  is suitably small. What is the

supremum ∗ of such ? It is known [689, 690, 691, 692] that 100−400  ∗  12;

simulation indicates [693] that 03  ∗  0305.
Consider what is called bootstrap percolation on the -dimensional cubic lattice

with  vertices: starting from a random set of initially “infected” sites, new sites

become infected at each time step if they have at least  infected neighbors and

infected sites remain infected forever. Assume that vertices of the initial set were

chosen independently, each with probability . What is the critical probability ( )

for which the likelihood that the entire lattice is subsequently infected exceeds 12?

Holroyd [694] and Balogh, Bollobás & Morris [695] proved that

( 2) =
218 + (1)

ln()
 ( 3) =

+ (1)

ln(ln())

as →∞, where

 = −
∞Z
0

ln

µ
1

2
− −2

2
+
1

2

√
1 + −4 − 4−3 + 2−2

¶
 = 04039127202

A closed-form expression for  remains open.

5.19. Klarner’s Polyomino Constant. A new estimate 40625696 for  is

reported in [696] and a new rigorous lower bound of 3980137 in [697]. The number

̄() of row-convex -ominoes satisfies [698]

̄() = 5̄(− 1)− 7̄(− 2) + 4̄(− 3)  ≥ 5

with ̄(1) = 1, ̄(2) = 2, ̄(3) = 6 and ̄(4) = 19; hence ̄() ∼   as  →
∞, where  = 32055694304 is the unique real zero of 3 − 52 + 7 − 4 and
 = (412−129+163)944 = 01809155018. While the multiplicative constant for
parallelogram -ominoes is now known to be 02974535058, corresponding improved

accuracy for convex -ominoes evidently remains open. A Central Limit Theorem

applies to the perimeter of a random parallelogram -omino , which turns out to

be normal with mean (08417620156) and standard deviation (04242065326)
√


in the limit as  → ∞. Hence  is expected to resemble a slanted stack of fairly

short rods [569]. Again, corresponding quantities for a random convex -omino are

not known. More on coin fountains and the constant 05761487691 can be found in

[699, 700, 701, 702].

5.20. Longest Subsequence Constants. Regarding common subsequences,

Lueker [703, 704] showed that 07880 ≤ 2 ≤ 08263. The Sankoff-Mainville con-

jecture that lim→∞ 
12 = 2 was proved by Kiwi, Loebl & Matousek [705]; the
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constant 2 arises from a connection with increasing subsequences. A deeper connec-

tion with the Tracy-Widom distribution from random matrix theory has now been

confirmed [706]:

E() ∼ 2−12+ 1
−1613 Var() ∼ 0

−1323

where  →∞, →∞ in such a way that 12 → 0.

Define  to be the length of the longest common subsequence  of  and 

subject to the constraint that, if  =  are paired when forming , then |− | ≤ .

Define as well  = lim→∞ E(). It is not surprising [707] that lim→∞  =

. Also, 21 = 710, but exact values for 31, 41, 22 and 23 remain open.

Here is a geometric formulation [708]. Given  independent uniform random

points {}=1 in the unit square , an increasing chain is a polygonal path that

links the southwest and northeast corners of  and whose other vertices are {}=1,
0 ≤  ≤  , assuming both Re() and Im() are strictly increasing with . The

length of the chain is simply . A variation of this requires that Re()  Im()

always (equivalently, the path never leaves the lower isosceles right triangle). If,

further, the region bounded by the path and the diagonal (hypotenuse) is convex,

then the path is a convex chain. Under such circumstances, it seems likely that the

length 0 of longest convex chains satisfies

lim
→∞

−13
E(

0
) = 3

(we know that the limit exists and lies between 15772 and 34249). This result

seems to be true as well for chains that link two corners of arbitrary (non-isosceles)

triangles.

The Tracy-Widom distribution (specifically, GOE() as described in [709]) seems

to play a role in other combinatorial problems [710, 711, 712], although the data is

not conclusive. See also [713, 714, 715].

5.21. -Satisfiability Constants. On the one hand, the lower bound for (3)

was improved to 3.42 in [716] and further improved to 3.52 in [717]. On the other

hand, the upper bound 4.506 for (3) in [718] has not been confirmed; the preceding

two best upper bounds were 4.596 [719] and 4.571 [720]. See [721] for recent work on

XOR-SAT.

5.22. Lenz-Ising Constants. Improved estimates for = 011392, 009229,

0077709 when  = 5, 6, 7 appear in [722]. Define Ising susceptibility integrals

 =
4

!

∞Z
0

∞Z
0

· · ·
∞Z
0

Q


³
−
+

´2
(
P

=1( + 1))
2

1

1

2

2
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(also known as McCoy-Tracy-Wu integrals). Clearly 1 = 2 and 2 = 13; we also

have
3

82
=
8 + 423− 27−3(2)

82
= 0000814462565

4

163
=
429− 16− 7(3)2

163
= 0000025448511

and the former is sometimes called the ferromagnetic constant [723, 724]. These

integrals are important because [725, 726]


X

≡1mod 2



(2)
= 10008152604 = 238 ln(1 +

√
2)74(09625817323)


X

≡0mod 2



(2)
=
10009603287

12
= 238 ln(1 +

√
2)74(00255369745)

and such constants +0 , 
−
0 were earlier given in terms of a solution of the Painlevé III

differential equation.

The number of spanning trees in the -dimensional cubic lattice with  = 

vertices grows asymptotically as exp(), where

 =
1

(2)

Z
−

Z
−

· · ·
Z

−

ln

Ã
2− 2

X
=1

cos()

!
1 2 · · · 

= ln(2) +

∞Z
0

−



Ã
1− 0

µ




¶
!


Note the similarity with the formula for  on p. 323. We have [727]

2 = 4 = 11662436161 3 = 16733893029

4 = 19997076445 5 = 22424880598 6 = 24366269620

Other forms of 3 have appeared in the literature [728, 729, 730]:

3 − ln(2) = 09802421224 3 − ln(2)− ln(3) = −01183701662

The corresponding constant for the two-dimensional triangular lattice is [731]

̂ =
1

2
ln(3) +

6


Ti2

µ
1√
3

¶
= 16153297360
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where Ti2() is the inverse tangent integral (discussed on p. 57). Results for other

lattices are known [732, 733]; we merely mention a new closed-form evaluation:

ln(2)

2
+

1

162

Z
−

Z
−

ln [7− 3 cos()− 3 cos()− cos() cos()]  

=



+
1

2
ln(
√
2− 1) + 1


Ti2(3 + 2

√
2) = 07866842753

associated with a certain tiling of the plane by squares and octagons.

5.23. Monomer-Dimer Constants. Friedland & Peled [734] and other authors

[735, 736, 737, 738, 739, 740] revisited Baxter’s computation of  and confirmed

that ln() = 066279897. They also examined the three-dimensional analog, 0,
of , yielding ln(0) = 0785966. Butera, Federbush & Pernici [741] estimated

 = 0449 which is inconsistent with some earlier values.

For odd , Tzeng & Wu [742, 743] found the number of dimer arrangements on

the × square lattice with exactly one monomer on the boundary. If the restriction

that the monomer lie on the boundary is removed, then enumeration is vastly more

difficult; Kong [744] expressed the possibility that this problem might be solvable

someday. Wu [745] examined dimers on various other two-dimensional lattices.

A trimer consists of three adjacent collinear vertices of the square lattice. The

trimer-covering analog of the entropy exp(2) = 17916 is 160, which is vari-

ously written as exp(0475) or as exp(3 · 015852) [746, 747, 748, 749, 750, 751].
Ciucu &Wilson [752] discovered a constant 09587407138 that arises with regard

to the asymptotic decay of monomer-monomer correlation “in a sea of dimers” on

what is called the critical Fisher lattice.

5.24. Lieb’s Square Ice Constant. More on counting Eulerian orientations is

found in [753, 754].

5.25. Tutte-Beraha Constants. For any positive integer , there is a best

constant () such that, for each graph of maximum degree ≤ , the complex zeros

of its chromatic polynomial lie in the disk || ≤ (). Further,  = lim→∞()

exists and  = 7963906 is the smallest number for which

inf
0

1



∞X
=2

−(−1)
−1

!
≤ 1

Sokal [755] proved all of the above, answering questions raised in [756, 757]. See also

[758].

6.1. Gauss’ Lemniscate Constant. Consider the following game [759]. Players

 and  simultaneously choose numbers  and  in the unit interval;  then pays 

the amount |− |12. The value of the game (that is, the expected payoff, assuming
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both players adopt optimal strategies) is2 = 059907 Also, let 1, 2,   , , 1,

2,   ,  be distinct points in the plane and construct, with these points as centers,

squares of side  and of arbitrary orientation that do not overlap. Then

 ≤ √
2

⎛⎜⎜⎜⎜⎝
Y
=1

Y
=1

| − |Y


| − | ·
Y


| − |

⎞⎟⎟⎟⎟⎠
1

and the constant 
√
2 = 185407 is best possible [760].

6.2. Euler-Gompertz Constant. We do not yet know whether 2 is transcen-

dental, but it cannot be true that both  and 2 are algebraic [67, 761, 762, 763].

This result evidently follows from Mahler [84], who in turn was reporting on work by

Shidlovski [764]. Generalizations of 2 include [765, 766]

1

(− 1)!

∞Z
0

−11−


 =

⎧⎨⎩ 02659653850 if  = 2

00967803251 if  = 3

00300938139 if  = 4

which pertain to statistics governing restricted permutations and set partitions. For

actuarial background and history, consult [767].

The two quantities

0(2) =

∞X
=0

1

(!)2
= 22795853023 0(2) =

∞X
=0

(−1)
(!)2

= 02238907791

are similar, but only the first is associated with continued fractions. Here is an

interesting occurrence of the second: letting [768]

0 = 1 = 1  = −1 − −2 for  ≥ 2
we have lim→∞ ! = 0(2). The constant

2 =

∞Z
0

−

1 + 
 =

1Z
0

1

1− ln() = 05963473623

unexpectedly appears in [769], and the constant 2(1 − 1) = 06886409151 unex-

pectedly appears in [770]. Also, the divergent alternating series 0!−2!+4!−6!+− · · ·
has value [771]

∞Z
0

−

1 + 2
 =

1Z
0

1

1 + ln()2
 = 06214496242
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and, similarly, the series 1!− 3! + 5!− 7! +− · · · has value
∞Z
0

 −

1 + 2
 = −

1Z
0

ln()

1 + ln()2
 = 03433779615

Let () denote the standard normal distribution function and () = 0(). If
 is distributed according to , then [772]

E ( |   1) =
(1)

(−1) =
1

1
= 15251352761

E

µ½
 if   1

0 otherwise

¶
= (1) =

1√
2

= 02419707245

E (max { − 1 0}) = (1)−(−1) = 00833154705
which contrast interestingly with earlier examples.

6.3. Kepler-Bouwkamp Constant. Additional references include [773, 774,

775, 776] and another representation is [777]

 =
310
√
3

27527 11
exp

"
−

∞X
=1

¡
(2)− 1− 2−2 − 3−2¢ 22 ¡(2)− 1− 3−2¢



#
;

the series converges at the same rate as a geometric series with ratio 1100. A relevant

inequality is [778]
∞Z
0

cos(2)

∞Y
=1

cos

µ




¶
 



8

and the difference is less than 10−42! Powers of two are featured in the following:
[779, 780]

Z
0

¯̄̄̄
¯

Y
=0

sin (2)

¯̄̄̄
¯  =  (1 + (1))

as  → ∞, where   0 and 0654336    0663197. A prime analog of  is

[781, 782, 783] Y
≥3
cos

µ




¶
= 03128329295 = (31965944300)−1

and variations abound. Also, the conjecture
Q

≥1 tan() = 0 is probably false [784].
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6.4. Grossman’s Constant. Somos [785] examined the pair of recurrences

 = −1 + −1  = −−1−1 0 = −1 0 = 

and conjectured that there exists a unique real number  =  for which both sequences

converge (quadratically) to 0, namely  = 00349587046. The resemblance to the

AGM recursion is striking.

6.5. Plouffe’s Constant. This constant is included in a fascinating mix

of ideas by Smith [786], who claims that “angle-doubling” one bit at a time was

known centuries ago to Archimedes and was implemented decades ago in binary

cordic algorithms (also mentioned in section 5.14). Another constant of interest is

arctan(
√
2) = 09553166181, which is the base angle of a certain isosceles spherical

triangle (in fact, the unique non-Euclidean triangle with rational sides and a single

right angle).

Chowdhury [787] generalized his earlier work on bitwise XOR sums and the logistic

map: A sample new result is

∞X
=0

(−1)
2+1

=
1

4
⊕ 1



where  = cos(2
). The right-hand side is computed merely by shifting the binary

expansion of 1 two places (to obtain 1(4)) and adding modulo two without carries

(to find the sum).

6.6. Lehmer’s Constant. Rivoal [788] has studied the link between the rational

approximations of a positive real number  coming from the continued cotangent

representation of , and the usual convergents that proceed from the regular continued

fraction expansion of .

6.7. Cahen’s Constant. The usual meaning of “Let  be an infinite sequence”

(as fixed from the start) became distorted at the bottom of page 435. Let  ≥ 0.
The value  isn’t actually needed until +1 is calculated; once this is done, the

values +1 & +2 become known; these, in turn, give rise to +2 & +3 and so

forth. We look forward to reading [789].

6.8. Prouhet-Thue-Morse Constant. A follow-on to Allouche & Shallit’s

survey appears in [790]. Simple analogs of the Woods-Robbins and Flajolet-Martin

formulas are [78]

∞Y
=1

µ
2

2− 1
¶(−1)

=

√
232

Γ(14)2


∞Y
=1

µ
2

2+ 1

¶(−1)
=

Γ(14)2

252
√

;

we wonder about the outcome of exponent sequences other than (−1) or (−1).
See also [776, 791, 792, 793]. Beware of a shifted version, used in [794], of our paper

folding sequence (−1).
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Just as the Komornik-Loreti constant 17872316501 is the unique positive solu-

tion of ∞X
=1


− = 1

the (transcendental) constants 25359480481 and 29100160556 are unique positive

solutions of [795]

∞X
=1

(1 +  − −1)− = 1
∞X
=1

(1 + )
− = 1

These correspond to -developments with 0 ≤  ≤ 2 and 0 ≤  ≤ 3 (although

our numerical estimates differ from those in [796]). Incidently, the smallest   

possessing a countably infinite number of -developments with 0 ≤  ≤ 1 is algebraic
of degree 5 [797].

6.9. Minkowski-Bower Constant. The question mark satisfies the functional

equation [798]

?() =

⎧⎪⎪⎨⎪⎪⎩
1

2
?

µ


1− 

¶
if 0 ≤  ≤ 1

2


1− 1
2
?

µ
1− 



¶
if
1

2
  ≤ 1

See [799, 800, 801] for generalizations. Kinney [802] examined the constant

 =
1

2

⎛⎝ 1Z
0

log2(1 + )?()

⎞⎠−1

which acts as a threshold for Hausdorff dimension (of sets ⊂ [0 1]). Lagarias [803]
computed that 08746    08749; the estimate 0875 appears in [804, 805, 806,

807]; Alkauskas [808] improved this approximation to 08747163051. See also [809].

6.10. Quadratic Recurrence Constants. In our asymptotic expansion for ,

the final coefficient should be 138, not 137 [810, 811]. The sequence +1 = (1)
2
,

where  ≥ 0, is convergent if and only if

|0| 
∞Y
=1

µ
1 +

1



¶2−
= 16616879496

Moreover, the sequence either converges to zero or diverges to infinity [812, 813].

A systematic study of threshold constants like this, over a broad class of quadratic

recurrences, has never been attempted. The constant 12640847353 and Sylvester’s
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sequence appear in an algebraic-geometric setting [814]. Also, results on Somos’

sequences are found in [815, 816] and on the products

112214318 · · · = 16616879496 1132193127 · · · = 11563626843

in [78, 110, 817, 818].

6.11. Iterated Exponential Constants. Consider the recursion

1 = 1  = −1 exp

µ
1

 −1

¶
for  ≥ 2. It is known that [819]

 =



+
ln()

2
+




+ (1) (!)1 =




+
ln()

2
+
ln(
√
2)


+ (1)

as →∞, where

 = − 1 + 

2
+
1

2

∞X
=1

 −  

  
+

∞X
=1

µ
 +1 −   − 1− 1

2  

¶
= 12905502

Further,  − (!)1 is strictly increasing and

 − (!)1 ≤
³
 − ln(

√
2)
´
 = 0136708

for all . The constant is best possible. Putting  = 1( ) yields the recursion

 = −1 exp(−−1), for which an analogous asymptotic expansion can be written.
The unique real zero  of

P

=0 
!, where  is odd, satisfies lim→∞  =

 (−1) = 02784645427 = (35911214766)−1 [820, 821]. The latter value appears
in number theory [822, 823, 824], random graphs [825, 826, 827], ordered sets [828],

planetary dynamics [829], search theory [830, 831], predator-prey models [832] and

best-constant asymptotics [833].

From the study of minimum edge covers, given a complete bipartite graph, comes

 (1)2+2 (1) = 14559380926 = 2(07279690463) [834]. No analogous formula

is yet known for a related constant 055872[835].

Also, 3−1−13 = 02388437701 arises in [836] as a consequence of the formula
− (−3−1−13) = 13. Note that − (−) is the exponential generating function
for rooted labeled trees and hence is often called the tree function [837].

The equation   = 1 and numerous variations appear in [769, 838, 839, 840, 841,

842, 843, 844]. For example, let  be the set of permutations on {1 2     } and
 be a continuous-time random walk on  starting from the identity  with steps

chosen as follows: at times of a rate one Poisson process, we perform a transposition
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of two elements chosen uniformly at random, with replacement, from {1 2     }.
Define () to be the distance from  at time , that is, the minimum number of

transpositions required to return to . For any fixed   0, [845]

( 2) ∼
Ã
1−

∞X
=1

1



−2

!
( −)

!


in probability as  → ∞. The coefficient simplifies to 2 for   1 but is  2

otherwise. It is similar to the expansion

1 +
1


 (− −) = 1−

∞X
=1

1



−1

!
( −)

differing only in the numerator exponent.

Consider the spread of a rumor though a population of  individuals. Assume that

the number of ignorants is initially  and that the number of spreaders is (1−),

where 0    1. A spreader-ignorant interaction converts the ignorant into a

spreader. When two spreaders interact, they stop spreading the rumor and become

stiflers. A spreader-stifler interaction results in the spreader becoming a stifler. All

other types of interactions lead to no change. Let  denote the expected proportion

of initial ignorants who never hear the rumor, then as  decreases,  increases (which

is perhaps surprising!) and [846, 847, 848, 849, 850, 851, 852]

02031878699 = (1−)  ()  (0+) = 1 = 03678794411

as →∞. The infimum of  is the unique solution of the equation ln()+2(1−) = 0
satisfying 0    1, that is,  = − (−2−2)2.
On the one hand, exp() =  has no real solution and sin() =  has no real

nonzero solution. On the other hand,  = 07390851332 appears in connection with

cos() =  [853, 854].

As with the divergent alternating factorial series on p. 425, we can assign meaning

to [855]

∞X
=0

(−1)  =
∞X
=0

⎛⎝(−1)
!

∞Z
0

−

⎞⎠ =

∞Z
0

−

1 + ()
 = 07041699604

which also appears on p. 263. A variation is [856]

∞X
=1

(−1)+1 (2)2−1 =

∞X
=1

⎛⎝(−1)+1(2)2−1
(2)!

∞Z
0

2−

⎞⎠
=

∞Z
0

ln

Ã
p

 (− ) ( )

!
− = 03233674316
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which evidently is the same as [857, 858, 859]

∞Z
0

 () cos()

(1 + ())
 = 03233674316

although a rigorous proof is not yet known. Another variation is [856]

∞X
=1

(−1)+1 (2− 1)2 =


2

∞Z
0

µ
 (− )

[1 + (− )]3 −
 ( )

[1 + ( )]
3

¶
−

= 00111203007

The only two real solutions of the equation −1 =  + 1 are 04758608123

and 23983843827, which appear in [860]. Another example of striking coincidences

between integrals and sums is [861, 862]

∞Z
−∞

sin()


 =

∞Z
−∞

sin()2

2
 =  =

∞X
=−∞

sin()


=

∞X
=−∞

sin()2

2
;

more surprises include [863]

1Z
0

−  =
1



∞X
=1

³


´
= −

1Z
0

−  ln()

for all real . The integral [864]

lim
→∞

2Z
1

1 = 00707760393− (06840003894)

= −2

+ lim

→∞

2+1Z
1

1

is analogous to the alternating series on p. 450 (since (−1) = ).

6.12. Conway’s Constant. A “biochemistry” based on Conway’s “chemistry”

appears in [865].

7.1. Bloch-Landau Constants. In the definitions of the sets  and , the

functions  need only be analytic on the open unit disk  (in addition to satisfying

(0) = 0,  0(0) = 1). On the one hand, the weakened hypothesis doesn’t affect the
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values of , ,  or ; on the other hand, the weakening is essential for the existence

of  ∈  such that () =  . We now know that 057088586   ≤ 06563937
[866, 867, 868].

The bounds 062    07728 were improved by several authors, although

they studied the quantity ̃ =  −  instead (the omitted area constant). Barnard

& Lewis [869] demonstrated that ̃ ≤ 031. Barnard & Pearce [870] established

that ̃ ≥ 0240005, but Banjai & Trefethen [871] subsequently computed that ̃ =
(02385813248). It is believed that the earlier estimate was slightly in error. See

[872, 873, 874, 875] for related problems.

The spherical analog of Bloch’s constant , corresponding to meromorphic func-

tions  mapping  to the Riemann sphere, was recently determined by Bonk &

Eremenko [876]. This constant turns out to be arccos(13) = 12309594173. A

proof as such gives us hope that someday the planar Bloch-Landau constants will

also be exactly known [877, 878].

More relevant material is found in [436, 879].

7.2. Masser-Gramain Constant. It is now known that 1819776   

1819833, overturning Gramain’s conjecture [880]. Suppose () is an entire function

such that  ()() is an integer for each nonnegative integer , for each integer 0 ≤
 ≤  − 1. (We have discussed only the case  = 1.) The best constant   0 for

which

limsup
→∞

ln()


  implies  is a polynomial

was proved by Bundschuh & Zudilin [881], building on Gel’fond [882] and Selberg

[883], to satisfy

 · 
3
≥  

⎧⎨⎩ 0994077 if  = 2

1339905 if  = 3

1674474 if  = 4

(Actually they proved much more.) Can a Gaussian integer-valued analog of these

integer-valued results be found?

7.3. Whittaker-Goncharov Constants. The lower bound 073775075   ,

due to Waldvogel (using Goncharov polynomials), appears only in Varga’s survey; it

is not mentioned in [884]. Minimum modulus zero-finding techniques provide the

upper bound  ≤ 07377507574(correcting ). Both bounds are non-rigorous.

The “third constant” involves zero-free disks for the Rogers-Szegö polynomials:

+1( ) = (1 + )( )− (1− )−1( )  ≥ 0
−1( ) ≡ 0 0( ) ≡ 1

where  ∈ C. Let
 = inf {|| : ( ) = 0 and || = 1} 
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then numerical data suggests [884]

 =
³
3− 2

√
2
´
+ (03833)−23 +

¡
−43

¢
as  → ∞. A proof remains open. Such asymptotics are relevant to study of the

partial theta function
P∞

=0 
(−1)2 and associated Padé approximant convergence

properties.

7.4. John Constant. Consider analytic functions  defined on the unit disk 

that satisfy (0) = 0,  0(0) = 1 and

 ≤
¯̄̄̄
  0()
()

¯̄̄̄
≤ 

at all points  ∈ . The ratio plays the same role as | 0()| did originally. What is
the largest number  such that  ≤  implies that  is univalent (on )? Kim &

Sugawa [885, 886] proved that exp(725)    exp(57) and stated that tighter

bounds are possible. No Gevirtz-like conjecture governing an exact expression for 

has yet been proposed.

7.5. Hayman Constants. New bounds [887, 888, 889, 890, 891, 892, 893] for

the Hayman-Korenblum constant (2) are 028185 and 067789. An update on the

Hayman-Wu constant appears in [894].

7.6. Littlewood-Clunie-Pommerenke Constants. The lower limit of sum-

mation in the definition of 2 should be  = 0 rather than  = 1, that is, the coefficient

0 need not be zero. We have sharp bounds |1| ≤ 1, |2| ≤ 23, |3| ≤ 12 + −6

[895]. The bounds on  due to Clunie & Pommerenke should be 0509 and 083 [896];

Carleson & Jones’ improvement was nonrigorous. While 083 = 1− 017 remains the
best established upper bound, the lower bound has been increased to 054 = 1− 046
[897, 898, 899]. Numerical evidence for both the Carleson-Jones conjecture and Bren-

nan’s conjecture was found by Kraetzer [900]. Theoretical evidence supporting the

latter appears in [901], but a complete proof remains undiscovered. It seems that

 = 1− is now a theorem [902, 903] whose confirmation is based on the recent work
of several researchers [904, 905, 906].

7.7. Riesz-Kolmogorov Constants. The constant 1 appears recently, for

example, in [907].

7.8. Grötzsch Ring Constants. The phrase “planar ring” appearing in the

first sentence should be “planar region”.

8.1. Geometric Probability Constants. Just as the ratio of a semicircle to

its radius is always , the ratio of the latus rectum arc of any parabola to its semi

latus rectum is [908]

√
2 + ln

³
1 +
√
2
´
= 22955871493 = 2(11477935746)
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Is it mere coincidence that this constant is so closely related to the quantity (2)?

Just as the ratio of the area of a circle to its radius squared is always , the ratio

of the area of the latus rectum segment of any equilateral hyperbola to its semi-axis

squared is [909] √
2− ln

³
1 +
√
2
´
= 05328399753

The similarity in formulas is striking: length of one conic section (universal parabolic

constant) versus area of another (universal equilateral hyperbolic constant).

Consider the logarithm Λ of the distance between two independent uniformly

distributed points in the unit square. The constant

exp (E(Λ)) = exp

µ−25 + 4 + 4 ln(2)
12

¶
= 04470491559 = 2(02235245779)

appears in calculations of electrical inductance of a long solitary wire with small

rectangular cross section [910, 911, 912, 913]. If the wire is fairly short, then more

complicated formulas apply [914, 915, 916]. The constants

−14 = 07788007830 −32 = 02231301601

appear instead for cross sections in the form of a disk and an interval, respectively.

The expected distance between two random points on different sides of the unit

square is [778]

2 +
√
2 + 5 ln

¡
1 +
√
2
¢

9
= 08690090552

and the expected distance between two random points on different faces of the unit

cube is

4 + 17
√
2− 6√3− 7 + 21 ln ¡1 +√2¢+ 21 ln ¡7 + 4√3¢

75
= 09263900551

See [917, 918] for expressions involving (4), ∆(4) and ∆(5). Asymptotics of ()

and ∆() in the  norm as  → ∞, for fixed   0, are found in [919]. See

[920, 921, 922, 923, 924, 925, 926, 927] for results not in a square, but in an equilateral

triangle or regular hexagon. The constant 2
√
 appears in [929]. Also, the convex

hull of random point sets in the unit disk (rather than the unit square) is mentioned

in [928], and properties of random triangles are extensively covered in [930].

8.2. Circular Coverage Constants. Fejes Tóth [931] proved the conjectured

formula for () when 8 ≤  ≤ 10. Here is a variation of the elementary problems
at the end. Imagine two overlapping disks, each of radius 1. If the area  of the

intersection is equal to one-third the area of the union, then clearly  = 2. The
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distance  between the centers of the two circles is  = 08079455065, that is, the

unique root of the equation

2 arccos
³
2

´
− 1
2

√
4− 2 =



2

in the interval [0 2]. If “one-third” is replaced by “one-half”, then 2 is replaced by

23 and Mrs. Miniver’s constant 05298641692 emerges instead.

8.3. Universal Coverage Constants. Elekes [932] improved the lower bound

for  to 08271 and Brass & Sharifi [933] improved this further to 0832. Computer

methods were used in the latter to estimate the smallest possible convex hull of

a circle, equilateral triangle and regular pentagon, each of diameter 1. Hansen

evidently made use of reflections in his convex cover, as did Duff in his nonconvex

cover; Gibbs [934, 935] claimed a reduced upper bound of 0844112 for the convex

case, using reflections. It would seem that Sprague’s upper bound remains the best

known for displacements, strictly speaking. Two additional references for translation

covers include [936, 937].

8.4. Moser’s Worm Constant. Coulton & Movshovich [938] proved Besicov-

itch’s conjecture that every worm of unit length can be covered by an equilateral trian-

gular region of area 7
√
327. The upper bound for  was decreased [939] to 0270912;

the lower bound for  was increased [940, 941] to 0232239. New bounds 0096694 

0  0112126 appear in [942]. Relevant progress is described in [943, 944, 945, 946].
We mention, in Figure 8.3, that the quantity  = sec() = 10435901095 is algebraic

of degree six [947, 948]:

36 + 364 + 162 − 64 = 0
and wonder if this is linked to Figure 8.7 and the Reuleaux triangle of width 15449417003

(also algebraic of degree six [949]). The latter is the planar set of maximal constant

width that avoids all vertices of the integer square lattice.

8.5. Traveling Salesman Constants. Let  =
¡√
2 + ln(1 +

√
2)
¢
6, the

average distance from a random point in the unit square to its center (page 479).

If we identify edges of the unit square (wrapping around to form a torus), then

E(2()) =  for  = 2, 3 but E(2(4)) ≈ 3609. A closed-form expression for

the latter would be good to see [950]. The best upper bound on 02 is now 06321
[951]; more numerical estimates of 2 = 07124 appear in [952].

The random links TSP  = 20415 possesses an alternative formulation [835,

953]: let   0 be defined as an implicit function of  via the equation³
1 +



2

´
− +

³
1 +



2

´
− = 1
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then

 =
1

2

∞Z
0

()  = 20415481864 = 2(10207740932)

This constant is the same if the lengths are distributed according to Exponential(1)

rather than Uniform[0,1]. If instead lengths are equal to the square roots of expo-

nential variables, the resulting constant is 12851537533 = (18174818677)
√
2 =

(07250703609)
√


Other proofs that the minimum matching  = 212 are known; see [954]. If (as

in the preceding) lengths are equal to the square roots of exponential variables, the

resulting constant is 05717590495 = (11435180991)2 = (03225805000)
√
,

recovering Mézard & Parisi’s calculation [955]. An integral equation-based formula

for the latter is [835, 956]

 = 2

∞Z
0

∞Z
−

(+ )()()   where () = exp

⎛⎝−2 ∞Z
0

 (− ) 

⎞⎠ 

The cavity method is applied in [957] to matchings on sparse random graphs.

Also, for the cylinder graph  ×  on (+ 1) vertices with independent Uniform

[0 1] random edge-lengths, we have

lim
→∞

1


MST( × ) = ()

almost surely, where  is fixed and [958]

(2) = −
1Z
0

(− 1)2(23 − 32 + 2)
4 − 23 + 2 − 1 

= 2− 1√
5
ln

Ã√
5− 1√
5 + 1

!
− √

3
= 06166095767

(3) = −
1Z
0

(− 1)3(38 − 117 + 136 + 5 − 184 + 143 + 32 − 3− 3)
10 − 59 + 108 − 107 + 6 + 115 − 114 + 23 + 2 − 1 

= 08408530104

and (4) = 109178.

8.6. Steiner Tree Constants. Doubt has been raised [959, 960] about the

validity of the proof by Du & Hwang of the Gilbert & Pollak conjecture.
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8.7. Hermite’s Constants. A lattice Λ in R consists of all integer linear

combinations of a set of basis vectors {}=1 forR. If the fundamental parallelepiped

determined by {}=1 has Lebesgue measure 1, then Λ is said to be of unit volume.

The constants  can be defined via an optimization problem

 = max
unit volume
lattices Λ

min
∈Λ
6=0

kk2

and are listed in Table 8.10. The precise value of the next constant 2 ≤ 9  21327

remains open [961, 962, 963], although Cohn & Kumar [964, 965] have recently proved

that 24 = 4. A classical theorem [966, 967, 968] provides that  is rational for all

. It is not known if the sequence 1, 2, 3,    is strictly increasing, or if the ratio

 tends to a limit as →∞. See also [969, 970].
Table 8.10 Hermite’s Constants 

 Exact Decimal  Exact Decimal

1 1 1 5 815 15157165665

2 (43)12 11547005383 6 (643)16 16653663553

3 213 12599210498 7 6417 18114473285

4 414 14142135623 8 2 2

An arbitrary packing of the plane with disks is called compact if every disk  is

tangent to a sequence of disks 1, 2,   ,  such that  is tangent to +1 for

 = 1, 2,   ,  with +1 = 1. If we pack the plane using disks of radius 1, then the

only possible compact packing is the hexagonal lattice packing with density 
√
12.

If we pack the plane using disks of radius 1 and   1 (disks of both sizes must be

used), then there are precisely nine values of  for which a compact packing exists.

See Table 8.11. For seven of these nine values, it is known that the densest packing

is a compact packing; the same is expected to be true for the remaining two values

[971, 972, 973].

Table 8.11 All Nine Values of   1 Which Allow Compact Packings

Exact (expression or minimal polynomial) Decimal

5− 2√6 01010205144

(2
√
3− 3)3 01547005383

(
√
17− 3)4 02807764064

4 − 283 − 102 + 4+ 1 03491981862

94 − 123 − 262 − 12+ 9 03861061048√
2− 1 04142135623

83 + 32 − 2− 1 05332964166

8 − 87 − 446 − 2325 − 4824 − 243 + 3882 − 120+ 9 05451510421

4 − 102 − 8+ 9 06375559772
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There is space to only mention the circle-packing rigidity constants  [974], their

limiting behavior:

lim
→∞

  =
243

3

Γ(13)2

Γ(23)
= 44516506980

and their connection with conformal mappings. Also, the tetrahedral analog of

Kepler’s sphere packing density is possibly 40004671 = 0856347 [975, 976, 977],

but a proof would likely be exceedingly hard.

8.8. Tammes’ Constants. Recent conjectures give [978]

 = 3

µ
8√
3

¶12


µ
−1
2

¶


µ
−1
2

¶
= −03992556250

(data fitting earlier predicted  ≈ −0401) and

 = ln(2) +
1

4
ln

µ
2

3

¶
+
3

2
ln

µ √


Γ(13)

¶
= −00278026524 = −00556053049

2


(improving on  ≈ −0026). Let nonzero  satisfy −4    2. The asymptotics

for  = ±1 are subsumed by

() =

(
2

2+
2 + 3

³
8√
3

´2

¡−

2

¢

¡−

2

¢
1−2 + 

¡
1−2¢ if  6= 2

1
8
2 ln() + 

2
2 +(1) if  = 2

as  →∞, where

 =
1

4

³
 − ln

³
2
√
3
´´
+

√
3

4
(1(23)− 1(13)) = −00857684103

and 1() is the generalized Stieltjes constant appearing as the coefficient ()!

of (1− ) in the Laurent series expansion of the Hurwitz zeta function ( ) about

 = 1.

Consider the problem of covering a sphere by  congruent circles (spherical caps)

so that the angular radius of the circles will be minimal. For  = 8 9 11 the

conjectured best covering configurations remain unproven [979, 980, 981, 982, 983].

8.9. Hyperbolic Volume Constants. Exponentially improved lower bounds

for () are now known [984]. Let () =  (due to Smith) and () =

(+ 1)(−1)2 (due to Glazyrin). We have () ≥ () always and

lim
→∞

µ
()

()

¶1
=



2
= 13591409142  12615225101 =

r


2
 = lim

→∞

µ
()

()

¶1
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where () = 2(+1)−(+1)2! (simple bound used for comparison). Alternatively,

lim
→∞

()1√


= 1  09281763921 =

r
2


 = lim

→∞
()1√




For   2, a dissection of the -cube need not be a triangulation; the term “simplex-

ity” can be ambiguous in the literature. See also [985].

8.10. Reuleaux Triangle Constants. In our earlier entry [8.4], we ask about

the connection between two relevant algebraic quantities [947, 949], both zeroes of

sextic polynomials.

8.11. Beam Detection Constants. The shortest opaque set or barrier for the

circle remains unknown; likewise for the square and equilateral triangle [986, 987,

988, 989].

8.12. Moving Sofa Constant. The passage of an  ×  rectangular piano

around a right-angled corner in a hallway of before-width  and after-width  can

be determined by checking the sign of a certain homogenous sextic polynomial in

   , where    ≥    [990].

8.13. Calabi’s Triangle Constant. See [991] for details underlying the main

result.

8.14. DeVicci’s Tesseract Constant. Pechenick-DeVicci’s manuscript remains

unpublished. Ligocki & Huber [992] performed extensive numerical experiments and

a summary report is forthcoming.

8.15. Graham’s Hexagon Constant. Bieri [993] partially anticipated Gra-

ham’s result. A nice presentation of Reinhardt’s isodiametric theorem is found in

[994].

8.16. Heilbronn Triangle Constants. Another vaguely-related problem in-

volves the maximum  and minimum  of the
¡


2

¢
pairwise distances between 

distinct points in R2. What configuration of  points gives the smallest possible ratio
 =? It is known that [995, 996]

3 = 1 4 =
√
2 5 =  6 = (

√
5)12 7 = 2 8 = 

where  is the Golden mean and  = csc(14)2 has minimal polynomial 3−22−
 + 1. We also have 12 =

p
5 + 2

√
3 and an asymptotic result of Thue’s [997, 998]:

lim
→∞

−12 =

s
2
√
3




Erdős wrote that the corresponding value of lim→∞ −13 for point sets in R3 is

not known. Cantrell [999, 1000] wrote that it should be
3

q
3
√
2, that is, the cube

root of the reciprocal of the Kepler packing density (proved by Hales).
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8.17. Kakeya-Besicovitch Constants. Reversal of line segments in higher

dimensional regions is the subject of [1001].

8.18. Rectilinear Crossing Constant. We now know ̄() for all  ≤ 30
except  ∈ {28 29} — see Table 8.12 — and consequently 0379972    0380488

[1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013].

Table 8.12 Values of ̄(),   12

 13 14 15 16 17 18 19 20

̄() 229 324 447 603 798 1029 1318 1657

 21 22 23 24 25 26 27 30

̄() 2055 2528 3077 3699 4430 5250 6180 9726

The validity of Guy’s conjectured expression () (more appropriately named after

Hill [1014, 1015]) remains open, although the ratio ()() is asymptotically

≥ 08594 as →∞ [1016, 1017, 1018, 1019]. It is well-known that () = 2536 ≈
0694 when  is a rectangle. If instead the four points are bivariate normally dis-

tributed, then

 = 3 (1− 2 arcsec(3)) ≈ 0649  23
The proof uses expectation formulas for the number of vertices [1020, 1021] and for

order statistics [1022, 1023].

8.19. Circumradius-Inradius Constants. The phrase “-admissible” in the

caption of Figure 8.22 should be replaced by “-allowable”.

8.20. Apollonian Packing Constant. The packing exponent 130568 ap-

pears in [1024], which vastly generalizes the circular configurations portrayed in Fig-

ure 8.23.

8.21. Rendezvous Constants. It is now known [1025] that ( ) ≤ 2 ≤ 2 ≤
0678442; proof that 2 = 2 = ( ) = 06675277360 remains open.

Table of Constants. The formula corresponding to 08427659133 is (12 ln(2))2

and the formula corresponding to 08472130848 is 
√
2.
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[491] O. Slučiak, On the roots of  + − = , arXiv:1312.6600.

[492] D. V. Nicolau, Definite integral and iterated function expressions for the

Laplace limit, unpublished note (2005).

[493] D. W. Cantrell, Re: Envelope of catenaries, unpublished note (2008).



Errata and Addenda to Mathematical Constants 110

[494] F. Y. M. Wan, Introduction to the Calculus of Variations and its Applications,

2nd ed., Chapman & Hall, 1995, pp. 49—53; MR1369576 (97a:49001).

[495] H. E. Fettis, Complex roots of sin() =  , cos() =  , and cosh() =  ,

Math. Comp. 30 (1976) 541—545; MR0418401 (54 #6442).

[496] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A060279,

A143599, A240358.

[497] A. Eremenko and P. Yuditskii, An extremal problem for a class of entire

functions, C. R. Math. Acad. Sci. Paris 346 (2008) 825—828; MR2441914

(2009h:30046); http://www.math.purdue.edu/~eremenko/papers.html.

[498] C. Y. Wang, The optimum spanning catenary cable, European J. Phys. 36

(2015) 028001.

[499] G. Bratu, Sur les équations intégrales non linéaires, Bull. Soc. Math. France

42 (1914) 113—142; MR1504727.

[500] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations,

Dover, 1962, pp. 432—444; MR0181773 (31 #6000).

[501] D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics,

Princeton Univ. Press, 1955, pp. 242—249.

[502] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable

Catalysts, v. 1. The Theory of the Steady State, Oxford Univ. Press, 1975, pp.

292—299.

[503] U. M. Ascher, R. M. Mattheij and R. D. Russell, Numerical Solution of Bound-

ary Value Problems for Ordinary Differential Equations, Prentice Hall, 1988,

pp. 89—90, 134, 173, 491—492; MR1000177 (90h:65120).

[504] J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for ra-

dial operators, J. Differential Equations 184 (2002) 283—298; MR1929156

(2003g:34036).

[505] J. P. Boyd, Chebyshev polynomial expansions for simultaneous approxima-

tion of two branches of a function with application to the one-dimensional

Bratu equation, Appl. Math. Comput. 143 (2003) 189—200; MR1981688

(2004d:41025).



Errata and Addenda to Mathematical Constants 111

[506] N. Cohen and J. V. Toledo-Benavides, Explicit radial Bratu solu-

tions in dimension  = 1 2, UNICAMP-IMECC report 22 (2007),

http://www.ime.unicamp.br/rel_pesq/2007/rp22-07.html.

[507] S. R. Finch, Lane-Ritter-Emden constants, unpublished note (2008).

[508] I. E. Pritsker, Small polynomials with integer coefficients, J. Anal. Math. 96

(2005) 151—190; arXiv:math/0101166; MR2177184 (2006j:11033).

[509] A. Meichsner, The Integer Chebyshev Problem: Computational Explorations,

Ph.D. thesis, Simon Fraser Univ., 2009.

[510] V. Flammang, Trace of totally positive algebraic integers and integer transfi-

nite diameter,Math. Comp. 78 (2009) 1119—1125; MR2476574 (2009m:11173).

[511] V. Flammang, On the absolute length of polynomials having all zeros in a

sector, J. Number Theory 143 (2014) 385—401; MR3227355.

[512] K. G. Hare, Generalized Gorshkov-Wirsing polynomials and the

integer Chebyshev problem, Experim. Math. 20 (2011) 189—200;

https://www.math.uwaterloo.ca/~kghare/Preprints/; MR2821390

(2012h:11037).

[513] P. B. Borwein, C. G. Pinner and I. E. Pritsker, Monic integer Chebyshev

problem, Math. Comp. 72 (2003) 1901—1916; arXiv:1307.5362; MR1986811

(2004e:11022).

[514] K. G. Hare and C. J. Smyth, The monic integer transfinite diame-

ter, Math. Comp. 75 (2006) 1997—2019; corrigendum 77 (2008) 1869;

arXiv:math/0507302; MR2240646 (2007h:11037) and MR2398800.

[515] J. Hilmar, Consequences of the continuity of the monic integer transfinite

diameter, Number Theory and Polynomials, Proc. 2006 Bristol workshop,

ed. J. McKee and C. Smyth, Cambridge Univ. Press, 2008, pp. 177—187;

arXiv:math/0703888; MR2428522 (2009i:11034).

[516] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichun-

gen mit ganzzahligen Koeffizienten, Math. Zeit. 1 (1918) 377—402.

[517] I. E. Pritsker, Polynomials with integer coefficients and their zeros, Ukrain.

Mat. Visn. 9 (2012) 81—97, Engl. transl. in J. Math. Sci. 183 (2012) 810—822;

arXiv:1307.6200; MR3165799.

[518] S. R. Finch, Electrical capacitance, unpublished note (2014).



Errata and Addenda to Mathematical Constants 112

[519] L. Zhang, M. Lü and W. Zhai, On the mean value of 2(), Sci. Magna 4

(2008) 15—17; MR2493344.

[520] L. Tóth, A note on the number of abelian groups of a given order, Math.

Pannon. 23 (2012) 157—160; arXiv:1203.6473; MR3052023.

[521] R. V. Kravchenko, M. Mazur and B. V. Petrenko, On the smallest number

of generators and the probability of generating an algebra, Algebra Number

Theory 6 (2012) 243—291; arXiv:1001.2873; MR2950154.

[522] H. U. Besche, B. Eick and E. A. O’Brien, A millennium project: con-

structing small groups, Internat. J. Algebra Comput. 12 (2002) 623—644;

http://www.mathe2.uni-bayreuth.de/axel/htmlpapers/eick.html; MR1935567

(2003h:20042).

[523] J. H. Conway, H. Dietrich and E. A. O’Brien, Counting groups: gnus,

moas and other exotica, Math. Intelligencer, v. 30 (2008) n. 2, 6—18;

http://www.math.auckland.ac.nz/~obrien/; MR2410121 (2010a:05012).

[524] W. Zhai, On the number of primitive Pythagorean triangles, Acta Arith. 105

(2002) 387—403; MR1932570 (2003m:11158).

[525] K. Liu, On the distribution of primitive Pythagorean triangles, Acta Arith.

144 (2010) 135—150; MR2669715 (2011f:11126).

[526] M. Benito and J. L. Varona, Pythagorean triangles with legs less than , J.

Comput. Appl. Math. 143 (2002) 117—126; MR1907787 (2003b:11027).

[527] R. D. Carmichael, Diophantine Analysis, Wiley, 1915, pp. 8—13; available on-

line at http://books.google.com/.

[528] R. H. Buchholz, Perfect pyramids, Bull. Austral. Math. Soc. 45 (1992) 353—368;

MR1165142 (93d:52014).

[529] E. H. Goins and D. Maddox, Heron triangles via elliptic curves, Rocky Moun-

tain J. Math. 36 (2006) 1511—1526; MR2285297 (2007h:14043).

[530] S. Kurz, On the generation of Heronian triangles,

Serdica J. Comput. 2 (2008) 181—196; http://www.wm.uni-

bayreuth.de/fileadmin/Sascha/Publikationen/On_Heronian_Triangles.pdf;

MR2473583 (2009k:11045).



Errata and Addenda to Mathematical Constants 113

[531] R. Aguech, The size of random fragmentation intervals, Fifth Collo-

quium on Mathematics and Computer Science, Proc. 2008 Blaubeuren

conference, DMTCS, pp. 519—529; http://www.dmtcs.org/dmtcs-

ojs/index.php/proceedings/issue/view/97/; MR2508811 (2010f:60022).

[532] P. Bermolen, M. Jonckheere and P. Moyal, The jamming constant of random

graphs, arXiv:1310.8475.

[533] D. Freedman, L. Shepp, H. D. Friedman and D. Rothman, An unfriendly

seating arrangement, SIAM Rev. 4 (1962) 150; 6 (1964) 180—182.

[534] P. Flajolet, A seating arrangement problem, unpublished note (1997),

https://oeis.org/A037256/a037256.pdf.

[535] K. Georgiou, E. Kranakis and D. Krizanc, Random maximal independent sets

and the unfriendly theater seating arrangement problem, Discrete Math. 309

(2009) 5120—5129; MR2548913 (2011a:05241).

[536] H.-H. Chern, H.-K. Hwang and T.-H. Tsai, Random unfriendly seat-

ing arrangement in a dining table, Adv. Appl. Math. 65 (2015) 38—64;

arXiv:1406.0614; MR3320756.

[537] K. Georgiou, E. Kranakis and D. Krizanc, Excuse me! or the courteous the-

atregoers’ problem, Theoret. Comput. Sci. 586 (2015) 95—110; arXiv:1403.1988;

MR3349551.

[538] M. L. Gargano, A. Weisenseel, J. Malerba and M. Lewinter, Dis-

crete Renyi parking constants, 36 th Southeastern Conf. on Com-

binatorics, Graph Theory, and Computing, Boca Raton, 2005,

Congr. Numer. 176 (2005) 43—48; MR2198634 (2006h:05006);

http://www.csis.pace.edu/~ctappert/srd2005/schedule.htm.

[539] M. P. Clay and N. J. Simanyi, Renyi’s parking problem revisited,

arXiv:1406.1781.

[540] G. Tenenbaum, Crible d’Ératosthène et modèle de Kubilius, Number Theory

In Progress, v. 2, Proc. 1997 Zakopane-Kóscielisko conf., ed. K. Györy, H.
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