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Figure 0: Our volume rendering result and illustration. (a) Stanford dragon rendered as cloud with resolution 0.03.(b) Same 

model as (a) with our Octree visualization. (c) Stanford bunny rendered as cloud with resolution 0.02. 

 

 
ABSTRACT 

Volume rendering has always been a popular topic in 

computer graphics as it captures more realistic rendering 

results. However, most of the rendering targets are focused 

on participating media distributed in the scene. In this 

project we integrate an Octree data structure with our path 

tracer in CUDA to achieve efficient volume rendering of 

models. 

Our efforts are put on the implementation of a compact 

model representation in Octree with an efficient parametric 

algorithm for tree traversal. With the proposed Octree 

combined into our CUDA path tracer, the volume rendering 

by each ray per thread is made possible for average Nvidia 

graphics cards. Our rendering algorithm extends the classic 

ray tracing process into path tracing with light transport in 

participating media, which gathers light energy in a 

physically based manner. Finally, the global illumination 

examples and comparisons of cloud like models are shown. 
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1    INTRODUCTION 

Rendering of participating media provides realistic and 

natural effects, such as cloud, fog, smoke and steam, in real 

life. With volume rendering effects, the resultant 

images/videos often become more visually appealing as the 

volumetric effects adds mood into the scene. 

    For high quality rendering, several Monte Carlo and 

finite element techniques have been proposed. These 

methods can model general volumetric phenomena and 
scattering effects. Unfortunately, the full Monte Carlo 

gathering process may be extremely expensively costly in 

the traditional rendering pipeline. As multi-cores CPU and 

general purpose graphics processing units become available 

to average consumers, the full gathering of traditional, 

indirect path tracing becomes possible to be realized in 

software based graphics rendering pipeline, such as in 

CUDA, OpenCL…etc. However, the computation of 

physically based volume rendering is still expensive which 

may require several hours so as to render a simple model or 

simplified volume data representation. In this project, we 
adopt a compact Octree data structure as the representation 

of models in scenes and integrate it into our CUDA path 

tracer for efficient volume rendering. The exploitation of 

dedicated graphics hardware is shown and the results are 

realistic and visually appealing. 

    The remainder of the report is organized as follows: We 

start from introducing related work and relevant algorithms 

in section 2. In section 3, we give an overview of an 

efficient parametric algorithm for Octree Traversal. The 

path tracing algorithm is briefly reviewed in section 4, and 
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we describe how to integrate the volume model in Octree 

representation into a path tracer. In section 5, we propose 

the CUDA implementation of the whole algorithm and 

show the results, and in section 6 we discuss the method 

and ideas for improvement. Lastly, in section 7 we close 

with a conclusion. 

 
2    RELATED WORK  

Numerous efforts on simulating volume effects can be 

traced from Blin’s paper [17]; due to the scope of this 

project, we only discuss important representative papers 
here. Monte Carlo ray tracing methods were brought to 

computer graphics by Cook at el.[11] to render realistic 

effects including multiple scattering and non-homogeneous 

media. With the methods of compositing images by Porter 

and Duff[10], the volume rendering can be viewed as a 

problem of composing colors of finite elements in a volume 

by ray tracing algorithm as Levoy and Drebin et al. 

proposed[2, 3, 4]. 

    Among others, one research direction has led to volume 

rendering techniques that exploit hardware assisted texture 

mapping. These methods represent volume data as 3D 
texture and further render the target cells by texture look 

up. Modern graphics hardware enables this volume 

rendering approach to be performed in real-time. This type 

of volume rendering was first described by Cullip and 

Neumann[12], and was enhanced and extended into the 

OpenGL’s shading language by Westermann and Ertl[6] or 

even into general purpose GPU as Tatarinov and 

Kharlamov presented [6]. We hope to capture volume 

effects in a physically based ray tracing manner in this 

project; therefore, we do not adopt rendering volume data 

explicitly by using graphics hardware (3D texture look up). 

Kajiya[86] proposed the famous rendering equation for 
gathering lights in an integration manner. Many 

contributions were done based on this theory. Accompanied 

with distributed ray tracing algorithm [11], an enormous 

amount of research on physically-based rendering has been 

proposed. Lafortune at el.[5] render participating media 

with bidirectional path tracing, in which the involvement of 

the participating media rendering is also a probability 

distribution function. Recently, Kulla and Fajardo[14] add 

importance sampling techniques into their path tracing 

process for the purpose of lower variance and faster 

convergence. On the other hand, Jensen and Christensen 
[13] combine 3D photon mapping with participating media 

for more efficient simulation of light transport. Sun at 

el.[16] use an analytic method to turn the heavy volume 

rendering integration equation into a simple but precise 

function without loss of general properties of participating 

media. With the knowledge of the aforementioned papers 

above, our goal in this project is to view the volume 

rendering problem as a color compositing process by 

transporting lights in a compact volume representation. 

Revelles, Urena and Lastra[9] compare and propose a new 

method of Octree traversal. Details of their parametric 

algorithm and performance comparisons are described in 

their paper. In our best knowledge, its simplicity and low 

computation complexity makes it a fairly robust Octree 

traversal algorithm, which attracts us to implement and 
integrate into our path tracer. We start from briefly 

describing their Octree traversal algorithm. 

 

3    PARAMETRIC OCTREE TRAVERSAL 

3.1    OCTREE DIFINITION 

Octree Traversal is the process of finding the subset of 

voxels in an octree pierced by a directed line. In [9], the 

authors introduce a new top-down algorithm which is based 

on the parametric representation of the ray (line). As 

described below, the simplicity of the traversal algorithm 

makes it straightforward to implement and provides a light-

weight package for us to integrate the algorithm into our 

path tracer. Figure 1 shows the octree labeling in the 

algorithm, which we use for our octree traversal. 

 

Figure 1: Labeled octree (the hidden node has label 1). 

3.2    THE ALGORITHM FOR 2D CASE 

We define a ray r as a pair (p, d), where            is the 

origin, and           is the unit length direction vector. 

From the above definitions, we deduce that an intersection 

between a ray r and a node o (a rectangle on 2D plane) 

occurs if at least one real value t exists such that: 

                    AND 

                      (1) 

where: 

    is the minimum boundary in x axis 

   is the maximum boundary in x axis 

   is the minimum boundary in y axis 

   is the maximum boundary in y axis 

The algorithm is called a parametric algorithm because all 

computations use the value of t such that               is a 

point on a node boundary. For a node o and ray r,         , 

        , and         ,          are defined as the ray 
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parameter values for which the ray intersects with the 

boundary of the node. 

Then we can define      and      for a node o and a ray r 

as 

                                  

                                  (2) 

If a t exists obeying (2), then            . The inverse 

implication also holds, thus equation (1) is equivalent to 

                      (3) 

If the condition of (3) is false, no intersection occurs. When 

the condition is true, all values of t in the interval 

            are mapped to points              which 

belong to the node. It is now possible to outline the 

proposed parametric algorithm used to traverse a quadtree 

(since we are still discussing 2D case). First, we check 

condition (3) for the root node. If the condition is true, the 

four parameters           and           need to be 

computed for the root node by using line intersection 

equations. The main recursive procedure is subsequently 

executed accepting a node as input parameter and its 
corresponding four parameter values. If the node is non-

terminal, its child nodes which are pierced by the ray are 

checked using (3) for each of them. Therefore, a recursive 

call to the procedure is carried out for each of them. 

Figure 2: Sub-nodes crossed when         (2D case). 

 

Figure 3: Sub-nodes crossed when         (2D case). 

In fact, there are only six different parameters for a child 

node. These are the four parameters of the parent plus the 

following two values: 

         (                  )     

         (                  )     (4) 

This kind of coherence can be used to improve the 

algorithm further by using a sequential algorithm. The 

selection of pierced sub-nodes of a node is carried out in 

two steps: 

1. Select the first sub-node hit by the ray 

2. For each pierced node, select the next one, 

until the current parent node is exited. 

The two steps are recursively performed while the ray 

marches (see figure 2 and 3). 

 

3.3    EXTENDING THE ALGORITHM TO OCTREES 

To find the first sub-voxel at which the ray enters the 

current voxel, first we obtain the entry face of the current 

voxel. This step is made by computing 

                          . In table 1 we show the entry 

plane selected for each case. 

Maximum Entry plane 

    YZ 

    XZ 

    XY 

Table 1: First plane intersected. 

Once the entry plane has been determined, four sub-nodes 

are candidates (see figure 1 for the octree labels). To 

determine the first sub-node crossed, we examine       , 

      , and       . In table 2 the necessary comparisons 

are shown. The result of evaluating this condition (a bit) is 

copied to one of the bits which form the index of the first 

sub-node crossed. In this way, any node could be selected 

with the exception of node 7, because the ray direction 

vector components are assumed to be positive (negative 

case is described later). The whole process can be 

implemented using the OR operator to combine the 

necessary bits. 

Entry 

Plane 

Conditions to  

examine 

Bit  

affected 

XY               

              

0 

1 

XZ               

              

0 

2 

YZ               

              

1 

2 

Table 2: Comparisons to obtain the first node intersected. 
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The same procedure is carried out recursively until the ray 

exits the root node. As to the negative ray direction, one can 

imagine we address the problem by transforming the whole 

octree orientation so the direction of the ray is always 

positive. There are some extreme cases of ray paralleling to 
the x, y, or z axis, we can simply shift the ray direction by a 

small value, i.e. epsilon 1e-10, to prevent any numerical 

error or singularity. For whole details of the ray marching 

in the octree, we suggest viewing the paper [9] directly. 

  

4    VOLUME RENDERING IN PATH TRACER 

4.1    VOXLE COLOR MODEL 

With the compact octree structure and traversal algorithm 

under the belt, we can start to introduce our lighting model 

of the voxel data. As we mentioned above, our goal is to 

turn the volume rendering problem into a case of 

compositing colors. Following [3, 4], we obtain the 

equation for compositing front/back colors: 

               (         )         (5) 

where         is the composited color of viewing the front 

voxel,        is the original color of the front voxel,       

is the color of the back voxel and        represents the 

alpha channel of the front voxel. Notice that we use the 

same equation (5) universally in our implementation of 

rendering leaf voxels in the volume octree. Figure 4 shows 

an overview of the volume rendering algorithm.

 

Figure 4: Overview of volume rendering algorithm. 

Given a ray marching through the scene, we check if it 

intersects with the volume octree. If not, we simply 

continue the light transport algorithm and gathering lights. 

If it does, we collect voxel colors as the ray pierces through 

those voxels and use equation (5) to compose them together 

into the current pixel which the ray represents. Whenever 
the light exits the octree (if intersection happens), we need 

to attenuate the ray’s throughput so that the subsequent 

light transport procedure abides by the energy absorption of 

volume. For 2D illustration of the ray marching through 

volume process, see Figure 5.  

Until now we assume we have already known the color of 

the voxels before we start compositing them, which is 

incorrect since those voxel colors are supposed to be 

determined by their relation with light sources, instead of 
using pre-determined voxel colors, e.g. from CT data. 

Therefore, for those volume data, we must launch another 

light transport procedure from each ray-intersected voxel to 

the light source, just like shooting a new shadow ray when 

calculating diffuse light component. 

 

Figure 5: Ray marching through an octree node. 

 

4.2    GATHERING VOXEL COLOR 

Following equation (5), we know the final compositing 

color of a ray through n voxels in the volume should be 

                                 

                             (6) 

If we assume volume data are isotropic and homogeneous, 

i.e.           , then (6) can be written as 

                             (7) 

where         

As mentioned in previous section, for each voxel color   , 

we need to launch another light transport process from the 

position of voxel i to each of the light sources to determine 

how much irradiance the voxel catches. Figure 6 illustrates 

the idea of gathering light for each voxel. 

The new gathering procedure only needs some modification 
from equation (6). We can view the new gathering ray as a 

way to determine how much energy a ray from light source 

arrives at voxel i. In other words, we calculate the final 

light energy from light source through finite volume 

absorptions as the ray goes and eventually survives at voxel 

i. Furthermore, the color compositing equation (5) can be 

interpreted as the approximation of light energy not being 
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absorbed, in which       represents the remaining light 

energy after passing through a single voxel. Therefore, for 

each voxel i, its final color     after gathering lights is 

      (    
 )(    

 )      
    (8) 

where    is the unshaded voxel color,   
  represents the 

alpha channel of voxel j and L means the light radiance. We 

can rewrite the equation (8) by assuming the volume data 

are isotropic and homogeneous as before: 

       
        (9) 

 

 

Figure 6: Gathering voxel color from light source. 

 

4.3    INTEGRATION INTO PATH TRACER 

Our path tracer runs the classic rendering equation [1]: 

                           ∫                      
 

 

      (11) 

where: 

        is the related to the intensity of light passing 

from point    to point   

        is the geometry term indicating the geometry 

relation of   and   , often a distance falloff 

         is related to the intensity of emitted light 

from    to   

           is related to the intensity of light scattered 

from     to   by a patch of surface at    

Average rays gather color (light energy) by following the 

above equation if they do not intersect with the volume 

octree. If the intersection happens, we use the refined 

version of equation (11): 

                                         
 ∫                      

 
    (12) 

where: 

  is closest voxel reached from the current ray 

  is the number of voxels the ray passes in the 
octree volume 

       is the geometry term indicating the geometry 

relation of   and  , often a distance falloff 

    is the gathered voxel color from equation (7) 

      affects the throughput of the ray after passing 

through the volume 

 

5    IMPLEMENTATION 

5.1    SOFTWARE AND HARDWARE SPECIFICATIONS 

Our path tracer is implemented in CUDA 4.0. We use the 
following hardware set: GeForce GTX 770 Nvidia graphics 

card and Intel i7-4770k CPU for all the rendering results in 

this report. 

64 threads are running in the same block on the device. The 

path tracer is implemented with stream compaction on rays, 

Russian Roulette techniques for early ray termination to 

enhance the performance and shorter converge time. Each 

ray is given 5 bounces at most for transporting in the scene. 

As we integrated the octree into our path tracer, the issue of 

copying memory from host side (DRAM) to device side 

(global memory on graphics cards) came up because 

currently there is no API provided for copying dynamically 
allocated memory from host side to device side in our 

knowledge. Therefore, it is necessary to turn our octree 

representation (octree is a linked list of an unbalanced tree 

structure) into an array of our new defined octree node 

structure programmatically. Each octree node stores the 

node’s location in 3-space, a flag bit indicating if it is a leaf 

node in the octree, a flag bit showing if the leaf node has 

data or not, and finally the node has to record the unsigned 

int array indices of its eight children. Therefore, the total 

size per node is 44 bytes. For most cases, rendering a 

volume model with octree resolution ~0.03 produces 
pleasant results, and it requires about 10,000 nodes per 

octree, which only needs an array of size ~440 KB to be 

sent to CUDA memory. It is possible to reduce the memory 

consumption further, such as by using index array, similar 

to IBOs in OpenGL, instead of storing the location for each 

node directly (because the positions of non-leaf nodes are 

never used in the algorithm); however, we did not 

implement this technique since we did not meet any 

memory overflow issue in all of our test sets. 

Since CUDA 2.0, recursion calls are allowed in kernel 

functions. Our octree traversal algorithm, based on [9], is 

implemented with recursive functions. However, if we 
perform the full recursion function for the octree traversal 

as described in section 4.1 and 4.2, there would be a 

recursion inside another recursion, which is risky for any 

thread call in CUDA. In order to prevent nested recursions, 

we adopt a two passes method to gather to light energy. In 

the first pass, we simply record the positions of the voxels 

that a ray reaches. Then in the second pass, we shoot a new 

ray from those pre-recorded voxel locations to each of the 
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light sources to gather light energy by following equation 

(9). After the gathering process for each voxel in the second 
pass, we evaluate the composited color by equation (7) and 

continue our light transport process in path tracing.  

We also set up a transmittance threshold for early 

termination of over dim ray when it pierces too deep in the 

volume. This technique can effectively stop a ray if it 

contributes only an extremely small amount of energy to 

the pixel. 

5.2    RENDERING DETAILS 

We set the alpha channel of all test sets to be [0.3, 0.4], and 

find the alpha in the range makes no noticeable difference 

to human eyes. The theoretical execution time is 

proportional to the square of the inverse of the octree 

resolution since we need to examine and gather light energy 

at each voxel location. However, since we have early 
termination mechanism, this time is only proportional to the 

inverse of the octree resolution in practice, and is often less 

than that. Figure 7 shows the volume octree representations 

of the same model (Stanford dragon) with different octree 

resolutions and running times. Experiment on how many 
Monte Carlo iterations we need for the noise removal of the 

volume rendering is taken as well, see Figure 8 for visual 

details. One can see that the cloud effects of the bunny by 

running 1,000 iteration and the one by running 5,000 

iterations are similar since the volume rendering procedure 

does not involve in diffuse component calculation, which is 

often the main cause of high variance in Monte Carlo 

method. 

The diffuse component in the path tracer is using 

Lambertian reflectance model; the reflection and the 

refraction reflectance is followed by Fresnel equation with 

Russian Roulette to decide whether to reflect or refract. The 
light source is simulated as a point light; therefore, we lift 

the model off the ground and farther from camera so as to 

have a better visualization of the volume rendering effects. 

We also sample the point light by sampling the actual 

sphere surface of the point light with respect to its radius 

for realistic shading effects. 

 

a 

 

b 

 

c 

 

d 

 

e 

 

 Octree 

resolution 

Rendering 

time 

a 1.00 5m 18.561s 

b 0.30 9m 27.832s 

c 0.10 21m 5.2s 

d 0.03 33m 0.62s 

e 0.015 33m 35.06s 

m: minute(s) 

s: second(s) 

Figure 7: Stanford dragon rendered as cloud with different octree resolutions. Notice how the opacity of the dragon 

Changes w.r.t. different octree resolutions. That is caused by equation (7) and the transmittance threshold. 
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6    DISCUSSION 

While our algorithm in volume rendering is straightforward, 

the use of color composition for participating media is an 

approximation of natural effects. Several improvements can 

be achieved for more precise physical results. We refer the 

famous brightness function in volume rendering from [17] 
and infer we only need the following factor in their volume 

brightness function (see Appendix section for the notations 

and the details of the equation): 

     and ∫        
 

 
 

Since we are gathering light energy from light transports, 

we can omit most parts of the equation because they are 

implicitly included in the path tracing algorithm and keep 

only the above two terms. 

Therefore, by adding a phase function      to our lighting 

equation in octree traversal, we are able to simulate 

anisotropic scattering volume. By adding the integration 

∫        
 

 
, the precise scattering and transparency of 

particles can be easily obtained. Notice how we can get the 

information of         without extra effort, since they are 

included in the octree structure. In fact, 

               

which is fairly close to our opacity range [0.3, 0.4] and we 

also use exponential fade-off (e.g.    term in (7)) in our 

scattering model. Also, in isotropic media the phase 

function      is a constant     . This explains how our 

isotropic volume approximation is close to the physical 

results. 

Another potential improvement will be the compression in 

the octree structure sent to CUDA memory because of the 
existence of multiple node duplications. Recently, [15] 

provides an intuitive and effective way to compress octree 

structure losslessly by using directed acyclic graphs, which 

can reach a compression ratio of 38 on average. With this 

technique the memory consumption in CUDA can be 

reduced immensely. 

A potential limitation of our algorithm is the rendering 

reliance on graphics hardware because the reading time in 

CUDA’s global memory is much larger than in CUDA’s 

shared memory and thread registers. Therefore, the overall 

rendering process can be performed more efficiently if we 

exploit shared memory in CUDA. On the other hand, host 
side memory and device side memory swapping time can 

be reduced by calling cudaHostAlloc(); funtion in CUDA. 

The function allocates a fixed memory on host side that can 

be accessed from device side. However, since we assume 

our scene to be simple and static, it does not affect the 

performance in our rendering set. This functionality can be 

a potential use if we want to add dynamic objects into the 

scene. 

Multi-scattering is the main limitation in our algorithm 

since our path tracing process only handles a single ray per 

thread for efficient rendering. One can add a pdf 

(probability density function) of multi-scattering to the 
shading equation if the scattering function is given. In fact, 

Veverka [18] points out that the multiple scattering law 

should provide a physical basis for the purely empirical 

Lambert’s law, which can be easily added to our shading 

model with a few other rays sampling the surrounding of 

the volume. We view it as a potential method for multi-

scattering. 

 

7    CONCLUSION 

We propose a new viewpoint of volume rendering in this 

project as reducing the problem to color composition in 3-

space. A parametric octree traversal algorithm is 

implemented into our path tracing pipeline for efficiently 

classifying ray-volume intersections. The modern graphics 

hardware enables the Monte Carlo path tracing practically 

in our physically based rendering manner. Different time 

consumptions with respect to each octree resolution are 

provided. Comparisons of results of several Monte Carlo 

iterations and octree resolutions are also shown. 

Furthermore, the volume rendering implementation in 
CUDA is described and only requires a fairly small amount 

of memory for our octree volume representation. In sum, 

we meet our goal in this project of efficient volume 

rendering. 
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APPENDIX 

A.1    VOLUME BRIGHTNESS EQUATION IN [17] 

Once we have the octree representation of the volume, a 

volume brightness function can be written down: 

 

                ∫        
 

 

 

where: 

   is the net brightness of the volume 

 

  is the radius of each particle in the 

volume 

   is the incident light angle 

  is the cosine value of angle between 

viewing and particle normal 

   is the albedo of individual particles 

   is the number of particles a ray intersects 

     represents a phase function, depending on 

the incident light angle   

   is the path volume a ray goes by 

   is the ray path in the volume 

From the view of physics, this equation means a ray goes 

into the volume from an angle  , meets   particles, and 

leaves the volume at        direction. As the ray goes in 

the volume, the energy it brings is decreasing in a factor 

of     . Notice this is also a Poisson probability 
distribution of how many particles will be illuminated by 

the ray. 

         can be interpreted as the projected viewing area.  

      is the brightness of a particle with an light angle. 

     is the expected number of particle/unit area 

The tuning of density function in volume rendering is 

often added in the term  . Variance of     is also 

common, such as explicitly assigning scattering (  ) and 

absorption (  ) coefficients. This can be achieved by 

modifying      into a new Poisson probability model. 

http://goo.gl/bXhMe0
http://www.pbrt.org/


9 

 

 

 

10 iterations, 8.939 s 

 

100 iterations, 1m 22.844s 

 

1,000 iterations, 13m 42.152s 

 

5,000 iterations, 1h 8mins 34.15s 

Figure 8: Rendering of Stanford bunny as cloud volume with different itrations. 

h: hour(s), m: minute(s), s: second(s) 


