
1

Efficient Volume Rendering in CUDA Path Tracer

Hsuan-Yueh Peng Kristopher Wong Kaleb Williams

hsuanyup@usc.edu kristoph@usc.edu kalebwil@usc.edu

University of Southern California

a b c

Figure 0: Our volume rendering result and illustration. (a) Stanford dragon rendered as cloud with resolution 0.03.(b) Same

model as (a) with our Octree visualization. (c) Stanford bunny rendered as cloud with resolution 0.02.

ABSTRACT

Volume rendering has always been a popular topic in

computer graphics as it captures more realistic rendering

results. However, most of the rendering targets are focused

on participating media distributed in the scene. In this

project we integrate an Octree data structure with our path

tracer in CUDA to achieve efficient volume rendering of

models.

Our efforts are put on the implementation of a compact

model representation in Octree with an efficient parametric

algorithm for tree traversal. With the proposed Octree

combined into our CUDA path tracer, the volume rendering

by each ray per thread is made possible for average Nvidia

graphics cards. Our rendering algorithm extends the classic

ray tracing process into path tracing with light transport in

participating media, which gathers light energy in a

physically based manner. Finally, the global illumination

examples and comparisons of cloud like models are shown.

Keywords:

Octree, Volume Rendering, Participating Media, Path

Tracing, CUDA, Global Illumination, Acceleration

Techniques

1 INTRODUCTION

Rendering of participating media provides realistic and

natural effects, such as cloud, fog, smoke and steam, in real

life. With volume rendering effects, the resultant

images/videos often become more visually appealing as the

volumetric effects adds mood into the scene.

 For high quality rendering, several Monte Carlo and

finite element techniques have been proposed. These

methods can model general volumetric phenomena and
scattering effects. Unfortunately, the full Monte Carlo

gathering process may be extremely expensively costly in

the traditional rendering pipeline. As multi-cores CPU and

general purpose graphics processing units become available

to average consumers, the full gathering of traditional,

indirect path tracing becomes possible to be realized in

software based graphics rendering pipeline, such as in

CUDA, OpenCL…etc. However, the computation of

physically based volume rendering is still expensive which

may require several hours so as to render a simple model or

simplified volume data representation. In this project, we
adopt a compact Octree data structure as the representation

of models in scenes and integrate it into our CUDA path

tracer for efficient volume rendering. The exploitation of

dedicated graphics hardware is shown and the results are

realistic and visually appealing.

 The remainder of the report is organized as follows: We

start from introducing related work and relevant algorithms

in section 2. In section 3, we give an overview of an

efficient parametric algorithm for Octree Traversal. The

path tracing algorithm is briefly reviewed in section 4, and

mailto:kalebwil@usc.edu

2

we describe how to integrate the volume model in Octree

representation into a path tracer. In section 5, we propose

the CUDA implementation of the whole algorithm and

show the results, and in section 6 we discuss the method

and ideas for improvement. Lastly, in section 7 we close

with a conclusion.

2 RELATED WORK

Numerous efforts on simulating volume effects can be

traced from Blin’s paper [17]; due to the scope of this

project, we only discuss important representative papers
here. Monte Carlo ray tracing methods were brought to

computer graphics by Cook at el.[11] to render realistic

effects including multiple scattering and non-homogeneous

media. With the methods of compositing images by Porter

and Duff[10], the volume rendering can be viewed as a

problem of composing colors of finite elements in a volume

by ray tracing algorithm as Levoy and Drebin et al.

proposed[2, 3, 4].

 Among others, one research direction has led to volume

rendering techniques that exploit hardware assisted texture

mapping. These methods represent volume data as 3D
texture and further render the target cells by texture look

up. Modern graphics hardware enables this volume

rendering approach to be performed in real-time. This type

of volume rendering was first described by Cullip and

Neumann[12], and was enhanced and extended into the

OpenGL’s shading language by Westermann and Ertl[6] or

even into general purpose GPU as Tatarinov and

Kharlamov presented [6]. We hope to capture volume

effects in a physically based ray tracing manner in this

project; therefore, we do not adopt rendering volume data

explicitly by using graphics hardware (3D texture look up).

Kajiya[86] proposed the famous rendering equation for
gathering lights in an integration manner. Many

contributions were done based on this theory. Accompanied

with distributed ray tracing algorithm [11], an enormous

amount of research on physically-based rendering has been

proposed. Lafortune at el.[5] render participating media

with bidirectional path tracing, in which the involvement of

the participating media rendering is also a probability

distribution function. Recently, Kulla and Fajardo[14] add

importance sampling techniques into their path tracing

process for the purpose of lower variance and faster

convergence. On the other hand, Jensen and Christensen
[13] combine 3D photon mapping with participating media

for more efficient simulation of light transport. Sun at

el.[16] use an analytic method to turn the heavy volume

rendering integration equation into a simple but precise

function without loss of general properties of participating

media. With the knowledge of the aforementioned papers

above, our goal in this project is to view the volume

rendering problem as a color compositing process by

transporting lights in a compact volume representation.

Revelles, Urena and Lastra[9] compare and propose a new

method of Octree traversal. Details of their parametric

algorithm and performance comparisons are described in

their paper. In our best knowledge, its simplicity and low

computation complexity makes it a fairly robust Octree

traversal algorithm, which attracts us to implement and
integrate into our path tracer. We start from briefly

describing their Octree traversal algorithm.

3 PARAMETRIC OCTREE TRAVERSAL

3.1 OCTREE DIFINITION

Octree Traversal is the process of finding the subset of

voxels in an octree pierced by a directed line. In [9], the

authors introduce a new top-down algorithm which is based

on the parametric representation of the ray (line). As

described below, the simplicity of the traversal algorithm

makes it straightforward to implement and provides a light-

weight package for us to integrate the algorithm into our

path tracer. Figure 1 shows the octree labeling in the

algorithm, which we use for our octree traversal.

Figure 1: Labeled octree (the hidden node has label 1).

3.2 THE ALGORITHM FOR 2D CASE

We define a ray r as a pair (p, d), where is the

origin, and is the unit length direction vector.

From the above definitions, we deduce that an intersection

between a ray r and a node o (a rectangle on 2D plane)

occurs if at least one real value t exists such that:

 AND

 (1)

where:

 is the minimum boundary in x axis

 is the maximum boundary in x axis

 is the minimum boundary in y axis

 is the maximum boundary in y axis

The algorithm is called a parametric algorithm because all

computations use the value of t such that is a

point on a node boundary. For a node o and ray r, ,

 , and , are defined as the ray

3

parameter values for which the ray intersects with the

boundary of the node.

Then we can define and for a node o and a ray r

as

 (2)

If a t exists obeying (2), then . The inverse

implication also holds, thus equation (1) is equivalent to

 (3)

If the condition of (3) is false, no intersection occurs. When

the condition is true, all values of t in the interval

 are mapped to points which

belong to the node. It is now possible to outline the

proposed parametric algorithm used to traverse a quadtree

(since we are still discussing 2D case). First, we check

condition (3) for the root node. If the condition is true, the

four parameters and need to be

computed for the root node by using line intersection

equations. The main recursive procedure is subsequently

executed accepting a node as input parameter and its
corresponding four parameter values. If the node is non-

terminal, its child nodes which are pierced by the ray are

checked using (3) for each of them. Therefore, a recursive

call to the procedure is carried out for each of them.

Figure 2: Sub-nodes crossed when (2D case).

Figure 3: Sub-nodes crossed when (2D case).

In fact, there are only six different parameters for a child

node. These are the four parameters of the parent plus the

following two values:

 ()

 () (4)

This kind of coherence can be used to improve the

algorithm further by using a sequential algorithm. The

selection of pierced sub-nodes of a node is carried out in

two steps:

1. Select the first sub-node hit by the ray

2. For each pierced node, select the next one,

until the current parent node is exited.

The two steps are recursively performed while the ray

marches (see figure 2 and 3).

3.3 EXTENDING THE ALGORITHM TO OCTREES

To find the first sub-voxel at which the ray enters the

current voxel, first we obtain the entry face of the current

voxel. This step is made by computing

 . In table 1 we show the entry

plane selected for each case.

Maximum Entry plane

 YZ

 XZ

 XY

Table 1: First plane intersected.

Once the entry plane has been determined, four sub-nodes

are candidates (see figure 1 for the octree labels). To

determine the first sub-node crossed, we examine ,

 , and . In table 2 the necessary comparisons

are shown. The result of evaluating this condition (a bit) is

copied to one of the bits which form the index of the first

sub-node crossed. In this way, any node could be selected

with the exception of node 7, because the ray direction

vector components are assumed to be positive (negative

case is described later). The whole process can be

implemented using the OR operator to combine the

necessary bits.

Entry

Plane

Conditions to

examine

Bit

affected

XY

0

1

XZ

0

2

YZ

1

2

Table 2: Comparisons to obtain the first node intersected.

4

The same procedure is carried out recursively until the ray

exits the root node. As to the negative ray direction, one can

imagine we address the problem by transforming the whole

octree orientation so the direction of the ray is always

positive. There are some extreme cases of ray paralleling to
the x, y, or z axis, we can simply shift the ray direction by a

small value, i.e. epsilon 1e-10, to prevent any numerical

error or singularity. For whole details of the ray marching

in the octree, we suggest viewing the paper [9] directly.

4 VOLUME RENDERING IN PATH TRACER

4.1 VOXLE COLOR MODEL

With the compact octree structure and traversal algorithm

under the belt, we can start to introduce our lighting model

of the voxel data. As we mentioned above, our goal is to

turn the volume rendering problem into a case of

compositing colors. Following [3, 4], we obtain the

equation for compositing front/back colors:

 () (5)

where is the composited color of viewing the front

voxel, is the original color of the front voxel,

is the color of the back voxel and represents the

alpha channel of the front voxel. Notice that we use the

same equation (5) universally in our implementation of

rendering leaf voxels in the volume octree. Figure 4 shows

an overview of the volume rendering algorithm.

Figure 4: Overview of volume rendering algorithm.

Given a ray marching through the scene, we check if it

intersects with the volume octree. If not, we simply

continue the light transport algorithm and gathering lights.

If it does, we collect voxel colors as the ray pierces through

those voxels and use equation (5) to compose them together

into the current pixel which the ray represents. Whenever
the light exits the octree (if intersection happens), we need

to attenuate the ray’s throughput so that the subsequent

light transport procedure abides by the energy absorption of

volume. For 2D illustration of the ray marching through

volume process, see Figure 5.

Until now we assume we have already known the color of

the voxels before we start compositing them, which is

incorrect since those voxel colors are supposed to be

determined by their relation with light sources, instead of
using pre-determined voxel colors, e.g. from CT data.

Therefore, for those volume data, we must launch another

light transport procedure from each ray-intersected voxel to

the light source, just like shooting a new shadow ray when

calculating diffuse light component.

Figure 5: Ray marching through an octree node.

4.2 GATHERING VOXEL COLOR

Following equation (5), we know the final compositing

color of a ray through n voxels in the volume should be

 (6)

If we assume volume data are isotropic and homogeneous,

i.e. , then (6) can be written as

 (7)

where

As mentioned in previous section, for each voxel color ,

we need to launch another light transport process from the

position of voxel i to each of the light sources to determine

how much irradiance the voxel catches. Figure 6 illustrates

the idea of gathering light for each voxel.

The new gathering procedure only needs some modification
from equation (6). We can view the new gathering ray as a

way to determine how much energy a ray from light source

arrives at voxel i. In other words, we calculate the final

light energy from light source through finite volume

absorptions as the ray goes and eventually survives at voxel

i. Furthermore, the color compositing equation (5) can be

interpreted as the approximation of light energy not being

5

absorbed, in which represents the remaining light

energy after passing through a single voxel. Therefore, for

each voxel i, its final color after gathering lights is

 (
)(

)
 (8)

where is the unshaded voxel color,
 represents the

alpha channel of voxel j and L means the light radiance. We

can rewrite the equation (8) by assuming the volume data

are isotropic and homogeneous as before:

 (9)

Figure 6: Gathering voxel color from light source.

4.3 INTEGRATION INTO PATH TRACER

Our path tracer runs the classic rendering equation [1]:

 ∫

 (11)

where:

 is the related to the intensity of light passing

from point to point

 is the geometry term indicating the geometry

relation of and , often a distance falloff

 is related to the intensity of emitted light

from to

 is related to the intensity of light scattered

from to by a patch of surface at

Average rays gather color (light energy) by following the

above equation if they do not intersect with the volume

octree. If the intersection happens, we use the refined

version of equation (11):

 ∫

 (12)

where:

 is closest voxel reached from the current ray

 is the number of voxels the ray passes in the
octree volume

 is the geometry term indicating the geometry

relation of and , often a distance falloff

 is the gathered voxel color from equation (7)

 affects the throughput of the ray after passing

through the volume

5 IMPLEMENTATION

5.1 SOFTWARE AND HARDWARE SPECIFICATIONS

Our path tracer is implemented in CUDA 4.0. We use the
following hardware set: GeForce GTX 770 Nvidia graphics

card and Intel i7-4770k CPU for all the rendering results in

this report.

64 threads are running in the same block on the device. The

path tracer is implemented with stream compaction on rays,

Russian Roulette techniques for early ray termination to

enhance the performance and shorter converge time. Each

ray is given 5 bounces at most for transporting in the scene.

As we integrated the octree into our path tracer, the issue of

copying memory from host side (DRAM) to device side

(global memory on graphics cards) came up because

currently there is no API provided for copying dynamically
allocated memory from host side to device side in our

knowledge. Therefore, it is necessary to turn our octree

representation (octree is a linked list of an unbalanced tree

structure) into an array of our new defined octree node

structure programmatically. Each octree node stores the

node’s location in 3-space, a flag bit indicating if it is a leaf

node in the octree, a flag bit showing if the leaf node has

data or not, and finally the node has to record the unsigned

int array indices of its eight children. Therefore, the total

size per node is 44 bytes. For most cases, rendering a

volume model with octree resolution ~0.03 produces
pleasant results, and it requires about 10,000 nodes per

octree, which only needs an array of size ~440 KB to be

sent to CUDA memory. It is possible to reduce the memory

consumption further, such as by using index array, similar

to IBOs in OpenGL, instead of storing the location for each

node directly (because the positions of non-leaf nodes are

never used in the algorithm); however, we did not

implement this technique since we did not meet any

memory overflow issue in all of our test sets.

Since CUDA 2.0, recursion calls are allowed in kernel

functions. Our octree traversal algorithm, based on [9], is

implemented with recursive functions. However, if we
perform the full recursion function for the octree traversal

as described in section 4.1 and 4.2, there would be a

recursion inside another recursion, which is risky for any

thread call in CUDA. In order to prevent nested recursions,

we adopt a two passes method to gather to light energy. In

the first pass, we simply record the positions of the voxels

that a ray reaches. Then in the second pass, we shoot a new

ray from those pre-recorded voxel locations to each of the

6

light sources to gather light energy by following equation

(9). After the gathering process for each voxel in the second
pass, we evaluate the composited color by equation (7) and

continue our light transport process in path tracing.

We also set up a transmittance threshold for early

termination of over dim ray when it pierces too deep in the

volume. This technique can effectively stop a ray if it

contributes only an extremely small amount of energy to

the pixel.

5.2 RENDERING DETAILS

We set the alpha channel of all test sets to be [0.3, 0.4], and

find the alpha in the range makes no noticeable difference

to human eyes. The theoretical execution time is

proportional to the square of the inverse of the octree

resolution since we need to examine and gather light energy

at each voxel location. However, since we have early
termination mechanism, this time is only proportional to the

inverse of the octree resolution in practice, and is often less

than that. Figure 7 shows the volume octree representations

of the same model (Stanford dragon) with different octree

resolutions and running times. Experiment on how many
Monte Carlo iterations we need for the noise removal of the

volume rendering is taken as well, see Figure 8 for visual

details. One can see that the cloud effects of the bunny by

running 1,000 iteration and the one by running 5,000

iterations are similar since the volume rendering procedure

does not involve in diffuse component calculation, which is

often the main cause of high variance in Monte Carlo

method.

The diffuse component in the path tracer is using

Lambertian reflectance model; the reflection and the

refraction reflectance is followed by Fresnel equation with

Russian Roulette to decide whether to reflect or refract. The
light source is simulated as a point light; therefore, we lift

the model off the ground and farther from camera so as to

have a better visualization of the volume rendering effects.

We also sample the point light by sampling the actual

sphere surface of the point light with respect to its radius

for realistic shading effects.

a

b

c

d

e

 Octree

resolution

Rendering

time

a 1.00 5m 18.561s

b 0.30 9m 27.832s

c 0.10 21m 5.2s

d 0.03 33m 0.62s

e 0.015 33m 35.06s

m: minute(s)

s: second(s)

Figure 7: Stanford dragon rendered as cloud with different octree resolutions. Notice how the opacity of the dragon

Changes w.r.t. different octree resolutions. That is caused by equation (7) and the transmittance threshold.

7

6 DISCUSSION

While our algorithm in volume rendering is straightforward,

the use of color composition for participating media is an

approximation of natural effects. Several improvements can

be achieved for more precise physical results. We refer the

famous brightness function in volume rendering from [17]
and infer we only need the following factor in their volume

brightness function (see Appendix section for the notations

and the details of the equation):

 and ∫

Since we are gathering light energy from light transports,

we can omit most parts of the equation because they are

implicitly included in the path tracing algorithm and keep

only the above two terms.

Therefore, by adding a phase function to our lighting

equation in octree traversal, we are able to simulate

anisotropic scattering volume. By adding the integration

∫

, the precise scattering and transparency of

particles can be easily obtained. Notice how we can get the

information of without extra effort, since they are

included in the octree structure. In fact,

which is fairly close to our opacity range [0.3, 0.4] and we

also use exponential fade-off (e.g. term in (7)) in our

scattering model. Also, in isotropic media the phase

function is a constant . This explains how our

isotropic volume approximation is close to the physical

results.

Another potential improvement will be the compression in

the octree structure sent to CUDA memory because of the
existence of multiple node duplications. Recently, [15]

provides an intuitive and effective way to compress octree

structure losslessly by using directed acyclic graphs, which

can reach a compression ratio of 38 on average. With this

technique the memory consumption in CUDA can be

reduced immensely.

A potential limitation of our algorithm is the rendering

reliance on graphics hardware because the reading time in

CUDA’s global memory is much larger than in CUDA’s

shared memory and thread registers. Therefore, the overall

rendering process can be performed more efficiently if we

exploit shared memory in CUDA. On the other hand, host
side memory and device side memory swapping time can

be reduced by calling cudaHostAlloc(); funtion in CUDA.

The function allocates a fixed memory on host side that can

be accessed from device side. However, since we assume

our scene to be simple and static, it does not affect the

performance in our rendering set. This functionality can be

a potential use if we want to add dynamic objects into the

scene.

Multi-scattering is the main limitation in our algorithm

since our path tracing process only handles a single ray per

thread for efficient rendering. One can add a pdf

(probability density function) of multi-scattering to the
shading equation if the scattering function is given. In fact,

Veverka [18] points out that the multiple scattering law

should provide a physical basis for the purely empirical

Lambert’s law, which can be easily added to our shading

model with a few other rays sampling the surrounding of

the volume. We view it as a potential method for multi-

scattering.

7 CONCLUSION

We propose a new viewpoint of volume rendering in this

project as reducing the problem to color composition in 3-

space. A parametric octree traversal algorithm is

implemented into our path tracing pipeline for efficiently

classifying ray-volume intersections. The modern graphics

hardware enables the Monte Carlo path tracing practically

in our physically based rendering manner. Different time

consumptions with respect to each octree resolution are

provided. Comparisons of results of several Monte Carlo

iterations and octree resolutions are also shown.

Furthermore, the volume rendering implementation in
CUDA is described and only requires a fairly small amount

of memory for our octree volume representation. In sum,

we meet our goal in this project of efficient volume

rendering.

ACKNOWLEDGMENTS

We wish to thank Professor Ulrich Neumann for teaching,

sharing knowledge with us on this course (CSCI 580 at

USC) and giving us advice when we proposed our idea

about the project. Also we appreciate the dedication of the

TAs for helping and solving problems in the course realm.

The dragon and bunny models are downloaded from

Stanford 3D Scanning Repository:

http://graphics.stanford.edu/data/3Dscanrep/

REFERENCES

1. James T. Kajiya “The Rendering Equation” in
SIGGRAPH ‘86

2. Marc Levoy “Display of surfaces from volume data”,

University of North Carolina at Chapel Hill, 1988

3. Robert A. Drebin, Loren Carpenter, Pat Hanrahan

“Volume Rendering” in SIGGRAPH ’88 Page 65-74

4. Marc Levoy “Efficient ray tracing of volume data” in

ACM Transaction on Graphics, Vol. 9 Issue 3, July

1990

http://graphics.stanford.edu/data/3Dscanrep/

8

5. Eric P. Lafortune, Yves D. Willems “Rendering

Participating Media with Bidirectional Path Tracing” in

Eurographics Rendering Workshop, 1996

6. Rudiger Westermann, Thomas Ertl “Efficiently using

graphics hardware in volume rendering applications”, in

Proceeding SIGGRAPH ’98 Pages 169-177

7. Tatarinov, Kharlamov “Alternative Rendering Pipeline

Presentation”, NVIDIA SIGGRAPH 2009:

http://goo.gl/bXhMe0

8. Matt Pharr, Greg Humphreys “Physically Based

Rendering”: http://www.pbrt.org/

9. J. Revelles, C. Urena, M. Lastra “An Efficient

Parametric Algorithm for Octree Traversal”, WSCG ’00

10. T. Porter, T. Duff “Compositing digital images”, in

Proceeding SIGGRAPH ’84 Pages 253-259

11. Rober L. Cook, T. Porter, L. Carpenter “Distributed ray

tracing”, in Proceeding SIGGRAPH ’84 Pages 137-145

12. Timothy J. Cullip, Ulrich Neumann “Accelerating

Volume Reconstruction with 3D Texture Hardware”,

UNC at Chapel Hill, 1994

13. Henrik W. Jensen, Per H. Christensen “Efficient
simulation of light transport in scenes with participating

media using photon maps”, in Proceeding SIGGRAPH

’98 Pages 311-320

14. C. Kulla, M. Fajardo “Importance Sampling Techniques

for Path Tracing in Participating Media”, in Journal

Computer Graphics Forum, Vol. 31, Issue 4, June 2012

Pages 1519-1528

15. V. Kampe, E. Sintorn, U. Assarsson “High resolution

sparse voxel DAGs”, in ACM Transaction on

Graphics(TOG) – SIGGRAPH ’13, Vol. 32, Issue 4,

July 2013, Article No. 101

16. B. Sun, R. Ramamoorthi, Srinivasa G. Narasimhan,
Shree K. Nayar “A practical analytic single scattering

model for real time rendering”, in Proceeding

SIGGRAPH ’05 Pages 1040-1049

17. James F. Blinn “Light reflection functions for

simulation of clouds and dusty surfaces”, in Proceeding

SIGGARPH ’82, Pages 21-29

18. Veverka, J. “The physical meaning of phase

coefficients”, NASA SP-267, Pages 79-90

APPENDIX

A.1 VOLUME BRIGHTNESS EQUATION IN [17]

Once we have the octree representation of the volume, a

volume brightness function can be written down:

 ∫

where:

 is the net brightness of the volume

 is the radius of each particle in the

volume

 is the incident light angle

 is the cosine value of angle between

viewing and particle normal

 is the albedo of individual particles

 is the number of particles a ray intersects

 represents a phase function, depending on

the incident light angle

 is the path volume a ray goes by

 is the ray path in the volume

From the view of physics, this equation means a ray goes

into the volume from an angle , meets particles, and

leaves the volume at direction. As the ray goes in

the volume, the energy it brings is decreasing in a factor

of . Notice this is also a Poisson probability
distribution of how many particles will be illuminated by

the ray.

 can be interpreted as the projected viewing area.

 is the brightness of a particle with an light angle.

 is the expected number of particle/unit area

The tuning of density function in volume rendering is

often added in the term . Variance of is also

common, such as explicitly assigning scattering () and

absorption () coefficients. This can be achieved by

modifying into a new Poisson probability model.

http://goo.gl/bXhMe0
http://www.pbrt.org/

9

10 iterations, 8.939 s

100 iterations, 1m 22.844s

1,000 iterations, 13m 42.152s

5,000 iterations, 1h 8mins 34.15s

Figure 8: Rendering of Stanford bunny as cloud volume with different itrations.

h: hour(s), m: minute(s), s: second(s)

