
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Krakatoa: Decompilation in Java
(Does Bytecode Reveal Source?)

Todd A. Proebsting, Scott A. Watterson
The University of Arizona

Krakatoa: Decompilation in Java

(Does Bytecode Reveal Source?)

Todd A. Proebsting Scott A. Watterson

The University of Arizona �

Abstract

This paper presents our technique for automati-

cally decompiling Java bytecode into Java source.

Our technique reconstructs source-level expres-

sions from bytecode, and reconstructs readable,

high-level control statements from primitive goto-

like branches. Fewer than a dozen simple code-

rewriting rules reconstruct the high-level state-

ments.

1 Introduction

Decompilation transforms a low-level language into

a high-level language. The Java Virtual Machine

(JVM) speci�es a low-level bytecode language for a

stack-based machine [LY97]. This language de�nes

203 operators, with most of the control
ow speci-

�ed by simple explicit transfers and labels. Compil-

ing a Java class yields a class �le that contains type

information and bytecode. The JVM requires a sig-

ni�cant amount of type information from the class

�les for object linking. Furthermore, the bytecode

must be veri�ably well-behaved in order to ensure

safe execution. Decompilation systems can exploit

this type information and well-behaved property to

recover Java source code from the class �le.

We present a technique for transforming low-level

Java bytecode into legal Java source code. Our sys-

tem, Krakatoa,1 performs type inference to issue

local variable declarations. The veri�er does the

same type of type inference, and the techniques are

�Address: Department of Computer Science, Uni-

versity of Arizona, Tucson, AZ 85721; Email: ftodd,

sawg@cs.arizona.edu.
1Krakatoa is a volcano located in the Sunda Strait be-

tween Java and Sumatra. Its 1983 eruption threw �ve cubic

miles of debris into the air and was heard 2200 miles away

in Australia.

well known. Presently, we focus our research on

two subproblems: recovering source-level expres-

sions and synthesizing high-level control constructs

from goto-like primitives.

Krakatoa uses a stack-simulation technique to re-

cover expressions and perform type inference. Ex-

pression recovery creates source-level assignments

and comparisons from primitive bytecode opera-

tions. We extend Ramshaw's goto-elimination al-

gorithm to structure (and create source for) ar-

bitrary reducible control
ow graphs. This tech-

nique produces source code with loops and multi-

level break's. Subsequent techniques recover more

intuitive constructs (e.g., if statements) via appli-

cation of simple code rewrite rules.

Traditional decompilation systems use graph

transformations to recover high-level control con-

structs. These systems require the author of the

decompiler to anticipate all high-level control id-

ioms. When faced with an unexpected language

idiom, these systems either abort, or produce gotos

(illegal in Java). Krakatoa represents a di�erent ap-

proach. Krakatoa �rst produces legal Java source

given legal Java bytecode with arbitrary reducible

control
ow, and then recovers intuitive high-level

constructs from this source.

Figure 1 gives the �ve steps of decompilation

performed by Krakatoa. First, the expression

builder reads bytecode, recovers expressions and

type information, and produces a control
ow

graph (CFG). Next, the sequencer orders the CFG

nodes for Ramshaw's goto-elimination technique.

Ramshaw's algorithm produces a convoluted|yet

legal|Java abstract syntax tree (AST). Our sys-

tem then transforms this AST into a less convo-

luted AST using a set of simple rewrites. The �nal

phase produces Java source by traversing the AST.

Expression Builder

Java Bytecodes

Node Sequencer

Flow graph with expressions and conditional gotos

Goto Eliminator (Ramshaw’s Algorithm)

Augmented Flow graph

Code Simplifier

Java AST

Final Java printer

Restructured Java AST

Java Source

Figure 1: Java Bytecode Decompilation System

2 Expression Recovery

Java bytecodes bear a very close correspondence

to Java source. As a result, recovering expres-

sions from Java bytecode is often simple|much

simpler than recovering expressions from machine

language. Java class �les include information that

makes recovering high-level operations like �eld ref-

erences easy. The fact that the bytecode must be

well-behaved (i.e., veri�able) also simpli�es analy-

sis. Figure 2 gives a sample program and its abbre-

viated disassembly. Note the level of type informa-

tion in the disassembly produced by Sun's javap

utility.

Symbolic execution of the bytecode creates the

corresponding Java source expressions. It also cre-

ates conditional and unconditional goto's, which

will be removed by subsequent decompilation steps.

Symbolic execution simulates the Java Virtual Ma-

chine's evaluation stack with strings that represent

the source-level expressions being computed. For

class foo {

int sam;

int bar(int a, int b) {

if (sam > a) {

b = a*2;

}

return b;

}

}

Compiled from foo.java

class foo extends java.lang.Object {

int sam;

int bar(int,int);

Method int bar(int,int)

0 aload_0

1 getfield #3 <Field foo.sam I>

4 iload_1

5 if_icmple 12

8 iload_1

9 iconst_2

10 imul

11 istore_2

12 iload_2

13 ireturn

}

Figure 2: Simple Method and Bytecode Disassem-

bly (via javap -c).

instance, iload_1, which loads the value of the

�rst local variable|with type int|could be rep-

resented on the stack as \i1". Similarly, if i1 and

2 were the top two elements of the symbolic stack,

and the next bytecode were iadd (integer addition),

those elements would be popped o� the stack and

replaced with \(i1+2)". The symbolic execution

of some expressions, like assignment, requires emit-

ting Java source.

Our algorithm recovers expressions one basic

block at a time. Some basic blocks (such as those

produced by the conditional expression operation,

A?B:C) do not begin with empty stacks, so some

information is required to propogate from prede-

cessors. Also, basic blocks that begin exception-

handling blocks|which are easily identi�ed|begin

with the raised exception on the stack.

Figure 3 provides the step-by-step decompilation

of the bytecode in Figure 2. The initial aload_0

instruction pushes a Java reference onto the stack.

In virtual functions, the \0'th" local variable, a0,

always refers to this. The getfield instruction

references a named �eld, \sam", of the current top

of stack. Therefore, the \this" is popped and

replaced with \this.sam". iload_1 pushes \i1"

onto the stack. The ifcmple compares the top two

stack elements and branches to the appropriate in-

struction if the lower is less than or equal to the

top element. Symbolically executing the ifcmple

requires popping the top two elements and emit-

ting the appropriate conditional branch. Translat-

ing the remaining instructions is similar.

Most of the bytecode instructions are equally

simple to symbolically execute. Unfortunately, a

few require more information. Some of the stack

manipulation routines (e.g., pop2, dup2, etc.) de-

pend on byte o�sets from the stack top. For in-

stance, pop2 removes the top 8 bytes from the

stack, whether those 8 bytes represent one 8-byte

double value, or two 4-byte scalar values. To cor-

rectly simulate these instructions the symbolic ex-

ecution keeps track of the size (and type) of each

stack element.

3 Instruction Ordering

After recovering expressions, conditional and un-

conditional goto's (along with implicit fall through

behavior) determine control
ow. Java, however,

has no goto statement, so its control
ow must be

expressed with structured statements.

Ramshaw presented an algorithm for eliminating

goto's from Pascal programs while preserving the

program's structure [Ram88]. This algorithm re-

places each goto with a multilevel break to a sur-

rounding loop. The algorithm determines the ap-

propropriate locations for these surrounding loops.

We trivially extended his algorithm to use multi-

level continue's.

Ramshaw's (extended) algorithm replaces each

forward goto with a break and each backward

gotowith a continue. His algorithm inserts a loop

that ends just before the target of each break state-

ment. Likewise, it inserts a loop that starts just

before the target of each continue. These loops

ensure that each control-transfer statement jumps

to the correct instruction. Each newly-inserted

loop must also end with a break statement, so

that control will fall out of the loop. Figure 4

shows an example of this technique. Additional

loops and break/continue's create a structured

program with exactly the same control
ow as the

goto-only program.

Ramshaw's algorithm requires two inputs: the

control
ow graph, and an instruction ordering. His

algorithm encodes this order into the
ow graph

using augmenting edges, such that every instruc-

tion has an augmenting edge to the next instruc-

tion in sequence. These augmenting edges occur

between every pair of physically adjacent instruc-

tions even if actual control
ow between them is

impossible. He proves that if this augmented graph

is reducible, then a structurally equivalent [PKT73]

program can be created without goto's. How-

ever, Ramshaw provides no algorithm for �nding

a reducible augmented
ow graph from a given re-

ducible
ow graph.

The control-
ow graphs of Java programs are

reducible. Therefore, the compiled bytecode will

likely form a reducible control-
ow graph. Unfor-

tunately, simple optimizations like loop inversion

create irreducible augmented
ow graphs. The
ow

graph of the program in Figure 8 has this problem

because the augmenting edge between the �rst two

statements creates a \jump" into the body of the

loop formed by the next seven statements.

To utilize Ramshaw's algorithm, we developed an

algorithm that orders a reducible graph's instruc-

tions such that the resulting augmented graph is

also reducible.

3.1 Augmenting the Flow Graph

Creating a reducible augmented
ow graph re-

quires that no augmenting edge enters a loop any-

where other than at its header. Preventing this

is simple|when ordering the instructions, make

the header �rst and contiguously order the loop's

instructions. Because physical adjacency deter-

mines augmenting edges, contiguously ordering the

instructions guarantees that the only augmenting

edge entering the loop from the outside will be en-

tering at the top, which will not a�ect reducibility

if it is the loop's header.

A loop with no nested loops inside is easy to

order|simply remove the back edges and topo-

logically sort the remaining directed acyclic graph

(DAG). Handling interior loops requires replacing

them with a single placeholder node in the graph

and separately ordering both the loop and the sur-

rounding graph. After ordering both, re-insert the

loop's nodes at its placeholder. Re-ordering in-

structions may change whether or not one instruc-

tion falls through to another as it did in the original

Bytecode Symbolic Stack Emitted Source

aload 0 "this"

getfield #3 <Field foo.sam I> "this.sam"

iload 1 "this.sam", "i1"

if icmple 12 if (this.sam <= i1) goto L12

iload 1 "i1"

iconst 2 "i1", "2"

imul "(i1*2)"

istore 2 i2 = (i1*2)

12: iload 2 "i2" L12:

ireturn return i2

Figure 3: Symbolic Execution of Bytecode

stmt0

if expr1 goto L1;

if expr2 goto L2;

L1: stmt1

L2: stmt2

stmt0

L2: for (; ;) f
L1: for (; ;) f

if expr1 break L1;

if expr2 break L2;

break L1;

g // L1

stmt1

break L2;

g // L2
stmt2

Figure 4: Ramshaw's Goto Elimination: Before and After

ordering. Where implicit control
ow has changed,

the algorithm must add new branches to restore

the original control
ow. Whenever possible, the

topological sort attempts to maintain the original

fall-through behavior.

This algorithm produces a reducible augmented

graph. Because all loops are ordered separately,

and laid out contiguously, the only augmenting

edge entering from outside enters at the top. The

topological sort of the loop (minus its backedges)

guarantees that this top node is the loop header and

that no internal edges cause irreducibility. Outside

edges into the loop header cannot make a loop irre-

ducible. Therefore, the resulting augmented graph

is reducible.

Loops are not the only blocks of instructions

which must be ordered contiguously. Exception

handling regions must form contiguous sections of

instructions. Class �les specify which instructions

are in which regions. Our algorithm orders those

regions contiguously by treating them like loops.

After applying this technique to create a total or-

dering of the nodes (the augmenting path), Kraka-

toa can apply Ramshaw's technique to eliminate

goto's.

4 Code Transformations

4.1 Program Points

After applying Ramshaw's algorithm for eliminat-

ing goto's, Krakatoa has a complex, yet legal, Java

AST (see Figure 9). Krakatoa then proceeds to

recover more of the natural high-level constructs

of the original program (e.g. if-then-else, etc.).

Krakatoa uses a program point analysis to summa-

rize a program's control-
ow and to guide recover-

ing high-level constructs. A program point is a syn-

tactic location in a program. Every statement has a

program point both before and after it. These pro-

gram points have two properties: reachability and

equivalence class.

A program point is unreachable if and only if it is

preceded along all execution paths by an uncondi-

tional jump statement (i.e. return, throw, break,

or continue). For instance, in Figure 5, program

point 3, �3, is unreachable, since it is preceded by a

return statement. �6 is reachable, however, since

one of the branches in the preceding if statement

does not end with a jump statement.

Two program points are equivalent (denoted as

�x � �y) if and only if future computation of the

program is the same from both points. For in-

stance, the program point before a break state-

ment is equivalent to the program point after the

loop it exits (�3 and �8 in Figure 6). As an ex-

ample, in Figure 6, �1, �2, �4, �5, �6, and �7 are

equivalent, as are program points �3 and �8.

Both reachability and equivalence are simple

to compute via standard control-
ow analyses

[ASU86].

4.2 AST Rewrite Rules

Krakatoa performs a series of AST rewriting trans-

formations to recover as many of the \natural" pro-

gram constructs as it can (e.g. if-then-else, etc.).

Krakatoa applies these rewriting rules repeatedly

until no changes occur. We have found that the

few rules below are su�cient to retrieve high-level

constructs of the Java language, including if-then-

else statements, and short-circuit evaluation of ex-

pressions. Each rewriting rule reduces the size of

the AST, thus ensuring termination.

Table 1 summarizes the rules, which we describe

below in greater detail. Many of these rules gen-

eralize. Those that apply to for-loops often apply

to other loops. Many rules have several symmetric

cases. For example, the �rst rule in Table 1 re-

moves an empty else-branch from an if-then-else

statement|there is a symmetric rule for removing

an empty then-branch by negating the predicate.

4.3 if-then-else Rewriting Rules

The �rst transformation shown in Table 1 changes

an if-then-else statement into an if-then state-

ment when the else branch is empty. This trans-

formation is always legal.

The second transformation creates an if-then-

else statement from an if-then statement by hoist-

ing the subsequent statement list into the else-part.

Our algorithm performs this transformation if and

only if no reachable program point in Stmtlist1 is

equivalent to the program point before Stmtlist2.

Essentially, this means that no statement in the

then-branch (Stmtlist1) can reach Stmtlist2 di-

rectly.

4.4 Loop Rewriting Rules

The third rule in Table 1 removes useless continue

statements. If the program point after a continue

statement is equivalent to the program point before

the continue statement, then that continue can

be removed.

The fourth rule creates a short-circuit test ex-

pression within a for-loop by eliminating an inte-

rior if statement. Doing so requires that the loop

body begin with an if-then-else statement, and

that the then branch of that statement consists

of a single jump to a program point equivalent to

breaking out of the loop.

The �fth transformation provides an example of

transforming loops into if statements. A loop is

equivalent to an if if it can never repeat itself, and if

all simple break statements can be safely removed

during the transformation. A loop never repeats

if its last program point is unreachable. break's

may be removed if the immediately following (un-

reachable) program point is equivalent to the last

program point in the loop (�1 in Table 1). The

transformation replaces the loop with an if state-

ment, and deletes all of the break statements for

that loop.

4.5 Short Circuit Evaluation

Rewriting Rules

The sixth rule shown in Table 1 recovers a short-

circuit Or conditional. Short-circuit Or's exist

when two adjacent conditionals guard the same

statement list and failure of either will cause a

branch to equivalent locations.

The last transformation in Table 1 recovers short-

circuitAnd expressions. This transformation is ap-

plicable whenever a simple if statement represents

the entire body of another.

5 Status

We have implemented a prototype Java decompiler,

Krakatoa, in Java. We have run Krakatoa on a

number of class �les, including some to which we

had no source code access. We examined the output

of Krakatoa by hand, and Krakatoa appears to re-

cover high-level constructs very well. Figures 7{10

provide an example of the stages of decompilation.

Rule Before After Conditions

Eliminate

Else

if expr f
Stmtlist

g else f g

if expr f
Stmtlist

g
None

Create

if-then-else

if expr f
Stmtlist1

g
�1 : Stmtlist2

if expr f
Stmtlist1

g else f
Stmtlist2

g

Stmtlist1 contains no

reachable program

points equivalent to �1.

Delete

Continues

for (A ;B ;C) f
Stmtlist

�1 continue �2

g

for (A;B ;C) f
Stmtlist

g

�1 � �2

Move

Conditionals

for (A ;B ;C) f
if expr f

�1 jump

g else f
Stmtlist1

g
Stmtlist2

g
�2

for (A ;

B and not expr ;

C) f
Stmtlist1

Stmtlist2

g

�1 � �2, X is either a

break or continue

Remove

Loop

for (stmt ; expr ;) f
Stmtlist

�1

g
�2

stmt

if expr f
Stmtlist0

g

Stmtlist contains no

reachable program

points equivalent to

�1. The program point

after any break must be

equivalent to �1.

Create Short

Circuit Or's

if expr1 f
�1 X

g else f
if expr2 f

�2 Y

g else f
Stmtlist

g
g

if expr1 or expr2 f
X

g
else f

Stmtlist

g

X and Y are equivalent

jumps. (I.e., �1 � �2.)

Create Short

Circuit And's

if expr1 f
if expr2 f

Stmtlist

g
g

if expr1 and expr2 f
Stmtlist

g

Neither if stmt has an

else branch

Table 1: Canonical Code Transformation Rules

�1

if (a < b) f
�2

return a;

�3 // (unreachable)

g
else f

�4

a = b;

�5

g
�6

Figure 5: Reachable Points

�1 // f �2, �4, �5, �6, �7 g
for (; ;) f

�2

if (a < b) f
�3 // f �8 g
break;

�4 // (unreachable)

g
else f

�5

continue;

�6 // (unreachable)

g
�7 // (unreachable)

g
�8

Figure 6: Equivalent Points

Figure 7 shows the original source code of a sam-

ple program. Figure 8 shows the results of expres-

sion decompilation on the bytecode of this program.

Figure 9 shows the results of applying Ramshaw's

algorithm to the decompiled expression graph. Fig-

ure 10 shows the result of the grammar rewrit-

ing rules applied to the output of Ramshaw's al-

gorithm. Obviously, using DeMorgan's laws would

simplify the boolean expressions. Future versions

of Krakatoa will do so.

For the JVM dup operators, which duplicate

stack elements, Krakatoa simply creates a tempo-

rary variable to hold the duplicated value. This

yields unnatural, but easily readable, decompila-

tions. A more di�cult problem is our failure to

recover the conditional-expression operator, \? :".

This operation presents two di�culties: it requires

determining short-circuit operators during expres-

sion recovery, and it requires that expression recov-

ery handle non-empty stacks at basic block bound-

aries. Fortunately, the short-circuit problem can be

handled easily with four simple graph-writing rules

given in [Cif93]. The non-empty stack problem is

di�cult because it requires combining expressions

in our symbolic stack upon entering a basic block

with multiple predecessors. Krakatoa again uses a

temporary variable to hold the result of each branch

of the conditional expression, and then assigns this

temporary value to the conditional expression. We

are currently investigating other solutions to this

problem.

Appendix B contains additional examples of

Krakatoa's output.

6 Countermeasures

Krakatoa is very e�ective at reproducing readable

Java source from Java bytecode. This may be

alarming to those who want to protect their source

code from unwanted copying. Unfortunately, there

are few countermeasures.

One could introduce irreducible control-
ow

through bogus conditional jumps to foil Ramshaw's

algorithm. This, however, only stops the recre-

ation of high-level constructs. Krakatoa could sim-

ply produce source code in a Java-like language ex-

tended with goto's.

One could introduce bizarre stack behavior to foil

expression recovery. This is di�cult, however, be-

cause the behavior cannot be so bizarre as to yield

unveri�able bytecode. It is possible, however, to

create many bogus threads of control (i.e., threads

that will never execute) that will confuse the ex-

pression recovery mechanism in basic blocks that

are entered with non-empty stacks.

One code obfuscation technique that is modestly

e�ective is to change the class �le's symbol table to

contain bizarre names for �elds and methods. So

long as cooperating classes agree on these names,

the class �les will link and execute correctly [vV96,

Sri96].

Another suggested solution is to use dedicated

class foo f
void foo(int x, int y) f

while ((x + y < 10) && (x > 5)) f
if ((y > x) k (y < 100)) f

x = y;

g
else f

x += 100;

g
g

g
g

Figure 7: Original Source

class foo f
void foo(int i1, int i2) f

goto L4;

L1: if (i2 > i1) goto L2;

if (i2 >= 100) goto L3;

L2: i1 = i2;

goto L4;

L3: i1 += 100;

L4: if ((i1+i2)>=10) goto L5;

if (i1 > 5) goto L1;

L5: return;

g // foo
g // foo

Figure 8: After Expression Decompilation

class foo f
void foo(int i1, int i2) f

lp3: for (; ;) f
if ((i1 + i2) >= 10) break lp3;

if !((i1 > 5)) break lp3;

lp2 : for (; ;) f
lp1 : for (; ;) f

if (i2 > i1) break lp1;

if !((i2 >= 100)) break lp1;

break lp2;

g // lp1

i1 = i2;

continue lp3;

g // lp2
i1 += 100;

continue lp3;

g // lp3

return;

g
g

Figure 9: After Goto Elimination (Ramshaw's

Algorithm)

class foo f
void foo(int i1, int i2) f

lp3: for (;!((i1+i2)>=10)&&((i1>5));) f
if (i2 > i1) k !((i2 >= 100)) f

i1 = i2;

g // then
else f

i1 += 100;

g
g // lp3

return;

g
g

Figure 10: After AST Transformation (Final De-

compilation Results)

hardware and encryption to protect class �les

[Wil97].

Many traditional countermeasures to reverse-

engineering will not work for Java bytecode. It is

impossible to mix code and data. It is impossible to

jump to the middle of instructions. It is impossible

to generate bytecode and then jump to it.

7 Related Work

Ramshaw presented a technique for eliminating

goto's in Pascal programs by replacing them with

multilevel break's and surrounding loops [Ram88].

He made no attempt to recover high-level control

constructs. All high-level control structures were

provided by the original Pascal.

Several decompilation systems have used a se-

ries of graph transformations to recover high-level

constructs [Lic85, Cif93]. These systems encounter

di�culties in the presence of nested loops, and

other arbitrarily control
ow. Multilevel break's

cause considerable problems. Exception handling

introduces another di�culty to such systems, as

the control
ow graph can be entered in several

places. Krakatoa easily creates multi-level break's

and continue's, and is able to eliminate virtually

all of the unnecessary ones via successive applica-

tion of the rewrite rules.

\Mocha" (version 1 beta 1) [vV96] is a Java de-

compiler written by Hanpeter van Vliet. Mocha

uses graph transformations to recover high-level

constructs. Mocha often aborts when it confronts

tangled|yet structured|control
ow (including

multi-level break's and continue's). The system

does issue type declarations, and uses debugging in-

formation (when present) to recover local variable

names.

Other graph transformation systems used node-

splitting to transform an unstructured graph to a

structured graph [WO78, PKT73, Wil77]. Peter-

son, Kasami, and Tokura present a proof that every

ow graph can be transformed into an equivalent

well-formed
ow graph. Williams and Ossher use a

similar technique, but they recognize �ve unstruc-

tured sub-graphs, and replace those with equivalent

structured graphs. Node-splitting preserves the ex-

ecution sequence of a program, but not the struc-

ture. We do not consider this reasonable for de-

compilation.

Baker presents a technique for producing pro-

grams from
ow graphs [Bak77]. Baker gener-

ates summary control
ow information to guide her

graph transformations. Our goal is similar, since

the output of the decompiler should be as readable

as possible. Her technique structures old FOR-

TRAN programs for readability. As a result, her

technique may leave some goto's in the resulting

programs, which is not allowed in Java.

Other techniques for eliminating goto's have

been proposed [EH94, Amm92, AKPW83, AM75].

These techniques may change the structure of the

program, and may add condition variables, or cre-

ate subroutines.

8 Conclusion

In this paper, we present a technique for decom-

piling Java bytecode into Java source. Our decom-

piler, Krakatoa, produces syntactically legal Java

source from legal, reducible Java bytecode. We fo-

cus on two subproblems of decompilation: recov-

ery of expressions from Java's stack-based byte-

code, and recovery of high-level control-
ow con-

structs. We present our stack simulation method

for recovering expressions. We present an extension

of Ramshaw's goto elimination technique that can

be applied to any reducible control-
ow graph.

We also present a small, yet powerful, set of code

rewriting rules for recovering the natural high-level

control-
ow constructs of the Java source language.

These rewrite rules enable Krakatoa to successfully

decompile many class �les that graph transforma-

tion systems fail. If Krakatoa is presented with

a high-level language idiom that it does not rec-

ognize, it may leave unnecessary breaks or con-

tinues in the code. It will still produce legal Java,

however. If a system relies on a graph transforma-

tion system to produce high-level constructs, it will

fail when presented with an unexpected construct.

Our techniques, combined with the abundant

type information available in class �les, make de-

compilation of Java bytecode quite e�ective.

9 Acknowledgment

Saumya Debray helped develop the instruction or-

dering algorithm.

References

[AKPW83] J.R. Allen, Ken Kennedy, Carrie

Porter�eld, and Joe Warren. Conver-

sion of control dependence to data de-

pendence. pages 177{189, 1983.

[AM75] E. Ashcroft and Z. Manna. Translating

programs schemas to while-schemas.

SIAM Journal of Computing, 4(2):125{

146, 1975.

[Amm92] Zahira Ammarguellat. A control-
ow

normalization algorithm and its com-

plexity. IEEE Transactions on Soft-

ware Engineering, 18(2):237{250, 1992.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ull-

man. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley,

Reading, Massachusetts, 1986.

[Bak77] Brenda S. Baker. An algorithm for

structuring
owgraphs. Journal of the

Association for Computing Machinery,

24(1):98{120, January 1977.

[Cif93] Cristina Cifuentes. A structuring al-

gorithm for decompilation. In Pro-

ceedings of the XIX Conferencia Lati-

noamericana de Informatica, pages

267{276, Buenos Aires, Argentina, Au-

gust 1993.

[EH94] Ana M. Erosa and Laurie J. Hendren.

Taming control
ow: A structured ap-

proach to eliminating goto statements.

pages 229{240. International Confer-

ence on Computer Languages, May

1994.

[Lic85] Ulrike Lichtblau. Decompilation of

control structures by means of graph

transformations. In C. F. M. Ni-

vat Hartmut Ehrig and J. Thatcher,

editors, Mathematical foundations of

software development: Proceedings of

the International Joint Conference on

Theory and Practice of Software De-

velopment (TAPSOFT 85): volume 1

- Colloquium on Trees in Algebra and

Programming (CAAP '85), volume 185

of Lecture Notes in Computer Science,

pages 284{297. Springer-Verlag, March

1985.

[LY97] Tim Lindholm and Frank Yellin. The

Java Virtual Machine Speci�cation.

The Java Series. Addison-Wesley, 1997.

[PKT73] W.W. Peterson, T. Kasami, and

N. Tokura. On the capabilities of while,

repeat and exit statements. Commu-

nications of the ACM, 16(8):503{512,

1973.

[Ram88] Lyle Ramshaw. Eliminating go to's

while preserving program structure.

Journal of the Association for Comput-

ing Machinery, 35(4):893{920,October

1988.

[Sri96] KB Sriram. Hashjava. url:

http://www.sbktech.org/hashjava.html,

1996.

[vV96] Hanpeter van Vliet. Mocha. current

url: http://www.brouhaha.com/~eric/

computers/mocha-b1.zip, 1996.

[Wil77] M.H. Williams. Generating struc-

tured
ow diagrams: The nature of

unstructuredness. Computer Journal,

20(1):45{50, 1977.

[Wil97] U. G. Wilhelm. Cryptographically

protected objects, May 1997. A

french version appeared in the Pro-

ceedings of RenPar'9, Lausanne, CH.

http://lsewww.epfl.ch/~wilhelm/

CryPO.html.

[WO78] M.H. Williams and H.L. Ossher. Con-

version of unstructured
ow diagrams

to structured. Computer Journal,

21(2):161{167, 1978.

A Additional Rewriting Rules

We anticipate using a few other tree rewriting rules

that might improve readability of our code. The

anticipated rules build more natural for-loops. Ta-

ble 2 presents addition code transformation rules

that could be applied by Krakatoa. We expect

to add these rules as we re-implement Krakatoa in

Java.

B Sample Decompiler Output

We've included a representative sampling of

Krakatoa's output on a class�le that implements

sets in Java. The original Java source is on the left

and Krakatoa's output is on the right. Table 3 pro-

vides original source class de�nitions as well as the

Rule Before After Conditions

Include

Init

I

for (; expr ; update) f
Stmtlist

g

for (I ; expr ; update) f
Stmtlist

g
I is a simple statement

Include

Update

for (init ; expr ;) f
Stmtlist

U

�1 g

for (init ; expr ; U) f
Stmtlist

g

Stmtlist contains no

reachable program

points equivalent to �1.

U is a simple statement

Table 2: Additional Code Transformation Rules

Original Source Output from Krakatoa

import java.io.PrintStream;

import java.util.Vector;

public class Set

implements Cloneable {

// class variables

static boolean echo_ops;

// instance variables

protected Vector members;

// functions are defnied here....

}

import java.io.PrintStream;

import java.util.Vector;

public class Set

extends java.lang.Object

implements java.lang.Cloneable {

static boolean echo_ops;

protected java.util.Vector members;

// functions are defined here...

}

Table 3: Class de�nition output from Krakatoa

corresponding Krakatoa output. Table 4 provides

original source of several small functions together

with Krakatoa output for those functions. Table 5

shows a larger function in original source as well as

Krakatoa output for that function.

Original Source Output from Krakatoa

public boolean isMember(Object o) {

return (members.contains(o));

} // isMember

public boolean isMember(

java.lang.Object local1) {

return this.members.contains(local1);

} // isMember

public void addMember(Object o) {

if (!(isMember(o))) {

members.addElement(o);

} // then

} // addMember

public void addMember(

java.lang.Object local1) {

if !((this.isMember(local1) != 0)) {

this.members.addElement(local1)

} // then

return;

} // addMember

public void removeMember(Object o) {

members.removeElement(o);

} // removeMember

public void removeMember(

java.lang.Object local1) {

this.members.removeElement(local1)

return;

} // removeMember

public int size() {

return members.size();

} // size

public int size() {

return this.members.size();

} // size

boolean equals(Set s) {

Set d1, d2;

d1 = difference(s);

d2 = s.difference(this);

return ((d1.size() == 0) &&

(d2.size() == 0));

}

boolean equals(Set local1) {

Set local2;

Set local3;

local2 = this.difference(local1);

local3 = local1.difference(this);

if !(((local2.size() != 0) ||

!((local3.size() == 0)))) {

return 1;

} // then

else {

return 0;

} // if

} // equals

Table 4: Member Functions: Original Source and Krakatoa output

Original Source Output from Krakatoa

// This returns a NEW set, with all of

// the elements from this set and

// Set s.

public Set union(Set s) {

Set out;

int size;

int i;

Object obj;

if (echo_ops) {

System.out.println("unioning");

}

out = new Set();

out.members = (Vector) members.clone();

size = s.size();

for (i = 0; i < size; i++) {

obj = s.members.elementAt(i);

if (!(out.isMember(obj))) {

out.addMember(obj);

} // then

} // for

return out;

} // union

public Set union(Set local1) {

Set local2;

int local3;

int local4;

java.lang.Object local5;

if !((Set.echo_ops == 0)) {

java.lang.System.out.println("unioning");

} // then

local2 = new Set();

local2.members = ((java.util.Vector)

this.members.clone());

local3 = local1.size();

local4 = 0;

loop3 :

for (; !(!(local4 < local3)) ;) {

local5 =

local1.members.elementAt(local4);

if !((local2.isMember(local5) != 0)) {

local2.addMember(local5)

} // then

local4 += 1;

} // loop3

return local2;

} // union

Table 5: Member functions: Original Source and Krakatoa output

